JP2011012894A - Material for total heat exchange element and heat exchange type ventilation device using the material - Google Patents

Material for total heat exchange element and heat exchange type ventilation device using the material Download PDF

Info

Publication number
JP2011012894A
JP2011012894A JP2009157607A JP2009157607A JP2011012894A JP 2011012894 A JP2011012894 A JP 2011012894A JP 2009157607 A JP2009157607 A JP 2009157607A JP 2009157607 A JP2009157607 A JP 2009157607A JP 2011012894 A JP2011012894 A JP 2011012894A
Authority
JP
Japan
Prior art keywords
base material
heat exchange
hygroscopic
porous sheet
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009157607A
Other languages
Japanese (ja)
Inventor
Yosuke Hamada
洋祐 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009157607A priority Critical patent/JP2011012894A/en
Publication of JP2011012894A publication Critical patent/JP2011012894A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve latent heat exchange efficiency of a heat exchange type ventilation device, in a material for a total heat exchange element and the heat exchange type ventilation device using the material.SOLUTION: The material for the total heat exchange element comprising a porous sheet a1 and thin films a2, b3 has inorganic acid salt as moisture absorbents. The thin films a2, b3 supporting the moisture absorbents are provided on both side faces of the porous sheet a1, and since the types of the moisture absorbents are different, moisture-absorption characteristics of the thin film b3 are set higher than those of the thin film a2. In this configuration, water is collected once in the thin film a2 to increase relative humidity within the thin film a2, and since the film b3 has the higher moisture-absorption characteristics than the film a2, transport of water from the thin film a2 to the thin film b3 can be promoted. By collecting water to inside of the thin film b3, the relative humidity is increased, and by expanding the interface between water and air, an evaporation amount of water from the thin film b3 is increased, so as achieve the material for the total heat exchange element having improved moisture permeability.

Description

本発明は、伝熱性と透湿性を有する素材を仕切板に用いて、顕熱及び潜熱を同時に回収する静止透過式の熱交換形換気装置に関するものである。   The present invention relates to a static permeation type heat exchange type ventilator that collects sensible heat and latent heat at the same time using a material having heat conductivity and moisture permeability as a partition plate.

従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換を行う熱交換形換気装置が知られている。   2. Description of the Related Art Conventionally, a heat exchange type ventilator that exchanges heat between air supply and exhaust during ventilation is known as a device that can ventilate without impairing the effects of cooling or heating.

熱交換形換気装置には、熱交換を行うための熱交換素子が含まれており、素材には給気と排気が交じり合わないようにするガスバリア性(主として二酸化炭素バリア性)と難燃性、伝熱性が求められる。特に、顕熱と同時に潜熱の熱交換も行う全熱交換素子に関しては、透湿性も合わせて有する必要がある。   The heat exchange type ventilator includes a heat exchange element for performing heat exchange, and the material has gas barrier properties (mainly carbon dioxide barrier properties) and flame retardant properties that prevent air supply and exhaust from intermingling. , Heat conductivity is required. In particular, a total heat exchange element that also performs heat exchange of latent heat simultaneously with sensible heat needs to have moisture permeability.

従って、全熱交換素子用素材には、塩化カルシウム等の各種吸湿剤や難燃剤等の配合が検討されており、下記のような従来技術が開示されている。   Accordingly, various heat-absorbing agents such as calcium chloride and flame retardants have been studied for the total heat exchange element material, and the following conventional techniques are disclosed.

例えば、特許文献1を挙げる。(図面は示さず)。   For example, Patent Document 1 is cited. (The drawing is not shown).

特許文献1では、全熱交換素子用素材の吸放湿性を高めるために、全熱交換素子用素材(文献中では全熱交換器エレメント用原紙と記載)に、パルプを主体とする紙基材を備え、該紙基材中に塩化カルシウムが10〜25質量%含まれ、かつ吸湿率が15〜30%であることを特徴とする全熱交換素子用素材があげられている。吸湿剤となる塩化カルシウムの質量濃度及び吸湿率を規定することで、高湿環境下における結露による液ダレの防止と透湿性能の両立及び難燃性の付与を目指している。   In patent document 1, in order to improve the moisture absorption / release property of the total heat exchange element material, the paper base material mainly composed of pulp is used as the total heat exchange element material (described as the base paper for the total heat exchanger element in the document). And the paper base material contains calcium chloride in an amount of 10 to 25% by mass and has a moisture absorption rate of 15 to 30%. By defining the mass concentration and moisture absorption rate of calcium chloride as a hygroscopic agent, the aim is to prevent liquid dripping due to condensation in a high-humidity environment, achieve both moisture permeability and impart flame resistance.

また、特許文献2を挙げる。(図面は示さず)。   Patent Document 2 is cited. (The drawing is not shown).

特許文献2では、全熱交換素子用素材の潜熱交換効率を高めるために、疎水性合成繊維からなる繊維シートの表裏両面に熱伝導性の金属または金属化合物を蒸着したことを特徴とする全熱交換素子用素材があげられている。素材を疎水性とすることで、水を水蒸気の形で透過させやすくし、素材の透湿性能の向上を目指している。   In Patent Document 2, in order to increase the latent heat exchange efficiency of the total heat exchange element material, a heat conductive metal or metal compound is vapor-deposited on both front and back surfaces of a fiber sheet made of hydrophobic synthetic fibers. Materials for exchange elements are mentioned. By making the material hydrophobic, it is easy to permeate water in the form of water vapor and aims to improve the moisture permeability of the material.

特開2007−119969号公報JP 2007-119969 A 特開2006−283995号公報JP 2006-28395 A

このような従来の全熱交換素子用素材においては透湿性能の向上を目指して、素材の親水性を増して移行する水分を増加させるという手法と、素材の疎水性を増して移行する水分を増加させるという手法が存在している。これは全熱交換素子用素材において、素材が親水性の物質の方が液体の水が移動しやすい一方で、水分が素材へ吸着されやすくなっているために気体の水、すなわち水蒸気が移動しにくいという特性が存在する。逆に全熱交換素子用素材において、素材が疎水性の物質の方が気体の水が移動しやすい一方で、水が素材表面へ広がりにくいため液体の水が移動しにくいという特性も存在する。従来技術では、どちらかの輸送手段しか促進できない構造を取っているため、他方の輸送手段が抑制され、透湿性能が大きく向上できないという課題があった。   In such conventional materials for total heat exchange elements, aiming at improving moisture permeability, the method of increasing the hydrophilicity of the material and increasing the amount of moisture transferred, and the amount of moisture transferred by increasing the hydrophobicity of the material. There is a way to increase it. This is because in the material for total heat exchange elements, liquid water is more likely to move when the material is hydrophilic, while gaseous water, i.e., water vapor, moves because water is more likely to be adsorbed to the material. There is a characteristic that it is difficult. On the other hand, in the material for the total heat exchange element, a material having a hydrophobic material is more likely to move gaseous water, while liquid water is less likely to move to the surface of the material, so that liquid water is less likely to move. In the prior art, since the structure which can promote only one of the transportation means is taken, there is a problem that the other transportation means is suppressed and the moisture permeability performance cannot be greatly improved.

従来例としてあげた特許文献1では、透湿性能の向上のために素材全体に吸湿剤を有しており、水分が素材へ吸着されやすくなっているために素材中の水蒸気拡散が抑制され、また、素材内部へ均一に吸湿剤が分布していたため、その液体の水分の拡散を駆動する力は、放湿面における水分蒸発だけであったため、素材の透湿性能が不十分であった。   In Patent Document 1 cited as a conventional example, the entire material has a hygroscopic agent for improving moisture permeability, and moisture is easily adsorbed on the material, so that water vapor diffusion in the material is suppressed, Further, since the moisture absorbent was uniformly distributed inside the material, the force for driving the diffusion of the moisture of the liquid was only the evaporation of moisture on the moisture releasing surface, so that the moisture permeability of the material was insufficient.

また、特許文献2では、透湿性能の向上のために素材全体が疎水性であり、素材表面における液体の水の拡散が阻害されており、また、疎水性の繊維シートのみでガスバリア性を得るために、水蒸気が透過し他の空気分子が透過しないサイズの繊維間空隙を持った繊維シートを備える必要があり、水蒸気の拡散量も抑制されることで、素材の透湿性能はやはり不十分であった。   Further, in Patent Document 2, the entire material is hydrophobic in order to improve the moisture permeation performance, and the diffusion of liquid water on the surface of the material is inhibited, and a gas barrier property is obtained only with a hydrophobic fiber sheet. Therefore, it is necessary to provide a fiber sheet with inter-fiber gaps of a size that allows water vapor to permeate but does not allow other air molecules to penetrate. Met.

そこで本発明は、上記従来の課題を解決するものであり、水の移動は、主として水蒸気拡散、表面拡散、及び毛細管輸送によって行われることに着目し、その全ての水輸送手段をある一方向へ促進することで、透湿性能を向上させた全熱交換素子用素材及び、その素材を用いた熱交換形換気装置を提供することを目的とする。   Therefore, the present invention solves the above-mentioned conventional problems, paying attention to the fact that the movement of water is mainly performed by water vapor diffusion, surface diffusion, and capillary transport, and all the water transport means are moved in one direction. It aims at providing the material for total heat exchange elements which improved moisture-permeable performance by promoting, and the heat exchange type ventilator using the material.

本発明は、吸湿剤を有する平面状で透湿性の素材であって、前記素材の両面に前記吸湿剤を備えて前記素材の両面の内の一方の面を他方の面より吸湿性を高くし、すなわち、前記素材は吸湿性の高い面と吸湿性の低い面を備え、かつ前記素材の両面の間を相互に前記吸湿剤が移動することを防ぐ構成を特徴とするものであり、すなわち、吸湿剤を備え、かつ潜熱交換に伴う水分の移動等によって吸湿剤が移動しない構造をとることで、平面状の素材の両面に異なる吸放湿性を持たせたことを特徴とすることで、所期の目的を達成するものである。   The present invention is a flat and moisture-permeable material having a hygroscopic agent, and the hygroscopic agent is provided on both surfaces of the material so that one surface of both surfaces of the material has higher hygroscopicity than the other surface. That is, the material has a high hygroscopic surface and a low hygroscopic surface, and is configured to prevent the hygroscopic agent from moving between both surfaces of the material. It is characterized by having a hygroscopic agent and a structure in which the hygroscopic agent does not move due to the movement of moisture due to latent heat exchange, etc., so that different surfaces absorb and release moisture. The purpose of the period is achieved.

本発明によれば、吸湿剤を有する平面状で透湿性の素材であって、前記素材の両面に前記吸湿剤を備えて前記素材の両面の内の一方の面を他方の面より吸湿性を高くし、かつ前記素材両面の間を相互に前記吸湿剤が移動することを防ぐ構成を特徴としており、すなわち、素材の両面の吸湿性が異なり、かつ潜熱交換に伴う水分の移動によって吸湿剤が移動しない構造をとることで、平面状の素材の両面に異なる吸放湿性を備えた構成を特徴としたことで、水分を吸着する側の弱い吸湿剤、吸湿性能の低い吸湿剤によって、水分を吸着する側の近傍の素材内部における水分濃度を高め、これを逆側、つまり水分を放出する側の強い吸湿剤、吸湿性能の高い吸着剤によって水分を放出する側近傍の素材の表面へ引き寄せることで、素材内の水の輸送における気体、すなわち水蒸気拡散による輸送と、液体の水の拡散による輸送との両方を一方向へ促進することで、透湿性能を大きく向上させるという効果を得ることができる。   According to the present invention, a flat and moisture-permeable material having a hygroscopic agent is provided with the hygroscopic agent on both surfaces of the material so that one surface of both surfaces of the material is more hygroscopic than the other surface. It is characterized in that the moisture absorbent is prevented from moving between both surfaces of the material, i.e., the moisture absorption properties of both surfaces of the material are different, and the moisture absorbent is moved by the movement of moisture accompanying latent heat exchange. By adopting a structure that does not move, it features a structure with different moisture absorption and release properties on both sides of the flat material, so moisture is absorbed by a weak moisture absorbent on the side that adsorbs moisture, and a hygroscopic agent with low moisture absorption performance. Increase the moisture concentration inside the material near the adsorption side, and draw it to the surface of the material near the side that releases moisture by the strong moisture absorbent on the opposite side, that is, the side that releases moisture, or the adsorbent with high moisture absorption performance. In the transport of water in the material In a gas, namely to promote the transport by water vapor diffusion, both the transport by diffusion of liquid water in one direction, it is possible to obtain the effect of greatly improving the moisture permeability.

以下にこのメカニズムをより詳細に説明する。   This mechanism will be described in more detail below.

全熱交換素子用素材において、水分は素材表面において吸着され、素材を水蒸気及び液体の水として(特にガスバリア性を持つ層を通過する際には主に液体として)通過し、逆側の素材表面において水蒸気となり放出される。   In the total heat exchange element material, moisture is adsorbed on the material surface, and the material passes as water vapor and liquid water (especially as liquid when passing through a layer having gas barrier properties), and the material surface on the opposite side Is released as water vapor.

最初に素材表面における現象を説明する。   First, the phenomenon on the material surface will be described.

吸着等温線に示されるように水蒸気は素材表面の気体の相対湿度に比例して吸着され、吸着され液体になった水は、界面における平衡状態を目指して素材表面の気体の水蒸気分圧と水の飽和水蒸気分圧とを等しくするように凝縮または蒸発する。   As shown in the adsorption isotherm, water vapor is adsorbed in proportion to the relative humidity of the gas on the surface of the material, and the water that has been adsorbed to become liquid is the water vapor partial pressure and water of the gas on the surface of the material aiming at an equilibrium state at the interface. Is condensed or evaporated so as to be equal to the saturated water vapor partial pressure.

すなわち素材表面において、水の吸湿及び放湿は、素材表面の気体の相対湿度及び水蒸気分圧、素材表面の水の飽和水蒸気分圧の影響により、水の吸着速度と蒸発速度とのどちらがより大きいかによってそれぞれ起きる現象である。そして、実際に素材表面を気体が流れており、その時表面近傍の気体の相対湿度及び水蒸気分圧が一定であると考えられる微小な単位で素材表面を区切って考えた場合、素材の吸湿性は、素材固有の吸着等温線に従った吸着速度と、素材に含まれる水溶性物質による水の飽和水蒸気分圧の低下による蒸発量の減少の影響を受ける。   That is, on the surface of the material, the moisture absorption and desorption of water is greater in either the water adsorption rate or the evaporation rate due to the effects of the relative humidity and water vapor partial pressure of the gas on the material surface and the saturated water vapor partial pressure of water on the material surface. It is a phenomenon that occurs depending on the situation. And when gas is actually flowing on the surface of the material, and considering the surface of the material in minute units where the relative humidity and water vapor partial pressure near the surface are considered to be constant, the hygroscopicity of the material is It is influenced by the adsorption rate according to the adsorption isotherm specific to the material and the decrease in the evaporation amount due to the reduction of the saturated water vapor partial pressure of water due to the water-soluble substances contained in the material.

従来よく知られている水溶性の吸湿剤とは、ラウールの法則に近似されているように、この水の飽和水蒸気分圧を下げることによって水の蒸発速度を減少させ、もって素材の吸湿量を増加させるという機能を果たしている。   The water-soluble hygroscopic agent, which is well known in the past, reduces the water evaporation rate by lowering the saturated water vapor partial pressure as approximated by Raoul's law, thereby reducing the moisture absorption of the material. It plays the function of increasing.

続いて、素材内部における現象において説明する。   Next, the phenomenon inside the material will be described.

熱交換形換気装置における熱交換素子には、換気装置としての役割を果たすために、熱交換素子の素材にガスバリア性を持つ層を備えていることが求められている。特に特許文献1にあるようなガスバリア性を持つ層は水蒸気も通さないために、素材の他の部位と異なった性質を持つため、以下、水蒸気を通さないガスバリア性を持つ層と持たない層に分けて説明する。   In order to serve as a ventilator, the heat exchange element in the heat exchange ventilator is required to have a layer having a gas barrier property on the material of the heat exchange element. In particular, a layer having gas barrier properties as in Patent Document 1 has properties different from other parts of the material because it does not allow water vapor to pass therethrough. Separately described.

ガスバリア性を持たない層では、水の移動は、主として水蒸気拡散、表面拡散、及び毛細管輸送によって行われる。   In the layer having no gas barrier property, the movement of water is mainly performed by water vapor diffusion, surface diffusion, and capillary transport.

水蒸気拡散は、水が水蒸気の形で移動する輸送形態であり、素材内部の水蒸気圧差に応じて、水蒸気圧の高い側から低い側へと移動する。   The water vapor diffusion is a transport mode in which water moves in the form of water vapor, and moves from a high water vapor pressure side to a low water vapor side according to the water vapor pressure difference inside the material.

表面拡散及び毛細管輸送は、水が液体の水の形で移動する輸送形態であり、吸着した水の可動性の高い方から低い方へと移動する。ここで水の可動性とは水が他の分子と結合することや水分子同士の結合が強固になることで低下する、水の移動しやすさを示す指標である。例えば親水性の吸湿剤を有することで、素材表面と水との結合に加え、吸湿剤と水との結合が生じるため、水の可動性は低下する。逆に例えば、水中に他の分子が溶け込んでいない場合、水は吸着された表面からの影響により可動性が変化するため、素材表面に吸着された水が増加すると、素材表面に構成された水の分子層の厚さが増加し、素材表面の分子と水分子の結合が弱まるため、水の可動性は上昇する。簡潔に言えば、単位空間あたりに存在する水の濃度が高いほど、水と他分子との相互作用が弱まることで水の可動性は高くなり、素材の存在や吸湿剤の存在によって水の濃度が低下すると、水と他分子との相互作用が強まることで水の可動性は低下する。   Surface diffusion and capillary transport are transport modes in which water moves in the form of liquid water, and moves from the higher mobility of adsorbed water to the lower mobility. Here, the mobility of water is an index indicating the ease of movement of water, which is reduced by binding of water to other molecules or strengthening of bonds between water molecules. For example, by having a hydrophilic hygroscopic agent, in addition to the bond between the surface of the material and water, the bond between the hygroscopic agent and water occurs, so the mobility of water decreases. Conversely, for example, when other molecules are not dissolved in water, the mobility of water changes due to the influence of the adsorbed surface, so if the amount of water adsorbed on the material surface increases, the water formed on the material surface As the molecular layer thickness increases, the bond between the molecules on the surface of the material and water molecules weakens, so the mobility of water increases. To put it simply, the higher the concentration of water present per unit space, the greater the mobility of the water due to the weaker interaction between water and other molecules, and the concentration of water due to the presence of materials and hygroscopic agents. When the water content decreases, the mobility of water and other molecules increases and the mobility of water decreases.

素材が湿潤されるにつれ、素材中の水蒸気の占める体積が減少するために液体での水の輸送が支配的となって、吸着した水の可動性の高い方から低い方へと移動し、逆に素材が乾燥するほど水蒸気の占める体積が増加するために水蒸気による輸送が支配的となって、水は水蒸気分圧の高い側から低い側へと移動する。   As the material is moistened, the volume of water vapor in the material decreases, so the transport of water in the liquid becomes dominant, moving from the higher mobility of the adsorbed water to the lower one, and vice versa. Since the volume occupied by water vapor increases as the material is dried, water vapor transport becomes dominant, and water moves from the high water vapor partial pressure side to the low side.

つまり、課題として挙げたように、従来は水蒸気分圧の勾配による水蒸気輸送か、水の可動性の勾配による液体の水輸送のみに着目していたため、素材の透湿性能が不十分であった。   In other words, as mentioned in the previous section, the material had insufficient moisture permeability because it was only focused on water vapor transport by the water vapor partial pressure gradient or liquid water transport by the water mobility gradient. .

また、ガスバリア性を持つ層においては、水が水蒸気の形で移動することは無いため、表面拡散及び毛細管輸送のみで移動すると考えられる。   Further, in the layer having gas barrier properties, water does not move in the form of water vapor, so it is considered that the layer moves only by surface diffusion and capillary transport.

以上を踏まえ、本発明におけるメカニズムと効果について詳細に説明する。   Based on the above, the mechanism and effect of the present invention will be described in detail.

本発明によれば、少なくとも1種類の吸湿剤を有する平面状で透湿性の素材であって、前記素材の両面に前記吸湿剤を備えて前記素材の両面の内の一方の面を他方の面より吸湿性を高くし、かつ前記素材両面の間を相互に前記吸湿剤が移動することを防ぐ構成を特徴とすることで、すなわち、潜熱交換に伴う水分の移動等によって吸湿剤が移動しない構造をとることで、平面状の素材の両面に異なる吸放湿性を持たせた構成を特徴としている。   According to the present invention, there is provided a planar moisture-permeable material having at least one type of moisture absorbent, the moisture absorbent being provided on both surfaces of the material, and one surface of both surfaces of the material being the other surface. It is characterized in that it has a higher hygroscopic property and prevents the hygroscopic agent from moving between both surfaces of the material, that is, a structure in which the hygroscopic agent does not move due to the movement of moisture accompanying latent heat exchange, etc. It is characterized by having different moisture absorption and desorption properties on both sides of a flat material.

前記の特徴を備えることで、まず、水の吸着側となる吸湿性の弱い面において、水の吸着により素材表面が湿潤し、素材表面内部の水分濃度が上昇して水の可動性が高まる。つまり、従来水の吸着という役割を持っていた面へ、水を集めて、他方の面へ水を送りやすくするという役割を合わせて持たせる。そして、吸湿性の高い面を合わせて備えることで、まず、吸湿性の弱い面と吸湿性の強い面との水蒸気分圧の差により、水蒸気分圧の低い、つまり吸湿性の高い面に向けて水蒸気拡散が生じる。次に、吸湿性の弱い面において水の可動性が高まっており、一方で、吸湿性の高い面においては強い吸湿性を持つ吸湿剤の影響によって水の可動性が低下するため、従来、吸湿性が均一であった場合以上に水の可動性の勾配が生じ、その可動性勾配にしたがって、吸湿性の高い面へ向けて液体の水が拡散する。つまり、従来水を放出するという役割だけを持っていた面へ、気体及び液体の形で水を集めるという役割を合わせて持たせる。吸湿性の高い面では、水分が面へ集中するため、素材表面近傍と表面に接している空気との相対湿度の差が広がることによって放湿速度が増加し、さらに空気と水との界面の面積が増加することで、水の蒸発を促進することができる。   By providing the above features, first, the surface of the material that is weakly hygroscopic on the water adsorbing side wets the surface of the material due to the adsorption of water, the water concentration inside the surface of the material increases, and the mobility of the water increases. In other words, it has the role of collecting water and making it easier to send water to the other surface, which has previously had the role of water adsorption. And by providing a highly hygroscopic surface together, first, due to the difference in the partial pressure of water vapor between the weakly hygroscopic surface and the highly hygroscopic surface, the surface has a low water vapor partial pressure, that is, a highly hygroscopic surface. Water vapor diffusion occurs. Next, the mobility of water has increased on the surface with low hygroscopicity, while the mobility of water has decreased on the surface with high hygroscopicity due to the influence of a hygroscopic agent having strong hygroscopicity. Even if the property is uniform, a water mobility gradient occurs more than that, and the liquid water diffuses toward the highly hygroscopic surface according to the mobility gradient. In other words, it has a role of collecting water in the form of a gas and a liquid on the surface that has only had a role of discharging water conventionally. On the highly hygroscopic surface, moisture concentrates on the surface, increasing the relative humidity between the surface near the surface of the material and the air in contact with the surface, increasing the moisture release rate, and further increasing the interface between the air and water. By increasing the area, water evaporation can be promoted.

このため、素材内において、水蒸気による移動と、液体の水での移動のどちらが優勢的であっても、両方の特性を促進して、吸湿性の低い面から吸湿性の高い面へと一方向へ水の輸送が促進されるため、素材の透湿性能を大きく向上するという効果を得ることができる。   For this reason, whether the movement by water vapor or the movement of liquid water is dominant in the material, both characteristics are promoted and the direction from the low hygroscopic surface to the high hygroscopic surface is one-way. Since the transport of water is promoted, the effect of greatly improving the moisture permeability of the material can be obtained.

本発明の実施の形態1の全熱交換素子用素材の断面図Sectional drawing of the raw material for total heat exchange elements of Embodiment 1 of this invention 本発明の実施の形態2の全熱交換素子用素材の断面図Sectional drawing of the raw material for total heat exchange elements of Embodiment 2 of this invention 本発明の実施の形態3の全熱交換素子用素材の断面図Sectional drawing of the raw material for total heat exchange elements of Embodiment 3 of this invention 本発明の実施の形態4の全熱交換素子用素材の断面図Sectional drawing of the raw material for total heat exchange elements of Embodiment 4 of this invention 本発明の実施の形態5の全熱交換素子用素材の断面図Sectional drawing of the raw material for total heat exchange elements of Embodiment 5 of this invention 本発明の実施の形態6の全熱交換素子用素材の断面図Sectional drawing of the raw material for total heat exchange elements of Embodiment 6 of this invention 本発明の実施の形態7の全熱交換素子用素材の断面図Sectional drawing of the material for total heat exchange elements of Embodiment 7 of this invention 本発明の実施の形態8の全熱交換素子用素材の断面図Sectional drawing of the raw material for total heat exchange elements of Embodiment 8 of this invention 本発明の実施の形態9の全熱交換素子の分解鳥瞰図An exploded bird's-eye view of the total heat exchange element according to the ninth embodiment of the present invention 本発明の実施の形態10の熱交換形換気装置を水平方向へ輪切りにした断面図Sectional drawing which round-cut the heat exchange type ventilator of Embodiment 10 of this invention horizontally

本発明の請求項1記載の全熱交換素子用素材は、吸湿剤を有する平面状で透湿性の素材であって、前記素材の両面に前記吸湿剤を備えて前記素材の両面の内の一方の面を他方の面より吸湿性を高くし、すなわち、前記素材の両面に前記吸湿剤を有し吸湿性の高い面と吸湿性の低い面を備え、かつ前記素材両面の間を相互に前記吸湿剤が移動することを防ぐ構成を特徴とすることで、すなわち、潜熱交換に伴う水分の移動等によって吸湿剤が移動しない構造をとることで、平面状の素材の両面に異なる吸放湿性を持たせたことを特徴とする構成を有する。これにより、水分を吸着する側の弱い吸湿剤によって、水分を吸着する側近傍の素材内部における水分濃度を高め、これを逆側の水分を放出する側の強い吸湿剤によって水分を放出する側近傍の素材表面へ引き寄せることで、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を一方向へ促進でき、もって透湿性能を向上させるという効果を奏する。   The total heat exchange element material according to claim 1 of the present invention is a planar, moisture-permeable material having a hygroscopic agent, wherein the hygroscopic agent is provided on both surfaces of the material, and one of both surfaces of the material is provided. The surface of the material is made more hygroscopic than the other surface, i.e., has the hygroscopic agent on both sides of the material, has a surface with high hygroscopicity and a surface with low hygroscopicity, and the both surfaces of the material mutually By adopting a structure that prevents the hygroscopic agent from moving, that is, by adopting a structure in which the hygroscopic agent does not move due to the movement of moisture accompanying latent heat exchange, etc., different moisture absorption and desorption properties are provided on both sides of the planar material. It has the structure characterized by having. As a result, the moisture concentration in the material near the moisture adsorbing side is increased by the weak moisture absorbing agent on the moisture adsorbing side, and the moisture is released on the opposite side by the strong moisture absorbing agent on the opposite side. By attracting to the surface of the material, both the transportation by water vapor diffusion and the transportation by liquid water diffusion can be promoted in one direction as the transportation of water in the material, so that the moisture permeation performance is improved.

また、請求項2記載の全熱交換素子用素材は、請求項1記載の全熱交換素子用素材について、基材として多孔質シートを備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、多孔質シートの片側の面に吸湿剤を担持する薄膜aを備え、多孔質シートの逆側の面に吸湿剤を担持する薄膜bを備え、薄膜aと薄膜bの吸湿性が異なる構成にしてもよい。これにより、素材表面に備えた2種類の薄膜によって素材両面に異なる吸放湿性を持たせることができ、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、透湿性能を向上させるという効果を奏する。かつ、多孔質シートにより素材の強度を確保することができるので、全熱交換素子用素材として必要な強度を持たせることができるという効果を奏する。   In addition, the total heat exchange element material according to claim 2 includes the porous sheet as a base material with respect to the total heat exchange element material according to claim 1, and an inorganic acid salt, an organic acid salt, or a polyvalent acid as a moisture absorbent. An alcohol or a hygroscopic polymer, a thin film a carrying a hygroscopic agent on one side of the porous sheet, and a thin film b carrying a hygroscopic agent on the opposite side of the porous sheet, the thin film a and the thin film You may make it the structure from which the hygroscopic property of b differs. As a result, the two types of thin films on the surface of the material can provide different moisture absorption and desorption properties on both sides of the material. Both water transport within the material and water transport due to water vapor diffusion can be used. Since it can accelerate | stimulate, there exists an effect of improving moisture permeability. And since the intensity | strength of a raw material can be ensured with a porous sheet, there exists an effect that intensity | strength required as a raw material for total heat exchange elements can be given.

また、請求項3記載の全熱交換素子用素材は、請求項1記載の全熱交換素子用素材について、基材として多孔質シートを備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、多孔質シートに吸湿剤を担持させ、多孔質シートの片側の面に吸湿剤を担持する薄膜を備え、多孔質シートと薄膜の吸湿性が異なる構成にしてもよい。これにより、素材表面に備えた薄膜と多孔質シートとで異なる吸放湿性を持たせることができ、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、透湿性能を向上させるという効果を奏する。かつ、多孔質シートに素材の強度を確保する効果と、吸湿性という効果とを持たせることができるため、素材の層構造を減少させ、素材を薄くできるという効果を奏する。さらに、吸湿剤を基材へ担持させるため、吸湿剤による吸湿性により、基材の保水性が向上できるという効果を奏する。   Further, the total heat exchange element material according to claim 3 is the same as the total heat exchange element material according to claim 1, comprising a porous sheet as a base material, and the hygroscopic agent is an inorganic acid salt, an organic acid salt or a polyvalent acid. It has alcohol or a hygroscopic polymer, a porous sheet is loaded with a hygroscopic agent, a thin film is loaded with a hygroscopic agent on one side of the porous sheet, and the porous sheet and the thin film have different hygroscopic properties. Good. This makes it possible to have different moisture absorption and desorption properties between the thin film and porous sheet provided on the material surface, and promotes both water vapor diffusion and liquid water diffusion as water transport in the material. Therefore, there is an effect of improving the moisture permeability. And since the effect which ensures the intensity | strength of a raw material and the effect of hygroscopicity can be given to a porous sheet, there exists an effect that the layer structure of a raw material can be reduced and a raw material can be made thin. Furthermore, since the hygroscopic agent is carried on the base material, there is an effect that the water retention of the base material can be improved due to the hygroscopic property of the hygroscopic agent.

また、請求項4記載の全熱交換素子用素材は、請求項1記載の全熱交換素子用素材について、2枚の透湿性の基材(基材a、基材b)を備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、基材a及び基材bにそれぞれ吸湿剤を担持させ、基材aと基材bの吸湿性が異なり、基材a及び基材bを貼り合わせた構成にしてもよい。これにより、2種類の基材によって素材の両面で異なる吸放湿性を持たせることができ、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、透湿性能を向上させるという効果を奏する。かつ、吸湿剤を両面の基材へ担持させるため、吸湿剤による吸湿性により、素材全体の保水性が向上できるという効果を奏する。   In addition, the total heat exchange element material according to claim 4 includes two moisture permeable base materials (base material a and base material b) with respect to the total heat exchange element material according to claim 1, and a hygroscopic agent. Provided with an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer, and each of the base material a and the base material b carries a hygroscopic agent, and the base material a and the base material b have different hygroscopic properties. You may make it the structure which bonded a and the base material b together. This makes it possible to have different moisture absorption and release properties on both sides of the material by using two types of base materials, and promotes both water vapor diffusion and liquid water diffusion as water transport in the material. Therefore, there is an effect of improving the moisture permeability. And since a hygroscopic agent is carry | supported to the base material of both surfaces, there exists an effect that the water retention of the whole raw material can be improved by the hygroscopic property by a hygroscopic agent.

また、請求項5記載の全熱交換素子用素材は、請求項1記載の全熱交換素子用素材について、2枚の透湿性の基材(基材a、基材b)を備え、吸湿剤に分子サイズが2ナノメートル以上の吸湿性高分子を備え、基材a及び基材bにそれぞれ吸湿剤を浸漬もしくは混合し、基材aと基材bの吸湿性が異なり、基材a及び基材bの間に孔径が2ナノメートル以上200ナノメートル以下の多孔質シートを挟んで貼り合わせた構成にしてもよい。IUPACにて限外濾過膜として定義されている孔径が2ナノメートル以上200ナノメートル以下の多孔質シートは、その孔径に応じてサイズが2ナノメートルから200ナノメートルの範囲の粒子や高分子を阻止することができる。このシートを備えて基材a及び基材bの間で吸湿性高分子の移動を阻止することで、素材の両面で異なる吸放湿性を持たせることができ、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、透湿性能を向上させるという効果を奏する。さらに、吸湿性高分子を基材へ担持する必要性がないため、水と結合可能な吸湿性高分子表面の部位が増加するため、吸湿性をより高めることができるという効果を奏する。   Further, the total heat exchange element material according to claim 5 is provided with two moisture-permeable base materials (base material a and base material b) with respect to the total heat exchange element material according to claim 1, and a hygroscopic agent. Are provided with a hygroscopic polymer having a molecular size of 2 nanometers or more, and a hygroscopic agent is immersed or mixed in each of the base material a and the base material b, so that the hygroscopicity of the base material a and the base material b is different. A configuration may be adopted in which a porous sheet having a pore diameter of 2 nanometers or more and 200 nanometers or less is sandwiched between the base materials b. A porous sheet having a pore diameter of 2 nanometers or more and 200 nanometers or less defined as an ultrafiltration membrane in IUPAC can contain particles and polymers having a size ranging from 2 nanometers to 200 nanometers depending on the pore diameter. Can be blocked. By providing this sheet and preventing the movement of the hygroscopic polymer between the base material a and the base material b, it is possible to give different moisture absorption and desorption properties on both sides of the material, as transport of water in the material, Since both transportation by water vapor diffusion and transportation by liquid water diffusion can be promoted, there is an effect of improving moisture permeability. Furthermore, since it is not necessary to support the hygroscopic polymer on the substrate, the number of the hygroscopic polymer surface that can be combined with water is increased, so that the hygroscopic property can be further improved.

また、請求項6記載の全熱交換素子用素材は、請求項1記載の全熱交換素子用素材について、2枚の透湿性の基材(基材a、基材b)を備え、基材aに含まれる吸湿剤aに、分子サイズが2ナノメートル以上の吸湿性高分子を備え、基材bに含まれる吸湿剤bに、無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、基材aに吸湿剤aを浸漬もしくは混合し、基材bに吸湿剤bを担持し、基材aと基材bの吸湿性が異なり、基材a及び基材bの間に孔径が2ナノメートル以上200ナノメートル以下の多孔質シートを挟んで貼り合わせた構成にしてもよい。前記したように、孔径が2ナノメートル以上200ナノメートル以下の多孔質シートは、その孔径に応じてサイズが2ナノメートルから200ナノメートルの範囲の粒子や高分子を阻止することができる。このシートを備えて基材a及び基材bの間で吸湿性高分子の移動を阻止することで、素材の両面で異なる吸放湿性を持たせることができ、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、透湿性能を向上させるという効果を奏する。さらに、吸湿性高分子を基材へ担持する必要性がないため、水と結合可能な吸湿性高分子表面の部位が増加するため、吸湿性をより高めることができるという効果を奏する。   The total heat exchange element material according to claim 6 includes two moisture-permeable base materials (base material a and base material b) with respect to the total heat exchange element material according to claim 1. The hygroscopic agent a contained in a includes a hygroscopic polymer having a molecular size of 2 nanometers or more, and the hygroscopic agent b contained in the base material b contains an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a highly hygroscopic material. It has molecules, soaks or mixes the hygroscopic agent a in the base material a, supports the hygroscopic agent b in the base material b, and the base material a and the base material b have different hygroscopic properties. Alternatively, a porous sheet having a pore diameter of 2 nanometers or more and 200 nanometers or less may be sandwiched and bonded. As described above, the porous sheet having a pore diameter of 2 nanometers or more and 200 nanometers or less can block particles and polymers having a size ranging from 2 nanometers to 200 nanometers according to the pore diameter. By providing this sheet and preventing the movement of the hygroscopic polymer between the base material a and the base material b, it is possible to give different moisture absorption and desorption properties on both sides of the material, as transport of water in the material, Since both transportation by water vapor diffusion and transportation by liquid water diffusion can be promoted, there is an effect of improving moisture permeability. Furthermore, since it is not necessary to support the hygroscopic polymer on the substrate, the number of the hygroscopic polymer surface that can be combined with water is increased, so that the hygroscopic property can be further improved.

また、請求項7記載の全熱交換素子用素材は、請求項1記載の全熱交換素子用素材について、2枚の透湿性の基材(基材a、基材b)を備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、基材a及び基材bにそれぞれ吸湿剤を浸漬もしくは混合し、基材aと基材bの吸湿性が異なり、基材a及び基材bの間に孔径が2ナノメートル以下の多孔質シートを挟んで貼り合わせた構成にしてもよい。孔径が2ナノメートル以下の多孔質シートは、逆浸透膜と呼ばれ海水淡水化装置や純水製造装置に使われており、ほぼ全てのイオンや有機化合物等を阻止することができる。このシートを備えて基材a及び基材bの間でのイオンもしくは有機化合物からなる吸湿剤の移動を阻止することで、素材の両面で異なる吸放湿性を持たせることができ、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、透湿性能を向上させるという効果を奏する。さらに、吸湿剤を基材へ担持する必要性がないため、水と結合可能な吸湿剤の部位が増加するため、吸湿性をより高めることができるという効果を奏する。   The total heat exchange element material according to claim 7 is provided with two moisture-permeable base materials (base material a and base material b) with respect to the total heat exchange element material according to claim 1, and a hygroscopic agent. Comprising an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer, dipping or mixing a hygroscopic agent in each of the base material a and the base material b, and the hygroscopicity of the base material a and the base material b is different. A configuration may be adopted in which a porous sheet having a pore diameter of 2 nanometers or less is sandwiched between the base material a and the base material b. A porous sheet having a pore size of 2 nanometers or less is called a reverse osmosis membrane and is used in a seawater desalination apparatus or a pure water production apparatus, and can block almost all ions and organic compounds. By providing this sheet and preventing the movement of the hygroscopic agent composed of ions or organic compounds between the base material a and the base material b, it is possible to give different moisture absorption and desorption properties on both sides of the material. As water transportation, both transportation by water vapor diffusion and transportation by liquid water diffusion can be promoted, so that the effect of improving moisture permeability is achieved. Furthermore, since there is no need to support the hygroscopic agent on the base material, the number of hygroscopic sites that can be combined with water increases, so that the hygroscopicity can be further improved.

また、請求項8記載の全熱交換素子用素材は、請求項1記載の全熱交換素子用素材について、基材として孔径が2ナノメートル以上200ナノメートル以下の多孔質シートを備え、吸湿剤に分子サイズが2ナノメートル以上の吸湿性高分子を備え、多孔質シートの片側の面に吸湿剤を有する薄膜aを備え、多孔質シートの逆側の面に吸湿剤を有する薄膜bを備え、薄膜aと薄膜bの吸湿性が異なる構成にしてもよい。前記したように、孔径が2ナノメートル以上200ナノメートル以下の多孔質シートは、その孔径に応じて2ナノメートルから200ナノメートルの範囲の粒子や高分子を阻止することができる。このシートを備えて基材a及び基材bの間で吸湿性高分子の移動を阻止することで、素材の両面で異なる吸放湿性を持たせることができ、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、透湿性能を向上させるという効果を奏する。さらに、吸湿性高分子を基材へ担持する必要性がないため、水と結合可能な吸湿性高分子表面の部位が増加するため、吸湿性をより高めることができるという効果を奏する。また、吸湿剤を有する層を薄膜とすることで、素材全体を薄くすることができるという効果を奏する。   The total heat exchange element material according to claim 8 comprises the porous sheet having a pore diameter of 2 nanometers or more and 200 nanometers or less as a substrate with respect to the total heat exchange element material according to claim 1, and a hygroscopic agent. A hygroscopic polymer having a molecular size of 2 nanometers or more, a thin film a having a hygroscopic agent on one side of the porous sheet, and a thin film b having a hygroscopic agent on the opposite side of the porous sheet The thin film a and the thin film b may have different hygroscopicity. As described above, the porous sheet having a pore diameter of 2 nanometers or more and 200 nanometers or less can block particles and polymers in the range of 2 nanometers to 200 nanometers depending on the pore diameter. By providing this sheet and preventing the movement of the hygroscopic polymer between the base material a and the base material b, it is possible to give different moisture absorption and desorption properties on both sides of the material, as transport of water in the material, Since both transportation by water vapor diffusion and transportation by liquid water diffusion can be promoted, there is an effect of improving moisture permeability. Furthermore, since it is not necessary to support the hygroscopic polymer on the substrate, the number of the hygroscopic polymer surface that can be combined with water is increased, so that the hygroscopic property can be further improved. Moreover, there exists an effect that the whole raw material can be made thin by making the layer which has a hygroscopic agent into a thin film.

また、請求項9記載の全熱交換素子用素材は、請求項1記載の全熱交換素子用素材について、基材として孔径が2ナノメートル以下の多孔質シートを備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、多孔質シートの片側の面に吸湿剤を有する薄膜aを備え、多孔質シートの逆側の面に吸湿剤を有する薄膜bを備え、薄膜aと薄膜bの吸湿性が異なる構成にしてもよい。前記したように、孔径が2ナノメートル以下の多孔質シートは、ほぼ全てのイオンや有機化合物等を阻止することができる。このシートを備えて基材a及び基材bの間でのイオンもしくは有機化合物からなる吸湿剤の移動を阻止することで、素材の両面で異なる吸放湿性を持たせることができ、素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、透湿性能を向上させるという効果を奏する。さらに、吸湿剤を基材へ担持する必要性がないため、水と結合可能な吸湿剤の部位が増加するため、吸湿性をより高めることができるという効果を奏する。また、吸湿剤を有する層を薄膜とすることで、素材全体を薄くすることができるという効果を奏する。   The total heat exchange element material according to claim 9 is the total heat exchange element material according to claim 1, comprising a porous sheet having a pore diameter of 2 nanometers or less as a base material, and the hygroscopic agent is an inorganic acid salt. Or the organic acid salt or the polyhydric alcohol or the hygroscopic polymer, the thin film a having the hygroscopic agent is provided on one surface of the porous sheet, and the thin film b having the hygroscopic agent is provided on the opposite surface of the porous sheet. The thin film a and the thin film b may have different hygroscopicity. As described above, a porous sheet having a pore size of 2 nanometers or less can block almost all ions, organic compounds, and the like. By providing this sheet and preventing the movement of the hygroscopic agent composed of ions or organic compounds between the base material a and the base material b, it is possible to give different moisture absorption and desorption properties on both sides of the material. As water transportation, both transportation by water vapor diffusion and transportation by liquid water diffusion can be promoted, so that the effect of improving moisture permeability is achieved. Furthermore, since there is no need to support the hygroscopic agent on the base material, the number of hygroscopic sites that can be combined with water increases, so that the hygroscopicity can be further improved. Moreover, there exists an effect that the whole raw material can be made thin by making the layer which has a hygroscopic agent into a thin film.

また、請求項10記載の全熱交換素子用素材は、請求項5、6、8のいずれかに記載の全熱交換素子用素材について、多孔質シートにセラミックス膜を備える構成にしてもよい。これにより、別途素材へ難燃剤を添加することなく、セラミックス膜によって素材へ難燃性を付与することができるという効果を奏する。   In addition, the total heat exchange element material according to claim 10 may be configured such that the porous sheet is provided with a ceramic film in the total heat exchange element material according to any one of claims 5, 6, and 8. Thereby, there exists an effect that a flame retardance can be provided to a raw material with a ceramic film, without adding a flame retardant to a raw material separately.

また、請求項11記載の全熱交換素子用素材は、請求項5から9のいずれかに記載の全熱交換素子用素材について、多孔質シートに酢酸セルロース膜を用いる構成にしてもよい。これにより、別途素材へ難燃剤を添加することなく、酢酸セルロース膜によって素材へ難燃性を付与することができるという効果を奏する。   The total heat exchange element material according to claim 11 may be configured to use a cellulose acetate film for the porous sheet of the total heat exchange element material according to any one of claims 5 to 9. Thereby, there exists an effect that a flame retardance can be provided to a raw material with a cellulose acetate film | membrane, without adding a flame retardant to a raw material separately.

また、請求項12記載の全熱交換素子用素材は、請求項3、4、6、7のいずれかに記載の全熱交換素子用素材について、少なくとも1枚の基材に多糖類をイオン架橋剤でイオン的に架橋させた架橋体を用いる構成にしてもよい。これにより、多糖類及びイオン架橋剤が吸湿剤としての働きを持ち、かつ、水によって流出することがないため、別途素材へ吸湿剤を含ませることなく、架橋体によって素材へ吸湿性を付与することができるという効果を奏する。   Further, the total heat exchange element material according to claim 12 is an ion cross-linked polysaccharide on at least one base material of the total heat exchange element material according to any one of claims 3, 4, 6, and 7. You may make it the structure using the crosslinked body ionically bridge | crosslinked with the agent. As a result, the polysaccharide and the ionic cross-linking agent have a function as a hygroscopic agent and do not flow out with water, so that the hygroscopic property is imparted to the material by the cross-linked body without including the hygroscopic agent in the material separately. There is an effect that can be.

また、請求項13記載の全熱交換素子用素材は、請求項3記載の全熱交換素子用素材について、多孔質シートの吸湿性が薄膜の吸湿性より高くなる構成にしてもよい。素材内の水分の分配は、全体に均一に広がるか、吸湿性の高い部位に水分が偏るという特徴を持つ。また、薄膜よりも基材の方が厚く、保持できる水分量も多いため、これにより、吸湿性の高い部位を基材側とすることで、素材全体に保持できる水分を増加させ、透湿性能を向上することができるという効果を奏する。   The total heat exchange element material according to claim 13 may be configured such that the hygroscopicity of the porous sheet is higher than the hygroscopicity of the thin film with respect to the total heat exchange element material according to claim 3. The distribution of moisture in the material is characterized in that it spreads evenly over the entire surface or that the moisture is biased toward highly hygroscopic sites. In addition, since the base material is thicker than the thin film and can hold more water, the moisture content can be increased by increasing the moisture content that can be retained in the entire material by making the highly hygroscopic part the base material side. The effect that can be improved.

また、請求項14記載の全熱交換素子用素材は、請求項4から7のいずれかに記載の全熱交換素子用素材について、基材aの吸湿性が基材bの吸湿性より高くなる組み合わせを用い、基材bより基材aの厚みを厚くする構成にしてもよい。前記したように素材内の水分の分配は、全体に均一に広がるか、吸湿性の高い部位に水分が偏るという特徴を持つ。これにより、基材aの保持できる水分量を基材bより増加することで、素材全体に保持できる水分を増加させ、透湿性能を向上することができるという効果を奏する。   In addition, the total heat exchange element material according to claim 14 is higher in the hygroscopicity of the base material a than the hygroscopicity of the base material b in the total heat exchange element material according to any one of claims 4 to 7. A combination may be used, and the base material a may be thicker than the base material b. As described above, the distribution of moisture in the material has a feature that the moisture spreads uniformly over the whole or the moisture is biased to a highly hygroscopic portion. Thereby, by increasing the amount of water that can be held by the base material a over the base material b, it is possible to increase the water content that can be held in the entire material and to improve the moisture permeability.

また、請求項15記載の全熱交換素子用素材は、請求項1、2、3、4、6、7のいずれかに記載の全熱交換素子用素材について、基材がセルロースを主体とする分子から構成され、吸湿剤にグアニジン塩を有する構成としてもよい。これにより、グアニジン塩の持つ吸湿性と、セルロースに対する脱水炭化型の難燃作用を素材へ付与することができ、別途素材へ難燃剤を添加することなく、素材へ難燃性を付与することができるという効果を奏する。   Further, the total heat exchange element material according to claim 15 is the total heat exchange element material according to any one of claims 1, 2, 3, 4, 6, 7, and the base material is mainly cellulose. It is good also as a structure comprised from a molecule | numerator and having a guanidine salt in a hygroscopic agent. As a result, the hygroscopic property of guanidine salt and the dehydration carbonization-type flame retardant action on cellulose can be imparted to the material, and the flame retardant property can be imparted to the material without adding a flame retardant to the material separately. There is an effect that can be done.

また、請求項16記載の全熱交換素子用素材は、請求項1から15のいずれかに記載の全熱交換素子用素材について、基材に高吸水性高分子を有する構成としてもよい。これにより、素材の保持できる水分量が増加し、透湿性能を向上させることができるという効果を奏する。   Further, the total heat exchange element material according to claim 16 may have a configuration in which the substrate has a highly water-absorbing polymer in the total heat exchange element material according to any one of claims 1 to 15. As a result, the amount of water that can be held by the material increases, and the moisture permeability can be improved.

また、請求項17記載の全熱交換素子用素材は、請求項4から7のいずれかに記載の全熱交換素子用素材について、基材aの吸湿性が基材bの吸湿性より高くなる組み合わせを用い、基材aに高吸水性高分子を有する構成としてもよい。前記したように素材内の水分の分配は、全体に均一に広がるか、吸湿性の高い部位に水分が偏るという特徴を持つ。これにより、基材aの保持できる水分量を基材bより増加することで、素材全体に保持できる水分量を増加させ、透湿性能を向上することができるという効果を奏する。   In addition, the total heat exchange element material according to claim 17 is higher in the hygroscopicity of the base material a than the hygroscopicity of the base material b in the total heat exchange element material according to any one of claims 4 to 7. It is good also as a structure which has a superabsorbent polymer in the base material a using a combination. As described above, the distribution of moisture in the material has a feature that the moisture spreads uniformly over the whole or the moisture is biased to a highly hygroscopic portion. Thereby, by increasing the amount of water that can be held by the base material a from the base material b, it is possible to increase the amount of water that can be held by the entire material and to improve the moisture permeability.

また、請求項18記載の全熱交換素子用素材は、請求項4から7のいずれかに記載の全熱交換素子用素材について、基材a及び基材bの間に、高吸水性高分子を有するシートを備える構成にしてもよい。これにより、特許文献2にもあるように、高吸水性高分子は水蒸気を吸湿する力が弱いが、液状の水を吸収する力は強いために、基材a及び基材bの間に液状の水を蓄える層を備えることができる。そして、高吸水性高分子が基材aと基材bとの水の移動を仲介することで、素子へ加工した場合の水分量の平面的な偏りを緩和して乾燥部位からの放湿を促進し、また、素材全体に保持できる水分量を増加するため、透湿性能を向上することができるという効果を奏する。   Further, the total heat exchange element material according to claim 18 is a superabsorbent polymer between the base material a and the base material b in the total heat exchange element material according to any one of claims 4 to 7. You may make it the structure provided with the sheet | seat which has. Accordingly, as disclosed in Patent Document 2, the superabsorbent polymer has a weak ability to absorb water vapor, but has a strong ability to absorb liquid water, so that it is liquid between the base material a and the base material b. A layer for storing water can be provided. And the superabsorbent polymer mediates the movement of water between the base material a and the base material b, so that the planar deviation of the moisture content when processed into the element is alleviated and moisture is released from the dry site. It promotes and increases the amount of moisture that can be retained in the entire material, so that the moisture permeation performance can be improved.

また、請求項19記載の全熱交換素子は、請求項1から18のいずれかに記載の全熱交換素子用素材を伝熱板として用い、吸湿性の高い面同士または吸湿性の低い面同士がそれぞれ向かい合うように、前記伝熱板を互い違いに複数層重ね合わせ、重ね合わせたこれらの各層間を交互に通るように第1流路及び第2流路を構成したものである。これにより、全熱交換素子内に伝熱板の吸湿性が異なる2種類の流路を形成することができ、水分を吸着する流路から水分を放出する流路への素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、素子の潜熱交換性能を向上させるという効果を奏する。   The total heat exchange element according to claim 19 uses the total heat exchange element material according to any one of claims 1 to 18 as a heat transfer plate, and surfaces having high hygroscopicity or surfaces having low hygroscopicity The first flow path and the second flow path are configured so that a plurality of layers of the heat transfer plates are alternately stacked so as to face each other, and the layers overlap each other alternately. As a result, two types of flow paths having different hygroscopicity of the heat transfer plate can be formed in the total heat exchange element, and the water in the material is transported from the flow path for adsorbing moisture to the flow path for releasing moisture. As described above, since both transportation by water vapor diffusion and transportation by liquid water diffusion can be promoted, the latent heat exchange performance of the element is improved.

また、請求項20記載の熱交換形換気装置は、請求項19に記載の全熱交換素子を備えるものである。これにより、潜熱交換性能の高い素子を備えることで、熱交換形換気装置の潜熱回収効率を高めることができるという効果を奏する。   A heat exchange type ventilator according to claim 20 comprises the total heat exchange element according to claim 19. Thereby, there exists an effect that the latent-heat collection | recovery efficiency of a heat exchange type ventilation apparatus can be improved by providing an element with high latent-heat exchange performance.

また、請求項21記載の熱交換形換気装置は、請求項20記載の熱交換形換気装置について、室外の空気を室内へ取り込み、室内の空気を室外へ排出する熱交換形換気装置において、互いに独立した、室外の空気を通風させる給気流路及び室内の空気を通風させる排気流路を備え、素子の第1流路及び第2流路を接続する流路を、それぞれ給気流路及び排気流路から選択できるように流路を切り替える切り替え手段を備えた構成にしてもよい。これにより、前記全熱交換素子の吸湿性の高い流路へまたは低い流路へ、それぞれ給気流路または排気流路を選択して接続することができ、熱交換形換気装置の潜熱交換効率を高めることができるという効果を奏する。   The heat exchange ventilator according to claim 21 is the heat exchange ventilator according to claim 20, wherein the heat exchange ventilator takes in outdoor air into the room and discharges the indoor air to the outside. Independent air supply passages for ventilating outdoor air and exhaust passages for ventilating indoor air are provided, and the flow paths connecting the first flow path and the second flow path of the element are respectively connected to the air supply flow path and the exhaust flow. You may make it the structure provided with the switching means which switches a flow path so that it can select from a path. As a result, it is possible to select and connect the supply air flow path or the exhaust flow path to the highly hygroscopic flow path or the low flow path of the total heat exchange element, respectively, and to improve the latent heat exchange efficiency of the heat exchange ventilator. There is an effect that it can be increased.

また、請求項22記載の熱交換形換気装置は、請求項21記載の熱交換形換気装置について、室内の空気が室外の空気よりも湿度が高い場合に、吸湿性の高い面が給気流路に含まれるとともに吸湿性の低い面が排気流路に含まれ、室内の空気が室外の空気よりも湿度が低い場合に、吸湿性の高い面が排気流路に含まれるとともに吸湿性の低い面が給気流路に含まれるように流路を切り替える構成としてもよい。これにより、室内及び室外の温度湿度環境の変化に合わせて、素材内の水分輸送が促進される方向と潜熱の回収方向が一致するため、熱交換形換気装置の潜熱交換効率を高めることができるという効果を奏する。   The heat exchange ventilator according to claim 22 is the heat exchange ventilator according to claim 21, wherein when the indoor air has a higher humidity than the outdoor air, the highly hygroscopic surface has an air supply channel. And a surface with low hygroscopicity is included in the exhaust flow path, and a surface with high hygroscopicity is included in the exhaust flow path and the surface with low hygroscopicity when the indoor air has a lower humidity than the outdoor air. It is good also as a structure which switches a flow path so that is included in an air supply flow path. Thereby, in accordance with changes in the indoor and outdoor temperature and humidity environment, the direction in which moisture transport in the material is promoted and the direction in which the latent heat is collected coincide with each other, so that the latent heat exchange efficiency of the heat exchange ventilator can be increased. There is an effect.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施の形態1)
図1に断面図を示すように、多孔質シートa1と、薄膜a2、薄膜b3からなる全熱交換素子用素材は、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、多孔質シートa1の片側の面、すなわち多孔質シートa1の一方の面に吸湿剤を担持する薄膜a2を備え、多孔質シートa1の逆側の面、すなわち多孔質シートa1の他方の面に吸湿剤を担持する薄膜b3を備え、薄膜a2と薄膜b3に含まれる吸湿剤の吸湿性能が異なり、薄膜a2に含まれる吸湿剤の吸湿性能が薄膜b3に含まれる吸湿剤の吸湿性能よりも低いものを使用して、薄膜a2の吸湿性を薄膜b3の吸湿性よりも低くしている。
(Embodiment 1)
As shown in the cross-sectional view of FIG. 1, the total heat exchange element material composed of the porous sheet a1, the thin film a2, and the thin film b3 is made of an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer as a hygroscopic agent. A thin film a2 carrying a hygroscopic agent on one surface of the porous sheet a1, that is, one surface of the porous sheet a1, and the other surface of the porous sheet a1, that is, the other surface of the porous sheet a1. The surface has a thin film b3 carrying a hygroscopic agent, the hygroscopic performance of the hygroscopic agent contained in the thin film a2 is different from the hygroscopic performance of the hygroscopic agent contained in the thin film a2, and the hygroscopic performance of the hygroscopic agent contained in the thin film b3 Is used to make the hygroscopicity of the thin film a2 lower than that of the thin film b3.

例えば、具体的には、多孔質シートとしてポリエチレンを主成分とし、親水性を高めるためにポリビニルアルコールを20%含有する高分子素材を用い、薄膜a2にポリオキシエチレンを用いて塩化カルシウムを吸湿剤として担持し、薄膜b3にポリオキシエチレンを用いて塩化リチウムを吸湿剤として担持した構成が挙げられる。   For example, specifically, a porous sheet is made of polyethylene as a main component, a polymer material containing 20% polyvinyl alcohol is used to increase hydrophilicity, and calcium chloride is absorbed into the thin film a2 using polyoxyethylene. And a structure in which lithium chloride is supported as a hygroscopic agent using polyoxyethylene on the thin film b3.

なお、薄膜a2と薄膜b3に吸湿性能が同じ吸着剤を使い、吸湿剤の薄膜a2に担持する担持量を薄膜b3に担持する担持量よりも少なくして、薄膜a2の吸湿性を薄膜b3の吸湿性よりも低くしても良い。   The thin film a2 and the thin film b3 use the same adsorbent, and the amount of the hygroscopic agent supported on the thin film a2 is smaller than the amount supported on the thin film b3, so that the hygroscopic property of the thin film a2 is reduced. It may be lower than the hygroscopicity.

この構成により、薄膜a2において水が吸湿され、薄膜a2が湿潤状態となる。吸湿された水は、水蒸気拡散及び表面拡散及び毛細管輸送により多孔質シートa1内へ拡散する。多孔質シートa1内を拡散した水は、薄膜b3へ到達し、薄膜b3から蒸発する。このとき、薄膜a2において一度水を集めて薄膜a2内部の相対湿度を上昇させたうえで、薄膜a2よりも薄膜b3が高い吸湿性を持つ、つまり、水蒸気圧が低く、かつ水の可動性が低い箇所とすることで、薄膜a2から薄膜b3へ至る水蒸気拡散による水蒸気の輸送及び表面拡散及び毛細管輸送による液体の水の輸送を促進することができる。そして、薄膜b3内部に水を集めることで、相対湿度を上げ、かつ水と空気の界面を広げることで、薄膜b3からの水の蒸発量を増加でき、水の輸送の促進と合わせて、薄膜a2から薄膜b3方向への透湿性能を向上させることができる。さらに薄膜に吸湿剤を担持することで、吸湿剤が水に溶け出し素材両面の間を相互に移動することを防ぐことができ、この両面における吸湿性の差を保つことができる。つまり、薄膜a2および薄膜b3に吸湿剤を担持することで吸湿剤が薄膜に固定され、したがって、水に吸湿剤が溶け出し水の移動である表面拡散及び毛細管輸送において水とともに水の放出側へ移動することを防ぐことができ、よって薄膜a2と薄膜b3との吸湿性の差が保つことができるので前記水の輸送の促進を継続的に行うことができる。   With this configuration, water is absorbed in the thin film a2, and the thin film a2 becomes wet. The absorbed water diffuses into the porous sheet a1 by water vapor diffusion, surface diffusion, and capillary transport. The water diffused in the porous sheet a1 reaches the thin film b3 and evaporates from the thin film b3. At this time, after collecting water once in the thin film a2 and increasing the relative humidity inside the thin film a2, the thin film b3 has higher hygroscopicity than the thin film a2, that is, the water vapor pressure is low and the mobility of water is low. By setting it as a low location, the transportation of water vapor by the water vapor diffusion from the thin film a2 to the thin film b3 and the transportation of the liquid water by the surface diffusion and the capillary transportation can be promoted. And by collecting water inside the thin film b3, the relative humidity is increased and the interface between water and air is widened, so that the evaporation amount of water from the thin film b3 can be increased. The moisture permeation performance from a2 to the thin film b3 direction can be improved. Furthermore, by supporting the hygroscopic agent on the thin film, it is possible to prevent the hygroscopic agent from dissolving in water and moving between the both surfaces of the material, and to maintain the difference in hygroscopicity on both surfaces. That is, the hygroscopic agent is fixed to the thin film by carrying the hygroscopic agent on the thin film a2 and the thin film b3. Therefore, the hygroscopic agent dissolves in the water and moves to the water discharge side together with water in the surface diffusion and capillary transport, which is the movement of water. Therefore, the transport of water can be continuously promoted because the difference in hygroscopicity between the thin film a2 and the thin film b3 can be maintained.

本発明における多孔質シートとは、透湿性と伝熱性を兼ね備えたものであり、例えば、多孔質の高分子膜があげられ、具体的にはポリエチレン、ポリカーボネート、ポリエステル、酢酸セルロース、芳香族ポリアミド、ポリビニルアルコール、ポリスルホン、セルロース等が原料となる。また、パルプや合成繊維からなる紙や不織布、織布等の細かい孔を有するものも上げられ、具体的には、セルロースを主成分とする木材パルプ、レーヨン、綿、麻等や、セルロース誘導体である酢酸セルロース等、動物性繊維である羊毛、絹等、合成繊維であるアクリル繊維等、無機繊維であるガラス繊維や炭素繊維等、合成繊維であるポリエステル、ポリビニルアルコール等が原料となる。さらに、多孔質無機素材も上げられ、具体的にはセラミックスやシリカゲル等を主成分とするものが含まれる。特に本発明においては、水蒸気による拡散及び液体の水による拡散の双方を促進できるため、原理的には親水性の多孔質シート及び疎水性の多孔質シートの双方が共に適している。そのため、本発明は様々な湿度の環境へ適用可能であり、例えば本発明における素材を湿度の低い環境で使用する場合、親水性の多孔質シートでは多孔質シート内へ吸い込まれる水が損失となるため、上記多孔質シートなかでもポリエチレンや炭素繊維等の疎水性の多孔質シートが好適である。反対に、湿度の高い環境で使用する場合、液体での水の輸送が重要となる他、素材全体に保持できる水分量を上げることが必要となるため、上記多孔質シートなかでも親水性のもの、具体的には、木材パルプや、ポリビニルアルコール等の親水性物質を有するものが好適である。なおこの場合は、疎水性物質、具体的にはポリエチレンや炭素繊維等を主成分とし、前記親水性成分を有することで、親水性を持つものも好適である。   The porous sheet in the present invention has both moisture permeability and heat conductivity, for example, a porous polymer film, specifically, polyethylene, polycarbonate, polyester, cellulose acetate, aromatic polyamide, Polyvinyl alcohol, polysulfone, cellulose and the like are used as raw materials. In addition, there are papers, nonwoven fabrics, and woven fabrics made of pulp and synthetic fibers, which have fine pores, such as wood pulp based on cellulose, rayon, cotton, hemp, and cellulose derivatives. The raw material is a certain cellulose acetate, animal fibers such as wool and silk, synthetic fibers such as acrylic fibers, inorganic fibers such as glass fibers and carbon fibers, synthetic fibers such as polyester and polyvinyl alcohol. Furthermore, porous inorganic materials are also included, and specifically include those mainly composed of ceramics, silica gel and the like. In particular, in the present invention, since both diffusion by water vapor and diffusion by liquid water can be promoted, both a hydrophilic porous sheet and a hydrophobic porous sheet are suitable in principle. Therefore, the present invention can be applied to various humidity environments. For example, when the material of the present invention is used in a low humidity environment, the hydrophilic porous sheet loses water sucked into the porous sheet. Therefore, among the porous sheets, hydrophobic porous sheets such as polyethylene and carbon fibers are preferable. On the other hand, when using in a high humidity environment, it is important to transport water as a liquid, and it is necessary to increase the amount of water that can be retained in the entire material. Specifically, those having a hydrophilic substance such as wood pulp and polyvinyl alcohol are suitable. In this case, a hydrophobic substance, specifically, polyethylene or carbon fiber or the like as a main component, and having the hydrophilic component to have a hydrophilic property is also suitable.

さらに、多糖類をイオン架橋剤でイオン的に架橋させた架橋体を多孔質シートに用いることで、イオン架橋剤及び多糖類が吸湿性物質としての働きを持つため、吸湿性物質を添加せずに架橋体を用いた基材に吸湿性を持たせることができ、好適である。   Furthermore, by using a cross-linked product obtained by ionically cross-linking polysaccharides with an ionic cross-linking agent in the porous sheet, the ionic cross-linking agent and the polysaccharide function as a hygroscopic substance, so that no hygroscopic substance is added. It is preferable that the base material using the cross-linked product can be hygroscopic.

そのうえ、基材が高吸水性高分子を有することで、素材全体に保持できる水分量が増加し、透湿性能を向上させることができるので好適である。   In addition, it is preferable that the base material has a highly water-absorbing polymer because the amount of moisture that can be retained in the entire material is increased and the moisture permeability can be improved.

本発明における高吸水性高分子とは、高い水分保持性を持つ親水性高分子化合物であり、その架橋構造内に自重の10倍以上の水を保持する。素材として、ポリアクリル酸塩、デンプン、ポリビニルアルコール、カルボキシルメチルセルロース等が挙げられる。高吸水性高分子は高分子中のカルボキシル基等の官能基がイオン的に反発し、また水と結合することで多くの水分子を吸収する機構のため、塩に弱い。このため、イオン性の吸湿剤を備える場合は、高吸水性高分子の中でも高吸水性高分子内にスルホ基やメチル基、メトキシ基、メチルアミノ基、水酸基等の官能基を追加することにより耐塩性を持つものがより好適である。   The superabsorbent polymer in the present invention is a hydrophilic polymer compound having a high water retention property, and retains 10 times or more water of its own weight in its crosslinked structure. Examples of the material include polyacrylate, starch, polyvinyl alcohol, carboxymethyl cellulose and the like. The superabsorbent polymer is weak against salts because the functional group such as a carboxyl group in the polymer is ionically repelled and absorbs many water molecules by binding to water. For this reason, when an ionic hygroscopic agent is provided, a functional group such as a sulfo group, a methyl group, a methoxy group, a methylamino group, or a hydroxyl group is added to the superabsorbent polymer among the superabsorbent polymers. What has salt tolerance is more suitable.

本発明における薄膜とは、素材のうち基材となる部分よりも薄く、それ単体において、熱交換素子用素材としての強度を得ることができないものを指す。   The thin film in the present invention refers to a thin film that is thinner than a portion that becomes a base material and that cannot provide strength as a heat exchange element material alone.

吸湿剤としての無機酸塩とは、具体的には、塩化リチウム、塩化カルシウム、塩化マグネシウム、塩化鉄等のハロゲン化物や、スルファミン酸グアニジン、塩酸グアニジン、燐酸グアニジン等のグアニジン塩、硝酸銀や硝酸リチウム等の硝酸塩、硫酸マンガン等の硫酸塩等が挙げられる。   Specific examples of the inorganic acid salt as the moisture absorbent include halides such as lithium chloride, calcium chloride, magnesium chloride and iron chloride, guanidine salts such as guanidine sulfamate, guanidine hydrochloride and guanidine phosphate, silver nitrate and lithium nitrate. And nitrates such as manganese sulfate and the like.

吸湿剤としての有機酸塩は、乳酸ナトリウム、乳酸カルシウム、ピロリドンカルボン酸ナトリウム、コンドロイチン硫酸ナトリウム等があげられる。   Examples of the organic acid salt as the hygroscopic agent include sodium lactate, calcium lactate, sodium pyrrolidonecarboxylate, and sodium chondroitin sulfate.

吸湿剤としての多価アルコールは、グリセリン、エチレングリコール、トリエチレングリコール等が挙げられる。   Examples of the polyhydric alcohol as the hygroscopic agent include glycerin, ethylene glycol, and triethylene glycol.

吸湿剤としての吸湿性高分子としては、ポリアクリル酸、ポリグルタミン酸及びその塩または架橋物や、ペクチン、ジェランガム等及びその架橋物、ポリエチレングリコールや、ポリグリセリン等及びその重合体が挙げられる。   Examples of the hygroscopic polymer as the hygroscopic agent include polyacrylic acid, polyglutamic acid and salts or cross-linked products thereof, pectin, gellan gum and the cross-linked products thereof, polyethylene glycol, polyglycerin and the like, and polymers thereof.

吸湿剤としては特に、吸湿性が高く、物性が安定していて、人体への毒性が低い塩化リチウムや、塩化カルシウム等が望ましい。   As the hygroscopic agent, lithium chloride, calcium chloride, and the like that have high hygroscopicity, stable physical properties, and low toxicity to the human body are particularly desirable.

また、基材にセルロースが主体となったものを備える場合、吸湿剤としてグアニジン塩を備えることで、グアニジン塩がセルロースに対し脱水炭化型の難燃作用を有することから、素材に難燃性を付与でき好適である。   In addition, when the substrate is mainly composed of cellulose, by providing a guanidine salt as a hygroscopic agent, the guanidine salt has a dehydration carbonization-type flame retardant action on cellulose, so that the material has flame retardancy. It is possible to give.

本発明における吸湿剤の担持とは、吸湿剤を基礎となる物質に結合させ、水によって流失しないようにすることを指す。例えば吸湿剤としてアルカリ金属塩またはアルカリ土類金属塩を備え、かつ、基礎となる物質にポリオキシエチレンを有することで、ポリオキシエチレンによるアルカリ金属塩またはアルカリ土類金属塩の担持ができる。これは、前記塩化リチウムや塩化カルシウムも担持できる方法である。また、例えば、吸湿剤に乳酸ナトリウム等のカルボキシル基を持つ有機酸塩を備え、分子内にエポキシ基を2つ以上持つ多官能エポキシ樹脂と架橋させることで担持することができる。また、例えば、乳酸ナトリウムやグリセリン、エチレングリコール等の吸湿剤は、重合させることでそれぞれポリ乳酸、ポリグリセリン、ポリエチレングリコール等の高分子となり、それら吸湿性高分子をセルロースやポリエチレン等の繊維と架橋させることで担持することができる。   In the present invention, the loading of the hygroscopic agent means that the hygroscopic agent is bonded to a base substance and is not washed away by water. For example, an alkali metal salt or alkaline earth metal salt is provided as a moisture absorbent, and polyoxyethylene is included as a base material, whereby the alkali metal salt or alkaline earth metal salt can be supported by polyoxyethylene. This is a method capable of supporting lithium chloride or calcium chloride. In addition, for example, the hygroscopic agent can be supported by crosslinking with a polyfunctional epoxy resin having an organic acid salt having a carboxyl group such as sodium lactate and having two or more epoxy groups in the molecule. Further, for example, hygroscopic agents such as sodium lactate, glycerin, and ethylene glycol are polymerized into polymers such as polylactic acid, polyglycerin, and polyethylene glycol, respectively, and these hygroscopic polymers are cross-linked with fibers such as cellulose and polyethylene. It can carry | support by making it.

なお、全熱交換素子用素材として、強度及び難燃性も重要な性質であるが、例えば難燃性を増すための物質、具体的には水酸化アルミニウム等、を有することによって、吸湿剤以外の物質が素材の吸湿性能に影響を与えることもあるため、本発明における吸湿剤とは、素材への添加物として、素材の吸湿性能に影響を与えるものを指す。   In addition, strength and flame retardancy are also important properties as a material for a total heat exchange element, but for example, by having a substance for increasing flame retardancy, specifically aluminum hydroxide, etc., other than a hygroscopic agent Since this substance may affect the hygroscopic performance of the material, the hygroscopic agent in the present invention refers to an agent that affects the hygroscopic performance of the material as an additive to the material.

なお、実施の形態において吸湿剤の種類を変えたが、吸湿剤の量を変えることで、素材両面の吸湿性に差をつけても良い。   Although the type of the hygroscopic agent is changed in the embodiment, the hygroscopicity on both surfaces of the material may be made different by changing the amount of the hygroscopic agent.

なお、実施の形態において吸湿剤の種類を変えたが、吸湿剤を有する部材の種類や、含有・担持方法により吸湿性能を変えても良い。具体的には、例えば吸湿剤としてポリ乳酸を備え、片側の面へメバロノラクトンを加えたポリ乳酸架橋体を備えることで、ポリ乳酸の分岐度を増加させ、ポリ乳酸の表面にある水分子と相互作用を持つ官能基数を増やし、吸湿性を増加させる例が挙げられる。   Although the type of the hygroscopic agent is changed in the embodiment, the hygroscopic performance may be changed depending on the type of the member having the hygroscopic agent and the containing / supporting method. Specifically, for example, polylactic acid is provided as a hygroscopic agent, and a polylactic acid cross-linked product in which mevalonolactone is added to one side surface increases the degree of branching of the polylactic acid and interacts with water molecules on the surface of the polylactic acid. Examples include increasing the number of functional groups that have an effect and increasing hygroscopicity.

なお、全熱交換素子用素材として、ガスバリア性も重要な性質であり、多孔質シートa1と、薄膜a2と、薄膜b3とのいずれか少なくとも1つがガスバリア性を備えると好適である。   Note that gas barrier properties are also an important property as a total heat exchange element material, and it is preferable that at least one of the porous sheet a1, the thin film a2, and the thin film b3 has gas barrier properties.

(実施の形態2)
実施の形態1と同一な部分は同一符号を記して詳細な説明は省略する。
(Embodiment 2)
The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.

図2に断面図を示すように、基材として多孔質シートb4を備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、多孔質シートb4に吸湿剤を担持させ、多孔質シートの片側の面に吸湿剤を担持する薄膜c5を備え、多孔質シートb4が薄膜c5よりも吸湿性が高い構成とする。   As shown in the cross-sectional view of FIG. 2, a porous sheet b4 is provided as a base material, the hygroscopic agent is provided with an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer, and the hygroscopic agent is provided on the porous sheet b4. A thin film c5 that supports the hygroscopic agent is provided on one surface of the porous sheet, and the porous sheet b4 has a higher hygroscopic property than the thin film c5.

この構成により、薄膜c5において水が吸湿され、湿潤状態となる。吸湿された水は、水蒸気拡散及び表面拡散及び毛細管輸送により多孔質シートb4内へ拡散し蒸発する。このとき、薄膜c5において一度水を集めて薄膜c5内部の相対湿度を上昇させたうえで、多孔質シートb4が吸湿性を持ち水の可動性が低く、水蒸気分圧の低い箇所とすることで、薄膜c5から多孔質シートb4へ至る水蒸気拡散と、表面拡散及び毛細管輸送による液体の水の輸送とを促進することができる。そして、多孔質シートb4の内部に水を集めることで、相対湿度を上げ、かつ水と空気の界面を広げることで、多孔質シートb4からの水の蒸発量を増加でき、水の輸送の促進と合わせて、薄膜c5から多孔質シートb4方向への透湿性能を向上させることができる。   With this configuration, water is absorbed in the thin film c5 and becomes wet. The absorbed water is diffused and evaporated into the porous sheet b4 by water vapor diffusion, surface diffusion and capillary transport. At this time, by collecting water once in the thin film c5 and increasing the relative humidity inside the thin film c5, the porous sheet b4 has a hygroscopic property, low water mobility, and a low water vapor partial pressure. The water vapor diffusion from the thin film c5 to the porous sheet b4 and the transport of liquid water by surface diffusion and capillary transport can be promoted. And by collecting water inside the porous sheet b4, the relative humidity is increased and the interface between water and air is widened, so that the evaporation amount of water from the porous sheet b4 can be increased and the transportation of water is promoted. In addition, the moisture permeation performance from the thin film c5 toward the porous sheet b4 can be improved.

さらに、この構成により、多孔質シートb4に素材の強度を確保する効果と、吸湿性という効果とを持たせることができるため、素材の層構造を2層のみとし、素材を薄くできる。   Furthermore, since this structure can provide the porous sheet b4 with the effect of ensuring the strength of the material and the effect of hygroscopicity, the material can have only two layers and the material can be thinned.

その上、吸湿剤を多孔質シートb4へ担持させるため、吸湿剤により多孔質シートb4の保水性が向上でき、素材の保水量を高めることで透湿性能を向上することができる。   In addition, since the moisture absorbent is supported on the porous sheet b4, the moisture retention of the porous sheet b4 can be improved by the moisture absorbent, and the moisture permeability can be improved by increasing the water retention amount of the material.

なお、本実施の形態では、薄膜c5に比べ厚みのある多孔質シートb4を吸湿性の高い側にした。この構成により、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートb4と薄膜c5からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   In the present embodiment, the porous sheet b4 having a thickness larger than that of the thin film c5 is set on the side having high hygroscopicity. With this configuration, taking advantage of the feature that the moisture distribution in the material spreads uniformly over the whole or the moisture is biased to highly hygroscopic sites, the amount of moisture that can be retained in the entire material consisting of the porous sheet b4 and the thin film c5 is increased, The moisture permeability can be improved, which is more preferable.

(実施の形態3)
実施の形態1または2のいずれかと同一な部分は同一符号を記して詳細な説明は省略する。
(Embodiment 3)
Portions that are the same as in Embodiment 1 or 2 are given the same reference numerals, and detailed descriptions thereof are omitted.

図3に断面図を示すように、2枚の透湿性の多孔質シート(多孔質シートc6、多孔質シートd7)を備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、多孔質シートc6及び多孔質シートd7にそれぞれ吸湿剤を担持させ、多孔質シートc6が多孔質シートd7よりも吸湿性が高く、多孔質シートc6及び多孔質シートd7を貼り合わせた構成とする。   As shown in the cross-sectional view of FIG. 3, two moisture-permeable porous sheets (porous sheet c6 and porous sheet d7) are provided, and the hygroscopic agent is an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic property. A polymer is provided, and a hygroscopic agent is supported on each of the porous sheet c6 and the porous sheet d7. The porous sheet c6 has higher hygroscopicity than the porous sheet d7, and the porous sheet c6 and the porous sheet d7 are bonded together. The configuration is as follows.

この構成により、多孔質シートd7において水が吸湿され、湿潤状態となる。吸湿された水は、水蒸気拡散及び表面拡散及び毛細管輸送により多孔質シートc6内へ拡散し蒸発する。このとき、多孔質シートd7において一度水を集めて多孔質シートd7内部の相対湿度を上昇させたうえで、多孔質シートc6が吸湿性を持ち水の可動性が低い箇所とすることで、多孔質シートd7から多孔質シートc6へ至る水蒸気拡散と、表面拡散及び毛細管輸送による液体の水の輸送を促進することができる。そして、多孔質シートc6の内部に水を集めることで、相対湿度を上げ、かつ水と空気の界面を広げることで、多孔質シートc6からの水の蒸発量を増加でき、水の輸送の促進と合わせて、多孔質シートd7から多孔質シートc6方向への透湿性能を向上させることができる。   With this configuration, water is absorbed in the porous sheet d7 to be in a wet state. The absorbed water is diffused and evaporated into the porous sheet c6 by water vapor diffusion, surface diffusion and capillary transport. At this time, once water is collected in the porous sheet d7 to increase the relative humidity inside the porous sheet d7, the porous sheet c6 has a hygroscopic property and has a low water mobility, so that It is possible to promote water vapor diffusion from the porous sheet d7 to the porous sheet c6 and transport of liquid water by surface diffusion and capillary transport. And by collecting water inside the porous sheet c6, the relative humidity is increased and the interface between water and air is widened, so that the evaporation amount of water from the porous sheet c6 can be increased and the transportation of water is promoted. In addition, the moisture permeation performance from the porous sheet d7 toward the porous sheet c6 can be improved.

貼り合わせる方法としては、熱溶着や圧着、接着剤を用いる方法等が挙げられるが、接着剤を用いる場合、接着剤は具体的には例えば、ポリエチレンやポリ酢酸ビニル、ポリエステル樹脂、ポリプロピレン系樹脂が挙げられる。   Examples of the bonding method include thermal welding, pressure bonding, and a method using an adhesive. In the case of using an adhesive, specifically, the adhesive may be, for example, polyethylene, polyvinyl acetate, polyester resin, or polypropylene resin. Can be mentioned.

なお、前記接着剤を用いた場合、接着剤がガスバリア性を有するため、多孔質シートc6及び多孔質シートd7にガスバリア性を持たせる必要が無く好適である。   In addition, when the said adhesive agent is used, since the adhesive agent has gas barrier property, it is not necessary to give gas barrier property to the porous sheet c6 and the porous sheet d7, and is suitable.

なお、本実施の形態において2枚の基材に多孔質シートを備えたが、例えばガスバリア性を素材へ備えるためなどの必要性に応じて、基材のどちらか少なくとも1枚に透湿性の無孔質シートを備えてもよく、その作用効果に差異は生じない。   In this embodiment, the porous sheet is provided on the two base materials. However, according to the necessity such as providing the material with gas barrier properties, at least one of the base materials is not permeable to moisture. A porous sheet may be provided, and there is no difference in the effect.

なお、多孔質シートc6を多孔質シートd7よりも厚いシートとする構成は、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートc6と多孔質シートd7からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   The structure in which the porous sheet c6 is thicker than the porous sheet d7 takes advantage of the feature that the distribution of moisture in the material spreads uniformly over the whole or the moisture is biased to highly hygroscopic sites. It is more preferable because the moisture that can be held in the entire material composed of c6 and the porous sheet d7 can be increased and the moisture permeability can be improved.

なお、多孔質シートc6が多孔質シートd7よりも多く高吸水性高分子を有する構成は、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートc6と多孔質シートd7からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   The configuration in which the porous sheet c6 has a higher water-absorbing polymer than the porous sheet d7 takes advantage of the feature that the distribution of moisture in the material spreads uniformly throughout the material or that the moisture is biased to highly hygroscopic sites. It is more preferable because the moisture that can be held in the entire material composed of the porous sheet c6 and the porous sheet d7 can be increased and the moisture permeability can be improved.

なお、多孔質シートc6と多孔質シートd7の間に高吸水性高分子を有するシートを挟むことで、高吸水性高分子が多孔質シートc6と多孔質シートd7との水の移動を仲介することで、素子へ加工した場合の水分量の平面的な偏りを緩和して乾燥部位からの放湿を促進し、また、多孔質シートc6と多孔質シートd7からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   In addition, by sandwiching a sheet having a superabsorbent polymer between the porous sheet c6 and the porous sheet d7, the superabsorbent polymer mediates the movement of water between the porous sheet c6 and the porous sheet d7. Thus, the planar deviation of the moisture amount when processed into the element is eased to promote moisture release from the dried portion, and the moisture that can be retained in the entire material composed of the porous sheet c6 and the porous sheet d7 is increased. It is more preferable because it can increase the moisture permeability.

(実施の形態4)
実施の形態1から3のいずれかと同一な部分は同一符号を記して詳細な説明は省略する。
(Embodiment 4)
The same parts as those in any of Embodiments 1 to 3 are denoted by the same reference numerals, and detailed description thereof is omitted.

図4に断面図を示すように、2枚の透湿性の多孔質シート(多孔質シートe8、多孔質シートf9)を備え、吸湿剤に分子サイズが2ナノメートル以上の吸湿性高分子、例えば平均分子量1075から2400、重合度で24から54のポリエチレングリコール等、好ましくは平均分子量1500程度の重合度が33から34程度のポリエチレングリコール等、を備え、多孔質シートe8及び多孔質シートf9にそれぞれポリエチレングリコールを備え、多孔質シートe8と多孔質シートf9においてポリエチレングリコールの量を変えることで多孔質シートe8よりも多孔質シートf9の吸湿性が高く、多孔質シートe8及び多孔質シートf9の間に孔径が200ナノメートル以下2ナノメートル以上の透湿性の限外濾過膜10、例えば孔径が2ナノメートル、分画分子量1000のポリエーテルスルホン膜、を挟んで貼り合わせた構成とする。   As shown in the cross-sectional view of FIG. 4, two moisture-permeable porous sheets (porous sheet e8, porous sheet f9) are provided, and the hygroscopic agent has a molecular size of 2 nanometers or more, for example, Polyethylene glycol having an average molecular weight of 1075 to 2400 and a degree of polymerization of 24 to 54, preferably polyethylene glycol having an average molecular weight of about 1500 and a degree of polymerization of about 33 to 34, and the like, respectively, in the porous sheet e8 and the porous sheet f9 Polyethylene glycol is provided, and by changing the amount of polyethylene glycol in the porous sheet e8 and the porous sheet f9, the hygroscopic property of the porous sheet f9 is higher than that of the porous sheet e8, and between the porous sheet e8 and the porous sheet f9. A moisture-permeable ultrafiltration membrane 10 having a pore diameter of 200 nanometers or less and 2 nanometers or more, such as a pore There 2 nanometers, polyethersulfone membrane with molecular weight cut off 1000, and sandwiched therebetween bonded together constitute a.

この構成により、例として挙げたポリエチレングリコールをはじめとする吸湿性高分子が限外濾過膜10によって移動を制限されるために、多孔質シートe8及び多孔質シートf9の吸湿性の違いを水分移動後も保つことができる。   With this configuration, the hygroscopic polymer such as polyethylene glycol cited as an example is restricted in movement by the ultrafiltration membrane 10, and thus the difference in hygroscopicity between the porous sheet e8 and the porous sheet f9 is transferred to moisture. You can keep it later.

そのため、まず多孔質シートe8において水が吸湿され、湿潤状態となる。吸湿された水は、水蒸気拡散及び表面拡散及び毛細管輸送により限外濾過膜10内へ拡散し蒸発する。そこで、多孔質シートe8において一度水を集めて多孔質シートe8内部の相対湿度を上昇させたうえで、多孔質シートf9が吸湿性を持ち、水蒸気分圧が低く、かつ、水の可動性が低い箇所とすることで、多孔質シートe8から限外濾過膜10を通過し多孔質シートf9へ至る水蒸気拡散と、表面拡散及び毛細管輸送による液体の水の輸送とを促進することができる。そして、多孔質シートf9の内部に水を集めることで、相対湿度を上げ、かつ水と空気の界面を広げることで、多孔質シートf9からの水の蒸発量を増加でき、水の輸送の促進と合わせて、多孔質シートe8から多孔質シートf9方向への透湿性能を向上させることができる。   Therefore, first, water is absorbed in the porous sheet e8 to be in a wet state. The absorbed water is diffused and evaporated into the ultrafiltration membrane 10 by water vapor diffusion, surface diffusion and capillary transport. Therefore, after collecting water once in the porous sheet e8 and increasing the relative humidity inside the porous sheet e8, the porous sheet f9 has hygroscopicity, low water vapor partial pressure, and water mobility. By setting it as a low location, it is possible to promote water vapor diffusion from the porous sheet e8 through the ultrafiltration membrane 10 to the porous sheet f9 and liquid water transportation by surface diffusion and capillary transportation. And by collecting water inside the porous sheet f9, the relative humidity is increased and the interface between water and air is widened, so that the evaporation amount of water from the porous sheet f9 can be increased and the transportation of water is promoted. In addition, the moisture permeation performance from the porous sheet e8 to the porous sheet f9 can be improved.

本発明における分子サイズが2ナノメートル以上の吸湿性高分子とは、本実施の形態4では重合度が33程度のポリエチレングリコールを例示したが、限外濾過膜10における阻止率が85%以上、好ましくは90%以上あるものが必要であるため、備える限外濾過膜10の分画分子量によって、本実施の形態4で例示したように、備える吸湿性高分子の分子量の実際の下限が規定される。また、一般的に吸湿性高分子はその重合度が高くなるほど吸湿性が低下するので、必要とされる吸湿性の強さによって、重合度の上限、すなわち分子量の上限が規定される。   In the present embodiment, the hygroscopic polymer having a molecular size of 2 nanometers or more in the present invention is exemplified by polyethylene glycol having a degree of polymerization of about 33, but the blocking rate in the ultrafiltration membrane 10 is 85% or more, Since 90% or more is required, the actual lower limit of the molecular weight of the hygroscopic polymer to be provided is defined by the molecular weight cut off of the ultrafiltration membrane 10 to be provided, as exemplified in the fourth embodiment. The In general, since the hygroscopic polymer has a higher hygroscopicity as the degree of polymerization becomes higher, the upper limit of the degree of polymerization, that is, the upper limit of the molecular weight is defined by the required hygroscopic strength.

本発明における限外濾過膜10は、孔径が約2ナノメートルから約200ナノメートルの多孔質シートであり、一般的に分画分子量は1000から300000程度の性能のものが市販されている。材質は、ポリプロピレン、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホン、酢酸セルロース、セラミックス等が挙げられ、その中でも、ポリエーテルスルホン、酢酸セルロース等を用いた分画分子量の小さな濾過膜が好適である。
また、限外濾過膜10にセラミックス膜または酢酸セルロース膜を備えることで素材へ難燃性を付加することができるため、好適である。
The ultrafiltration membrane 10 in the present invention is a porous sheet having a pore diameter of about 2 nanometers to about 200 nanometers, and generally has a performance of about 1,000 to 300,000 in the molecular weight cutoff. Examples of the material include polypropylene, polyacrylonitrile, polysulfone, polyethersulfone, cellulose acetate, ceramics, and the like, and among them, a filtration membrane having a small fractional molecular weight using polyethersulfone, cellulose acetate, and the like is preferable.
Further, it is preferable to provide the ultrafiltration membrane 10 with a ceramic membrane or a cellulose acetate membrane because flame retardancy can be added to the material.

なお、実施の形態では、限外濾過膜10を備えたが、同等以上の分画性能を持つ膜であれば、本発明の効果を得ることができ、例えば、孔径が1から2ナノメートル前後のナノフィルター膜も適している。   Although the ultrafiltration membrane 10 is provided in the embodiment, the effect of the present invention can be obtained as long as the membrane has a fractionation performance equal to or higher than, for example, the pore diameter is about 1 to 2 nanometers. Nanofilter membranes are also suitable.

なお、本実施の形態において2枚の基材に多孔質シートを備えたが、例えばガスバリア性を素材へ備えるためなどの必要性に応じて、基材のどちらか少なくとも1枚に透湿性の無孔質シートを備えてもよく、その作用効果に差異は生じない。   In this embodiment, the porous sheet is provided on the two base materials. However, according to the necessity such as providing the material with gas barrier properties, at least one of the base materials is not permeable to moisture. A porous sheet may be provided, and there is no difference in the effect.

なお、多孔質シートe8を多孔質シートf9よりも厚いシートとする構成は、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートe8と多孔質シートf9、限外濾過膜10からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   The structure in which the porous sheet e8 is thicker than the porous sheet f9 takes advantage of the feature that the distribution of moisture in the material spreads uniformly over the whole or the moisture is biased to highly hygroscopic sites. It is more preferable because the moisture that can be retained in the entire material composed of e8, the porous sheet f9, and the ultrafiltration membrane 10 can be increased and the moisture permeability can be improved.

なお、多孔質シートe8が多孔質シートf9よりも多く高吸水性高分子を有する構成は、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートe8と多孔質シートf9、限外濾過膜10からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   Note that the configuration in which the porous sheet e8 has a higher water-absorbing polymer than the porous sheet f9 takes advantage of the feature that the distribution of moisture in the material spreads uniformly throughout the material or that the moisture is biased to highly hygroscopic sites. It is more preferable because it can increase the moisture that can be retained in the entire material composed of the porous sheet e8, the porous sheet f9, and the ultrafiltration membrane 10 and improve the moisture permeability.

なお、多孔質シートe8と多孔質シートf9の間に高吸水性高分子を有するシートを挟む構成により、高吸水性高分子が多孔質シートe8と多孔質シートf9との水の移動を仲介することで、素子へ加工した場合の水分量の平面的な偏りを緩和して乾燥部位からの放湿を促進し、また、多孔質シートe8と多孔質シートf9、限外濾過膜10からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   It should be noted that the superabsorbent polymer mediates the movement of water between the porous sheet e8 and the porous sheet f9 by sandwiching the sheet having the superabsorbent polymer between the porous sheet e8 and the porous sheet f9. Therefore, the planar deviation of the moisture amount when processed into an element is alleviated to promote moisture release from the dried portion, and the material comprising the porous sheet e8, the porous sheet f9, and the ultrafiltration membrane 10 It is more preferable because the moisture that can be retained in the whole can be increased and the moisture permeability can be improved.

(実施の形態5)
実施の形態1から4のいずれかと同一な部分は同一符号を記して詳細な説明は省略する。
(Embodiment 5)
The same parts as those in any of Embodiments 1 to 4 are denoted by the same reference numerals, and detailed description thereof is omitted.

図5に断面図を示すように、2枚の透湿性の多孔質シート(多孔質シートe8、多孔質シートg11)を備え、多孔質シートe8に含まれる吸湿剤に分子サイズが2ナノメートル以上の吸湿性高分子を備え、多孔質シートg11に含まれる吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、多孔質シートe8に吸湿剤を浸漬もしくは混合し、多孔質シートg11に吸湿剤を担持し、多孔質シートe8より多孔質シートg11の吸湿性が高く、多孔質シートe8及び多孔質シートg11の間に孔径が200ナノメートル以下2ナノメートル以上の透湿性の限外濾過膜10を挟んで貼り合わせた構成とする。   As shown in the cross-sectional view of FIG. 5, two moisture permeable porous sheets (porous sheet e8, porous sheet g11) are provided, and the molecular size of the hygroscopic agent contained in the porous sheet e8 is 2 nanometers or more. A hygroscopic polymer, a hygroscopic agent contained in the porous sheet g11 is provided with an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer, and a hygroscopic agent is immersed or mixed in the porous sheet e8. A hygroscopic agent is supported on the porous sheet g11. The hygroscopic property of the porous sheet g11 is higher than that of the porous sheet e8, and the pore size between the porous sheet e8 and the porous sheet g11 is 200 nm or less and 2 nm or more. The wet ultrafiltration membrane 10 is sandwiched between the layers.

この構成により、多孔質シートe8に含まれる吸湿性高分子が限外濾過膜10によって移動を制限され、多孔質シートg11に含まれる吸湿剤が多孔質シートg11内へ保持されるために、多孔質シートe8及び多孔質シートg11の吸湿性の違いを水分移動後も保つことができる。   With this configuration, the hygroscopic polymer contained in the porous sheet e8 is restricted in movement by the ultrafiltration membrane 10, and the hygroscopic agent contained in the porous sheet g11 is held in the porous sheet g11. The difference in hygroscopicity between the porous sheet e8 and the porous sheet g11 can be maintained even after moisture transfer.

そのため、まず多孔質シートe8において水が吸湿され、湿潤状態となる。吸湿された水は、水蒸気拡散及び表面拡散及び毛細管輸送により限外濾過膜10内へ拡散し蒸発する。そこで、多孔質シートe8において一度水を集めて多孔質シートe8内部の相対湿度を上昇させたうえで、多孔質シートg11が吸湿性を持ち、水蒸気分圧が低く、かつ、水の可動性が低い箇所とすることで、多孔質シートe8から限外濾過膜10を通過し多孔質シートg11へ至る水蒸気拡散と、表面拡散及び毛細管輸送による液体の水の輸送とを促進することができる。そして、多孔質シートg11の内部に水を集めることで、相対湿度を上げ、かつ水と空気の界面を広げることで、多孔質シートg11からの水の蒸発量を増加でき、水の輸送の促進と合わせて、多孔質シートe8から多孔質シートg11方向への透湿性能を向上させることができる。   Therefore, first, water is absorbed in the porous sheet e8 to be in a wet state. The absorbed water is diffused and evaporated into the ultrafiltration membrane 10 by water vapor diffusion, surface diffusion and capillary transport. Therefore, after collecting water once in the porous sheet e8 and increasing the relative humidity inside the porous sheet e8, the porous sheet g11 has hygroscopicity, low water vapor partial pressure, and water mobility. By setting it as a low location, water vapor diffusion from the porous sheet e8 through the ultrafiltration membrane 10 to the porous sheet g11 and liquid water transportation by surface diffusion and capillary transportation can be promoted. And by collecting water inside the porous sheet g11, it is possible to increase the relative humidity and widen the interface between water and air, thereby increasing the evaporation amount of water from the porous sheet g11 and promoting the transportation of water. In addition, the moisture permeation performance from the porous sheet e8 to the porous sheet g11 can be improved.

なお、実施の形態では、限外濾過膜10を備えたが、同等以上の分画性能を持つ膜であれば、本発明の効果を得ることができ、例えば、孔径が1から2ナノメートル前後のナノフィルター膜等も適している。   Although the ultrafiltration membrane 10 is provided in the embodiment, the effect of the present invention can be obtained as long as the membrane has a fractionation performance equal to or higher than, for example, the pore diameter is about 1 to 2 nanometers. Nano filter membranes are also suitable.

なお、本実施の形態において2枚の基材に多孔質シートを備えたが、例えばガスバリア性を素材へ備えるためなどの必要性に応じて、基材のどちらか少なくとも1枚に透湿性の無孔質シートを備えてもよく、その作用効果に差異は生じない。   In this embodiment, the porous sheet is provided on the two base materials. However, according to the necessity such as providing the material with gas barrier properties, at least one of the base materials is not permeable to moisture. A porous sheet may be provided, and there is no difference in the effect.

なお、多孔質シートe8を多孔質シートg11よりも厚いシートとする構成は、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートe8と多孔質シートg11、限外濾過膜10からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   The configuration in which the porous sheet e8 is thicker than the porous sheet g11 takes advantage of the feature that the distribution of moisture in the material spreads uniformly over the whole or the moisture is biased to highly hygroscopic sites. It is more preferable because the moisture that can be retained in the entire material composed of e8, the porous sheet g11, and the ultrafiltration membrane 10 can be increased and the moisture permeability can be improved.

なお、多孔質シートe8が多孔質シートg11よりも多く高吸水性高分子を有する構成は、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートe8と多孔質シートg11、限外濾過膜10からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   Note that the configuration in which the porous sheet e8 has a higher water-absorbing polymer than the porous sheet g11 makes use of the feature that the distribution of moisture in the material spreads uniformly throughout the material or that the moisture is biased to highly hygroscopic sites. More preferably, the moisture content that can be retained in the entire material composed of the porous sheet e8, the porous sheet g11, and the ultrafiltration membrane 10 can be increased to improve the moisture permeability.

なお、多孔質シートe8と多孔質シートg11の間に高吸水性高分子を有するシートを挟む構成により、高吸水性高分子が多孔質シートe8と多孔質シートg11との水の移動を仲介することで、素子へ加工した場合の水分量の平面的な偏りを緩和して乾燥部位からの放湿を促進し、また、多孔質シートe8と多孔質シートg11、限外濾過膜10からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   The superabsorbent polymer mediates the movement of water between the porous sheet e8 and the porous sheet g11 by sandwiching the sheet having the superabsorbent polymer between the porous sheet e8 and the porous sheet g11. Thus, the planar deviation of the moisture content when processed into an element is alleviated to promote moisture release from the dried portion, and the material comprising the porous sheet e8, the porous sheet g11, and the ultrafiltration membrane 10 It is more preferable because the moisture that can be retained in the whole can be increased and the moisture permeability can be improved.

(実施の形態6)
実施の形態1から5のいずれかと同一な部分は同一符号を記して詳細な説明は省略する。
(Embodiment 6)
The same parts as those in any of the first to fifth embodiments are denoted by the same reference numerals, and detailed description thereof is omitted.

図6に断面図を示すように、2枚の透湿性の多孔質シート(多孔質シートh12、多孔質シートi13)を備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、多孔質シートh12及び多孔質シートi13にそれぞれ吸湿剤、例えばそれぞれ塩化リチウム及び塩化カルシウムを備え、多孔質シートh12よりも多孔質シートi13の吸湿性が高く、多孔質シートh12及び多孔質シートi13の間に孔径が2ナノメートル以下の透湿性の逆浸透膜14、例えば塩化ナトリウムイオン阻止率が90%以上の芳香族ポリアミド膜を挟んで貼り合わせた構成とする。   As shown in the cross-sectional view of FIG. 6, two moisture-permeable porous sheets (porous sheet h12 and porous sheet i13) are provided, and the hygroscopic agent is an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic property. The porous sheet h12 and the porous sheet i13 are each provided with a hygroscopic agent, for example, lithium chloride and calcium chloride, respectively, and the porous sheet i13 has higher hygroscopicity than the porous sheet h12. The porous sheet i13 has a moisture-permeable reverse osmosis membrane 14 having a pore diameter of 2 nanometers or less, for example, an aromatic polyamide membrane having a sodium chloride ion rejection rate of 90% or more and is bonded to each other.

この構成により、多孔質シートh12及び多孔質シートi13に含まれる吸湿剤が逆浸透膜14によって移動を制限されるために、多孔質シートh12及び多孔質シートi13の吸湿性の違いを水分移動後も保つことができる。   With this configuration, since the movement of the hygroscopic agent contained in the porous sheet h12 and the porous sheet i13 is restricted by the reverse osmosis membrane 14, the difference in hygroscopicity between the porous sheet h12 and the porous sheet i13 is determined after moisture movement. Can also keep.

そのため、まず多孔質シートh12において水が吸湿され、湿潤状態となる。吸湿された水は、水蒸気拡散及び表面拡散及び毛細管輸送により逆浸透膜14内へ拡散し蒸発する。そこで、多孔質シートh12において一度水を集めて多孔質シートh12内部の相対湿度を上昇させたうえで、多孔質シートi13が吸湿性を持ち、水蒸気分圧が低く、かつ、水の可動性が低い箇所とすることで、多孔質シートh12から逆浸透膜14を通過し多孔質シートi13へ至る水蒸気拡散と、表面拡散及び毛細管輸送による液体の水の輸送とを促進することができる。そして、多孔質シートi13の内部に水を集めることで、相対湿度を上げ、かつ水と空気の界面を広げることで、多孔質シートi13からの水の蒸発量を増加でき、水の輸送の促進と合わせて、多孔質シートh12から多孔質シートi13方向への透湿性能を向上させることができる。   For this reason, first, water is absorbed in the porous sheet h12 to be in a wet state. The absorbed water is diffused and evaporated into the reverse osmosis membrane 14 by water vapor diffusion, surface diffusion and capillary transport. Therefore, after collecting water once in the porous sheet h12 and increasing the relative humidity inside the porous sheet h12, the porous sheet i13 has hygroscopicity, low water vapor partial pressure, and water mobility. By setting it as a low location, it is possible to promote water vapor diffusion from the porous sheet h12 through the reverse osmosis membrane 14 to the porous sheet i13 and liquid water transportation by surface diffusion and capillary transportation. And by collecting water inside the porous sheet i13, the relative humidity is increased and the interface between water and air is increased, so that the evaporation amount of water from the porous sheet i13 can be increased and the transportation of water is promoted. In addition, the moisture permeation performance from the porous sheet h12 toward the porous sheet i13 can be improved.

本発明における逆浸透膜14とは、孔径が2ナノメートル以下の多孔質シートであり、その孔径に応じて、ほぼ全てのイオンや有機化合物等を阻止することができる。孔径の上限は備える吸湿剤の種類によって変化し、本実施の形態において例示したように、吸湿剤に使われる分子を透過しないような塩化ナトリウムイオン阻止率や2価イオン阻止率を持つ孔径といった形で上限が規定される。また、孔径が極端に小さくなると透湿性も失われることから、孔径の下限は透湿性を有する下限として規定される。材質は酢酸セルロースや芳香族ポリアミド、ポリビニルアルコール、ポリスルホン等が挙げられ、水の透過に適する親水性の酢酸セルロース等や、塩類の阻止率が高い芳香族ポリアミド等が好適である。   The reverse osmosis membrane 14 in the present invention is a porous sheet having a pore size of 2 nanometers or less, and almost all ions, organic compounds, and the like can be blocked according to the pore size. The upper limit of the pore diameter varies depending on the type of the hygroscopic agent provided, and as exemplified in the present embodiment, a shape such as a pore diameter having a sodium chloride ion blocking rate or a divalent ion blocking rate that does not transmit molecules used in the hygroscopic agent. Defines the upper limit. Further, since the moisture permeability is lost when the pore diameter becomes extremely small, the lower limit of the pore diameter is defined as the lower limit having moisture permeability. Examples of the material include cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone and the like, and hydrophilic cellulose acetate suitable for water permeation, aromatic polyamide having a high salt blocking rate, and the like are preferable.

また、逆浸透膜14に酢酸セルロース膜を備えることで素材へ難燃性を付加することができるため、好適である。   In addition, it is preferable to provide the reverse osmosis membrane 14 with a cellulose acetate membrane since flame retardancy can be added to the material.

なお、実施の形態において逆浸透膜14を備えたが、同等以上の分画性能を持つ膜であれば、その作用効果に差異は生じず、例えば、イオンを通さない無孔質の透水膜も適している。   Although the reverse osmosis membrane 14 is provided in the embodiment, if the membrane has a fractionation performance equal to or higher than that, there is no difference in the function and effect, for example, a non-porous water-permeable membrane that does not allow ions to pass therethrough. Is suitable.

なお、本実施の形態において2枚の基材に多孔質シートを備えたが、例えばガスバリア性を素材へ備えるためなどの必要性に応じて、基材のどちらか少なくとも1枚に透湿性の無孔質シートを備えてもよく、その作用効果に差異は生じない。   In this embodiment, the porous sheet is provided on the two base materials. However, according to the necessity such as providing the material with gas barrier properties, at least one of the base materials is not permeable to moisture. A porous sheet may be provided, and there is no difference in the effect.

なお、多孔質シートh12を多孔質シートi13よりも厚いシートとする構成は、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートh12と多孔質シートi13、逆浸透膜14からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   The structure in which the porous sheet h12 is thicker than the porous sheet i13 takes advantage of the feature that the distribution of moisture in the material spreads uniformly throughout the material or the moisture is biased to highly hygroscopic sites. It is more preferable because moisture that can be retained in the entire material composed of h12, porous sheet i13, and reverse osmosis membrane 14 can be increased and moisture permeability can be improved.

なお、多孔質シートh12が多孔質シートi13よりも多く高吸水性高分子を有する構成は、素材内の水分の分配が全体に均一に広がるか吸湿性の高い部位に水分が偏るという特徴を生かし、多孔質シートh12と多孔質シートi13、逆浸透膜14からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   The configuration in which the porous sheet h12 has more superabsorbent polymer than the porous sheet i13 takes advantage of the feature that the distribution of moisture in the material spreads uniformly throughout the material or that the moisture is biased to highly hygroscopic sites. It is more preferable because it can increase the moisture that can be retained in the entire material composed of the porous sheet h12, the porous sheet i13, and the reverse osmosis membrane 14 and improve the moisture permeability.

なお、多孔質シートh12と多孔質シートi13の間に高吸水性高分子を有するシートを挟む構成により、高吸水性高分子が多孔質シートh12と多孔質シートi13との水の移動を仲介することで、素子へ加工した場合の水分量の平面的な偏りを緩和して乾燥部位からの放湿を促進し、また、多孔質シートh12と多孔質シートi13、逆浸透膜14からなる素材全体に保持できる水分を増加させ、透湿性能を向上することができるのでより好適である。   The superabsorbent polymer mediates the movement of water between the porous sheet h12 and the porous sheet i13 by sandwiching the sheet having the superabsorbent polymer between the porous sheet h12 and the porous sheet i13. Thus, the unevenness of the planar amount of water when processed into an element is alleviated to promote moisture release from the dried portion, and the entire material composed of the porous sheet h12, the porous sheet i13, and the reverse osmosis membrane 14 It is more preferable because it can increase the water content that can be retained and improve the moisture permeability.

(実施の形態7)
実施の形態1から6のいずれかと同一な部分は同一符号を記して詳細な説明は省略する。
(Embodiment 7)
The same parts as those in any of Embodiments 1 to 6 are denoted by the same reference numerals, and detailed description thereof is omitted.

図7に断面図を示すように、基材として孔径が200ナノメートル以下2ナノメートル以上の限外濾過膜10を備え、吸湿剤に分子サイズが2ナノメートル以上の吸湿性高分子を備え、限外濾過膜10の片側の面に吸湿剤を有する薄膜d15を備え、限外濾過膜10の逆側の面に吸湿剤を有する薄膜f16を備え、薄膜d15より薄膜f16の吸湿性が高い構成とする。   As shown in a cross-sectional view in FIG. 7, the substrate includes an ultrafiltration membrane 10 having a pore size of 200 nanometers or less and 2 nanometers or more, and a hygroscopic agent includes a hygroscopic polymer having a molecular size of 2 nanometers or more. The ultrafiltration membrane 10 is provided with a thin film d15 having a hygroscopic agent on one surface thereof, the thin film f16 having a hygroscopic agent is provided on the opposite surface of the ultrafiltration membrane 10, and the thin film f16 has a higher hygroscopicity than the thin film d15. And

この構成により、吸湿性高分子が限外濾過膜10によって移動を制限されるために、薄膜d15及び薄膜f16の吸湿性の違いを水分移動後も保つことができる。   With this configuration, the movement of the hygroscopic polymer is restricted by the ultrafiltration membrane 10, so that the difference in hygroscopicity between the thin film d15 and the thin film f16 can be maintained even after the movement of moisture.

そのため、まず薄膜d15において水が吸湿され、湿潤状態となる。吸湿された水は、水蒸気拡散及び表面拡散及び毛細管輸送により限外濾過膜10内へ拡散し蒸発する。そこで、薄膜d15において一度水を集めて薄膜d15内部の相対湿度を上昇させたうえで、薄膜f16が吸湿性を持ち、水蒸気分圧が低く、かつ、水の可動性が低い箇所とすることで、薄膜d15から限外濾過膜10を通過し薄膜f16へ至る水蒸気拡散と、表面拡散及び毛細管輸送による液体の水の輸送とを促進することができる。そして、薄膜f16の内部に水を集めることで、相対湿度を上げ、かつ水と空気の界面を広げることで、薄膜f16からの水の蒸発量を増加でき、水の輸送の促進と合わせて、薄膜d15から薄膜f16方向への透湿性能を向上させることができる。   Therefore, first, water is absorbed in the thin film d15 and becomes wet. The absorbed water is diffused and evaporated into the ultrafiltration membrane 10 by water vapor diffusion, surface diffusion and capillary transport. Therefore, by collecting water once in the thin film d15 and increasing the relative humidity inside the thin film d15, the thin film f16 has a hygroscopic property, has a low water vapor partial pressure, and has a low water mobility. Water vapor diffusion from the thin film d15 through the ultrafiltration membrane 10 to the thin film f16 and liquid water transportation by surface diffusion and capillary transportation can be promoted. And by collecting water inside the thin film f16, the relative humidity is increased and the interface between water and air is widened, so that the evaporation amount of water from the thin film f16 can be increased. The moisture permeation performance from the thin film d15 to the thin film f16 can be improved.

本実施の形態における限外濾過膜10は、全熱交換素子用素材として素材の強度を持たせる役割も担っているため、前記したポリプロピレン、ポリアクリロニトリル、ポリスルホン、ポリエーテルスルホン、酢酸セルロース、セラミックス等の材質の中で、ポリスルホン、セラミックス等の強度の強いもの、または透水性を阻害しない程度に膜厚を持たせたものが好適である。   Since the ultrafiltration membrane 10 in the present embodiment also plays a role of giving the strength of the material as a total heat exchange element material, the above-described polypropylene, polyacrylonitrile, polysulfone, polyethersulfone, cellulose acetate, ceramics, etc. Among these materials, those having strong strength such as polysulfone and ceramics, or those having a film thickness to such an extent that water permeability is not hindered are suitable.

なお、実施の形態では、限外濾過膜10を備えたが、同等以上の分画性能及び強度を持つ膜であれば、その作用効果に差異は生じず、例えば、孔径が1から2ナノメートル前後のナノフィルター膜等も適している。   In the embodiment, the ultrafiltration membrane 10 is provided. However, as long as the membrane has equal or higher fractionation performance and strength, there is no difference in the function and effect. For example, the pore diameter is 1 to 2 nanometers. Front and rear nanofilter membranes are also suitable.

(実施の形態8)
実施の形態1から7のいずれかと同一な部分は同一符号を記して詳細な説明は省略する。
(Embodiment 8)
The same parts as those in any of Embodiments 1 to 7 are denoted by the same reference numerals, and detailed description thereof is omitted.

図8に断面図を示すように、基材として孔径が2ナノメートル以下の逆浸透膜14を備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、逆浸透膜14の片側の面に吸湿剤を有する薄膜g17を備え、逆浸透膜14の逆側の面に吸湿剤を有する薄膜h18を備え、薄膜g17より薄膜h18の吸湿性が高い構成とする。   As shown in the cross-sectional view of FIG. 8, the substrate is provided with a reverse osmosis membrane 14 having a pore diameter of 2 nanometers or less, the hygroscopic agent is provided with an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer. A thin film g17 having a hygroscopic agent is provided on one surface of the osmotic membrane 14, and a thin film h18 having a hygroscopic agent is provided on the reverse surface of the reverse osmosis membrane 14, so that the thin film h18 has higher hygroscopicity than the thin film g17.

この構成により、吸湿性高分子が逆浸透膜14によって移動を制限されるために、薄膜g17及び薄膜h18の吸湿性の違いを水分移動後も保つことができる。   With this configuration, the movement of the hygroscopic polymer is restricted by the reverse osmosis membrane 14, so that the difference in hygroscopicity between the thin film g17 and the thin film h18 can be maintained even after the movement of moisture.

そのため、まず薄膜g17において水が吸湿され、湿潤状態となる。吸湿された水は、水蒸気拡散及び表面拡散及び毛細管輸送により逆浸透膜14内へ拡散し蒸発する。そこで、薄膜g17において一度水を集めて薄膜g17内部の相対湿度を上昇させたうえで、薄膜h18が吸湿性を持ち、水蒸気分圧が低く、かつ、水の可動性が低い箇所とすることで、薄膜g17から逆浸透膜14を通過し薄膜h18へ至る水蒸気拡散と、表面拡散及び毛細管輸送による液体の水の輸送とを促進することができる。そして、薄膜h18の内部に水を集めることで、相対湿度を上げ、かつ水と空気の界面を広げることで、薄膜h18からの水の蒸発量を増加でき、水の輸送の促進と合わせて、薄膜g17から薄膜h18方向への透湿性能を向上させることができる。   Therefore, first, water is absorbed in the thin film g17 to be in a wet state. The absorbed water is diffused and evaporated into the reverse osmosis membrane 14 by water vapor diffusion, surface diffusion and capillary transport. Therefore, by collecting water once in the thin film g17 and increasing the relative humidity inside the thin film g17, the thin film h18 has hygroscopicity, low water vapor partial pressure, and low water mobility. The water vapor diffusion from the thin film g17 through the reverse osmosis membrane 14 to the thin film h18 and the transport of liquid water by surface diffusion and capillary transport can be promoted. And by collecting water inside the thin film h18, increasing the relative humidity and widening the interface between water and air, the amount of water evaporation from the thin film h18 can be increased, along with the promotion of water transport, The moisture permeation performance from the thin film g17 toward the thin film h18 can be improved.

本実施の形態における逆浸透膜14は、全熱交換素子用素材として素材の強度を持たせる役割も担っているため、前記した酢酸セルロースや芳香族ポリアミド、ポリビニルアルコール、ポリスルホン等の材質の中で、ポリスルホン等の塩類阻止性はやや低いが強度の強いものを芳香族ポリアミドや酢酸セルロースへ重ね合わせて強度を持たせたものが好適である。   The reverse osmosis membrane 14 in the present embodiment also plays a role of giving the strength of the material as a material for the total heat exchange element, so among the materials such as cellulose acetate, aromatic polyamide, polyvinyl alcohol, polysulfone, etc. In addition, a salt-inhibiting property such as polysulfone, which is somewhat low but strong, is superposed on aromatic polyamide or cellulose acetate to give strength.

なお、実施の形態において逆浸透膜14を備えたが、同等以上の分画性能及び強度を持つ膜であれば、その作用効果に差異は生じず、例えば、イオンを通さない無孔質の透水膜も適している。   Although the reverse osmosis membrane 14 is provided in the embodiment, if the membrane has a fractionation performance and strength equal to or higher than those, there is no difference in the function and effect, for example, non-porous water permeability that does not pass ions. A membrane is also suitable.

(実施の形態9)
実施の形態1から8のいずれかと同一な部分は同一符号を記して詳細な説明は省略する。図9に分解鳥瞰図を示すように、熱交換素子として前記実施の形態1に示した全熱交換素子用素材を伝熱板として備え、伝熱板の吸湿性の高い第1面19同士または吸湿性の低い第2面20同士がそれぞれ向かい合うように、前記伝熱板を互い違いに複数層重ね合わせ、これらの各層間を交互に通り、伝熱板の吸湿性の高い第1面19から構成された第1流路21及び吸湿性の低い第2面20から構成された第2流路22を備える構成とする。この構成により、全熱交換素子内に伝熱板の吸湿性が異なる2種類の流路を形成することができ、第2流路22から第1流路21への素材内の水の輸送として、水蒸気拡散による輸送と、液体の水の拡散による輸送両方を促進することができるので、熱交換素子の潜熱交換性能を向上できる。
(Embodiment 9)
The same parts as those in any of Embodiments 1 to 8 are denoted by the same reference numerals, and detailed description thereof is omitted. As shown in the exploded bird's-eye view in FIG. 9, the heat exchanger element is provided with the total heat exchanger element material shown in the first embodiment as a heat transfer plate, and the heat transfer plates have a high moisture absorption property between the first surfaces 19. The heat transfer plates are alternately stacked in a plurality of layers so that the second surfaces 20 having low properties face each other, and the heat transfer plates are configured by the first surface 19 having high hygroscopicity alternately passing between the layers. In addition, the second flow path 22 including the first flow path 21 and the second surface 20 having low hygroscopicity is provided. With this configuration, it is possible to form two types of flow paths having different hygroscopic properties of the heat transfer plate in the total heat exchange element, and as transport of water in the material from the second flow path 22 to the first flow path 21. Since both the transport by water vapor diffusion and the transport by liquid water diffusion can be promoted, the latent heat exchange performance of the heat exchange element can be improved.

なお、本実施の形態では伝熱板として実施の形態1に示したものを備えたが、実施の形態1から8に示した全熱交換素子用素材であれば、どれを用いても良い。   In the present embodiment, the heat transfer plate shown in the first embodiment is provided. However, any heat exchanger element material shown in the first to eighth embodiments may be used.

なお、本実施の形態では、直交流型の素子を例示したが、対向流型や平行流型等の静止型素子であり、空気対空気で顕熱及び潜熱の交換を行う全熱交換素子であれば、どれを用いても良い。   In this embodiment, the cross flow type element is exemplified, but it is a stationary type element such as a counter flow type or a parallel flow type, and is a total heat exchange element that exchanges sensible heat and latent heat by air-to-air. Any one can be used.

(実施の形態10)
実施の形態1から9のいずれかと同一な部分は同一符号を記して詳細な説明は省略する。図10に熱交換形換気装置を水平方向へ輪切りにした断面図を示す。図9に示すように、熱交換形換気装置は、室外吸込口23と室内吸込口24、室外排出口25、室内給気口26を備えた本体箱27で構成され、室外吸込口23から吸い込んだ空気を室内給気口26より吐出し、室内吸込口24から吸い込んだ空気を室外排出口25から吐出する。本体箱27内部には実施の形態9に示した熱交換素子28を備える。また、送風手段として第1送風手段29と、第2送風手段30を備え、例えば送風手段として、遠心送風機や軸流送風機を備え、送風手段を駆動させる原動機として原動機31を備え、熱交換素子28と接続する風路を選択するための選択手段として、例えば原動機とダンパー板等で構成された風向調整板32を備えた構成である。
(Embodiment 10)
The same parts as those in any of Embodiments 1 to 9 are denoted by the same reference numerals, and detailed description thereof is omitted. FIG. 10 shows a cross-sectional view of the heat exchanging ventilator that is horizontally cut. As shown in FIG. 9, the heat exchange type ventilator is constituted by a main body box 27 having an outdoor suction port 23, an indoor suction port 24, an outdoor discharge port 25, and an indoor air supply port 26, and sucks from the outdoor suction port 23. The air is discharged from the indoor air supply port 26, and the air sucked from the indoor intake port 24 is discharged from the outdoor discharge port 25. The main body box 27 includes the heat exchange element 28 shown in the ninth embodiment. Moreover, the 1st ventilation means 29 and the 2nd ventilation means 30 are provided as a ventilation means, for example, a centrifugal blower and an axial flow fan are provided as a ventilation means, the prime mover 31 is provided as a prime mover which drives a ventilation means, and the heat exchange element 28 is provided. As a selection means for selecting a wind path to be connected to, for example, a wind direction adjusting plate 32 composed of a prime mover and a damper plate is provided.

さらに本体箱27は、原動機31の回転軸に固着された第1送風手段29によって室外の空気を室内へ給気する給気流を通風させる給気流路33と、同じく原動機31の回転軸に固着された第2送風手段30によって室内の空気を室外に排気する排気流を通風させる排気流路34を備えた構成である。   Further, the main body box 27 is fixed to the air supply passage 33 for supplying the outdoor air to the room by the first air blowing means 29 fixed to the rotation shaft of the prime mover 31 and the rotation shaft of the prime mover 31. In addition, the second air blowing unit 30 is provided with an exhaust passage 34 that allows the exhaust air to exhaust indoor air to the outside.

風向調整板32は、室外吸込口23に熱交換素子28の第1流路21もしくは第2流路22のどちらか一方を接続し、他方の流路を室内吸込口24に接続する構成である。   The air direction adjusting plate 32 is configured to connect either the first flow path 21 or the second flow path 22 of the heat exchange element 28 to the outdoor suction port 23 and connect the other flow path to the indoor suction port 24. .

さらに、室外吸込口23と風向調整板32との間の給気流路33内に第1湿度検知手段35を備え、室内吸込口24と風向調整板32との間の排気流路34内に第2湿度検知手段36を備えた構成である。   Further, the first humidity detection means 35 is provided in the air supply flow path 33 between the outdoor suction port 23 and the wind direction adjustment plate 32, and the first humidity detection means 35 is provided in the exhaust flow path 34 between the indoor suction port 24 and the wind direction adjustment plate 32. This is a configuration provided with two humidity detecting means 36.

この構成により、熱交換素子28の第1流路21と第2流路22へ、それぞれ給気流路33または排気流路34を選択して接続することができる。給気流路33及び排気流路34のうち、湿度の低い流路を吸湿性の高い第1流路21へ接続し、湿度の高い流路を吸湿性の低い第2流路22へ接続するように、第1湿度検知手段35及び第2湿度検知手段36から湿度情報を得て風向調整板32を制御する。このことで、湿度の高い流路から湿度の低い流路への潜熱回収において、素子内部において、吸湿性の低い第2流路22から吸湿性の高い第1流路21へ水分移動を促進するために、熱交換形換気装置の潜熱回収効率を向上させ、もって全熱回収効率も向上させることができる。   With this configuration, the supply flow path 33 or the exhaust flow path 34 can be selected and connected to the first flow path 21 and the second flow path 22 of the heat exchange element 28, respectively. Of the air supply flow path 33 and the exhaust flow path 34, the flow path with low humidity is connected to the first flow path 21 with high hygroscopicity, and the flow path with high humidity is connected to the second flow path 22 with low hygroscopicity. In addition, humidity information is obtained from the first humidity detecting means 35 and the second humidity detecting means 36 to control the wind direction adjusting plate 32. Accordingly, in the latent heat recovery from the high-humidity channel to the low-humidity channel, moisture movement is promoted inside the element from the low hygroscopic second channel 22 to the high hygroscopic first channel 21. Therefore, the latent heat recovery efficiency of the heat exchange ventilator can be improved, and the total heat recovery efficiency can also be improved.

本発明における湿度検知手段とは、例えば、高分子膜に含まれる水分量の変化に伴う誘電率変化を検出する高分子膜湿度センサーや、白金抵抗体を用いた温度センサーを二本組み合わせて、片方をウイッグ等で湿らせておくことで乾球及び湿球温度を測定し湿度情報を得る乾湿計などが挙げられる。   With the humidity detection means in the present invention, for example, a polymer film humidity sensor that detects a change in dielectric constant accompanying a change in the amount of water contained in the polymer film, or a combination of two temperature sensors using a platinum resistor, One example is a moisture meter that obtains humidity information by measuring the dry bulb and wet bulb temperature by moistening one side with a wig or the like.

なお、実施の形態において、第1送風手段29及び第2送風手段30を原動機31で駆動する構成としたが、二台の原動機を備えてそれぞれの送風手段を駆動する構成としてもよい。   In the embodiment, the first blower unit 29 and the second blower unit 30 are driven by the prime mover 31. However, two prime movers may be provided to drive the blower units.

なお、実施の形態において第1湿度検知手段35及び第2湿度検知手段36を備えることで湿度情報を得たが、例えば室内もしくは室外の湿度環境が一定である場合、湿度検知手段を湿度環境が変化する側の風路のみに設置する構成であっても同様の効果が得られる。   In the embodiment, the humidity information is obtained by providing the first humidity detecting unit 35 and the second humidity detecting unit 36. However, for example, when the indoor or outdoor humidity environment is constant, the humidity detecting unit The same effect can be obtained even if the configuration is installed only in the air path on the changing side.

なお、実施の形態において第1湿度検知手段35及び第2湿度検知手段36を備えることで湿度情報を得、その情報に基づき風向調整板32を切り替えたが、これら湿度検知手段を設けず、例えば手動等、他の手段により風向調整板32を切り替えてもよい。   In the embodiment, the humidity information is obtained by providing the first humidity detecting means 35 and the second humidity detecting means 36, and the wind direction adjusting plate 32 is switched based on the information. However, these humidity detecting means are not provided, for example, The wind direction adjusting plate 32 may be switched by other means such as manual operation.

本発明にかかる全熱交換素子用素材およびその素材を用いた熱交換形換気装置は、熱交換形換気装置の潜熱交換効率を向上させることを可能とするものであるので、伝熱性と透湿性を有する素材を仕切板に備えて、顕熱及び潜熱を同時に回収する静止透過式の熱交換形換気装置等として有用である。   The total heat exchange element material according to the present invention and the heat exchange type ventilator using the material can improve the latent heat exchange efficiency of the heat exchange type ventilator. It is useful as a static permeation type heat exchange type ventilator that collects a sensible heat and latent heat at the same time.

1 多孔質シートa
2 薄膜a
3 薄膜b
4 多孔質シートb
5 薄膜c
6 多孔質シートc
7 多孔質シートd
8 多孔質シートe
9 多孔質シートf
10 限外濾過膜
11 多孔質シートg
12 多孔質シートh
13 多孔質シートi
14 逆浸透膜
15 薄膜d
16 薄膜f
17 薄膜g
18 薄膜h
19 第1面
20 第2面
21 第1流路
22 第2流路
23 室外吸込口
24 室内吸込口
25 室外排出口
26 室内給気口
27 本体箱
28 熱交換素子
29 第1送風手段
30 第2送風手段
31 原動機
32 風向調整板
33 給気流路
34 排気流路
35 第1湿度検知手段
36 第2湿度検知手段
1 Porous sheet a
2 Thin film a
3 Thin film b
4 Porous sheet b
5 Thin film c
6 Porous sheet c
7 Porous sheet d
8 Porous sheet e
9 Porous sheet f
10 Ultrafiltration membrane 11 Porous sheet g
12 Porous sheet h
13 Porous sheet i
14 Reverse osmosis membrane 15 Thin film d
16 Thin film f
17 Thin film
18 Thin film h
19 1st surface 20 2nd surface 21 1st flow path 22 2nd flow path 23 Outdoor suction port 24 Indoor suction port 25 Outdoor discharge port 26 Indoor supply port 27 Body box 28 Heat exchange element 29 1st ventilation means 30 2nd Blowing means 31 Motor 32 Wind direction adjusting plate 33 Air supply flow path 34 Exhaust flow path 35 First humidity detection means 36 Second humidity detection means

Claims (22)

吸湿剤を有する平面状で透湿性の素材であって、前記素材の両面に前記吸湿剤を備えて前記素材の両面の内の一方の面を他方の面より吸湿性を高くし、かつ前記素材の両面の間を相互に前記吸湿剤が移動することを防ぐ構成を特徴とする全熱交換素子用素材。 A planar, moisture-permeable material having a hygroscopic agent, wherein the hygroscopic agent is provided on both surfaces of the material, and one surface of both surfaces of the material is made more hygroscopic than the other surface, and the material A material for a total heat exchange element, wherein the hygroscopic agent is prevented from moving between both surfaces of each other. 素材に基材を備え、前記基材として多孔質シートを備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、前記多孔質シートの片側の面に前記吸湿剤を担持する薄膜aを備え、前記多孔質シートの逆側の面に前記吸湿剤を担持する薄膜bを備え、前記薄膜aと前記薄膜bの吸湿性が異なる構成を特徴とする請求項1に記載の全熱交換素子用素材。 A base material is provided, a porous sheet is provided as the base material, an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer is provided as a hygroscopic agent, and the hygroscopic material is provided on one surface of the porous sheet. The thin film a which carries an agent, the thin film b which carries the hygroscopic agent on the opposite surface of the porous sheet, and the hygroscopicity of the thin film a and the thin film b are different. The material for a total heat exchange element described in 1. 素材に基材を備え、前記基材として多孔質シートを備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、前記多孔質シートに前記吸湿剤を担持させ、前記多孔質シートの片側の面に前記吸湿剤を担持する薄膜を備え、前記多孔質シートと前記薄膜の吸湿性が異なる構成を特徴とする請求項1に記載の全熱交換素子用素材。 A base material is provided, a porous sheet is provided as the base material, an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer is provided as a hygroscopic agent, and the hygroscopic agent is supported on the porous sheet. 2. The total heat exchange element material according to claim 1, further comprising a thin film supporting the hygroscopic agent on one surface of the porous sheet, wherein the porous sheet and the thin film have different hygroscopic properties. 素材に2枚の透湿性の基材(基材a、基材b)を備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、前記基材a及び前記基材bにそれぞれ前記吸湿剤を担持させ、前記基材aと前記基材bの吸湿性が異なり、前記基材a及び前記基材bを貼り合わせた構成を特徴とする請求項1に記載の全熱交換素子用素材。 The material is provided with two moisture-permeable base materials (base material a and base material b), and the hygroscopic agent is provided with an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer, 2. The substrate according to claim 1, wherein the substrate b is loaded with the hygroscopic agent, the substrate a and the substrate b have different moisture absorption properties, and the substrate a and the substrate b are bonded together. Material for total heat exchange element. 素材に2枚の透湿性の基材(基材a、基材b)を備え、吸湿剤に分子サイズが2ナノメートル以上の吸湿性高分子を備え、前記基材a及び前記基材bにそれぞれ吸湿剤を浸漬もしくは混合し、前記基材aと前記基材bの吸湿性が異なり、前記基材a及び前期基材bの間に孔径2ナノメートル以上200ナノメートル以下の多孔質シートを挟んで貼り合わせた構成を特徴とする請求項1に記載の全熱交換素子用素材。 The material is provided with two moisture-permeable base materials (base material a and base material b), the hygroscopic agent is provided with a hygroscopic polymer having a molecular size of 2 nanometers or more, and the base material a and the base material b are provided. A hygroscopic agent is immersed or mixed, and the base material a and the base material b have different hygroscopicity, and a porous sheet having a pore diameter of 2 nanometers or more and 200 nanometers or less is provided between the base material a and the previous base material b. 2. The total heat exchange element material according to claim 1, wherein the total heat exchange element material is sandwiched and bonded together. 素材に2枚の透湿性の基材(基材a、基材b)を備え、前記基材aに含まれる吸湿剤aに、分子サイズが2ナノメートル以上の吸湿性高分子を備え、前記基材bに含まれる吸湿剤bに、無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、前記基材aに前記吸湿剤aを浸漬もしくは混合し、前記基材bに前記吸湿剤bを担持し、前記基材aと前記基材bの吸湿性が異なり、前記基材a及び前記基材bの間に孔径2ナノメートル以上200ナノメートル以下の多孔質シートを挟んで貼り合わせた構成を特徴とする請求項1に記載の全熱交換素子用素材。 The material is provided with two moisture-permeable base materials (base material a and base material b), the hygroscopic agent a contained in the base material a is provided with a hygroscopic polymer having a molecular size of 2 nanometers or more, The hygroscopic agent b contained in the base material b is provided with an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer, and the hygroscopic agent a is immersed or mixed in the base material a. The hygroscopic agent b is supported, and the base material a and the base material b have different hygroscopicity, and a porous sheet having a pore diameter of 2 nanometers or more and 200 nanometers or less is sandwiched between the base material a and the base material b. The total heat exchange element material according to claim 1, wherein the total heat exchange element material is bonded together. 素材に2枚の透湿性の基材(基材a、基材b)を備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、前記基材a及び前記基材bにそれぞれ前記吸湿剤を浸漬もしくは混合し、前記基材aと前記基材bの吸湿性が異なり、前記基材a及び前記基材bの間に孔径2ナノメートル以下の多孔質シートを挟んで貼り合わせた構成を特徴とする請求項1に記載の全熱交換素子用素材。 The material is provided with two moisture-permeable base materials (base material a and base material b), and the hygroscopic agent is provided with an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer, A porous sheet in which the hygroscopic agent is immersed or mixed in the base material b, the hygroscopicity of the base material a and the base material b is different, and the pore diameter is 2 nanometers or less between the base material a and the base material b. The material for a total heat exchange element according to claim 1, wherein the material is a structure in which the two are sandwiched together. 素材に基材を備え、前記基材として孔径2ナノメートル以上200ナノメートル以下の多孔質シートを備え、吸湿剤に分子サイズが2ナノメートル以上の吸湿性高分子を備え、前記多孔質シートの片側の面に前記吸湿剤を有する薄膜aを備え、前記多孔質シートの逆側の面に前記吸湿剤を有する薄膜bを備え、前記薄膜aと前記薄膜bの吸湿性が異なる構成を特徴とする請求項1に記載の全熱交換素子用素材。 A base material is provided as a material, a porous sheet having a pore size of 2 nanometers or more and 200 nanometers or less is provided as the base material, a hygroscopic agent is provided with a hygroscopic polymer having a molecular size of 2 nanometers or more, The thin film a having the hygroscopic agent is provided on one surface, the thin film b having the hygroscopic agent is provided on the opposite surface of the porous sheet, and the thin film a and the thin film b have different hygroscopic properties. The total heat exchange element material according to claim 1. 素材に基材を備え、前記基材として孔径2ナノメートル以下の多孔質シートを備え、吸湿剤に無機酸塩または有機酸塩または多価アルコールまたは吸湿性高分子を備え、前記多孔質シートの片側の面に前記吸湿剤を有する薄膜aを備え、前記多孔質シートの逆側の面に前記吸湿剤を有する薄膜bを備え、前記薄膜aと前記薄膜bの吸湿性が異なる構成を特徴とする請求項1に記載の全熱交換素子用素材。 A material is provided with a base material, and the base material is provided with a porous sheet having a pore diameter of 2 nanometers or less, and a hygroscopic agent is provided with an inorganic acid salt, an organic acid salt, a polyhydric alcohol, or a hygroscopic polymer, The thin film a having the hygroscopic agent is provided on one surface, the thin film b having the hygroscopic agent is provided on the opposite surface of the porous sheet, and the thin film a and the thin film b have different hygroscopic properties. The total heat exchange element material according to claim 1. 多孔質シートにセラミックス膜を用いる構成を特徴とする請求項5、6または8のいずれかに記載の全熱交換素子用素材。 9. The total heat exchange element material according to claim 5, wherein a ceramic film is used for the porous sheet. 多孔質シートに酢酸セルロース膜を用いる構成を特徴とする請求項5から9のいずれかに記載の全熱交換素子用素材。 The material for a total heat exchange element according to any one of claims 5 to 9, wherein a cellulose acetate film is used for the porous sheet. 少なくとも1枚の基材に多糖類をイオン架橋剤でイオン的に架橋させた架橋体を用いる構成を特徴とする請求項3、4、6または7のいずれかに記載の全熱交換素子用素材。 The material for a total heat exchange element according to any one of claims 3, 4, 6, and 7, wherein a cross-linked product obtained by ionically cross-linking a polysaccharide with an ionic cross-linking agent is used on at least one base material. . 多孔質シートの吸湿性が薄膜の吸湿性より高くなる構成を特徴とする請求項3に記載の全熱交換素子用素材。 The material for a total heat exchange element according to claim 3, wherein the hygroscopic property of the porous sheet is higher than the hygroscopic property of the thin film. 基材aの吸湿性が基材bの吸湿性より高い基材の組み合わせを備え、前記基材bより前記基材aの厚みを厚くする構成を特徴とする請求項4から7のいずれかに記載の全熱交換素子用素材。 8. The structure according to claim 4, comprising a combination of base materials having a higher hygroscopic property of the base material a than the hygroscopic property of the base material b, wherein the base material a is thicker than the base material b. The total heat exchange element material described. 素材に基材を備え、前記基材がセルロースを主体とする分子から構成され、吸湿剤にグアニジン塩を有する構成を特徴とする請求項1、2、3、4、6または7のいずれかに記載の全熱交換素子用素材。 The base material is provided with a base material, the base material is composed of molecules mainly composed of cellulose, and the hygroscopic agent has a guanidine salt. The total heat exchange element material described. 素材に基材を備え、前記基材に高吸水性高分子を有する構成を特徴とする請求項1から15のいずれかに記載の全熱交換素子用素材。 The total heat exchange element material according to any one of claims 1 to 15, wherein the material includes a base material, and the base material includes a superabsorbent polymer. 基材aの吸湿性が基材bの吸湿性より高い基材の組み合わせを備え、前記基材aに高吸水性高分子を有する構成を特徴とする請求項4から7のいずれかに記載の全熱交換素子用素材。 8. The structure according to claim 4, comprising a combination of base materials having a higher hygroscopic property of the base material a than the hygroscopic property of the base material b, wherein the base material a has a highly water-absorbing polymer. Material for total heat exchange element. 基材a及び基材bの間に、高吸水性高分子を有するシートを備える構成を特徴とする請求項4から7のいずれかに記載の全熱交換素子用素材。 The total heat exchange element material according to any one of claims 4 to 7, comprising a sheet having a superabsorbent polymer between the base material a and the base material b. 請求項1から18のいずれかに記載の全熱交換素子用素材を伝熱板に用い、前記伝熱板の吸湿性の高い面同士または吸湿性の低い面同士がそれぞれ向かい合うように、前記伝熱板を互い違いに複数層重ね合わせ、その重ね合わせた各層間を交互に通るように第1流路及び第2流路を構成したことを特徴とする全熱交換素子。 The total heat exchange element material according to any one of claims 1 to 18 is used for a heat transfer plate, and the surfaces of the heat transfer plate having high hygroscopicity or surfaces having low hygroscopicity face each other. A total heat exchange element, wherein a plurality of layers of heat plates are alternately stacked, and the first flow path and the second flow path are configured so as to alternately pass through each of the stacked layers. 請求項19に記載の全熱交換素子を備えることを特徴とする熱交換形換気装置。 A heat exchange type ventilator comprising the total heat exchange element according to claim 19. 室外の空気を室内へ取り込み、室内の空気を室外へ排出する熱交換形換気装置において、互いに独立した、室外の空気を通風させる給気流路及び室内の空気を通風させる排気流路を備え、素子の第1流路及び第2流路を接続する流路を、それぞれ前記給気流路及び前記排気流路から選択できるように流路を切り替える切り替え手段を備えた構成を特徴とする請求項20に記載の熱交換形換気装置。 In a heat exchange type ventilator that takes in outdoor air into the room and discharges the indoor air to the outside, the heat exchange type ventilator includes an air supply passage for ventilating outdoor air and an exhaust passage for ventilating indoor air, which are independent of each other. 21. A configuration comprising switching means for switching the flow path so that the flow path connecting the first flow path and the second flow path can be selected from the supply flow path and the exhaust flow path, respectively. The heat exchange ventilator described. 室内の空気が室外の空気よりも湿度が高い場合に、吸湿性の高い面が給気流路に含まれるとともに吸湿性の低い面が排気流路に含まれ、室内の空気が室外の空気よりも湿度が低い場合に、吸湿性の高い面が前記排気流路に含まれるとともに吸湿性の低い面が前記給気流路に含まれるように流路を切り替える構成を特徴とする請求項21に記載の熱交換形換気装置。 When the indoor air has a higher humidity than the outdoor air, a surface with high hygroscopicity is included in the air supply flow path and a surface with low hygroscopicity is included in the exhaust flow path, so that the indoor air is more than the outdoor air. The configuration according to claim 21, wherein when the humidity is low, the flow path is switched so that a surface with high hygroscopicity is included in the exhaust flow path and a surface with low hygroscopicity is included in the air supply flow path. Heat exchange ventilator.
JP2009157607A 2009-07-02 2009-07-02 Material for total heat exchange element and heat exchange type ventilation device using the material Pending JP2011012894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009157607A JP2011012894A (en) 2009-07-02 2009-07-02 Material for total heat exchange element and heat exchange type ventilation device using the material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009157607A JP2011012894A (en) 2009-07-02 2009-07-02 Material for total heat exchange element and heat exchange type ventilation device using the material

Publications (1)

Publication Number Publication Date
JP2011012894A true JP2011012894A (en) 2011-01-20

Family

ID=43591980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009157607A Pending JP2011012894A (en) 2009-07-02 2009-07-02 Material for total heat exchange element and heat exchange type ventilation device using the material

Country Status (1)

Country Link
JP (1) JP2011012894A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142130A (en) * 2013-01-24 2014-08-07 Panasonic Corp Total heat exchange element partition member, total heat exchange element using the material, and heat exchange ventilator
JP2014533193A (en) * 2011-06-07 2014-12-11 イムテックス メンブレインズ コーポレイション Supplying liquid material to the membrane
WO2015012398A1 (en) * 2013-07-25 2015-01-29 国立大学法人岡山大学 Device provided with moisture-absorbing/releasing membrane, water vapor separator provided with device having moisture-absorbing/releasing membrane, and heat exchanger
WO2015050105A1 (en) * 2013-10-02 2015-04-09 東レ株式会社 Heat exchange element and heat exchanger
JP2015117898A (en) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 Total heat exchange element partition member, and total heat exchange element and heat exchange type ventilation device using the total heat exchange element partition member
JP2015178949A (en) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device
JP2017056456A (en) * 2015-09-16 2017-03-23 株式会社東芝 Steam separator and dehumidifier with use thereof
JP2019515244A (en) * 2016-05-03 2019-06-06 リケア ホールディング ビーブイ Heat exchanger to exchange energy between two air flows
WO2023223455A1 (en) * 2022-05-18 2023-11-23 三菱電機株式会社 Total heat exchange element, total heat exchanger, and production method of total heat exchange element

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014533193A (en) * 2011-06-07 2014-12-11 イムテックス メンブレインズ コーポレイション Supplying liquid material to the membrane
JP2014142130A (en) * 2013-01-24 2014-08-07 Panasonic Corp Total heat exchange element partition member, total heat exchange element using the material, and heat exchange ventilator
WO2015012398A1 (en) * 2013-07-25 2015-01-29 国立大学法人岡山大学 Device provided with moisture-absorbing/releasing membrane, water vapor separator provided with device having moisture-absorbing/releasing membrane, and heat exchanger
JPWO2015012398A1 (en) * 2013-07-25 2017-03-02 国立大学法人 岡山大学 Device with hygroscopic membrane and water vapor separator and heat exchanger with device with hygroscopic membrane
JP2015178949A (en) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device
WO2015050105A1 (en) * 2013-10-02 2015-04-09 東レ株式会社 Heat exchange element and heat exchanger
CN105593607A (en) * 2013-10-02 2016-05-18 东丽株式会社 Heat exchange element and heat exchanger
JP2015117898A (en) * 2013-12-19 2015-06-25 パナソニックIpマネジメント株式会社 Total heat exchange element partition member, and total heat exchange element and heat exchange type ventilation device using the total heat exchange element partition member
JP2017056456A (en) * 2015-09-16 2017-03-23 株式会社東芝 Steam separator and dehumidifier with use thereof
JP2019202318A (en) * 2015-09-16 2019-11-28 株式会社東芝 Water vapor separator and dehumidifying device using the same
JP2019515244A (en) * 2016-05-03 2019-06-06 リケア ホールディング ビーブイ Heat exchanger to exchange energy between two air flows
WO2023223455A1 (en) * 2022-05-18 2023-11-23 三菱電機株式会社 Total heat exchange element, total heat exchanger, and production method of total heat exchange element

Similar Documents

Publication Publication Date Title
JP2011012894A (en) Material for total heat exchange element and heat exchange type ventilation device using the material
ES2924560T3 (en) heat and moisture exchanger
TWI311636B (en)
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
JP6349556B2 (en) Hygroscopic material and dehumidifier using the same
JP5506441B2 (en) Total heat exchange element and total heat exchanger
US6539731B2 (en) Dehumidification process and apparatus
JP6569063B2 (en) Humidifying device, dehumidifying device and humidifying method
JP4629603B2 (en) Separation membrane and composite membrane comprising the separation membrane, humidifying element, dehumidifying element, humidifier, dehumidifier, and humidity control system
JP2011012893A (en) Material for total heat exchange element and heat exchange type ventilation device using the material
JP2007271247A (en) Desiccant ventilation system
WO2007116567A1 (en) Total enthalpy heat exchanger
JP6528094B2 (en) Water accumulation device and water accumulation method
KR101237285B1 (en) Polymer composite materials for building air conditioning or dehumidification and preparation method thereof
JP4529318B2 (en) Dehumidifying device and cold air generator using the dehumidifying device
JP2017150805A (en) Partition member for total heat exchange element, and total heat exchange element and total heat exchange type ventilation device using the material
JP2018004134A (en) Total heat exchange element and total heat exchange-type ventilation device
JP5628607B2 (en) Air conditioning system
JP2012148208A (en) Dehumidifying member and dehumidifying rotor using the same
KR100837023B1 (en) Total heat exchanging element and total heat exchanger
JP2001004172A (en) Rotor for air-conditioner and air-conditioner
JPH0124529B2 (en)
CN114803160B (en) Moisture absorption bag and preparation method thereof
JP3594486B2 (en) Moisture exchange element
JP2020038024A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body