WO2017090232A1 - Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device - Google Patents

Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device Download PDF

Info

Publication number
WO2017090232A1
WO2017090232A1 PCT/JP2016/004742 JP2016004742W WO2017090232A1 WO 2017090232 A1 WO2017090232 A1 WO 2017090232A1 JP 2016004742 W JP2016004742 W JP 2016004742W WO 2017090232 A1 WO2017090232 A1 WO 2017090232A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
total heat
partition member
exchange element
permeable layer
Prior art date
Application number
PCT/JP2016/004742
Other languages
French (fr)
Japanese (ja)
Inventor
洋祐 浜田
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017090232A1 publication Critical patent/WO2017090232A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F7/00Ventilation
    • F24F7/04Ventilation with ducting systems, e.g. by double walls; with natural circulation
    • F24F7/06Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit
    • F24F7/08Ventilation with ducting systems, e.g. by double walls; with natural circulation with forced air circulation, e.g. by fan positioning of a ventilator in or against a conduit with separate ducts for supplied and exhausted air with provisions for reversal of the input and output systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Definitions

  • the present invention relates to a partition member for a total heat exchange element having heat conductivity and moisture permeability, a total heat exchange element using the partition member for the total heat exchange element, and a total heat exchange type ventilator using the total heat exchange element About.
  • a total heat exchange type ventilator that performs heat exchange and moisture exchange between air supply and exhaust during ventilation is known as a device that can be ventilated without impairing the effects of cooling and heating.
  • the total heat exchange type ventilator performs heat exchange and moisture exchange using a total heat exchange element.
  • the total heat exchange element is required to have a gas barrier property (mainly carbon dioxide barrier property) for preventing supply air and exhaust gas from intermingling.
  • gas barrier property mainly carbon dioxide barrier property
  • the effects of heat loss and moisture loss due to ventilation have been relatively increased due to the improved airtightness of houses. Therefore, high total heat exchange performance is also required for the total heat exchange element.
  • moisture exchange in the total heat exchange element is realized by moisture permeability of the partition member for total heat exchange element that partitions supply air and exhaust. Therefore, high moisture permeability is required for the partition member for the total heat exchange element.
  • a conventional partition member for a total heat exchange element one having an improved gas barrier property is known (see, for example, Patent Document 1).
  • FIG. 7 is a schematic cross-sectional view showing a conventional partition member for a total heat exchange element.
  • the conventional partition member for a total heat exchange element is a multilayer structure 102 including at least one fine cellulose fiber nonwoven fabric layer 101 made of fine cellulose fibers.
  • the average fiber diameter of the fine cellulose fibers is 0.005 ⁇ m or more and 0.5 ⁇ m or less.
  • the average thickness of the multilayer structure 102 is not less than 10 ⁇ m and not more than 200 ⁇ m
  • the density of the multilayer structure 102 is not less than 0.10 g / cm 3 and not more than 0.80 g / cm 3
  • the air resistance of the multilayer structure 102 The degree is 2000 seconds / 100 ml or more.
  • the fine cellulose fiber nonwoven fabric layer 101 is formed by laminating fine cellulose fibers by a papermaking method and then strongly shrinking them by drying. Since the fine cellulose fiber nonwoven fabric layer 101 formed in this way is dense, it has a high gas barrier property.
  • the problem with the above conventional example is that the moisture permeability of cellulose molecules constituting the fine cellulose fiber is low.
  • the conventional partition member for a total heat exchange element is not the moisture permeability of the fine cellulose fiber itself, but increases the moisture permeability by utilizing the large surface area of the fine cellulose fiber. Yes. That is, the conventional partition member for a total heat exchange element enhances moisture permeability by increasing the density of the movement path of water vapor that moves at the interface between the fine cellulose fibers. On the other hand, the conventional partition member for a total heat exchange element enhances the gas barrier property by utilizing the fact that the fine cellulose fibers are dried and contracted to become dense.
  • the conventional partition member for a total heat exchange element has improved gas barrier properties with fine cellulose fibers and improved moisture permeability at the interface between the fine cellulose fibers. Therefore, if the fine cellulose fiber layer is designed to be dense in order to improve the gas barrier property, the moisture permeability decreases. Further, if the fine cellulose fiber layer is designed to be sparse in order to improve moisture permeability, the gas barrier property is lowered. Thus, in the conventional partition member for a total heat exchange element, it is difficult to achieve both gas barrier properties necessary for ventilation and high moisture permeability.
  • an object of the present invention is to provide a partition member for a total heat exchange element that improves the above-described problems and has gas barrier properties necessary for ventilation and high moisture permeability.
  • the partition member for a total heat exchange element includes a moisture permeable layer having fine fibers containing a water-resistant polysaccharide and a hydrophilic polymer.
  • the partition member for a total heat exchange element according to the present invention has a gas barrier property necessary for ventilation and a high moisture permeability.
  • FIG. 1 is a schematic diagram illustrating an installation example of the total heat exchange type ventilator according to the first embodiment of the present invention.
  • FIG. 2 is a diagram showing a structure of the total heat exchange type ventilator.
  • FIG. 3 is a perspective view showing a total heat exchange element of the total heat exchange type ventilator.
  • FIG. 4 is an exploded perspective view showing a total heat exchange element of the total heat exchange type ventilator.
  • FIG. 5 is a schematic sectional drawing which shows the moisture permeable layer with which the partition member for total heat exchange elements of the total heat exchange type ventilator is provided.
  • FIG. 6 is a schematic cross-sectional view showing an example of a partition member for a total heat exchange element of the total heat exchange type ventilator.
  • FIG. 7 is a schematic cross-sectional view showing a conventional partition member for a total heat exchange element.
  • FIG. 1 a total heat exchange type ventilator 2 is installed in a house 1.
  • the total heat exchange ventilator 2 discharges indoor air (hereinafter referred to as indoor air) to the outside as indicated by black arrows.
  • the total heat exchange ventilator 2 takes outdoor air (hereinafter referred to as outdoor air) indoors as indicated by white arrows.
  • the total heat exchange ventilator 2 performs ventilation.
  • the total heat exchange type ventilator 2 transmits the heat of the indoor air released to the outdoors to the outdoor air that is taken indoors during this ventilation. Thereby, the total heat exchange type
  • the total heat exchange type ventilator 2 includes a main body case 3 provided with an inside air port 6, an exhaust port 7, an outside air port 9, and an air supply port 10, as shown in FIG.
  • the total heat exchange ventilator 2 includes a total heat exchange element 4, a fan 5, and a fan 8 in the main body case 3.
  • the total heat exchanging ventilator 2 drives the fan 5 to suck indoor air from the interior air port 6. Then, the total heat exchange type ventilator 2 discharges the sucked indoor air from the exhaust port 7 to the outside via the total heat exchange element 4 and the fan 5 (see solid arrows).
  • the total heat exchange ventilator 2 drives the fan 8 to suck outdoor air from the outside air port 9. Then, the total heat exchange type ventilation device 2 takes the sucked outdoor air through the total heat exchange element 4 and the fan 8 into the indoor from the air supply port 10 (see the dotted arrow).
  • the total heat exchange element 4 includes a plurality of frame bodies 17 stacked as shown in FIGS. 3 and 4.
  • Each frame 17 includes a plurality of spacing ribs 11 and a plurality of total heat exchange element partition members 12.
  • the total heat exchange element partition member 12 is integrally bonded to the frame body 17.
  • the frame 17 may be provided with only one space
  • the total heat exchange element partition member 12 is laminated with a gap held by the gap holding ribs 11. Indoor air and outdoor air flow alternately for each layer of the interval held by the interval holding rib 11. The indoor air and the outdoor air flow with the total heat exchange element partition member 12 interposed therebetween, whereby heat exchange and moisture exchange are performed via the total heat exchange element partition member 12.
  • indoor air contains moisture from heating and human exhalation, and outdoor air is dry.
  • indoor air and outdoor air flow through the total heat exchange element partition member 12, so that the heat and moisture of the indoor air are transmitted to the outdoor air through the total heat exchange element partition member 12.
  • the total heat exchange element partition member 12 includes a moisture permeable layer 15 having fine fibers 14 containing a water-resistant polysaccharide and a hydrophilic polymer 13.
  • the fine fibers 14 are dispersed in the moisture permeable layer 15.
  • the total heat exchange element partition member 12 has a gas barrier property necessary for ventilation and a high moisture permeability.
  • the partition member 12 for the total heat exchange element can improve the gas barrier property by the hydrophilic polymer 13 instead of the fine fiber 14. Therefore, even if the amount of fine fibers 14 having low moisture permeability is reduced in the partition member 12 for total heat exchange elements, the necessary gas barrier properties can be obtained. For this reason, the partition member 12 for total heat exchange elements can improve moisture permeability, without reducing gas barrier property.
  • the water-resistant polysaccharide has a large number of crystal parts in the molecular structure.
  • the water-resistant polysaccharide has a high-strength three-dimensional structure and is excellent in tensile strength. Since the fine fibers 14 containing the water-resistant polysaccharide are dispersed in the moisture permeable layer 15, the moisture permeable layer 15 has high strength. Therefore, the moisture-permeable layer 15 can be made thin while maintaining the strength of the moisture-permeable layer 15, and the moisture-permeable distance is shortened in the moisture-permeable layer 15. Thereby, the partition member 12 for total heat exchange elements has high moisture permeability.
  • the partition member 12 for total heat exchange elements has high moisture permeability by increasing the ratio of the hydrophilic polymer 13 having high moisture permeability in the moisture permeable layer 15. Further, since the fine fibers 14 are uniformly dispersed in the moisture permeable layer 15, the strength of the moisture permeable layer 15 is increased. Thereby, since the moisture-permeable layer 15 can be thinned, the total heat exchange element partition member 12 has high moisture permeability.
  • the average fiber diameter of the fine fibers 14 may be 0.004 ⁇ m or more and 2 ⁇ m or less.
  • the average fiber diameter of the fine fibers 14 is 0.004 ⁇ m or more, the strength of each fiber increases.
  • the average fiber diameter of the fine fibers 14 is 2 ⁇ m or less, the fine fibers 14 are sufficiently contained in the thickness direction of the moisture-permeable layer 15, and thus the strength of the moisture-permeable layer 15 is increased. Therefore, the average fiber diameter of the fine fibers 14 is preferably 0.004 ⁇ m or more and 2 ⁇ m or less.
  • the volume ratio of the fine fibers 14 to the moisture permeable layer 15 may be 5% or more and 30% or less.
  • the volume ratio of the fine fibers 14 to the moisture permeable layer 15 is 5% or more, the strength of the moisture permeable layer 15 is increased.
  • the moisture permeability of the partition member 12 for total heat exchange elements further increases that the volume ratio of the fine fiber 14 with respect to the moisture-permeable layer 15 is 30% or less. Therefore, the volume ratio of the fine fibers 14 to the moisture permeable layer 15 is preferably 5% or more and 30% or less.
  • the thickness of the moisture permeable layer 15 may be 0.5 ⁇ m or more and 20 ⁇ m or less, and the thickness of the moisture permeable layer 15 may be larger than the average fiber diameter of the fine fibers 14.
  • strength of the moisture permeable layer 15 increases that the thickness of the moisture permeable layer 15 is 0.5 micrometer or more.
  • the moisture permeability of the partition member 12 for total heat exchange elements is further improved as the thickness of the moisture-permeable layer 15 is 20 ⁇ m or less.
  • the thickness of the moisture permeable layer 15 is larger than the average fiber diameter of the fine fibers 14, the fine fibers 14 are sufficiently present in the thickness direction. Thereby, the effect which reinforces the moisture-permeable layer 15 with the fine fiber 14 increases.
  • the hydrophilic polymer 13 may have a quaternary ammonium group. Quaternary ammonium groups have a large charge bias and do not form hydrogen bonds with water molecules. Therefore, the quaternary ammonium group has a high water hygroscopicity and moisture releasing property. For this reason, the moisture permeability of the partition member 12 for total heat exchange elements further increases.
  • the total heat exchange element partitioning member 12 may include a porous sheet 16 bonded to the moisture permeable layer 15. By bonding the porous sheet 16 to the moisture permeable layer 15, the strength of the partition member 12 for the total heat exchange element is further increased. Further, the surface of the partition member 12 for total heat exchange element is protected by the porous sheet 16.
  • the total heat exchange element 4 has a configuration using the partition member 12 for the total heat exchange element. With this configuration, the total heat exchange element 4 uses the total heat exchange element partition member 12 having high moisture permeability, and thus has high latent heat exchange efficiency.
  • the total heat exchange ventilator 2 has a configuration using the total heat exchange element 4. With this configuration, the total heat exchange ventilator 2 uses the total heat exchange element 4 having high latent heat exchange efficiency, and thus has high total heat exchange efficiency.
  • the total heat exchange element 4 has a configuration in which the total heat exchange element partition member 12 is bonded to the frame body 17, but is not limited to this configuration.
  • the total heat exchange element 4 has a configuration in which the total heat exchange element partition member 12 is placed in a mold when the frame body 17 is molded, and the frame body 17 and the total heat exchange element partition member 12 are molded simultaneously. May be.
  • the hydrophilic polymer 13 is a polymer having a hydrophilic functional group.
  • the hydrophilic functional group include a hydroxyl group, a sulfone group, an ester bond, a urethane bond, a carboxyl group, a carbo group, a phosphate group, an amino group, and a quaternary ammonium group.
  • a quaternary ammonium group is preferable as a hydrophilic functional group because it has high hygroscopicity and hygroscopicity.
  • the hydrophilic polymer 13 preferably has water resistance.
  • a known method can be used.
  • As a method for obtaining the hydrophilic polymer 13 having water resistance for example, increase in molecular weight, cross-linking of molecular chains, creation of a crystal part using a repetitive molecular structure, or partial intramolecular cross-linking of a hydrophilic functional group, etc. A method is mentioned.
  • the method of obtaining the hydrophilic polymer 13 having water resistance is preferably a method having little adverse effect on moisture permeability. Therefore, among the above-described methods, water resistance by molecular weight increase or cross-linking of molecular chains is particularly preferable.
  • examples of the water resistant polysaccharide include substances such as cellulose and chitin.
  • Cellulose is a linear homopolymer in which glucose is linked by ⁇ -1,4. A part of this linear homopolymer is bundled by intermolecular hydrogen bonding or intramolecular hydrogen bonding to form a crystal structure. Water molecules usually cannot penetrate into this crystal structure. These crystal structures occupy a ratio of about 50% to 70% in cellulose. Thereby, the cellulose has water resistance and physically high strength.
  • Chitin is a linear homopolymer in which N-acetyl-D-glucosamine is linked by ⁇ -1,4. Chitin has a chemical structure in which the hydroxyl group at the C2 position of cellulose is substituted with an acetamide group. Since chitin has the same chemical structure as cellulose, it has water resistance and strength similar to cellulose.
  • a known method can be used as a method for producing the fine fiber 14 containing the water-resistant polysaccharide.
  • the method for producing the fine fiber 14 containing the water-resistant polysaccharide include a method of crushing under pressure, a method of chemically decomposing, a method of producing using bacteria, and the like.
  • a method of producing using bacteria is desirable. More specifically, for example, the fine fibers 14 containing bacterial cellulose produced by acetic acid bacteria are suitable because the crystal structure is maintained.
  • gas barrier property can be evaluated by air permeation resistance like a Gurley value (JIS-P8117), for example. If the gas barrier property of the partition member 12 for total heat exchange elements is, for example, 3000 seconds / 100 ml or more, a necessary ventilation amount can be obtained.
  • a known film forming method can be used as a method for forming the moisture permeable layer 15.
  • a method of forming the moisture permeable layer 15 for example, a method of curing the hydrophilic polymer 13 after coating it in a film shape, a method of cutting a block obtained by curing the hydrophilic polymer 13 into a film shape, or a hydrophilic
  • a method may be used in which the functional polymer 13 is cured into a plate shape and then stretched to form a film.
  • a known method can also be used as a method of dispersing the fine fibers 14 in the moisture permeable layer 15.
  • Examples of the method of dispersing the fine fibers 14 in the moisture permeable layer 15 include a method of dispersing the fine fibers 14 in a hydrophilic low molecular solution, a method of dispersing the fine fibers 14 in a hydrophilic polymer solution, and the like. It is done.
  • the moisture permeable layer 15 is obtained by polymerizing the hydrophilic low molecular solution in which the fine fibers 14 are dispersed.
  • the porous sheet 16 is not particularly limited, and examples thereof include a nonwoven fabric, a plastic film, and a woven fabric.
  • a material of the porous sheet 16 a water-resistant material is preferable in order to prevent condensation as described above.
  • the material for the porous sheet 16 include polypropylene, polyethylene, polytetrafluoroethylene, polyester, polyamide, polyimide, polyethersulfone, polyacrylonitrile, and polyvinylidene fluoride.
  • the partition member for a total heat exchange element according to the present invention has gas barrier properties necessary for ventilation and high moisture permeability. Therefore, the partition member for a total heat exchange element according to the present invention is useful as a partition member for a total heat exchange element used in a total heat exchange element, a total heat exchange type ventilator, or the like.

Abstract

A partition member (12) for total heat exchange elements is equipped with a permeable layer (15) having: microfibers (14) containing a waterproof polysaccharide; and hydrophilic macromolecules (13).

Description

全熱交換素子用仕切部材、全熱交換素子および全熱交換形換気装置Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator
 本発明は、伝熱性と透湿性を有する全熱交換素子用仕切部材、その全熱交換素子用仕切部材を用いた全熱交換素子、およびその全熱交換素子を用いた全熱交換形換気装置に関する。 The present invention relates to a partition member for a total heat exchange element having heat conductivity and moisture permeability, a total heat exchange element using the partition member for the total heat exchange element, and a total heat exchange type ventilator using the total heat exchange element About.
 従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換および水分交換を行う全熱交換形換気装置が知られている。 Conventionally, a total heat exchange type ventilator that performs heat exchange and moisture exchange between air supply and exhaust during ventilation is known as a device that can be ventilated without impairing the effects of cooling and heating.
 全熱交換形換気装置は、全熱交換素子を用いて熱交換および水分交換を行う。全熱交換素子には、給気と排気が交じり合わないようにするためのガスバリア性(主として二酸化炭素バリア性)が求められる。近年、住宅の気密性が向上したことにより、換気による熱損失および水分損失の影響が相対的に増加している。そのため、全熱交換素子にも高い全熱交換性能が求められる。特に、全熱交換素子における水分交換は、給気と排気とを仕切る全熱交換素子用仕切部材の透湿性によって実現する。そのため、全熱交換素子用仕切部材に高い透湿性が求められる。従来の全熱交換素子用仕切部材として、ガスバリア性を高めたものが知られている(例えば、特許文献1参照)。 The total heat exchange type ventilator performs heat exchange and moisture exchange using a total heat exchange element. The total heat exchange element is required to have a gas barrier property (mainly carbon dioxide barrier property) for preventing supply air and exhaust gas from intermingling. In recent years, the effects of heat loss and moisture loss due to ventilation have been relatively increased due to the improved airtightness of houses. Therefore, high total heat exchange performance is also required for the total heat exchange element. In particular, moisture exchange in the total heat exchange element is realized by moisture permeability of the partition member for total heat exchange element that partitions supply air and exhaust. Therefore, high moisture permeability is required for the partition member for the total heat exchange element. As a conventional partition member for a total heat exchange element, one having an improved gas barrier property is known (see, for example, Patent Document 1).
 図7は、従来の全熱交換素子用仕切部材を示す概略断面図である。図7に示すように、従来の全熱交換素子用仕切部材は、微細セルロース繊維からなる微細セルロース繊維不織布層101を少なくとも一層含む多層構造体102である。微細セルロース繊維の平均繊維径は、0.005μm以上0.5μm以下である。さらに、多層構造体102の平均厚みは10μm以上200μm以下であり、多層構造体102の密度は0.10g/cm以上0.80g/cm以下であり、かつ多層構造体102の透気抵抗度は2000秒/100ml以上である。 FIG. 7 is a schematic cross-sectional view showing a conventional partition member for a total heat exchange element. As shown in FIG. 7, the conventional partition member for a total heat exchange element is a multilayer structure 102 including at least one fine cellulose fiber nonwoven fabric layer 101 made of fine cellulose fibers. The average fiber diameter of the fine cellulose fibers is 0.005 μm or more and 0.5 μm or less. Furthermore, the average thickness of the multilayer structure 102 is not less than 10 μm and not more than 200 μm, the density of the multilayer structure 102 is not less than 0.10 g / cm 3 and not more than 0.80 g / cm 3 , and the air resistance of the multilayer structure 102 The degree is 2000 seconds / 100 ml or more.
 上記の微細セルロース繊維不織布層101は、抄紙法によって微細セルロース繊維を積層させた後に、これを乾燥によって強く収縮させることにより、形成される。このようにして形成された微細セルロース繊維不織布層101は、緻密であるため、高いガスバリア性を有する。 The fine cellulose fiber nonwoven fabric layer 101 is formed by laminating fine cellulose fibers by a papermaking method and then strongly shrinking them by drying. Since the fine cellulose fiber nonwoven fabric layer 101 formed in this way is dense, it has a high gas barrier property.
国際公開第2014/014099号International Publication No. 2014/014099
 上記従来例の課題は、微細セルロース繊維を構成するセルロース分子の透湿性が低いことである。特許文献1にも記載されているように、従来の全熱交換素子用仕切部材は、微細セルロース繊維自体の透湿性ではなく、微細セルロース繊維の表面積が大きいことを利用して透湿性を高めている。すなわち、従来の全熱交換素子用仕切部材は、微細セルロース繊維間の界面を移動する水蒸気の移動通路密度を高くすることで透湿性を高めている。一方で、従来の全熱交換素子用仕切部材は、微細セルロース繊維が乾燥して収縮し、緻密になることを利用して、ガスバリア性を高めている。 The problem with the above conventional example is that the moisture permeability of cellulose molecules constituting the fine cellulose fiber is low. As described in Patent Document 1, the conventional partition member for a total heat exchange element is not the moisture permeability of the fine cellulose fiber itself, but increases the moisture permeability by utilizing the large surface area of the fine cellulose fiber. Yes. That is, the conventional partition member for a total heat exchange element enhances moisture permeability by increasing the density of the movement path of water vapor that moves at the interface between the fine cellulose fibers. On the other hand, the conventional partition member for a total heat exchange element enhances the gas barrier property by utilizing the fact that the fine cellulose fibers are dried and contracted to become dense.
 すなわち、従来の全熱交換素子用仕切部材は、微細セルロース繊維でガスバリア性を高め、微細セルロース繊維間の界面で透湿性を高めている。そのため、ガスバリア性を高めるために微細セルロース繊維層を緻密になるように設計すると、透湿性が低下する。また、透湿性を高めるために微細セルロース繊維層を疎になるように設計すると、ガスバリア性が低下する。このように、従来の全熱交換素子用仕切部材において、換気に必要なガスバリア性と高い透湿性との両立は困難である。 That is, the conventional partition member for a total heat exchange element has improved gas barrier properties with fine cellulose fibers and improved moisture permeability at the interface between the fine cellulose fibers. Therefore, if the fine cellulose fiber layer is designed to be dense in order to improve the gas barrier property, the moisture permeability decreases. Further, if the fine cellulose fiber layer is designed to be sparse in order to improve moisture permeability, the gas barrier property is lowered. Thus, in the conventional partition member for a total heat exchange element, it is difficult to achieve both gas barrier properties necessary for ventilation and high moisture permeability.
 そこで本発明は、上記課題を改善し、換気に必要なガスバリア性と高い透湿性を有する全熱交換素子用仕切部材を提供することを目的とする。 Therefore, an object of the present invention is to provide a partition member for a total heat exchange element that improves the above-described problems and has gas barrier properties necessary for ventilation and high moisture permeability.
 本発明にかかる全熱交換素子用仕切部材は、耐水性多糖類を含む微細繊維と、親水性高分子とを有する透湿層を備える。 The partition member for a total heat exchange element according to the present invention includes a moisture permeable layer having fine fibers containing a water-resistant polysaccharide and a hydrophilic polymer.
 本発明にかかる全熱交換素子用仕切部材は、換気に必要なガスバリア性と高い透湿性を有する。 The partition member for a total heat exchange element according to the present invention has a gas barrier property necessary for ventilation and a high moisture permeability.
図1は、本発明の実施の形態1にかかる全熱交換形換気装置の設置例を示す概要図である。FIG. 1 is a schematic diagram illustrating an installation example of the total heat exchange type ventilator according to the first embodiment of the present invention. 図2は、同全熱交換形換気装置の構造を示す図である。FIG. 2 is a diagram showing a structure of the total heat exchange type ventilator. 図3は、同全熱交換形換気装置の全熱交換素子を示す斜視図である。FIG. 3 is a perspective view showing a total heat exchange element of the total heat exchange type ventilator. 図4は、同全熱交換形換気装置の全熱交換素子を示す分解斜視図である。FIG. 4 is an exploded perspective view showing a total heat exchange element of the total heat exchange type ventilator. 図5は、同全熱交換形換気装置の全熱交換素子用仕切部材が備える透湿層を示す概略断面図である。FIG. 5: is a schematic sectional drawing which shows the moisture permeable layer with which the partition member for total heat exchange elements of the total heat exchange type ventilator is provided. 図6は、同全熱交換形換気装置の全熱交換素子用仕切部材の一例を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing an example of a partition member for a total heat exchange element of the total heat exchange type ventilator. 図7は、従来の全熱交換素子用仕切部材を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing a conventional partition member for a total heat exchange element.
 以下、本発明の一実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described.
 (実施の形態)
 図1において、家1の屋内に全熱交換形換気装置2が設置されている。
(Embodiment)
In FIG. 1, a total heat exchange type ventilator 2 is installed in a house 1.
 全熱交換形換気装置2は、屋内の空気(以下、屋内空気という)を、黒色矢印のごとく、屋外に放出する。 The total heat exchange ventilator 2 discharges indoor air (hereinafter referred to as indoor air) to the outside as indicated by black arrows.
 また、全熱交換形換気装置2は、屋外の空気(以下、屋外空気という)を、白色矢印のごとく、屋内に取り入れる。 Also, the total heat exchange ventilator 2 takes outdoor air (hereinafter referred to as outdoor air) indoors as indicated by white arrows.
 このようにして、全熱交換形換気装置2は換気を行う。全熱交換形換気装置2は、この換気時に、屋外に放出する屋内空気の熱を屋内に取り入れる屋外空気へと伝達させる。これにより、全熱交換形換気装置2は不要な熱の放出を抑制する。 In this way, the total heat exchange ventilator 2 performs ventilation. The total heat exchange type ventilator 2 transmits the heat of the indoor air released to the outdoors to the outdoor air that is taken indoors during this ventilation. Thereby, the total heat exchange type | formula ventilation apparatus 2 suppresses discharge | release of an unnecessary heat | fever.
 全熱交換形換気装置2は、図2に示すように、内気口6と、排気口7と、外気口9と、給気口10とが設けられた本体ケース3を備える。また、全熱交換形換気装置2は、本体ケース3内に、全熱交換素子4と、ファン5と、ファン8とを備える。全熱交換形換気装置2は、ファン5を駆動することで、屋内空気を内気口6から吸い込む。そして、全熱交換形換気装置2は、吸い込んだ屋内空気を全熱交換素子4およびファン5を経由させて排気口7から屋外へと放出する(実線の矢印参照)。 The total heat exchange type ventilator 2 includes a main body case 3 provided with an inside air port 6, an exhaust port 7, an outside air port 9, and an air supply port 10, as shown in FIG. The total heat exchange ventilator 2 includes a total heat exchange element 4, a fan 5, and a fan 8 in the main body case 3. The total heat exchanging ventilator 2 drives the fan 5 to suck indoor air from the interior air port 6. Then, the total heat exchange type ventilator 2 discharges the sucked indoor air from the exhaust port 7 to the outside via the total heat exchange element 4 and the fan 5 (see solid arrows).
 また、全熱交換形換気装置2は、ファン8を駆動することで、屋外空気を外気口9から吸い込む。そして、全熱交換形換気装置2は、吸い込んだ屋外空気を全熱交換素子4およびファン8を経由させて給気口10から屋内へと取り入れる(点線の矢印参照)。 Also, the total heat exchange ventilator 2 drives the fan 8 to suck outdoor air from the outside air port 9. Then, the total heat exchange type ventilation device 2 takes the sucked outdoor air through the total heat exchange element 4 and the fan 8 into the indoor from the air supply port 10 (see the dotted arrow).
 また、全熱交換素子4は、図3および図4に示すように、積層された複数の枠体17を備える。各枠体17は、複数の間隔保持リブ11と複数の全熱交換素子用仕切部材12を備える。全熱交換素子用仕切部材12は、枠体17に一体的に貼り合わされている。なお、枠体17は、一つの間隔保持リブ11のみを備えていてもよいし、一つの全熱交換素子用仕切部材12のみを備えていてもよい。図4に示すように、全熱交換素子用仕切部材12は、間隔保持リブ11により保持された間隔をあけて積層されている。屋内空気と屋外空気は、間隔保持リブ11により保持された間隔の一層ごとに交互に流れる。屋内空気と屋外空気が全熱交換素子用仕切部材12を挟んで流れることにより、熱交換および水分交換が全熱交換素子用仕切部材12を介して行われる。 Further, the total heat exchange element 4 includes a plurality of frame bodies 17 stacked as shown in FIGS. 3 and 4. Each frame 17 includes a plurality of spacing ribs 11 and a plurality of total heat exchange element partition members 12. The total heat exchange element partition member 12 is integrally bonded to the frame body 17. In addition, the frame 17 may be provided with only one space | interval holding | maintenance rib 11, and may be provided with only the partition member 12 for one total heat exchange element. As shown in FIG. 4, the total heat exchange element partition member 12 is laminated with a gap held by the gap holding ribs 11. Indoor air and outdoor air flow alternately for each layer of the interval held by the interval holding rib 11. The indoor air and the outdoor air flow with the total heat exchange element partition member 12 interposed therebetween, whereby heat exchange and moisture exchange are performed via the total heat exchange element partition member 12.
 冬季において、屋内空気は暖房および人の呼気などによる湿気を含んでおり、屋外空気は乾燥している。この場合、全熱交換素子用仕切部材12を挟んで屋内空気と屋外空気がそれぞれ流れることで、屋内空気の熱および水分が全熱交換素子用仕切部材12を介して屋外空気に伝わる。 In winter, indoor air contains moisture from heating and human exhalation, and outdoor air is dry. In this case, indoor air and outdoor air flow through the total heat exchange element partition member 12, so that the heat and moisture of the indoor air are transmitted to the outdoor air through the total heat exchange element partition member 12.
 本実施の形態では、図5に示すように、全熱交換素子用仕切部材12は、耐水性多糖類を含む微細繊維14と親水性高分子13とを有する透湿層15を備える。微細繊維14は、透湿層15内で分散している。この構成により、全熱交換素子用仕切部材12は、換気に必要なガスバリア性と高い透湿性を有する。 In the present embodiment, as shown in FIG. 5, the total heat exchange element partition member 12 includes a moisture permeable layer 15 having fine fibers 14 containing a water-resistant polysaccharide and a hydrophilic polymer 13. The fine fibers 14 are dispersed in the moisture permeable layer 15. With this configuration, the total heat exchange element partition member 12 has a gas barrier property necessary for ventilation and a high moisture permeability.
 すなわち、全熱交換素子用仕切部材12は、微細繊維14でなく親水性高分子13によりガスバリア性を高めることが可能である。そのため、全熱交換素子用仕切部材12において、透湿性の低い微細繊維14の量を減少させても、必要なガスバリア性が得られる。このため、全熱交換素子用仕切部材12は、ガスバリア性を低下させることなく、透湿性を高めることが可能である。 That is, the partition member 12 for the total heat exchange element can improve the gas barrier property by the hydrophilic polymer 13 instead of the fine fiber 14. Therefore, even if the amount of fine fibers 14 having low moisture permeability is reduced in the partition member 12 for total heat exchange elements, the necessary gas barrier properties can be obtained. For this reason, the partition member 12 for total heat exchange elements can improve moisture permeability, without reducing gas barrier property.
 その上、耐水性多糖類は、分子構造内に多数の結晶部を備えている。これにより、耐水性多糖類は、高い強度の立体構造を持ち、引張強度に優れている。この耐水性多糖類を含む微細繊維14が透湿層15内で分散しているため、透湿層15は高い強度を有する。そのため、透湿層15の強度を維持したまま透湿層15の薄膜化が可能となり、透湿層15において透湿距離が短縮される。これにより、全熱交換素子用仕切部材12は高い透湿性を有する。 Moreover, the water-resistant polysaccharide has a large number of crystal parts in the molecular structure. Thereby, the water-resistant polysaccharide has a high-strength three-dimensional structure and is excellent in tensile strength. Since the fine fibers 14 containing the water-resistant polysaccharide are dispersed in the moisture permeable layer 15, the moisture permeable layer 15 has high strength. Therefore, the moisture-permeable layer 15 can be made thin while maintaining the strength of the moisture-permeable layer 15, and the moisture-permeable distance is shortened in the moisture-permeable layer 15. Thereby, the partition member 12 for total heat exchange elements has high moisture permeability.
 さらに、全熱交換素子用仕切部材12は、透湿層15内で高い透湿性を有する親水性高分子13の割合を高めることで、高い透湿性を有する。また、微細繊維14が透湿層15内で均一に分散していることで、透湿層15の強度が高まる。これにより、透湿層15の薄膜化が可能となるため、全熱交換素子用仕切部材12は高い透湿性を有する。 Furthermore, the partition member 12 for total heat exchange elements has high moisture permeability by increasing the ratio of the hydrophilic polymer 13 having high moisture permeability in the moisture permeable layer 15. Further, since the fine fibers 14 are uniformly dispersed in the moisture permeable layer 15, the strength of the moisture permeable layer 15 is increased. Thereby, since the moisture-permeable layer 15 can be thinned, the total heat exchange element partition member 12 has high moisture permeability.
 また、微細繊維14の平均繊維径は、0.004μm以上2μm以下であっても良い。微細繊維14の平均繊維径が0.004μm以上であると、繊維1本1本の強度が高まる。一方で、微細繊維14の平均繊維径が2μm以下であると、透湿層15の厚み方向に微細繊維14が十分に含まれるため、透湿層15の強度が高まる。そのため、微細繊維14の平均繊維径が0.004μm以上2μm以下であることが好ましい。 Further, the average fiber diameter of the fine fibers 14 may be 0.004 μm or more and 2 μm or less. When the average fiber diameter of the fine fibers 14 is 0.004 μm or more, the strength of each fiber increases. On the other hand, when the average fiber diameter of the fine fibers 14 is 2 μm or less, the fine fibers 14 are sufficiently contained in the thickness direction of the moisture-permeable layer 15, and thus the strength of the moisture-permeable layer 15 is increased. Therefore, the average fiber diameter of the fine fibers 14 is preferably 0.004 μm or more and 2 μm or less.
 また、透湿層15に対する微細繊維14の体積比率は、5%以上30%以下であっても良い。透湿層15に対する微細繊維14の体積比率が5%以上であると、透湿層15の強度が高まる。また、透湿層15に対する微細繊維14の体積比率が30%以下であると、全熱交換素子用仕切部材12の透湿性がさらに高まる。そのため、透湿層15に対する微細繊維14の体積比率が5%以上30%以下であることが好ましい。 Further, the volume ratio of the fine fibers 14 to the moisture permeable layer 15 may be 5% or more and 30% or less. When the volume ratio of the fine fibers 14 to the moisture permeable layer 15 is 5% or more, the strength of the moisture permeable layer 15 is increased. Moreover, the moisture permeability of the partition member 12 for total heat exchange elements further increases that the volume ratio of the fine fiber 14 with respect to the moisture-permeable layer 15 is 30% or less. Therefore, the volume ratio of the fine fibers 14 to the moisture permeable layer 15 is preferably 5% or more and 30% or less.
 また、透湿層15の厚みが0.5μm以上20μm以下であり、かつ、透湿層15の厚みが微細繊維14の平均繊維径よりも厚くても良い。透湿層15の厚みが0.5μm以上であると、透湿層15の強度が高まる。また、透湿層15の厚みが20μm以下であると、全熱交換素子用仕切部材12の透湿性がさらに高まる。透湿層15の厚みが微細繊維14の平均繊維径よりも厚いと、厚み方向において微細繊維14が十分に存在する。これにより、微細繊維14によって透湿層15を補強する効果が高まる。 Further, the thickness of the moisture permeable layer 15 may be 0.5 μm or more and 20 μm or less, and the thickness of the moisture permeable layer 15 may be larger than the average fiber diameter of the fine fibers 14. The intensity | strength of the moisture permeable layer 15 increases that the thickness of the moisture permeable layer 15 is 0.5 micrometer or more. Moreover, the moisture permeability of the partition member 12 for total heat exchange elements is further improved as the thickness of the moisture-permeable layer 15 is 20 μm or less. When the thickness of the moisture permeable layer 15 is larger than the average fiber diameter of the fine fibers 14, the fine fibers 14 are sufficiently present in the thickness direction. Thereby, the effect which reinforces the moisture-permeable layer 15 with the fine fiber 14 increases.
 また、親水性高分子13は、第四級アンモニウム基を有してもよい。第四級アンモニウム基は、電荷の偏りが大きく、水分子と水素結合を作らない。そのため、第四級アンモニウム基は、水の吸湿性および放湿性が高い。このため、全熱交換素子用仕切部材12の透湿性がさらに高まる。 Further, the hydrophilic polymer 13 may have a quaternary ammonium group. Quaternary ammonium groups have a large charge bias and do not form hydrogen bonds with water molecules. Therefore, the quaternary ammonium group has a high water hygroscopicity and moisture releasing property. For this reason, the moisture permeability of the partition member 12 for total heat exchange elements further increases.
 また、図6に示すように、全熱交換素子用仕切部材12は、透湿層15に貼り合わされた多孔質シート16を備えてもよい。多孔質シート16を透湿層15に貼り合わせることにより、全熱交換素子用仕切部材12の強度がさらに高まる。また、全熱交換素子用仕切部材12の表面が多孔質シート16により保護される。 Further, as shown in FIG. 6, the total heat exchange element partitioning member 12 may include a porous sheet 16 bonded to the moisture permeable layer 15. By bonding the porous sheet 16 to the moisture permeable layer 15, the strength of the partition member 12 for the total heat exchange element is further increased. Further, the surface of the partition member 12 for total heat exchange element is protected by the porous sheet 16.
 また、前述のとおり、全熱交換素子4は、全熱交換素子用仕切部材12を用いた構成である。この構成により、全熱交換素子4は、高い透湿性を有する全熱交換素子用仕切部材12を用いるため、高い潜熱交換効率を有する。 Moreover, as described above, the total heat exchange element 4 has a configuration using the partition member 12 for the total heat exchange element. With this configuration, the total heat exchange element 4 uses the total heat exchange element partition member 12 having high moisture permeability, and thus has high latent heat exchange efficiency.
 また、前述のとおり、全熱交換形換気装置2は、全熱交換素子4を用いた構成である。この構成により、全熱交換形換気装置2は、高い潜熱交換効率を有する全熱交換素子4を用いるため、高い全熱交換効率を有する。 Further, as described above, the total heat exchange ventilator 2 has a configuration using the total heat exchange element 4. With this configuration, the total heat exchange ventilator 2 uses the total heat exchange element 4 having high latent heat exchange efficiency, and thus has high total heat exchange efficiency.
 なお、全熱交換素子4は、枠体17に全熱交換素子用仕切部材12を貼り合せた構成であるが、この構成に限定されない。全熱交換素子4は、枠体17を成形する際に全熱交換素子用仕切部材12を金型内に入れ、枠体17と全熱交換素子用仕切部材12を同時に成形させた構成であってもよい。 The total heat exchange element 4 has a configuration in which the total heat exchange element partition member 12 is bonded to the frame body 17, but is not limited to this configuration. The total heat exchange element 4 has a configuration in which the total heat exchange element partition member 12 is placed in a mold when the frame body 17 is molded, and the frame body 17 and the total heat exchange element partition member 12 are molded simultaneously. May be.
 親水性高分子13は、親水性の官能基を有する高分子である。親水性の官能基として、例えば、水酸基、スルホン基、エステル結合、ウレタン結合、カルボキシル基、カルボ基、リン酸基、アミノ基、または第四級アンモニウム基等が挙げられる。特に前述のように、第四級アンモニウム基は、高い吸湿性および放湿性を有するため、親水性の官能基として好ましい。 The hydrophilic polymer 13 is a polymer having a hydrophilic functional group. Examples of the hydrophilic functional group include a hydroxyl group, a sulfone group, an ester bond, a urethane bond, a carboxyl group, a carbo group, a phosphate group, an amino group, and a quaternary ammonium group. In particular, as described above, a quaternary ammonium group is preferable as a hydrophilic functional group because it has high hygroscopicity and hygroscopicity.
 また、屋内空気と屋外空気の温度差が大きい場合、全熱交換素子用仕切部材12の表面に結露が生じることがある。そのため、親水性高分子13は耐水性を有するものが好ましい。耐水性を有する親水性高分子13を得る方法として、既知の方法を用いることができる。耐水性を有する親水性高分子13を得る方法として、例えば、分子量の増大、分子鎖同士の架橋、繰り返し分子構造を利用した結晶部の創出、または親水性官能基の部分的分子内架橋等の方法が挙げられる。ただし、耐水性を有する親水性高分子13を得る方法は、透湿性に対し、悪影響の少ない方法が望ましい。そのため、前述の方法の中では、分子量の増大または分子鎖同士の架橋による耐水化が特に好ましい。 Further, when the temperature difference between the indoor air and the outdoor air is large, condensation may occur on the surface of the partition member 12 for the total heat exchange element. Therefore, the hydrophilic polymer 13 preferably has water resistance. As a method for obtaining the hydrophilic polymer 13 having water resistance, a known method can be used. As a method for obtaining the hydrophilic polymer 13 having water resistance, for example, increase in molecular weight, cross-linking of molecular chains, creation of a crystal part using a repetitive molecular structure, or partial intramolecular cross-linking of a hydrophilic functional group, etc. A method is mentioned. However, the method of obtaining the hydrophilic polymer 13 having water resistance is preferably a method having little adverse effect on moisture permeability. Therefore, among the above-described methods, water resistance by molecular weight increase or cross-linking of molecular chains is particularly preferable.
 なお、耐水性多糖類としては、例えばセルロースまたはキチン等の物質が挙げられる。セルロースは、グルコースがβ‐1,4結合した直鎖状のホモポリマーである。この直鎖状のホモポリマーの一部は、分子間水素結合もしくは分子内水素結合により束となり、結晶構造を構成している。水分子は、通常この結晶構造に浸みこむことができない。また、これらの結晶構造はセルロースにおいて約50%から70%の割合を占める。これにより、セルロースは、耐水性と物理的に高い強度を有する。キチンは、N‐アセチル‐D‐グルコサミンがβ‐1,4結合した直鎖状のホモポリマーである。キチンは、セルロースのC2位の水酸基をアセトアミド基に置換した化学構造を有する。キチンは、セルロースと同様の化学構造を有するため、セルロースと同様の耐水性と強度を有する。 In addition, examples of the water resistant polysaccharide include substances such as cellulose and chitin. Cellulose is a linear homopolymer in which glucose is linked by β-1,4. A part of this linear homopolymer is bundled by intermolecular hydrogen bonding or intramolecular hydrogen bonding to form a crystal structure. Water molecules usually cannot penetrate into this crystal structure. These crystal structures occupy a ratio of about 50% to 70% in cellulose. Thereby, the cellulose has water resistance and physically high strength. Chitin is a linear homopolymer in which N-acetyl-D-glucosamine is linked by β-1,4. Chitin has a chemical structure in which the hydroxyl group at the C2 position of cellulose is substituted with an acetamide group. Since chitin has the same chemical structure as cellulose, it has water resistance and strength similar to cellulose.
 なお、耐水性多糖類を含む微細繊維14を作製する方法としては、既知の方法を用いることができる。耐水性多糖類を含む微細繊維14を作製する方法として、例えば、圧力をかけて砕く方法、化学的に分解する方法、または菌を用いて生産する方法等が挙げられる。高い強度の微細繊維14を得るためには、耐水性多糖類の結晶構造を維持したまま微細繊維14を作製することが望ましい。そのため、上記の方法の中では、菌を用いて生産する方法が望ましい。より具体的には、たとえば酢酸菌が産生するバクテリアセルロースを含む微細繊維14は、結晶構造が維持されているため、好適である。 In addition, a known method can be used as a method for producing the fine fiber 14 containing the water-resistant polysaccharide. Examples of the method for producing the fine fiber 14 containing the water-resistant polysaccharide include a method of crushing under pressure, a method of chemically decomposing, a method of producing using bacteria, and the like. In order to obtain fine fibers 14 with high strength, it is desirable to produce fine fibers 14 while maintaining the crystal structure of the water-resistant polysaccharide. Therefore, among the above methods, a method of producing using bacteria is desirable. More specifically, for example, the fine fibers 14 containing bacterial cellulose produced by acetic acid bacteria are suitable because the crystal structure is maintained.
 なお、ガスバリア性は、例えばガーレー値(JIS‐P8117)のような透気抵抗度で評価することができる。全熱交換素子用仕切部材12のガスバリア性が例えば3000秒/100ml以上あれば、必要な換気量が得られる。 In addition, gas barrier property can be evaluated by air permeation resistance like a Gurley value (JIS-P8117), for example. If the gas barrier property of the partition member 12 for total heat exchange elements is, for example, 3000 seconds / 100 ml or more, a necessary ventilation amount can be obtained.
 なお、透湿層15を形成する方法として、既知の成膜法を用いることができる。透湿層15を形成する方法として、例えば、親水性高分子13を膜状に塗工した後に硬化する方法や、親水性高分子13を硬化させたブロックを膜状に削る方法、または、親水性高分子13を板状に硬化させた後に延伸させて膜化する方法等が挙げられる。 In addition, as a method for forming the moisture permeable layer 15, a known film forming method can be used. As a method of forming the moisture permeable layer 15, for example, a method of curing the hydrophilic polymer 13 after coating it in a film shape, a method of cutting a block obtained by curing the hydrophilic polymer 13 into a film shape, or a hydrophilic For example, a method may be used in which the functional polymer 13 is cured into a plate shape and then stretched to form a film.
 透湿層15内に微細繊維14を分散させる方法としても、既知の方法を用いることができる。透湿層15内に微細繊維14を分散させる方法として、例えば、親水性の低分子溶液に微細繊維14を分散させる方法、または親水性の高分子溶液に微細繊維14を分散させる方法等が挙げられる。親水性の低分子溶液に微細繊維14を分散させた場合、微細繊維14が分散された親水性の低分子溶液を重合させることで、透湿層15が得られる。 A known method can also be used as a method of dispersing the fine fibers 14 in the moisture permeable layer 15. Examples of the method of dispersing the fine fibers 14 in the moisture permeable layer 15 include a method of dispersing the fine fibers 14 in a hydrophilic low molecular solution, a method of dispersing the fine fibers 14 in a hydrophilic polymer solution, and the like. It is done. When the fine fibers 14 are dispersed in the hydrophilic low molecular solution, the moisture permeable layer 15 is obtained by polymerizing the hydrophilic low molecular solution in which the fine fibers 14 are dispersed.
 なお、多孔質シート16としては、特に制限されないが、例えば不織布、プラスチックフィルム、または織布が挙げられる。多孔質シート16の材料としては、前述のように結露を防ぐために耐水性のある材料が好ましい。多孔質シート16の材料として、例えば、ポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリエステル、ポリアミド、ポリイミド、ポリエーテルサルフォン、ポリアクリルニトリル、またはポリフッ化ビニリデン等が挙げられる。 The porous sheet 16 is not particularly limited, and examples thereof include a nonwoven fabric, a plastic film, and a woven fabric. As a material of the porous sheet 16, a water-resistant material is preferable in order to prevent condensation as described above. Examples of the material for the porous sheet 16 include polypropylene, polyethylene, polytetrafluoroethylene, polyester, polyamide, polyimide, polyethersulfone, polyacrylonitrile, and polyvinylidene fluoride.
 以上のように、本発明にかかる全熱交換素子用仕切部材は、換気に必要なガスバリア性と高い透湿性を有する。そのため、本発明にかかる全熱交換素子用仕切部材は、全熱交換素子および全熱交換形換気装置等に用いられる全熱交換素子用仕切部材として有用である。 As described above, the partition member for a total heat exchange element according to the present invention has gas barrier properties necessary for ventilation and high moisture permeability. Therefore, the partition member for a total heat exchange element according to the present invention is useful as a partition member for a total heat exchange element used in a total heat exchange element, a total heat exchange type ventilator, or the like.
 1  家
 2  全熱交換形換気装置
 3  本体ケース
 4  全熱交換素子
 5  ファン
 6  内気口
 7  排気口
 8  ファン
 9  外気口
 10  給気口
 11  間隔保持リブ
 12  全熱交換素子用仕切部材
 13  親水性高分子
 14  微細繊維
 15  透湿層
 16  多孔質シート
 17  枠体
DESCRIPTION OF SYMBOLS 1 House 2 Total heat exchange type ventilator 3 Main body case 4 Total heat exchange element 5 Fan 6 Inside air port 7 Exhaust port 8 Fan 9 Outside air port 10 Air supply port 11 Spacing rib 12 Total heat exchange element partition member 13 High hydrophilicity Molecule 14 Fine fiber 15 Moisture permeable layer 16 Porous sheet 17 Frame

Claims (8)

  1.  耐水性多糖類を含む微細繊維と、親水性高分子とを有する透湿層を備える全熱交換素子用仕切部材。 A partition member for a total heat exchange element including a moisture permeable layer having fine fibers containing a water-resistant polysaccharide and a hydrophilic polymer.
  2.  前記微細繊維の平均繊維径は、0.004μm以上2μm以下である請求項1に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 1, wherein an average fiber diameter of the fine fibers is 0.004 µm or more and 2 µm or less.
  3.  前記透湿層に対する前記微細繊維の体積比率が、5%以上30%以下である請求項1に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 1, wherein a volume ratio of the fine fibers to the moisture permeable layer is 5% or more and 30% or less.
  4.  前記透湿層の厚みが0.5μm以上20μm以下であり、かつ、前記透湿層の厚みが前記微細繊維の平均繊維径よりも厚い請求項1に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 1, wherein the moisture permeable layer has a thickness of 0.5 µm or more and 20 µm or less, and the moisture permeable layer is thicker than an average fiber diameter of the fine fibers.
  5.  前記親水性高分子は、第四級アンモニウム基を有する請求項1に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 1, wherein the hydrophilic polymer has a quaternary ammonium group.
  6.  前記透湿層に貼り合わされた多孔質シートをさらに備える請求項1に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to claim 1, further comprising a porous sheet bonded to the moisture permeable layer.
  7.  請求項1に記載の全熱交換素子用仕切部材を用いた全熱交換素子。 A total heat exchange element using the partition member for a total heat exchange element according to claim 1.
  8.  請求項7に記載の全熱交換素子を用いた全熱交換形換気装置。 A total heat exchange type ventilator using the total heat exchange element according to claim 7.
PCT/JP2016/004742 2015-11-27 2016-10-28 Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device WO2017090232A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-231292 2015-11-27
JP2015231292A JP2017096590A (en) 2015-11-27 2015-11-27 Partition member for total heat exchange element, total heat exchange element using the same, and total heat exchange type ventilation device

Publications (1)

Publication Number Publication Date
WO2017090232A1 true WO2017090232A1 (en) 2017-06-01

Family

ID=58764263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/004742 WO2017090232A1 (en) 2015-11-27 2016-10-28 Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device

Country Status (2)

Country Link
JP (1) JP2017096590A (en)
WO (1) WO2017090232A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019026823A1 (en) * 2017-07-31 2020-06-11 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019097885A1 (en) * 2017-11-16 2019-05-23 三菱電機株式会社 Total heat exchange element and total heat exchanger
JP6633263B1 (en) * 2019-03-25 2020-01-22 三菱電機株式会社 Partition plate for total heat exchange element, total heat exchange element and total heat exchanger using the same, and method of manufacturing partition plate for total heat exchange element
JP2020004459A (en) * 2019-10-10 2020-01-09 株式会社マネースクエアHd Financial product transaction management device and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014623A (en) * 2006-06-05 2008-01-24 Rengo Co Ltd Sheet for total heat exchangers
JP2015178949A (en) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014623A (en) * 2006-06-05 2008-01-24 Rengo Co Ltd Sheet for total heat exchangers
JP2015178949A (en) * 2013-09-17 2015-10-08 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element and total heat exchange element using material and total heat exchange type ventilation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019026823A1 (en) * 2017-07-31 2020-06-11 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
JP7173012B2 (en) 2017-07-31 2022-11-16 王子ホールディングス株式会社 TOTAL HEAT EXCHANGER SHEET, TOTAL HEAT EXCHANGER ELEMENT, AND TOTAL HEAT EXCHANGER
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same

Also Published As

Publication number Publication date
JP2017096590A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
WO2017090232A1 (en) Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
CN103747854B (en) Optional water steam transport membrane including nanofiber layer and preparation method thereof
JP5156504B2 (en) Composite membrane and moisture adjustment module using the same
KR101299347B1 (en) Energy efficient and insulated building envelopes
CN102892534A (en) Biaxially oriented porous membranes, composites, and methods of manufacture and use
KR101376820B1 (en) Total heat exchanger and method for producing partition plate used in same
WO2012018089A1 (en) Diaphragm and heat exchanger using same
TW201940220A (en) Selectively permeable graphene oxide element
JPS6255079B2 (en)
JP6387514B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2008089199A (en) Total enthalpy heat exchanger
JP6357651B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2017150805A (en) Partition member for total heat exchange element, and total heat exchange element and total heat exchange type ventilation device using the material
JP2015059703A (en) Material for total heat exchange element and heat exchange type ventilation device using the material
US9879869B2 (en) Partition member for total heat exchange element, total heat exchange element using this member, and total heat exchange type ventilation device
JP6340577B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
JP2016080269A (en) Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device
JP6364618B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
TWI727552B (en) Selectively permeable polymeric membrane
JP5347420B2 (en) Heat exchange ventilator
JP6142282B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
JP6167325B2 (en) Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same
US20230166217A1 (en) Pleated composite pervaporation laminate and method of making same
CN108832059A (en) It is a kind of to contain the dynamic lithium battery for inhaling reservoir body based on power diaphragm
US20190226703A1 (en) Advanced energy recovery ventilator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16868183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16868183

Country of ref document: EP

Kind code of ref document: A1