JP2014142130A - Total heat exchange element partition member, total heat exchange element using the material, and heat exchange ventilator - Google Patents

Total heat exchange element partition member, total heat exchange element using the material, and heat exchange ventilator Download PDF

Info

Publication number
JP2014142130A
JP2014142130A JP2013011003A JP2013011003A JP2014142130A JP 2014142130 A JP2014142130 A JP 2014142130A JP 2013011003 A JP2013011003 A JP 2013011003A JP 2013011003 A JP2013011003 A JP 2013011003A JP 2014142130 A JP2014142130 A JP 2014142130A
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
exchange element
moisture
partition member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013011003A
Other languages
Japanese (ja)
Other versions
JP6167325B2 (en
Inventor
Yosuke Hamada
洋祐 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2013011003A priority Critical patent/JP6167325B2/en
Publication of JP2014142130A publication Critical patent/JP2014142130A/en
Application granted granted Critical
Publication of JP6167325B2 publication Critical patent/JP6167325B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To suppress reduction in the air volume of a total heat exchange element and suppress reduction in a ventilation amount even if the difference in temperature and humidity is large between an outside and inside of a room and dew condensation/freezing occur.SOLUTION: A total heat exchange element partition member 14 arranged between high-temperature air 15 and low-temperature air 16 includes two types of moisture permeable portions having different elongation percentages in a case of absorbing water. Out of the moisture permeable portions, a low elongation portion 17 lower in the elongation percentage is arranged near the high-temperature air. Out of the moisture permeable portions, a high elongation portion 18 higher in the elongation percentage is arranged near the low-temperature air.

Description

本発明は、伝熱性と透湿性を有する全熱交換素子用仕切部材、およびその全熱交換素子用仕切部材を仕切板に用いた全熱交換素子、およびその全熱交換素子を用いた熱交換形換気装置に関するものである。   The present invention relates to a partition member for a total heat exchange element having heat conductivity and moisture permeability, a total heat exchange element using the partition member for the total heat exchange element as a partition plate, and a heat exchange using the total heat exchange element The present invention relates to a shape ventilation device.

従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換を行う熱交換形換気装置が知られている。   2. Description of the Related Art Conventionally, a heat exchange type ventilator that exchanges heat between air supply and exhaust during ventilation is known as a device that can ventilate without impairing the effects of cooling or heating.

熱交換形換気装置には、熱交換を行うための熱交換素子が含まれており、素材には給気と排気が交じり合わないようにするガスバリア性(主として二酸化炭素バリア性)と伝熱性が求められる。特に、温度と同時に湿度の交換も行う全熱交換素子に関しては、高い透湿性も合わせて有する必要がある。また、寒冷地や熱帯地など室内外で温湿度差が大きな条件で使用する場合、素子内部に結露・結氷が発生するため、耐水性も必要である。   The heat exchange type ventilator includes a heat exchange element for performing heat exchange, and the material has gas barrier properties (mainly carbon dioxide barrier properties) and heat transfer properties that prevent air supply and exhaust from intermingling. Desired. In particular, a total heat exchange element that exchanges humidity at the same time as temperature must also have high moisture permeability. In addition, when used in indoor and outdoor conditions such as cold or tropical areas, condensation and icing occur inside the element, so water resistance is also required.

これらを実現するために、この種の全熱交換素子に用いる全熱交換素子用仕切部材は、以下のような構成となっていた。   In order to realize these, the total heat exchange element partition member used for this type of total heat exchange element has the following configuration.

すなわち、温度の高い高温空気流と、温度の低い低温空気流との間に配置される全熱交換素子用仕切部材であって、吸湿性物質として親水性高分子を水溶液化し、多孔質シートに塗工後に水不溶化させる構成となっていた。   That is, a partition member for a total heat exchange element disposed between a high-temperature high-temperature air flow and a low-temperature low-temperature air flow, wherein a hydrophilic polymer is converted into an aqueous solution as a hygroscopic substance to form a porous sheet. It became the structure made water-insoluble after coating.

例えば、これに類似する先行文献として下記特許文献1参照。   For example, see the following Patent Document 1 as a similar prior document.

特開2008−14623号公報JP 2008-14623 A

上記従来例における課題は、室内外で温湿度差が大きな場合、全熱交換素子内部の高温空気が流れる風路に結露・結氷が発生し、風路が狭窄する。そのため、低温空気に対し、高温空気の風量が低下して、全熱交換素子全体の温度が低下する。その結果、素子内部を流れる高温空気がさらに冷却されて結露・結氷が増加し、風量が低下することで換気量が低下するという悪循環が生じることであった。   The problem with the conventional example is that when the temperature and humidity difference is large both indoors and outdoors, dew condensation and icing occur in the air passage through which the high-temperature air inside the total heat exchange element flows, and the air passage is narrowed. Therefore, the air volume of high-temperature air is reduced with respect to low-temperature air, and the temperature of the entire total heat exchange element is reduced. As a result, the high-temperature air flowing inside the device is further cooled to increase condensation and icing, and a vicious cycle occurs in which the ventilation rate is reduced by reducing the air volume.

そこで本発明は、室内外で温湿度差が大きく結露・結氷が発生する場合であっても、全熱交換素子の風量低下を抑制し、換気量の低下を抑制することを目的とする。   Accordingly, an object of the present invention is to suppress a decrease in the air volume of the total heat exchange element and a decrease in the ventilation volume even when the temperature / humidity difference is large inside and outside and condensation or icing occurs.

そして、この目的を達成するために、本発明は、高温空気と低温空気との間に配置される全熱交換素子用仕切部材であって、水分を吸収した場合に伸長率の異なる二種類の透湿性部を備え、前記透湿性部のうち、前記伸長率の低い第一透湿性部を前記高温空気側に配し、前記透湿性部のうち、前記伸長率の高い第二透湿性部を前記低温空気側に配したことを特徴とするものであり、これにより所期の目的を達成するものである。   And in order to achieve this objective, this invention is a partition member for total heat exchange elements arrange | positioned between high temperature air and low temperature air, Comprising: When moisture is absorbed, two types of elongation ratios differ A moisture permeable portion, wherein, among the moisture permeable portions, the first moisture permeable portion having a low elongation rate is arranged on the high-temperature air side, and among the moisture permeable portions, the second moisture permeable portion having a high elongation rate is provided. It is characterized by being arranged on the low-temperature air side, thereby achieving the intended purpose.

以上のように本発明は、高温空気と低温空気との間に配置される全熱交換素子用仕切部材であって、水分を吸収した場合に伸長率の異なる二種類の透湿性部を備え、前記透湿性部のうち、前記伸長率の低い第一透湿性部を前記高温空気側に配し、前記透湿性部のうち、前記伸長率の高い第二透湿性部を前記低温空気側に配したことを特徴とするものであり、室内外で温湿度差が大きく結露・結氷が発生する場合であっても、全熱交換素子の風量低下を抑制し、換気量の低下を抑制することができるものである。   As described above, the present invention is a partition member for a total heat exchange element arranged between high-temperature air and low-temperature air, and includes two types of moisture-permeable portions having different elongation rates when moisture is absorbed, Among the moisture permeable portions, the first moisture permeable portion having a low elongation rate is arranged on the high temperature air side, and among the moisture permeable portions, the second moisture permeable portion having a high elongation rate is arranged on the low temperature air side. Even if the temperature / humidity difference is large indoors and outdoors, and condensation and icing occur, it is possible to suppress the decrease in the air volume of the total heat exchange element and the decrease in the ventilation volume. It can be done.

すなわち、本発明によれば、水分を吸収した場合に伸長率の異なる二種類の透湿性部を備えた全熱交換素子用仕切部材であるため、全熱交換素子用仕切部材は水分を吸収することで伸長率の低い面を内側に、伸長率の高い面を外側にして円弧状にゆがむ性質を備える。つまり、室内外で温湿度差が大きく結露・結氷が発生する場合、発生した水分を吸収して全熱交換素子用仕切部材は円弧状にゆがむ。   That is, according to the present invention, since the partition member for total heat exchange elements includes two types of moisture-permeable portions having different elongation rates when moisture is absorbed, the partition member for total heat exchange elements absorbs moisture. Thus, it has the property of being distorted in an arc shape with the surface having a low elongation rate on the inside and the surface having a high elongation rate on the outside. That is, when the temperature / humidity difference is large inside and outside, and condensation and icing occur, the generated moisture is absorbed and the partition member for the total heat exchange element is distorted in an arc shape.

このとき、伸長率の低い第一透湿性部を高温空気側に配し、伸長率の高い第二透湿性部を低温空気側に配したことによって、高温空気側の風路を拡張するように全熱交換素子用仕切部材は円弧状にゆがむ。その結果として、結露・結氷によって狭窄する高温空気側の風路を全熱交換素子用仕切部材がその性質によって拡張することができ、高温空気の風量低下を抑制できるため、室内外で温湿度差が大きく結露・結氷が発生する場合であっても、全熱交換素子の風量低下を抑制し、換気量の低下を抑制することができるのである。   At this time, the first moisture permeable portion having a low elongation rate is arranged on the high temperature air side, and the second moisture permeable portion having a high elongation rate is arranged on the low temperature air side, so that the air path on the high temperature air side is expanded. The partition member for the total heat exchange element is distorted in an arc shape. As a result, the air passage on the high-temperature air side that is constricted due to condensation and icing can be expanded by the properties of the partition member for the total heat exchange element, and it is possible to suppress a reduction in the air volume of the high-temperature air. Therefore, even when condensation and icing occur, it is possible to suppress a decrease in the air volume of the total heat exchange element and a decrease in the ventilation rate.

本発明の実施の形態1にかかる全熱交換形換気装置の設置例を示す概要図Schematic diagram showing an installation example of the total heat exchange ventilator according to the first embodiment of the present invention. 同全熱交換形換気装置の構造を示す図Diagram showing the structure of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す斜視図A perspective view showing a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す分解斜視図An exploded perspective view showing a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材を示す斜視図A perspective view showing a partition member for a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の従来の全熱交換素子の結露・結氷の様子を示す断面図Sectional view showing the state of condensation and icing of the conventional total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の本発明の全熱交換素子の結露・結氷の様子を示す断面図Sectional drawing which shows the mode of dew condensation and icing of the total heat exchange element of the present invention of the total heat exchange type ventilator

以下、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

(実施の形態1)
図1において、1は家で、屋内に全熱交換形換気装置2が設置されている。
(Embodiment 1)
In FIG. 1, reference numeral 1 denotes a house, and a total heat exchange type ventilation device 2 is installed indoors.

例として日本の冬季を挙げると、屋内からの空気(高温空気の一例)を、白色矢印のごとく、全熱交換形換気装置2を介して屋外に放出する。   For example, in winter in Japan, indoor air (an example of high-temperature air) is discharged to the outside through the total heat exchange ventilator 2 as indicated by white arrows.

また、屋外の空気(低温空気の一例)は、黒色矢印のごとく、全熱交換形換気装置2を介して室内にとり入れる。   In addition, outdoor air (an example of low-temperature air) is taken into the room through the total heat exchange ventilator 2 as indicated by a black arrow.

そして、このことにより換気を行うとともに、この換気時に、屋内空気の熱を屋外空気へと伝達し、不用意な熱の放出を抑制しているのである。   And while ventilating by this, the heat of indoor air is transmitted to outdoor air at the time of this ventilation, and the discharge | emission of inadvertent heat is suppressed.

全熱交換形換気装置2は図2に示すように、本体ケース3に全熱交換素子4を配置し、ファン5を駆動することで、屋内空気を内気口6から吸い込み、全熱交換素子4、ファン5を経由し、排気口7から屋外へと排出する。   As shown in FIG. 2, the total heat exchange type ventilator 2 has a total heat exchange element 4 disposed in the main body case 3, and drives the fan 5, thereby sucking indoor air from the interior air port 6, and the total heat exchange element 4. Then, the air is discharged from the exhaust port 7 to the outside via the fan 5.

また、ファン8を駆動することで、屋外空気を外気口9から吸い込み、全熱交換素子4、ファン8を経由し、給気口10から屋内へと取り入れる構成となっている。   Further, by driving the fan 8, outdoor air is sucked from the outside air port 9 and taken into the indoor through the air supply port 10 via the total heat exchange element 4 and the fan 8.

また、前記全熱交換素子4は、図3、図4に示すように、枠体11の矩形開口部に全熱交換素子用仕切部材14を装着したものを、高温空気風路リブ12および低温空気風路リブ13を交互に挟んで所定間隔で配置し、隣接する枠体11間に上述した高温空気15、次に隣接する枠体11間に上述した低温空気16を流すことで、熱交換を行わせる構造となっている。   Further, as shown in FIGS. 3 and 4, the total heat exchange element 4 is formed by mounting the total heat exchange element partition member 14 on the rectangular opening of the frame body 11, the high-temperature air-air channel rib 12, and the low temperature. Air exchange ribs 13 are alternately arranged at predetermined intervals, and heat exchange is performed by flowing the above-described high-temperature air 15 between adjacent frames 11 and then the above-described low-temperature air 16 between adjacent frames 11. It has a structure that makes it.

冬季の場合、高温空気15は暖房や人の呼気などから湿気を含んだ状態であり、低温空気16は乾燥した状態となっている。全熱交換素子用仕切部材14の両面を高温空気15と低温空気16がそれぞれ流れることで、全熱交換素子用仕切部材14を介した熱伝達により、高温空気15の熱が低温空気16に伝えられる。また、全熱交換素子用仕切部材14を介した湿気伝達により、高温空気15の水分が低温空気16に伝えられる。   In the winter season, the hot air 15 is in a state containing moisture due to heating, exhalation of people, and the like, and the low temperature air 16 is in a dry state. The high-temperature air 15 and the low-temperature air 16 respectively flow on both surfaces of the partition member for total heat exchange element 14, whereby the heat of the high-temperature air 15 is transmitted to the low-temperature air 16 by heat transfer via the partition member for total heat exchange element 14. It is done. In addition, moisture in the high-temperature air 15 is transmitted to the low-temperature air 16 by moisture transmission via the total heat exchange element partition member 14.

このとき、例えば屋外が極めて低温であった場合、高温空気15が低温空気16によって露点以下まで冷却されることで、全熱交換素子用仕切部材14表面に結露・結氷20を生じることとなる。   At this time, for example, when the outdoor temperature is extremely low, the high-temperature air 15 is cooled to the dew point or less by the low-temperature air 16, thereby forming dew condensation / freezing 20 on the surface of the partition member 14 for the total heat exchange element.

従来の仕切部材19を全熱交換素子用仕切部材14として用いた場合、図6に示すように結露・結氷20によって、高温空気15が流れる風路が狭窄して風路の通風抵抗が増加し、高温空気15の風量が低下するため、家1の換気量が不足する。さらに、高温空気15の風量が低下することで、全熱交換素子4に流れ込む熱量が減少する。このため、全熱交換素子4全体の温度が低下し、より結露・結氷20が生じやすい環境となるため、ますます家1の換気量が不足するという悪循環が生じていた。   When the conventional partition member 19 is used as the partition member 14 for the total heat exchange element, the air passage through which the high-temperature air 15 flows is narrowed by condensation / freezing 20 as shown in FIG. Since the air volume of the high-temperature air 15 is reduced, the ventilation amount of the house 1 is insufficient. Furthermore, the amount of heat flowing into the total heat exchange element 4 is reduced by reducing the air volume of the high-temperature air 15. For this reason, since the temperature of the total heat exchange element 4 as a whole decreases and an environment in which condensation and icing 20 are more likely to occur is generated, a vicious cycle in which the ventilation amount of the house 1 is increasingly insufficient has occurred.

本発明では、図5に示したように、全熱交換素子用仕切部材14が、第一透湿性部として水分を吸収した場合に伸長率が相対的に低い低伸長部17と、第二透湿性部として相対的に伸長率が高い高伸長部18を備えている。このため、図7に示したように、全熱交換素子用仕切部材14は結露・結氷20を吸収することで低伸長部17を内側に、高伸長部18を外側にして円弧状にゆがむ。つまり、高温空気15が流れる風路が広がるようにゆがむため、結露・結氷20による風路の狭窄を緩和し、高温空気15の風量低下を抑制するため、家1の換気量不足を抑制することができる。さらに、低温空気16が流れる風路が若干狭窄するため、低温空気16の風量が低下する。このため、全熱交換素子4全体の温度が低下しにくくなり、前記従来の仕切部材19を用いた場合と異なり、結露・結氷20が生じやすい環境へと変わることを抑制することができる。そのため、家1の換気量不足を抑制することができる。   In the present invention, as shown in FIG. 5, when the partition member for total heat exchange element 14 absorbs moisture as the first moisture permeable portion, the low elongation portion 17 having a relatively low elongation rate and the second permeability As the wet part, a high extension part 18 having a relatively high extension rate is provided. For this reason, as shown in FIG. 7, the total heat exchange element partition member 14 absorbs the dew condensation / freezing 20 and is distorted in an arc shape with the low extension portion 17 on the inside and the high extension portion 18 on the outside. That is, since the air path through which the high-temperature air 15 flows is distorted, the constriction of the air path due to condensation / freezing 20 is alleviated, and the decrease in the air volume of the high-temperature air 15 is suppressed. Can do. Furthermore, since the air path through which the low-temperature air 16 flows is slightly narrowed, the air volume of the low-temperature air 16 is reduced. For this reason, it becomes difficult for the temperature of the whole heat exchange element 4 to fall, and unlike the case where the said conventional partition member 19 is used, it can suppress changing to the environment where condensation and icing 20 occur easily. Therefore, the shortage of ventilation in the house 1 can be suppressed.

また、全熱交換素子用仕切部材14は、水分で濡れることであまり性質の変化しない低伸張性透湿シートを低伸長部17とし、水分を吸収し、よく膨張する高伸張性透湿シートを高伸長部18として、前記異なる二種類の透湿シートを貼りあわせて用いてもよい。   Further, the partition member for total heat exchange element 14 is a low-extension moisture-permeable sheet that does not change much when wetted with moisture as the low-extension part 17, and absorbs moisture and expands well. As the high elongation portion 18, the two different types of moisture permeable sheets may be bonded together.

上記のように異なる二種類の透湿シートを貼りあわせて用いることで、低伸長部17と高伸長部18の伸長率の違いを材質によって調整しやすくなるため、家1の換気量不足の抑制という効果に加え、全熱交換素子用仕切部材14のゆがみを全熱交換形換気装置2の使用環境に応じて調節できるという効果を奏する。   By using two different types of moisture permeable sheets together as described above, it becomes easy to adjust the difference in elongation rate between the low extension part 17 and the high extension part 18 depending on the material, so that the ventilation amount shortage of the house 1 is suppressed. In addition to the effect described above, there is an effect that the distortion of the partition member 14 for the total heat exchange element can be adjusted according to the use environment of the total heat exchange type ventilator 2.

シートを貼り合わせる手法としては、熱溶着や、グラフト重合、接着剤による方法など既知の手法を用いることが出来る。   As a method for laminating the sheets, known methods such as heat welding, graft polymerization, and a method using an adhesive can be used.

また、全熱交換素子用仕切部材14は、面と垂直方向に貫通孔を備え、水分で濡れることであまり性質の変化しない低伸張性多孔質シートに水分を吸収し、よく膨張する吸湿性物質を含有させ、吸湿性物質を含まない部位を低伸長部17として用い、吸湿性物質を含む部位を高伸長部18として構成してもよい。   In addition, the partition member 14 for the total heat exchange element has a through hole in a direction perpendicular to the surface, absorbs moisture into a low-extension porous sheet that does not change much when wetted with moisture, and is a hygroscopic substance that expands well. The portion containing no hygroscopic substance may be used as the low extension portion 17, and the portion containing the hygroscopic substance may be constituted as the high extension portion 18.

上記のように低伸張性多孔質シートを基材として用い、そこに吸湿性物質を高伸長部18として含有させることで、低伸長部17と高伸長部18のベース部材が同じとなる。このため、家1の換気量不足の抑制という効果に加え、水分を吸収したときの低伸長部17と高伸長部18との伸長差によって低伸長部17と高伸長部18とが剥れてしまうことを抑制することが出来る。   As described above, the base member of the low extension part 17 and the high extension part 18 becomes the same by using the low extension porous sheet as a base material and containing the hygroscopic substance as the high extension part 18 therein. For this reason, in addition to the effect of suppressing the shortage of ventilation in the house 1, the low extension part 17 and the high extension part 18 peel off due to the extension difference between the low extension part 17 and the high extension part 18 when moisture is absorbed. Can be suppressed.

低伸張性多孔質シートに吸湿性物質を含ませる方法としては、吸湿性物質を溶かして低伸張性多孔質シートに塗布・乾燥する方法、吸湿性物質と低伸張性多孔質シートを重ねて加圧することで吸湿性物質を低伸張性多孔質シートに厚入する方法、低伸張性多孔質シートの孔内で吸湿性物質を合成する方法など既知の手法を用いることが出来る。   The hygroscopic substance can be contained in the low-stretch porous sheet by dissolving the hygroscopic substance and applying and drying the low-stretch porous sheet, or by adding the hygroscopic substance and the low-stretch porous sheet in layers. Known methods such as a method of thickly inserting the hygroscopic substance into the low-stretch porous sheet by pressing, and a method of synthesizing the hygroscopic substance in the pores of the low-stretch porous sheet can be used.

また、高伸長部18を構成する高伸張性透湿シートや吸湿性物質に、親水性高分子を材料に用いても良い。   Further, a hydrophilic polymer may be used as a material for the highly stretchable moisture-permeable sheet or the hygroscopic substance constituting the highly stretched portion 18.

親水性高分子は、その分子鎖の間に水分子を捉える性質を持つため、吸水性が良く線熱交換効率を向上させるための吸湿剤として使える上、水分子が分子鎖の間に入り膨らむことで、体積を膨張させて伸長することができるという効果を奏する。   Hydrophilic polymers have the property of catching water molecules between their molecular chains, so they have good water absorption and can be used as hygroscopic agents to improve linear heat exchange efficiency, and the water molecules swell between the molecular chains. As a result, the volume can be expanded and expanded.

この場合、例えば親水基として、水酸基、スルホン酸基、カルボン酸基、アミド基、第4級アンモニウム基などを備えた炭化水素で構成された親水性高分子や、同じく親水基を備えたフッ素系親水性高分子が挙げられる。   In this case, for example, a hydrophilic polymer composed of a hydrocarbon having a hydroxyl group, a sulfonic acid group, a carboxylic acid group, an amide group, a quaternary ammonium group or the like as a hydrophilic group, or a fluorine-based polymer also having a hydrophilic group. Examples include hydrophilic polymers.

高伸長部の伸張性は、例えば20℃で乾燥時の長さを100%とした場合に、水に浸漬し十分に吸収させた場合に、101%以上200%以下、さらに好ましくは105%以上130%以下が好ましい。このような伸張性をもつ物質として、例えば上記のような親水性高分子が挙げられる。   The extensibility of the high elongation part is 101% or more and 200% or less, and more preferably 105% or more, when the length when dried at 20 ° C. is 100%, and when sufficiently immersed in water. 130% or less is preferable. Examples of such a material having extensibility include the hydrophilic polymer as described above.

低伸長部の伸張性は、例えば20℃で乾燥時の長さを100%とした場合に、水に浸漬し十分に吸収させた場合に、80%以上105%以下、さらに好ましくは95%以上105%以下が好ましい。このような伸張性をもつ物質として、例えば、澱粉などの親水性高分子と熱可塑性樹脂をグラフト重合したものや、十分にケン化したポリビニルアルコールなどの伸張性が100%以下となる材質や、ポリエチレンやポリエチレンテレフタラート、ポリテトラフルオロエチレン、ポリプロピレンなどの疎水性高分子、ガラス、アルミナ、シリカなどの無機材料が挙げられる。   The extensibility of the low elongation portion is, for example, 80% or more and 105% or less, more preferably 95% or more, when the length when dried at 20 ° C. is 100% and when immersed in water and sufficiently absorbed. It is preferably 105% or less. As such a material having extensibility, for example, a material obtained by graft polymerization of a hydrophilic polymer such as starch and a thermoplastic resin, a material having an extensibility of 100% or less, such as sufficiently saponified polyvinyl alcohol, Examples thereof include hydrophobic materials such as polyethylene, polyethylene terephthalate, polytetrafluoroethylene, and polypropylene, and inorganic materials such as glass, alumina, and silica.

また、高温空気風路リブ12または低温空気風路リブ13の少なくともいずれか一方が、全熱交換素子用仕切部材14を貫通している構成としてもよい。   Moreover, it is good also as a structure which at least any one of the high temperature air wind path rib 12 or the low temperature air wind path rib 13 has penetrated the partition member 14 for total heat exchange elements.

高温空気風路リブ12または低温空気風路リブ13の少なくともいずれか一方が、全熱交換素子用仕切部材14を貫通していることで、全熱交換素子用仕切部材14がゆがむ際に、高温空気風路リブ12または低温空気風路リブ13によって固定される。このため、より確実に高温空気15が流れる風路が広がるようにゆがむため、結露・結氷20による風路の狭窄を緩和し、高温空気15の風量低下を抑制するため、家1の換気量不足を抑制することができるという効果を奏する。   Since at least one of the high temperature air air passage ribs 12 and the low temperature air air passage ribs 13 penetrates the total heat exchange element partition member 14, the total heat exchange element partition member 14 is deformed at a high temperature. It is fixed by the air air passage rib 12 or the low temperature air air passage rib 13. For this reason, since the wind path through which the high temperature air 15 flows is more reliably distorted, the narrowing of the wind path due to condensation / freezing 20 is alleviated and the decrease in the air volume of the high temperature air 15 is suppressed. There is an effect that can be suppressed.

また、全熱交換素子4に、前記構成の全熱交換素子用仕切部材14を用いた構成としてもよい。   Moreover, it is good also as a structure using the partition member 14 for the total heat exchange elements of the said structure for the total heat exchange element 4. FIG.

この構成により、室内外で温湿度差が大きく結露・結氷が発生する場合であっても、全熱交換素子4の風量低下を抑制し、換気量の低下を抑制することができる全熱交換素子4を得ることができる。   With this configuration, even when the temperature / humidity difference is large indoors and outdoors, even if condensation and icing occur, the total heat exchange element that can suppress the decrease in the air volume of the total heat exchange element 4 and the decrease in the ventilation rate 4 can be obtained.

また、全熱交換形換気装置2に、前記構成の全熱交換素子4を用いた構成としてもよい。   Moreover, it is good also as a structure which used the total heat exchange element 4 of the said structure for the total heat exchange type | formula ventilation apparatus 2. FIG.

この構成により、室内外で温湿度差が大きく結露・結氷が発生する場合であっても、全熱交換素子4の風量低下を抑制し、換気量の低下を抑制することができる全熱交換形換気装置2を得ることができる。   With this configuration, even when there is a large temperature / humidity difference indoors and outdoors, condensation and icing occur, a total heat exchange type that can suppress a decrease in the air volume of the total heat exchange element 4 and suppress a decrease in ventilation. A ventilation device 2 can be obtained.

なお、低伸張性透湿シートまたは高伸張性透湿シートのいずれか一方は多孔質部材でも良く、全熱交換素子用仕切部材14を貫通する貫通孔が生じない場合であれば、低伸張性透湿シート及び高伸張性透湿シートが多孔質部材であってもよい。   Note that either one of the low-extension moisture-permeable sheet and the high-extension moisture-permeable sheet may be a porous member, and if there is no through-hole penetrating the total heat exchange element partitioning member 14, The moisture permeable sheet and the highly extensible moisture permeable sheet may be a porous member.

以上のように本実施形態にかかる全熱交換素子用仕切部材は、室内外で温湿度差が大きく結露・結氷が発生する場合であっても、全熱交換素子の風量低下を抑制し、換気量の低下を抑制することを可能とするものであるので、全熱交換素子、熱交換形換気装置等に用いる全熱交換素子用仕切部材として有用である。   As described above, the partition member for the total heat exchange element according to the present embodiment suppresses a decrease in the air volume of the total heat exchange element even when the temperature / humidity difference is large inside and outside and condensation or icing occurs. Since it is possible to suppress a decrease in the amount, it is useful as a partition member for a total heat exchange element used in a total heat exchange element, a heat exchange type ventilator or the like.

1 家
2 全熱交換形換気装置
3 本体ケース
4 全熱交換素子
5 ファン
6 内気口
7 排気口
8 ファン
9 外気口
10 給気口
11 枠体
12 高温空気風路リブ
13 低温空気風路リブ
14 全熱交換素子用仕切部材
15 高温空気
16 低温空気
17 低伸長部
18 高伸長部
19 従来の仕切部材
20 結露・結氷
DESCRIPTION OF SYMBOLS 1 House 2 Total heat exchange type ventilator 3 Main body case 4 Total heat exchange element 5 Fan 6 Inside air port 7 Exhaust port 8 Fan 9 Outside air port 10 Air supply port 11 Frame 12 Hot air air channel rib 13 Low temperature air air channel rib 14 Partition member for total heat exchange element 15 High-temperature air 16 Low-temperature air 17 Low extension part 18 High extension part 19 Conventional partition member 20 Condensation / freezing

Claims (8)

高温空気と低温空気との間に配置される全熱交換素子用仕切部材であって、水分を吸収した場合に伸長率の異なる二種類の透湿性部を備え、前記透湿性部のうち、前記伸長率の低い第一透湿性部を前記高温空気側に配し、前記透湿性部のうち、前記伸長率の高い第二透湿性部を前記低温空気側に配したことを特徴とする全熱交換素子用仕切部材。 A partition member for a total heat exchange element arranged between high-temperature air and low-temperature air, comprising two types of moisture-permeable portions having different elongation rates when moisture is absorbed, and among the moisture-permeable portions, The first heat-permeable portion having a low elongation rate is disposed on the high-temperature air side, and the second moisture-permeable portion having the high elongation rate is disposed on the low-temperature air side among the moisture-permeable portions. Partition member for exchange element. 前記全熱交換素子用仕切部材として、低伸張性透湿シートを前記第一透湿性部とし、高伸張性透湿シートを前記第二透湿性部として、これら異なる二種類の透湿シートを貼りあわせて構成したことを特徴とする請求項1記載の全熱交換素子用仕切部材。 As the partition member for the total heat exchange element, a low-extension moisture-permeable sheet is used as the first moisture-permeable portion, and a high-extension moisture-permeable sheet is used as the second moisture-permeable portion, and these two different types of moisture-permeable sheets are attached. The partition member for a total heat exchange element according to claim 1, wherein the partition member is configured together. 前記全熱交換素子用仕切部材として、面と垂直方向に貫通孔を備えた低伸張性多孔質シートの一部に吸湿性物質を含有させて、前記吸湿性物質を含まない低伸張性多孔質シート部を前記第一透湿性部とし、前記吸湿性物質を含む低伸張性多孔質シート部を前記第二透湿性部として構成したことを特徴とする請求項1記載の全熱交換素子用仕切部材。 As the partition member for the total heat exchange element, a low-stretch porous material that does not contain the hygroscopic substance by containing a hygroscopic substance in a part of the low-stretch porous sheet having through holes in a direction perpendicular to the surface. The partition for a total heat exchange element according to claim 1, wherein the sheet portion is the first moisture-permeable portion, and the low-extension porous sheet portion containing the hygroscopic substance is the second moisture-permeable portion. Element. 前記第二透湿性部の材料に親水性高分子を用いた構成を特徴とする請求項1または2に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 1, wherein a hydrophilic polymer is used as a material of the second moisture permeable portion. 前記吸湿性物質が親水性高分子であることを特徴とする請求項3に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 3, wherein the hygroscopic substance is a hydrophilic polymer. 請求項1〜5のいずれか一項に記載の全熱交換素子用仕切部材を用いた全熱交換素子。 The total heat exchange element using the partition member for total heat exchange elements as described in any one of Claims 1-5. 前記全熱交換素子が、前記全熱交換素子に通風するための通風路を形成するリブと、前記全熱交換素子用仕切部材とを交互に重ねて積層した形状の全熱交換素子であって、前記リブが前記全熱交換素子を貫通していることを特徴とする請求項6に記載の全熱交換素子。 The total heat exchange element is a total heat exchange element having a shape in which ribs forming a ventilation path for ventilating the total heat exchange element and the partition members for the total heat exchange element are alternately stacked. The total heat exchange element according to claim 6, wherein the rib penetrates the total heat exchange element. 請求項6または7に記載の前記全熱交換素子を用いた全熱交換形換気装置。 A total heat exchange type ventilator using the total heat exchange element according to claim 6 or 7.
JP2013011003A 2013-01-24 2013-01-24 Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same Active JP6167325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013011003A JP6167325B2 (en) 2013-01-24 2013-01-24 Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013011003A JP6167325B2 (en) 2013-01-24 2013-01-24 Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same

Publications (2)

Publication Number Publication Date
JP2014142130A true JP2014142130A (en) 2014-08-07
JP6167325B2 JP6167325B2 (en) 2017-07-26

Family

ID=51423563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013011003A Active JP6167325B2 (en) 2013-01-24 2013-01-24 Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same

Country Status (1)

Country Link
JP (1) JP6167325B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178949A (en) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205193A (en) * 1984-03-28 1985-10-16 Mitsubishi Electric Corp All weather heat exchanger
JPS6141529U (en) * 1984-08-17 1986-03-17 株式会社東芝 ventilation system heat exchanger
US20100032145A1 (en) * 2007-01-16 2010-02-11 Chan Bong Lee Heat conduction unit with improved laminar
JP2011012894A (en) * 2009-07-02 2011-01-20 Panasonic Corp Material for total heat exchange element and heat exchange type ventilation device using the material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60205193A (en) * 1984-03-28 1985-10-16 Mitsubishi Electric Corp All weather heat exchanger
JPS6141529U (en) * 1984-08-17 1986-03-17 株式会社東芝 ventilation system heat exchanger
US20100032145A1 (en) * 2007-01-16 2010-02-11 Chan Bong Lee Heat conduction unit with improved laminar
JP2011012894A (en) * 2009-07-02 2011-01-20 Panasonic Corp Material for total heat exchange element and heat exchange type ventilation device using the material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178949A (en) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device

Also Published As

Publication number Publication date
JP6167325B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
TWI311636B (en)
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
US20140262125A1 (en) Energy exchange assembly with microporous membrane
JP2011163651A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2011147836A (en) Dehumidifier
JP6387514B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
CN104075396B (en) Intelligent air humidity controlling system and method thereof for cultural relics in the collection of cultural institution Conservation environment
WO2017090232A1 (en) Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
JP6357651B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2009150632A (en) Structure and shape of indirect vaporization type cooler
JP6167325B2 (en) Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same
CN103879034B (en) A kind of high-air-tightness Total heat exchange film and total-heat exchanger
CN106508717B (en) Underground aerosol formula ventilation chicken coop
JP2015059703A (en) Material for total heat exchange element and heat exchange type ventilation device using the material
JP2017150805A (en) Partition member for total heat exchange element, and total heat exchange element and total heat exchange type ventilation device using the material
JP2016080269A (en) Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device
JP6194472B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2013092320A (en) Air conditioning device
JP2005288216A (en) Latent heat exchange membrane
JP2018004134A (en) Total heat exchange element and total heat exchange-type ventilation device
JP6340577B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
JP6364618B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
CN210740636U (en) Wound heat exchanger
JP5987167B2 (en) Total heat exchange element film, total heat exchange element using the same, total heat exchange type ventilator using the same, and method for producing film for total heat exchange element
JP5811729B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170529

R151 Written notification of patent or utility model registration

Ref document number: 6167325

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151