JP2015178949A - Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device - Google Patents

Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device Download PDF

Info

Publication number
JP2015178949A
JP2015178949A JP2014145530A JP2014145530A JP2015178949A JP 2015178949 A JP2015178949 A JP 2015178949A JP 2014145530 A JP2014145530 A JP 2014145530A JP 2014145530 A JP2014145530 A JP 2014145530A JP 2015178949 A JP2015178949 A JP 2015178949A
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
partition member
exchange element
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014145530A
Other languages
Japanese (ja)
Other versions
JP6364618B2 (en
Inventor
慶太 高橋
Keita Takahashi
慶太 高橋
洋祐 浜田
Yosuke Hamada
洋祐 浜田
将秀 福本
Masahide Fukumoto
将秀 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014145530A priority Critical patent/JP6364618B2/en
Publication of JP2015178949A publication Critical patent/JP2015178949A/en
Application granted granted Critical
Publication of JP6364618B2 publication Critical patent/JP6364618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To enhance moisture permeability of a partition member for a total heat exchange element and to improve total heat exchange efficiency of a total heat exchange type ventilation device.SOLUTION: A partition member 14 for a total heat exchange element is configured: by coating a moisture permeable substance 21 with respect to the one in which an ultrafine fiber part 17 is laminated on a porous sheet 18; by laminating the porous sheet 18; and after that, by water-insolubilizing the moisture permeable substance 21. Thereby, the purpose is achieved.

Description

本発明は、伝熱性と透湿性を有する全熱交換素子用仕切部材、およびその全熱交換素子用仕切部材を仕切板に用いた全熱交換素子、およびその全熱交換素子を用いた全熱交換形換気装置に関するものである。   The present invention relates to a partition member for a total heat exchange element having heat conductivity and moisture permeability, a total heat exchange element using the partition member for the total heat exchange element as a partition plate, and a total heat using the total heat exchange element The present invention relates to a replaceable ventilation device.

従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換を行う全熱交換形換気装置が知られている。   2. Description of the Related Art Conventionally, a total heat exchange type ventilator that exchanges heat between air supply and exhaust during ventilation is known as a device that can ventilate without impairing the effects of cooling or heating.

全熱交換形換気装置には、熱交換を行うための熱交換素子が含まれており、素材には給気と排気が交じり合わないようにするガスバリア性(主として二酸化炭素バリア性)と伝熱性が求められる。特に、温度と同時に湿度の交換も行う全熱交換素子に関しては、高い透湿性も合わせて有する必要がある。また、寒冷地や熱帯地など室内外で温湿度差が大きな条件で使用する場合、素子内部に結露・結氷が発生するため、耐水性も必要である。   The total heat exchange type ventilator includes a heat exchange element for performing heat exchange, and the material has gas barrier properties (mainly carbon dioxide barrier properties) and heat transfer properties that prevent air supply and exhaust from mixing. Is required. In particular, a total heat exchange element that exchanges humidity at the same time as temperature must also have high moisture permeability. In addition, when used in indoor and outdoor conditions such as cold or tropical areas, condensation and icing occur inside the element, so water resistance is also required.

これらを実現するために、この種の全熱交換素子に用いる全熱交換素子用仕切部材は、以下のような構成となっていた。   In order to realize these, the total heat exchange element partition member used for this type of total heat exchange element has the following configuration.

すなわち、温度の高い高温空気流と、温度の低い低温空気流との間に配置される全熱交換素子用仕切部材であって、透湿性物質として親水性高分子を水溶液化し、親水性繊維が30重量%以上含有する多孔質シートに塗工した後、水不溶化させる構成となっていた。   That is, a partition member for a total heat exchange element disposed between a high-temperature high-temperature air flow and a low-temperature low-temperature air flow, wherein a hydrophilic polymer is converted into an aqueous solution as a moisture-permeable substance, After coating on a porous sheet containing 30% by weight or more, it was configured to insolubilize in water.

例えば、これに類似する先行文献として下記特許文献1参照。   For example, see the following Patent Document 1 as a similar prior document.

特開2008−14623号公報JP 2008-14623 A

上記従来例の課題は、親水性繊維が30重量%以上含有する多孔質シートに透湿性物質を直接塗工したため、透湿性物質の厚みが厚く、透湿性能が低いことにあった。すなわち、表面に塗工するだけでは、透湿性物質の層が多孔質シートから剥離するため、従来例では、親水性繊維の多い層に透湿性物質を浸みこませる必要があった。   The problem of the conventional example is that the moisture-permeable material is directly applied to the porous sheet containing 30% by weight or more of the hydrophilic fibers, so that the moisture-permeable material is thick and the moisture-permeable performance is low. That is, since the layer of the moisture permeable substance is peeled off from the porous sheet only by coating on the surface, in the conventional example, it is necessary to immerse the moisture permeable substance in the layer having many hydrophilic fibers.

しかし、この構成では、親水性繊維層の多い層の厚みを調整できず、ガスバリア性を担保するために必要以上の塗工量で塗工する必要があり、透湿性物質の厚みが厚くなってしまう。結果として、透湿性能が低く、全熱交換効率が低いという課題があった。   However, in this configuration, it is impossible to adjust the thickness of the layer having many hydrophilic fiber layers, and it is necessary to apply with an application amount more than necessary in order to ensure gas barrier properties, and the thickness of the moisture-permeable material is increased. End up. As a result, there existed a subject that moisture permeability performance was low and total heat exchange efficiency was low.

そこで本発明は、上記透湿性を改善し、全熱交換効率の高い熱交換形換気装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a heat exchange type ventilator that improves the moisture permeability and has high total heat exchange efficiency.

そして、この目的を達成するために、本発明は、内側に極細繊維層を備え、外側の両表面に多孔質シートを備えた全熱交換素子用仕切部材であって、前記極細繊維層に、透湿性物質を含浸または塗工し、水不溶化したことを特徴とするものであり、これにより所期の目的を達成するものである。   And in order to achieve this object, the present invention is a partition member for a total heat exchange element provided with an ultrafine fiber layer on the inner side and a porous sheet on both outer surfaces, the ultrafine fiber layer, It is characterized in that it is impregnated or coated with a moisture-permeable material and insolubilized in water, thereby achieving the intended purpose.

本発明は、内側に極細繊維層を備え、外側の両表面に多孔質シートを備えた全熱交換素子用仕切部材であって、前記極細繊維層に、透湿性物質を含浸または塗工し、水不溶化したことを特徴とするものであり、従来の耐水性を備えた全熱交換素子用仕切部材より透湿性能を向上させ、全熱交換効率の高い全熱交換形換気装置を得ることができるものである。   The present invention is a partition member for a total heat exchange element that includes an ultrafine fiber layer on the inside and porous sheets on both outer surfaces, and impregnates or coats the ultrafine fiber layer with a moisture permeable substance, It is characterized by water insolubility and can improve moisture permeability performance compared to conventional partition members for total heat exchange elements with water resistance, and obtain a total heat exchange type ventilator with high total heat exchange efficiency. It can be done.

すなわち、本発明によれば、外側の両表面に多孔質シートを用いることにより、全熱交換素子用仕切部材に必要な強度を確保することが出来る。そのため、極細繊維層は繊維径を細くして、薄く形成することが出来る。その上、繊維径が細いことにより、毛細管力により透湿性物質を吸収することが出来るため、透湿性物質を極細繊維層に集めることができ、透湿性物質の厚みを薄く出来る。結果として、透湿性能が高く、全熱交換効率を高く出来る。さらに、同じく繊維径が細いことから、強度を保ちつつ、極細繊維層の空隙率を高めることができ、透湿性物質の含有量を高めることが出来る。   That is, according to the present invention, the strength required for the partition member for the total heat exchange element can be ensured by using the porous sheets on both outer surfaces. Therefore, the ultrafine fiber layer can be formed thin by reducing the fiber diameter. In addition, since the fiber diameter is thin, the moisture-permeable material can be absorbed by capillary force, so that the moisture-permeable material can be collected in the ultrafine fiber layer and the thickness of the moisture-permeable material can be reduced. As a result, the moisture permeability is high and the total heat exchange efficiency can be increased. Furthermore, since the fiber diameter is also thin, the porosity of the ultrafine fiber layer can be increased while maintaining the strength, and the content of the moisture permeable substance can be increased.

以上のことから、透湿性物質を薄く高濃度に含有した層を形成出来るため、透湿性能の高い全熱交換素子用仕切部材が得られ、全熱交換効率の高い全熱交換形換気装置を得ることができる。   From the above, since a layer containing a thin moisture-permeable substance at a high concentration can be formed, a partition member for a total heat exchange element with high moisture permeability can be obtained, and a total heat exchange type ventilator with high total heat exchange efficiency can be obtained. Can be obtained.

本発明の実施の形態1にかかる全熱交換形換気装置の設置例を示す概要図Schematic diagram showing an installation example of the total heat exchange ventilator according to the first embodiment of the present invention. 同全熱交換形換気装置の構造を示す図Diagram showing the structure of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す斜視図A perspective view showing a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す分解斜視図An exploded perspective view showing a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材の基材を示す断面図Sectional drawing which shows the base material of the partition member for total heat exchange elements of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材を示す断面図Sectional drawing which shows the partition member for total heat exchange elements of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材を示す断面図Sectional drawing which shows the partition member for total heat exchange elements of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材を示す断面図Sectional drawing which shows the partition member for total heat exchange elements of the total heat exchange type ventilator

以下、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

(実施の形態1)
図1において、家1の屋内に全熱交換形換気装置2が設置されている。
(Embodiment 1)
In FIG. 1, a total heat exchange type ventilator 2 is installed in a house 1.

例として日本の冬季を挙げると、屋内からの空気を、黒色矢印のごとく、全熱交換形換気装置2を介して屋外に放出する。   Taking winter in Japan as an example, indoor air is discharged to the outdoors through a total heat exchange type ventilator 2 as indicated by a black arrow.

また、屋外の空気は、白色矢印のごとく、全熱交換形換気装置2を介して室内にとり入れる。   Outdoor air is taken into the room through the total heat exchange type ventilator 2 as indicated by the white arrow.

そして、このことにより換気を行うとともに、この換気時に、屋内空気の熱を屋外空気へと伝達し、不用意な熱の放出を抑制しているのである。   And while ventilating by this, the heat of indoor air is transmitted to outdoor air at the time of this ventilation, and the discharge | emission of inadvertent heat is suppressed.

全熱交換形換気装置2は図2に示すように、本体ケース3に全熱交換素子4を配置し、ファン5を駆動することで、屋内空気を内気口6から吸い込み、全熱交換素子4、ファン5を経由し、排気口7から屋外へと排出する。   As shown in FIG. 2, the total heat exchange type ventilator 2 has a total heat exchange element 4 disposed in the main body case 3, and drives the fan 5, thereby sucking indoor air from the interior air port 6, and the total heat exchange element 4. Then, the air is discharged from the exhaust port 7 to the outside via the fan 5.

また、ファン8を駆動することで、屋外空気を外気口9から吸い込み、全熱交換素子4、ファン8を経由し、給気口10から屋内へと取り入れる構成となっている。   Further, by driving the fan 8, outdoor air is sucked from the outside air port 9 and taken into the indoor through the air supply port 10 via the total heat exchange element 4 and the fan 8.

また、前記全熱交換素子4は、図3、図4に示すように、枠体11の矩形開口部に全熱交換素子用仕切部材14を装着したものを、屋内空気風路リブ12および屋外空気風路リブ13を交互に挟んで所定間隔で配置し、隣接する枠体11間に上述した屋内空気15、次に隣接する枠体11間に上述した屋外空気16を流すことで、熱交換を行わせる構造となっている。   Further, as shown in FIGS. 3 and 4, the total heat exchange element 4 is formed by mounting the total heat exchange element partition member 14 on the rectangular opening of the frame 11, and the indoor air air duct rib 12 and the outdoor. Heat exchange is performed by arranging air air passage ribs 13 alternately at predetermined intervals, and flowing the indoor air 15 described above between adjacent frame bodies 11 and the outdoor air 16 described above between adjacent frame bodies 11. It has a structure that makes it.

冬季の場合、屋内空気15は暖房や人の呼気などから湿気を含んだ状態であり、屋外空気16は乾燥した状態となっている。全熱交換素子用仕切部材14の両面を屋内空気15と屋外空気16がそれぞれ流れることで、全熱交換素子用仕切部材14を介した熱伝達により、屋内空気15の熱が屋外空気16に伝えられる。また、全熱交換素子用仕切部材14を介した湿気伝達により、屋内空気15の水分が屋外空気16に伝えられる。   In the winter season, the indoor air 15 is in a state of containing moisture from heating or human breath, and the outdoor air 16 is in a dry state. The indoor air 15 and the outdoor air 16 respectively flow on both surfaces of the partition member for total heat exchange element 14, so that the heat of the indoor air 15 is transmitted to the outdoor air 16 by heat transfer via the partition member for total heat exchange element 14. It is done. Further, moisture in the indoor air 15 is transmitted to the outdoor air 16 by moisture transmission through the partition member for total heat exchange element 14.

本発明では、図5に断面を示したように、多孔質シート18の上に極細繊維部17が積層されたものに対し、透湿性物質21を塗工し、さらに多孔質シート18を積層した後、透湿性物質21を水不溶化することで全熱交換素子用仕切部材14を構成する。ここで、極細繊維部17と多孔質シート18とは、接着部23を接点として接着されている。透湿性物質21は極細繊維19の間に塗工され、図6に断面を示したように、透湿部20が多孔質シート18に挟まれた全熱交換素子用仕切部材14が得られる。これにより、全熱交換素子用仕切部材14の強度を向上出来るので、極細繊維19の繊維径を細くして、極細繊維部17を薄く形成することが出来る。その上、繊維径が細いことによる毛細管力により、透湿性物質21を効率良く吸収出来るため、透湿性物質21を極細繊維部17に集めることが出来る。これにより、透湿部20の厚みを薄く出来る。さらに、同じく繊維径が細いことから、強度を保ちつつ、極細繊維部17の空隙率を高めることが出来るので、透湿部20に含まれる透湿性物質21の割合を高くすることが出来る。   In the present invention, as shown in a cross section in FIG. 5, the moisture-permeable material 21 is applied to the porous sheet 18 on which the ultrafine fiber portion 17 is laminated, and the porous sheet 18 is further laminated. Then, the partition member 14 for total heat exchange elements is comprised by making the moisture-permeable substance 21 water-insoluble. Here, the ultrafine fiber portion 17 and the porous sheet 18 are bonded using the bonding portion 23 as a contact point. The moisture permeable substance 21 is applied between the ultrafine fibers 19, and the partition member 14 for the total heat exchange element in which the moisture permeable part 20 is sandwiched between the porous sheets 18 is obtained as shown in a cross section in FIG. 6. Thereby, since the intensity | strength of the partition member 14 for total heat exchange elements can be improved, the fiber diameter of the ultrafine fiber 19 can be made thin and the ultrafine fiber part 17 can be formed thinly. In addition, since the moisture permeable substance 21 can be efficiently absorbed by the capillary force due to the thin fiber diameter, the moisture permeable substance 21 can be collected in the ultrafine fiber portion 17. Thereby, the thickness of the moisture permeable part 20 can be made thin. Furthermore, since the fiber diameter is also thin, the porosity of the ultrafine fiber portion 17 can be increased while maintaining the strength, so that the ratio of the moisture permeable substance 21 contained in the moisture permeable portion 20 can be increased.

全熱交換素子用仕切部材14の透湿に対し抵抗となる部位は、透湿部20と多孔質シート18と接着部23とであり、水分は、多孔質シート18の空隙と透湿部20の透湿性物質21と接着部23とを通過する。多孔質シート18の空隙と透湿性物質21を比較すると、水蒸気の形で移動できる空隙は抵抗になりにくいため、透湿性物質21で充填されている透湿部20の抵抗が透湿の律速となる。このため、透湿部20を薄く形成することにより、全熱交換素子用仕切部材14の透湿性能を上げることが出来る。さらに、透湿部20に含まれる極細繊維19は、透湿性物質21に比べ透湿性が低いため、透湿部20に含まれる透湿性物質21の割合を高めることによっても透湿性能を上げることが出来る。   The parts of the partition member for total heat exchange element 14 that are resistant to moisture permeation are the moisture permeable part 20, the porous sheet 18, and the adhesive part 23. The moisture-permeable substance 21 and the adhesive part 23 pass through. When the gap of the porous sheet 18 and the moisture permeable substance 21 are compared, the gap that can move in the form of water vapor is less likely to become resistance, so the resistance of the moisture permeable portion 20 filled with the moisture permeable substance 21 is the rate of moisture permeability. Become. For this reason, the moisture permeation performance of the partition member for total heat exchange element 14 can be improved by forming the moisture permeable portion 20 thin. Furthermore, since the ultrafine fibers 19 included in the moisture permeable portion 20 have lower moisture permeability than the moisture permeable material 21, the moisture permeable performance can also be improved by increasing the ratio of the moisture permeable material 21 included in the moisture permeable portion 20. I can do it.

また、接着部23が透湿性物質21に比べ透湿性が低い場合、部分的に接着することが好ましく、特定の形状に限定されないが、例えば、ドット状、ネット状、ライン状等が好ましい。また、接着部23が多孔質シート18または極細繊維部17に浸透すると、全熱交換素子用仕切部材14に占める多孔質シート18の空隙または透湿性物質21の割合が減少し、透湿性が低下してしまう。このため、接着部23は極細繊維部17と多孔質シート18との界面のみを接着する形が好ましく、各種接着方法を用いることが出来るが例えば、多孔質シート18を芯鞘繊維で構成することが挙げられる。   Moreover, when the adhesion part 23 has low moisture permeability compared with the moisture permeable substance 21, it is preferable to adhere | attach partially, and although it is not limited to a specific shape, For example, dot shape, net shape, line shape, etc. are preferable. Further, when the bonding portion 23 penetrates into the porous sheet 18 or the ultrafine fiber portion 17, the ratio of the voids or the moisture permeable substance 21 in the porous sheet 18 to the partition member 14 for the total heat exchange element is reduced, and the moisture permeability is lowered. Resulting in. For this reason, it is preferable that the bonding portion 23 is formed by bonding only the interface between the ultrafine fiber portion 17 and the porous sheet 18, and various bonding methods can be used. For example, the porous sheet 18 is made of core-sheath fibers. Is mentioned.

軸となる繊維に、その繊維より低い融点を持つ樹脂がコーティングされた芯鞘繊維を用いることで、繊維表面のみを融解することが可能となり、融解した樹脂に極細繊維部17を埋め込むことで、極細繊維部17と多孔質シート18との界面のみを接着することが出来る。   By using a core-sheath fiber coated with a resin having a melting point lower than that of the fiber for the shaft, it becomes possible to melt only the fiber surface, and by embedding the ultrafine fiber portion 17 in the melted resin, Only the interface between the ultrafine fiber portion 17 and the porous sheet 18 can be bonded.

また、透湿部20を多孔質シート18で挟む構造にすることにより、透湿部20が表面に露出していないため、透湿部20の破損や全熱交換素子用仕切部材14からの脱離を抑制することが出来る。さらに、多孔質シート18の表面には多数の細孔があるため、微細な凹凸が形成されている。この微細な凹凸により、全熱交換素子用仕切部材14近傍の気流の方向に乱れが発生するため、全熱交換素子用仕切部材14近傍に形成される温度境界層が乱れる。これにより、全熱交換素子用仕切部材14と気流との熱伝達と湿度伝達が促進されるので、全熱交換効率を上げることが出来る。   Further, since the moisture permeable portion 20 is sandwiched between the porous sheets 18, the moisture permeable portion 20 is not exposed on the surface, so that the moisture permeable portion 20 is damaged or detached from the partition member 14 for the total heat exchange element. Separation can be suppressed. Furthermore, since the surface of the porous sheet 18 has many pores, fine irregularities are formed. The fine irregularities cause disturbance in the direction of the airflow in the vicinity of the partition member 14 for the total heat exchange element, so that the temperature boundary layer formed in the vicinity of the partition member 14 for the total heat exchange element is disturbed. Thereby, since heat transfer and humidity transfer between the partition member for total heat exchange element 14 and the airflow are promoted, total heat exchange efficiency can be increased.

また、図7に示すように、全熱交換素子用仕切部材14は、外側両表面の一方の多孔質シート18の厚みより、他方の多孔質シート18の厚みが薄い構成としてもよい。これにより、極細繊維部17の一方の面に薄い多孔質シート18a、他方の面に厚い多孔質シート18bを貼り合わせたものに薄い多孔質シート18a側から透湿性物質21を塗工することで、透湿性物質21が極細繊維部17へ浸透する距離を短く出来、透湿性物質21が多孔質シート18aへ付着する量を削減することが出来る。多孔質シート18aへ付着する透湿性物質21は透湿抵抗となるため、それを削減することで、全熱交換素子用仕切部材14の透湿性能を上げることが出来る。それに加え、浸透する時間を短くすることも出来、全熱交換素子用仕切部材14を作成する時間が短くなり生産性を向上することが出来る。なお、薄い多孔質シート18aの厚みと極細繊維部17の厚みとの大小関係は特に指定しない。   Further, as shown in FIG. 7, the total heat exchange element partition member 14 may be configured such that the thickness of the other porous sheet 18 is thinner than the thickness of the one porous sheet 18 on both outer surfaces. Thus, by applying the moisture permeable substance 21 from the thin porous sheet 18a side to the thin porous sheet 18a bonded to one surface of the ultrafine fiber portion 17 and the thick porous sheet 18b bonded to the other surface. The distance that the moisture permeable substance 21 penetrates into the ultrafine fiber portion 17 can be shortened, and the amount of the moisture permeable substance 21 attached to the porous sheet 18a can be reduced. Since the moisture-permeable substance 21 adhering to the porous sheet 18a becomes moisture-permeable resistance, the moisture-permeable performance of the partition member 14 for total heat exchange elements can be improved by reducing it. In addition, the time for permeation can be shortened, the time for creating the partition member 14 for the total heat exchange element can be shortened, and the productivity can be improved. The magnitude relationship between the thickness of the thin porous sheet 18a and the thickness of the ultrafine fiber portion 17 is not particularly specified.

また、図8に示すように、全熱交換素子用仕切部材14は、外側両表面の一方の多孔質シート18と他方の多孔質シート18とが部分的に接着され、両表面に凹凸部22を備えていても良い。   Moreover, as shown in FIG. 8, the partition member 14 for total heat exchange elements has one porous sheet 18 on both outer surfaces and the other porous sheet 18 partially bonded to each other, and an uneven portion 22 is formed on both surfaces. May be provided.

多孔質シート18表面に凹凸部22が形成されることにより、通風路の気流の方向に乱れが発生するため、通風路に形成される温度境界層が乱れる。これにより、全熱交換素子用仕切部材14と気流との熱伝達と湿度伝達が促進されるので、全熱交換効率を上げることが出来る。さらに、多孔質シート18同士を接着することによって、全熱交換素子用仕切部材14の剛性や強度などの力学的特性が向上する。そのため、加工及び使用等の各過程において全熱交換素子用仕切部材14の破損や変形を抑制出来るので、安定した性能を確保することが出来る。   By forming the concavo-convex portion 22 on the surface of the porous sheet 18, turbulence occurs in the direction of the airflow in the ventilation path, so that the temperature boundary layer formed in the ventilation path is disturbed. Thereby, since heat transfer and humidity transfer between the partition member for total heat exchange element 14 and the airflow are promoted, total heat exchange efficiency can be increased. Furthermore, by bonding the porous sheets 18 to each other, mechanical properties such as rigidity and strength of the partition member for total heat exchange element 14 are improved. Therefore, damage and deformation of the partition member for total heat exchange element 14 can be suppressed in each process such as processing and use, and stable performance can be ensured.

また、平均孔径が15μm以上100μm以下で、厚みが20μm以上500μm以下の多孔質シート18と、平均孔径が0.01μm以上10μm以下で厚みが0.5μm以上20μm以下の極細繊維部17とが積層されたものを用いてもよい。   Further, a porous sheet 18 having an average pore diameter of 15 μm or more and 100 μm or less and a thickness of 20 μm or more and 500 μm or less and an ultrafine fiber portion 17 having an average pore diameter of 0.01 μm or more and 10 μm or less and a thickness of 0.5 μm or more and 20 μm or less are laminated. You may use what was done.

多孔質シート18に平均孔径15μm以上の孔が開いていることにより、透湿性物質21の液抜けを促進することが出来、透湿部20を極細繊維部17の厚みに近づけることが出来るため、透湿性能を上げることが出来る。ただし、100μmよりも大きな平均孔径の孔が開いていると透湿部20が薄い場合に透湿部20を支えきれなくなる可能性がある。また、厚みが20μm未満となると強度が不足する恐れがあり、厚みが500μmを超えると透湿性能が低下する恐れがある。   Since pores having an average pore diameter of 15 μm or more are opened in the porous sheet 18, it is possible to promote liquid drainage of the moisture permeable substance 21, and the moisture permeable portion 20 can be brought close to the thickness of the ultrafine fiber portion 17. Moisture permeability can be improved. However, if a hole having an average pore diameter larger than 100 μm is opened, the moisture permeable part 20 may not be supported when the moisture permeable part 20 is thin. Further, if the thickness is less than 20 μm, the strength may be insufficient, and if the thickness exceeds 500 μm, the moisture permeability may be deteriorated.

本発明における極細繊維とは、繊維径が0.1μmから1μmの繊維を示す。この繊維径を備えることにより、前述の平均孔径を実現しつつ高い空隙率、例えば80%以上、望ましくは90%以上の空隙率を得ることが出来る。多孔質シート18は不織布・織布に限らないが、不織布・織布の場合、繊維径は極細繊維よりも大きく、3μmから50μmの繊維径が好適である。基材の繊維径が3μmを下回ると、単繊維の強度が低く、補強材としての強度が不十分となり、50μm以上であると、多孔質シート18の厚みが厚くなり、透湿性能が低下するので、好ましくない。   The ultrafine fiber in the present invention refers to a fiber having a fiber diameter of 0.1 μm to 1 μm. By providing this fiber diameter, it is possible to obtain a high porosity, for example, 80% or more, desirably 90% or more, while realizing the above average pore diameter. The porous sheet 18 is not limited to a nonwoven fabric / woven fabric, but in the case of a nonwoven fabric / woven fabric, the fiber diameter is larger than that of the ultrafine fiber, and a fiber diameter of 3 μm to 50 μm is preferable. When the fiber diameter of the substrate is less than 3 μm, the strength of the single fiber is low and the strength as a reinforcing material is insufficient, and when it is 50 μm or more, the thickness of the porous sheet 18 is increased and the moisture permeability performance is reduced. Therefore, it is not preferable.

極細繊維部17の平均孔径が10μm以下であることにより、透湿性物質21が極細繊維部17に絡まることで、脱落を抑制できる。ただし、平均孔径が0.01μm未満であると、透湿部20の厚み方向に直線的に透湿性物質21が配置されている箇所が減少するため、水分の移動距離が伸び、透湿性能が低下する恐れがある。また、厚みが0.5μm未満であると、部分的なピンホールが生じやすくなり、全熱交換素子用仕切部材14としてのガスバリア性が担保できなくなる恐れが有り、厚みが20μm以上であると、透湿部20が厚くなりすぎて透湿性能が低下する恐れがある。   When the average pore diameter of the ultrafine fiber portion 17 is 10 μm or less, the moisture permeable substance 21 is entangled with the ultrafine fiber portion 17, so that dropping can be suppressed. However, if the average pore diameter is less than 0.01 μm, the number of locations where the moisture-permeable substance 21 is linearly arranged in the thickness direction of the moisture-permeable portion 20 decreases, so that the movement distance of moisture is extended and moisture-permeable performance is improved. May fall. Further, if the thickness is less than 0.5 μm, partial pinholes are likely to occur, and there is a risk that the gas barrier property as the partition member 14 for the total heat exchange element cannot be secured, and when the thickness is 20 μm or more, There is a possibility that the moisture permeable portion 20 becomes too thick and the moisture permeable performance is lowered.

また、透湿性物質21の水不溶化方法として、親水性の有機低分子化合物を含浸または塗工後、重合させることにより高分子化し、水不溶化してもよい。   Moreover, as a water insolubilization method of the moisture permeable substance 21, it may be polymerized by impregnation or coating with a hydrophilic organic low molecular weight compound and then polymerized to make it insoluble in water.

有機低分子化合物の状態で塗工することにより、極細繊維部17の細かい孔まで浸透させることが可能となり、その後重合により水不溶化することで、より密に透湿性物質21が詰まった透湿部20を得ることが出来る。このため、透湿部20の透湿抵抗を下げることが出来、全熱交換素子用仕切部材14の透湿性能を上げることが出来る。   By coating in the state of an organic low molecular weight compound, it becomes possible to penetrate into the fine pores of the ultrafine fiber portion 17, and then water insolubilized by polymerization, so that the moisture permeable portion 21 is more densely packed with the moisture permeable material 21. 20 can be obtained. For this reason, the moisture permeation resistance of the moisture permeable part 20 can be lowered, and the moisture permeation performance of the partition member 14 for the total heat exchange element can be increased.

また、透湿性物質21として、第四級アンモニウム基を備えた薬剤を用いてもよい。   In addition, as the moisture permeable substance 21, a drug having a quaternary ammonium group may be used.

第四級アンモニウム基は電荷の偏りが大きく、水分子と水素結合を作らないという特徴があるため、水の吸放湿性が高い。このため、全熱交換素子用仕切部材14の透湿性能を上げることが出来る。   The quaternary ammonium group has a large charge bias and does not form hydrogen bonds with water molecules. For this reason, the moisture permeation performance of the partition member 14 for the total heat exchange element can be improved.

また、接着部23が、耐水性と透湿性を備えた材質としてもよい。   Further, the bonding portion 23 may be made of a material having water resistance and moisture permeability.

接着部23が耐水性を備えることで、素子内部に結露・結氷が発生する条件においても、形状変化が少なく性能劣化を防止することが可能となる。また、透湿性を備えることで、全熱交換素子用仕切部材14の透湿性能を上げることが出来る。   By providing the adhesive portion 23 with water resistance, it is possible to prevent performance deterioration with little shape change even under conditions where dew condensation or icing occurs inside the element. Moreover, the moisture permeability of the partition member 14 for total heat exchange elements can be improved by providing moisture permeability.

また、外側両表面の多孔質シート18同士の接着方法として、熱エンボス加工による熱圧着を利用してもよい。このとき、外側両表面の多孔質シート18同士が熱圧着により直接接着されていても良く、透湿部20を介して熱接着されていても良い。   Further, as a method of bonding the porous sheets 18 on both outer surfaces, thermocompression bonding by hot embossing may be used. At this time, the porous sheets 18 on both outer surfaces may be directly bonded to each other by thermocompression bonding or may be thermally bonded via the moisture permeable portion 20.

熱エンボス加工を利用することにより、容易に多孔質シート18の両表面に凹凸部22を形成することが出来る。   By using hot embossing, the uneven portions 22 can be easily formed on both surfaces of the porous sheet 18.

また、多孔質シート18が熱接着可能な耐水性と透湿性を備えた樹脂でコーティングされた芯鞘繊維を備えた構成としてもよい。   Moreover, it is good also as a structure provided with the core-sheath fiber coated with resin with the water resistance and moisture permeability which the porous sheet 18 can heat-bond.

熱接着可能な耐水性と透湿性を備えた樹脂でコーティングされた芯鞘繊維を備えることにより、容易に極細繊維部17と多孔質シート18とを接着することが可能となり、全熱交換素子用仕切部材14の剛性や強度などの力学的特性が向上する。さらに、芯鞘繊維と極細繊維が繊維同士の接点で接着されることにより、接着部23の体積を小さくすることが出来、全熱交換素子用仕切部材14の透湿性を向上することが出来る。   By providing a core-sheath fiber coated with a water-resistant and moisture-permeable resin that can be thermally bonded, it becomes possible to easily bond the ultrafine fiber portion 17 and the porous sheet 18 to the total heat exchange element. Mechanical properties such as rigidity and strength of the partition member 14 are improved. Furthermore, by bonding the core-sheath fiber and the ultrafine fiber at the contact point between the fibers, the volume of the bonding portion 23 can be reduced, and the moisture permeability of the partition member 14 for the total heat exchange element can be improved.

また、全熱交換素子4に、前記構成の全熱交換素子用仕切部材14を用いた構成としてもよい。   Moreover, it is good also as a structure using the partition member 14 for the total heat exchange elements of the said structure for the total heat exchange element 4. FIG.

この構成により、透湿性能の高い全熱交換素子用仕切部材14を用いることが出来るため、潜熱交換効率の高い全熱交換素子4を得ることが出来る。   With this configuration, since the partition member 14 for a total heat exchange element with high moisture permeability can be used, the total heat exchange element 4 with high latent heat exchange efficiency can be obtained.

また、全熱交換形換気装置2に、前記構成の全熱交換素子4を用いた構成としてもよい。   Moreover, it is good also as a structure which used the total heat exchange element 4 of the said structure for the total heat exchange type | formula ventilation apparatus 2. FIG.

この構成により、潜熱交換効率の高い全熱交換素子4を用いることが出来るため、全熱交換効率の高い全熱交換形換気装置2を得ることが出来る。   With this configuration, since the total heat exchange element 4 having high latent heat exchange efficiency can be used, the total heat exchange type ventilator 2 having high total heat exchange efficiency can be obtained.

なお、多孔質シート18としては特に制限されないが、例えば不織布、プラスチックフィルム、織布が挙げられる。材質としては、耐水性のある材料が好ましく、例えばポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリエステル、ポリアミド、ポリイミド、ポリエーテルサルフォン、ポリアクリルニトリル、ポリフッ化ビニリデン等が挙げられる。   In addition, although it does not restrict | limit especially as the porous sheet 18, For example, a nonwoven fabric, a plastic film, and a woven fabric are mentioned. The material is preferably a water-resistant material, and examples thereof include polypropylene, polyethylene, polytetrafluoroethylene, polyester, polyamide, polyimide, polyethersulfone, polyacrylonitrile, and polyvinylidene fluoride.

なお、極細繊維19の材質も、耐水性のある材料が好ましく、上記多孔質シート18と同じ材料を用いることが出来る。また、製造方法としては、メルトブローン法、静電紡糸法等が挙げられるがこれに限らず既知の手法を用いることが出来る。   The material of the ultrafine fiber 19 is also preferably a water resistant material, and the same material as the porous sheet 18 can be used. In addition, examples of the manufacturing method include a melt blown method and an electrostatic spinning method, but are not limited thereto, and a known method can be used.

なお、透湿性物質21としては、親水性の官能基を備えた高分子が好ましく、例えば、水酸基、スルホン基、エステル結合、ウレタン結合、カルボキシル基、カルボ基、リン酸基、アミノ基、第四級アンモニウム基等が挙げられる。特に前述のように第四級アンモニウム基は吸放質性が高く好ましい。   The moisture-permeable substance 21 is preferably a polymer having a hydrophilic functional group. For example, a hydroxyl group, a sulfone group, an ester bond, a urethane bond, a carboxyl group, a carbo group, a phosphate group, an amino group, a fourth group, and the like. A class ammonium group etc. are mentioned. In particular, as described above, quaternary ammonium groups are preferable because of their high absorbency and release properties.

なお、極細繊維部17へ透湿性物質21を添加する方法としては、含浸または塗工が挙げられるが、特に塗工量を制御できる塗工方式が好ましい。塗工方法としては、スプレー方式、グラビアコート方式、ダイ塗工方式、インクジェット方式、コンマコート方式等、既知の方式を用いることが出来る。   In addition, as a method of adding the moisture permeable substance 21 to the ultrafine fiber part 17, there is impregnation or coating, but a coating method capable of controlling the coating amount is particularly preferable. As the coating method, a known method such as a spray method, a gravure coating method, a die coating method, an ink jet method, a comma coating method, or the like can be used.

なお、透湿性物質21の水不溶化方法としては、上記重合による高分子化の他に、塗工後架橋材で処理する方法、非水溶性の高分子を有機溶媒に溶解して塗布し、乾燥させる方法、非水溶性の高分子を熱溶解し、冷却する方法等が挙げられる。   As a method for insolubilizing the moisture permeable substance 21, in addition to the above-described polymerization by polymerization, a method of treating with a crosslinking material after coating, a water-insoluble polymer dissolved in an organic solvent, applied and dried And a method in which a water-insoluble polymer is melted and cooled.

なお、透湿性物質21を重合するときに、親水性の有機低分子化合物の他に、重合部位を複数持つ有機化合物を架橋材として添加してもよい。添加することにより、重合後の有機高分子化合物の耐水性が高まるほか、透湿部20の強度の向上、吸水による膨潤の抑制効果を得ることが出来、好適である。   When the moisture permeable substance 21 is polymerized, an organic compound having a plurality of polymerization sites may be added as a crosslinking material in addition to the hydrophilic organic low molecular weight compound. By adding, the water resistance of the organic polymer compound after polymerization is increased, and the strength of the moisture permeable portion 20 can be improved, and the swelling suppression effect due to water absorption can be obtained, which is preferable.

なお、透湿性物質21を重合させる方法としては、ラジカル重合、イオン重合、開環重合等が挙げられ、特に分子量の急激な増大を伴うラジカル重合が好適である。これは、分子量が急激に増大することにより、重合後の高分子化合物が極細繊維部17に留まり易く、均一な透湿部20を形成しやすいためである。ラジカル重合方法としては、既知の手法を用いることが出来、例えば熱や紫外線、放射線を用いた重合を行うことが出来る。特に放射線を用いた場合、透湿性物質21と極細繊維19とを結合することも可能となるため、耐水性が向上し、より好適である。   Examples of the method for polymerizing the moisture-permeable substance 21 include radical polymerization, ionic polymerization, ring-opening polymerization, and the like, and radical polymerization with a rapid increase in molecular weight is particularly suitable. This is because the polymer compound after polymerization tends to stay in the ultrafine fiber portion 17 and the uniform moisture permeable portion 20 is easily formed due to the rapid increase in molecular weight. As the radical polymerization method, a known method can be used. For example, polymerization using heat, ultraviolet rays, or radiation can be performed. In particular, when radiation is used, the moisture-permeable substance 21 and the ultrafine fiber 19 can be bonded, which improves water resistance and is more preferable.

なお、全熱交換素子用仕切部材14は多孔質シート18と透湿部20とを接着せずに重ね合わせた状態で使用しても良いが、多孔質シート18と透湿部20とを接着して使用しても良い。多孔質シート18と透湿部20とを接着する方法としては、繊維の熱融着、接着剤の使用等が挙げられるがこれに限らず既知の手法を用いることが出来る。   The partition member for total heat exchange element 14 may be used in a state where the porous sheet 18 and the moisture permeable portion 20 are overlapped without being bonded, but the porous sheet 18 and the moisture permeable portion 20 are bonded. May be used. Examples of a method for bonding the porous sheet 18 and the moisture permeable portion 20 include heat fusion of fibers, use of an adhesive, and the like, but are not limited thereto, and a known method can be used.

なお、接着部23に耐水性と透湿性を備えた接着剤を用いる場合、接着剤の材料は、透湿性物質21と同様に親水性の官能基を備えた高分子が好ましく、例えば、水酸基、スルホン基、エステル結合、ウレタン結合、カルボキシル基、カルボ基、リン酸基、アミノ基、第四級アンモニウム基等が挙げられる。例えば、これらの官能基を含有するエポキシ系の接着剤や、接着剤成分に後からグラフト重合等の手段によって導入することで、上記接着成分を得ることが出来る。   When an adhesive having water resistance and moisture permeability is used for the bonding portion 23, the adhesive material is preferably a polymer having a hydrophilic functional group in the same manner as the moisture permeable substance 21, such as a hydroxyl group, Examples include a sulfone group, an ester bond, a urethane bond, a carboxyl group, a carbo group, a phosphate group, an amino group, and a quaternary ammonium group. For example, the adhesive component can be obtained by introducing the functional group-containing epoxy adhesive or the adhesive component later by means such as graft polymerization.

なお、接着部23に用いる接着剤は、上記有機高分子のほかに、耐水性と透湿性を備えた無機材料、例えばシリカを含むような接着剤を用いても良い。   In addition to the organic polymer, the adhesive used for the bonding part 23 may be an inorganic material having water resistance and moisture permeability, for example, an adhesive containing silica.

なお、接着部23に用いる接着剤は、柔軟性の高いものが好適である。柔軟性の高いものを用いることにより、透湿性物質21が吸水して体積膨張した場合の寸法変化を接着部23で吸収することが出来るため、全熱交換素子用仕切部材14の耐水性を増すことが出来る。   Note that the adhesive used for the bonding portion 23 is preferably a highly flexible adhesive. By using a highly flexible material, the adhesive portion 23 can absorb a dimensional change when the moisture-permeable substance 21 absorbs water and expands in volume, so that the water resistance of the partition member 14 for the total heat exchange element is increased. I can do it.

なお、凹凸の形状や面積等は特に限定されないが、エンボスロールを用いて熱接着する場合、エンボスロールの模様により任意に変更することが出来る。また、熱エンボス加工の方法としては、片面エンボス、両面エンボス等が挙げられるがこれに限らず既知の手法を用いることが出来る。   In addition, although the shape, area, etc. of an unevenness | corrugation are not specifically limited, When heat-bonding using an embossing roll, it can change arbitrarily with the pattern of an embossing roll. Further, examples of the heat embossing method include single-sided embossing and double-sided embossing, but are not limited thereto, and a known method can be used.

なお、多孔質シート18として、熱接着可能な耐水性と透湿性を備えた樹脂でコーティングされた芯鞘繊維を備える場合、芯鞘繊維の外層の材料は、透湿性物質21と同様に親水性の官能基を備えた高分子が好ましく、例えば、水酸基、スルホン基、エステル結合、ウレタン結合、カルボキシル基、カルボ基、リン酸基、アミノ基、第四級アンモニウム基等が挙げられる。また、芯鞘繊維の内層の材料は、耐水性のある材料が好ましく、例えばポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリエステル、ポリアミド、ポリイミド、ポリエーテルサルフォン、ポリアクリルニトリル、ポリフッ化ビニリデン等が挙げられる。   In addition, when the core-sheath fiber coated with a resin having water resistance and moisture permeability that can be thermally bonded is provided as the porous sheet 18, the material of the outer layer of the core-sheath fiber is hydrophilic like the moisture-permeable substance 21. Polymers having the above functional group are preferable, and examples thereof include a hydroxyl group, a sulfone group, an ester bond, a urethane bond, a carboxyl group, a carbo group, a phosphate group, an amino group, and a quaternary ammonium group. The material of the inner layer of the core-sheath fiber is preferably a water-resistant material, such as polypropylene, polyethylene, polytetrafluoroethylene, polyester, polyamide, polyimide, polyethersulfone, polyacrylonitrile, polyvinylidene fluoride, etc. It is done.

以上のように本実施形態にかかる全熱交換素子用仕切部材は、透湿性能を向上することを可能とするものであるので、全熱交換素子、全熱交換形換気装置等に用いる全熱交換素子用仕切部材として有用である。   As described above, since the partition member for a total heat exchange element according to this embodiment can improve the moisture permeability, the total heat used for the total heat exchange element, the total heat exchange type ventilator, and the like. It is useful as a partition member for an exchange element.

1 家
2 全熱交換形換気装置
3 本体ケース
4 全熱交換素子
5 ファン
6 内気口
7 排気口
8 ファン
9 外気口
10 給気口
11 枠体
12 屋内空気風路リブ
13 屋外空気風路リブ
14 全熱交換素子用仕切部材
15 屋内空気
16 屋外空気
17 極細繊維部
18 多孔質シート
18a薄い多孔質シート
18b厚い多孔質シート
19 極細繊維
20 透湿部
21 透湿性物質
22 凹凸部
23 接着部
DESCRIPTION OF SYMBOLS 1 House 2 Total heat exchange type ventilator 3 Main body case 4 Total heat exchange element 5 Fan 6 Inside air port 7 Exhaust port 8 Fan 9 Outside air port 10 Air supply port 11 Frame 12 Indoor air wind path rib 13 Outdoor air wind path rib 14 Partition member for total heat exchange element 15 Indoor air 16 Outdoor air 17 Extra fine fiber part 18 Porous sheet 18a Thin porous sheet 18b Thick porous sheet 19 Extra fine fiber 20 Moisture permeable part 21 Moisture permeable substance 22 Concavity and convexity part 23 Adhesive part

Claims (11)

内側に極細繊維層を備え、外側の両表面に多孔質シートを備えた全熱交換素子用仕切部材であって、前記極細繊維層に、透湿性物質を含浸または塗工し、水不溶化したことを特徴とする全熱交換素子用仕切部材。 A partition member for a total heat exchange element having an ultrafine fiber layer on the inner side and porous sheets on both outer surfaces, and impregnating or coating the ultrafine fiber layer with a moisture-permeable substance and making it insoluble in water A partition member for a total heat exchange element. 前記全熱交換素子用仕切部材として、外側両表面の一方の多孔質シートと他方の多孔質シートとが部分的に接着され、両表面に凹凸部を備えたことを特徴とする請求項1に記載の全熱交換素子用仕切部材。 2. The partition member for a total heat exchange element, wherein one porous sheet on both outer surfaces and the other porous sheet are partially bonded to each other, and uneven portions are provided on both surfaces. The partition member for total heat exchange elements as described. 前記全熱交換素子用仕切部材として、平均孔径が15μm以上100μm以下で、厚みが20μm以上500μm以下の多孔質シートと、平均孔径が0.01μm以上10μm以下で厚みが0.5μm以上20μm以下の極細繊維層とを積層した構成を特徴とする請求項1または2に記載の全熱交換素子用仕切部材。 As the partition member for the total heat exchange element, a porous sheet having an average pore diameter of 15 μm to 100 μm and a thickness of 20 μm to 500 μm, an average pore diameter of 0.01 μm to 10 μm, and a thickness of 0.5 μm to 20 μm The partition member for a total heat exchange element according to claim 1 or 2, wherein the ultrafine fiber layer is laminated. 透湿性物質の水不溶化方法として、親水性の有機低分子化合物を含浸または塗工後、重合させることにより高分子化し、水不溶化したことを特徴とする請求項1から3のいずれかに記載の全熱交換素子用仕切部材。 4. The water-insolubilizing method for the moisture-permeable substance is obtained by impregnating or applying a hydrophilic organic low molecular weight compound and then polymerizing the polymer by polymerizing the hydrophilic low-molecular-weight compound. Partition member for total heat exchange element. 透湿性物質として、第四級アンモニウム基を備えた薬剤を用いた構成を特徴とする請求項1から4のいずれかに記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to any one of claims 1 to 4, characterized in that a chemical having a quaternary ammonium group is used as the moisture permeable substance. 前記極細繊維層と前記多孔質シートとは、接着部により接着され、前記接着部は耐水性と透湿性を備えることを特徴とする請求項1から5のいずれかに記載の全熱交換素子用仕切部材。 6. The total heat exchange element according to claim 1, wherein the ultrafine fiber layer and the porous sheet are bonded by an adhesive portion, and the adhesive portion has water resistance and moisture permeability. Partition member. 外側両表面の多孔質シート同士の接着方法として、熱エンボス加工による熱圧着であることを特徴とする請求項1から6のいずれかに記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to any one of claims 1 to 6, wherein the bonding method between the porous sheets on both outer surfaces is thermocompression bonding by hot embossing. 前記多孔質シートが耐水性と透湿性を備えた樹脂でコーティングされた芯鞘繊維を備えることを特徴とする請求項1から7に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 1, wherein the porous sheet includes core-sheath fibers coated with a resin having water resistance and moisture permeability. 前記全熱交換素子用仕切部材として、外側両表面の一方の多孔質シートの厚みより他方の多孔質シートの厚みが薄いことを特徴とする請求項1から8に記載の全熱交換素子用仕切部材。 The partition for a total heat exchange element according to claim 1, wherein the thickness of the other porous sheet is smaller than the thickness of the one porous sheet on both outer surfaces as the partition member for the total heat exchange element. Element. 請求項1から9のいずれか一項に記載の全熱交換素子用仕切部材を用いた全熱交換素子。 The total heat exchange element using the partition member for total heat exchange elements as described in any one of Claims 1-9. 請求項10に記載の全熱交換素子を用いた全熱交換形換気装置。 A total heat exchange type ventilator using the total heat exchange element according to claim 10.
JP2014145530A 2013-09-17 2014-07-16 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same Active JP6364618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014145530A JP6364618B2 (en) 2013-09-17 2014-07-16 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013191427 2013-09-17
JP2013191427 2013-09-17
JP2014033763 2014-02-25
JP2014033763 2014-02-25
JP2014145530A JP6364618B2 (en) 2013-09-17 2014-07-16 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same

Publications (2)

Publication Number Publication Date
JP2015178949A true JP2015178949A (en) 2015-10-08
JP6364618B2 JP6364618B2 (en) 2018-08-01

Family

ID=54263109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014145530A Active JP6364618B2 (en) 2013-09-17 2014-07-16 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same

Country Status (1)

Country Link
JP (1) JP6364618B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090232A1 (en) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
JP6925567B1 (en) * 2020-10-23 2021-08-25 三菱電機株式会社 A partition plate, a total heat exchange element using the partition plate, a total heat exchanger, and a method for manufacturing the partition plate.

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282904A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005288216A (en) * 2004-03-31 2005-10-20 Nitta Ind Corp Latent heat exchange membrane
JP2006097958A (en) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007100997A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Heat exchanging element
JP2007101031A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Manufacturing method of heat exchanging element
JP2007101053A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Heat exchanging element
WO2007119843A1 (en) * 2006-04-17 2007-10-25 Panasonic Corporation Heat exchanger
JP2008014623A (en) * 2006-06-05 2008-01-24 Rengo Co Ltd Sheet for total heat exchangers
JP2008089199A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Total enthalpy heat exchanger
US20100032145A1 (en) * 2007-01-16 2010-02-11 Chan Bong Lee Heat conduction unit with improved laminar
JP2010248680A (en) * 2009-03-24 2010-11-04 Toray Ind Inc Base paper for total heat exchange and total heat exchange element using the same
JP2011012894A (en) * 2009-07-02 2011-01-20 Panasonic Corp Material for total heat exchange element and heat exchange type ventilation device using the material
JP2011012893A (en) * 2009-07-02 2011-01-20 Panasonic Corp Material for total heat exchange element and heat exchange type ventilation device using the material
JP2011163651A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2011237157A (en) * 2010-05-10 2011-11-24 Nippon Air Filter Kk Total heat exchange element of heat exchanger
JP2012030192A (en) * 2010-08-02 2012-02-16 Panasonic Corp Dehumidifier
JP2013015286A (en) * 2011-07-05 2013-01-24 Mitsubishi Electric Corp Total heat exchanger, and method for manufacturing partition plate used therefor
WO2013061419A1 (en) * 2011-10-26 2013-05-02 三菱電機株式会社 Total heat exchange element and method for manufacturing same
JP2013194934A (en) * 2012-03-16 2013-09-30 Panasonic Corp Material for total enthalpy heat exchange element and heat exchange type ventilation device using the material
JP2013234792A (en) * 2012-05-09 2013-11-21 Panasonic Corp Partition member for total heat exchange element and total heat exchange element using the same, and heat exchange ventilation device
JP2013242130A (en) * 2012-04-26 2013-12-05 Panasonic Corp Partition member for total heat exchange element, total heat exchange element using the partition member, and heat exchange ventilator
WO2014014099A1 (en) * 2012-07-19 2014-01-23 旭化成せんい株式会社 Multilayered structure comprising fine fiber cellulose layer
JP2014055683A (en) * 2012-09-11 2014-03-27 Panasonic Corp Partition member for total heat-transfer element and total heat-transfer element and heat exchange-type ventilator using thereof
JP2014066474A (en) * 2012-09-27 2014-04-17 Panasonic Corp Film for total heat-transfer element, total heat-transfer element using it and total heat-transfer-type ventilator
JP2014126213A (en) * 2012-12-25 2014-07-07 Panasonic Corp Total heat exchange element partition member, total heat exchange element using total heat exchange element partition member, and heat exchange type ventilation device using total heat exchange element partition member
JP2014142130A (en) * 2013-01-24 2014-08-07 Panasonic Corp Total heat exchange element partition member, total heat exchange element using the material, and heat exchange ventilator
WO2014203519A1 (en) * 2013-06-20 2014-12-24 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element using this member, and total heat exchange type ventilation device
JP2015059703A (en) * 2013-09-19 2015-03-30 パナソニック株式会社 Material for total heat exchange element and heat exchange type ventilation device using the material
JP2015117898A (en) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 Total heat exchange element partition member, and total heat exchange element and heat exchange type ventilation device using the total heat exchange element partition member
JP2015178199A (en) * 2014-03-19 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for whole heat exchange element, whole heat exchange element using the material, and whole heat exchange ventilator
JP2015194323A (en) * 2014-03-19 2015-11-05 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element using material of the same and total heat exchange type ventilation device
JP2016080269A (en) * 2014-10-17 2016-05-16 パナソニックIpマネジメント株式会社 Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005282904A (en) * 2004-03-29 2005-10-13 Matsushita Electric Ind Co Ltd Heat exchanger
JP2005288216A (en) * 2004-03-31 2005-10-20 Nitta Ind Corp Latent heat exchange membrane
JP2006097958A (en) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd Heat exchanger
JP2007100997A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Heat exchanging element
JP2007101031A (en) * 2005-10-03 2007-04-19 Matsushita Electric Ind Co Ltd Manufacturing method of heat exchanging element
JP2007101053A (en) * 2005-10-04 2007-04-19 Matsushita Electric Ind Co Ltd Heat exchanging element
WO2007119843A1 (en) * 2006-04-17 2007-10-25 Panasonic Corporation Heat exchanger
JP2008014623A (en) * 2006-06-05 2008-01-24 Rengo Co Ltd Sheet for total heat exchangers
JP2008089199A (en) * 2006-09-29 2008-04-17 Matsushita Electric Ind Co Ltd Total enthalpy heat exchanger
US20100032145A1 (en) * 2007-01-16 2010-02-11 Chan Bong Lee Heat conduction unit with improved laminar
JP2010248680A (en) * 2009-03-24 2010-11-04 Toray Ind Inc Base paper for total heat exchange and total heat exchange element using the same
JP2011012894A (en) * 2009-07-02 2011-01-20 Panasonic Corp Material for total heat exchange element and heat exchange type ventilation device using the material
JP2011012893A (en) * 2009-07-02 2011-01-20 Panasonic Corp Material for total heat exchange element and heat exchange type ventilation device using the material
JP2011163651A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2011237157A (en) * 2010-05-10 2011-11-24 Nippon Air Filter Kk Total heat exchange element of heat exchanger
JP2012030192A (en) * 2010-08-02 2012-02-16 Panasonic Corp Dehumidifier
JP2013015286A (en) * 2011-07-05 2013-01-24 Mitsubishi Electric Corp Total heat exchanger, and method for manufacturing partition plate used therefor
WO2013061419A1 (en) * 2011-10-26 2013-05-02 三菱電機株式会社 Total heat exchange element and method for manufacturing same
JP2013194934A (en) * 2012-03-16 2013-09-30 Panasonic Corp Material for total enthalpy heat exchange element and heat exchange type ventilation device using the material
JP2013242130A (en) * 2012-04-26 2013-12-05 Panasonic Corp Partition member for total heat exchange element, total heat exchange element using the partition member, and heat exchange ventilator
JP2013234792A (en) * 2012-05-09 2013-11-21 Panasonic Corp Partition member for total heat exchange element and total heat exchange element using the same, and heat exchange ventilation device
WO2014014099A1 (en) * 2012-07-19 2014-01-23 旭化成せんい株式会社 Multilayered structure comprising fine fiber cellulose layer
JP2014055683A (en) * 2012-09-11 2014-03-27 Panasonic Corp Partition member for total heat-transfer element and total heat-transfer element and heat exchange-type ventilator using thereof
JP2014066474A (en) * 2012-09-27 2014-04-17 Panasonic Corp Film for total heat-transfer element, total heat-transfer element using it and total heat-transfer-type ventilator
JP2014126213A (en) * 2012-12-25 2014-07-07 Panasonic Corp Total heat exchange element partition member, total heat exchange element using total heat exchange element partition member, and heat exchange type ventilation device using total heat exchange element partition member
JP2014142130A (en) * 2013-01-24 2014-08-07 Panasonic Corp Total heat exchange element partition member, total heat exchange element using the material, and heat exchange ventilator
WO2014203519A1 (en) * 2013-06-20 2014-12-24 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element using this member, and total heat exchange type ventilation device
JP2015025645A (en) * 2013-06-20 2015-02-05 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element using material therefor, and total heat exchange type ventilation device
JP2015059703A (en) * 2013-09-19 2015-03-30 パナソニック株式会社 Material for total heat exchange element and heat exchange type ventilation device using the material
JP2015117898A (en) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 Total heat exchange element partition member, and total heat exchange element and heat exchange type ventilation device using the total heat exchange element partition member
JP2015178199A (en) * 2014-03-19 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for whole heat exchange element, whole heat exchange element using the material, and whole heat exchange ventilator
JP2015194323A (en) * 2014-03-19 2015-11-05 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element using material of the same and total heat exchange type ventilation device
JP2016080269A (en) * 2014-10-17 2016-05-16 パナソニックIpマネジメント株式会社 Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090232A1 (en) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
JP6925567B1 (en) * 2020-10-23 2021-08-25 三菱電機株式会社 A partition plate, a total heat exchange element using the partition plate, a total heat exchanger, and a method for manufacturing the partition plate.
WO2022085178A1 (en) * 2020-10-23 2022-04-28 三菱電機株式会社 Partitioning plate, total heat exchange element using same, total heat exchanger, and method for manufacturing partitioning plate

Also Published As

Publication number Publication date
JP6364618B2 (en) 2018-08-01

Similar Documents

Publication Publication Date Title
CN103747854B (en) Optional water steam transport membrane including nanofiber layer and preparation method thereof
JP5506441B2 (en) Total heat exchange element and total heat exchanger
US8550151B2 (en) Heat exchanger
JP5230821B2 (en) Total heat exchanger and method of manufacturing partition plate used therefor
CN102076401B (en) Composite membrane and moisture adjustment module using the same
KR101160398B1 (en) Total heat exchanger element and process for manufacturing the same
JP2008089199A (en) Total enthalpy heat exchanger
JP6387514B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP6357651B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
WO2017090232A1 (en) Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
JP6364618B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP6194472B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2013015286A (en) Total heat exchanger, and method for manufacturing partition plate used therefor
JP2015059703A (en) Material for total heat exchange element and heat exchange type ventilation device using the material
JP2016080269A (en) Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device
JP6340577B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
JP2017150805A (en) Partition member for total heat exchange element, and total heat exchange element and total heat exchange type ventilation device using the material
JP2013092320A (en) Air conditioning device
JP2020034242A (en) Heat exchange element and heat exchange type ventilation device using the same
JP6925567B1 (en) A partition plate, a total heat exchange element using the partition plate, a total heat exchanger, and a method for manufacturing the partition plate.
JP5627704B2 (en) Total heat exchange element and total heat exchanger
JP2002035533A (en) Humidification/dehumidification element, humidification/ dehumidification unit and humidification/ dehumidification device
JPH08100935A (en) Moistening sheet and moistening element
JP6167325B2 (en) Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same
JP2017013032A (en) Method for producing moisture control element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160520

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180522

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R151 Written notification of patent or utility model registration

Ref document number: 6364618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151