JP6142282B2 - Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member - Google Patents

Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member Download PDF

Info

Publication number
JP6142282B2
JP6142282B2 JP2012280669A JP2012280669A JP6142282B2 JP 6142282 B2 JP6142282 B2 JP 6142282B2 JP 2012280669 A JP2012280669 A JP 2012280669A JP 2012280669 A JP2012280669 A JP 2012280669A JP 6142282 B2 JP6142282 B2 JP 6142282B2
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
exchange element
partition member
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012280669A
Other languages
Japanese (ja)
Other versions
JP2014126213A (en
Inventor
みゆき 大友
みゆき 大友
洋祐 浜田
洋祐 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2012280669A priority Critical patent/JP6142282B2/en
Publication of JP2014126213A publication Critical patent/JP2014126213A/en
Application granted granted Critical
Publication of JP6142282B2 publication Critical patent/JP6142282B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、伝熱性と透湿性を有する素材を仕切板に用いて、顕熱及び潜熱を同時に回収する静止透過式の熱交換形換気装置に関するものである。   The present invention relates to a static permeation type heat exchange type ventilator that collects sensible heat and latent heat at the same time using a material having heat conductivity and moisture permeability as a partition plate.

従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換を行う熱交換形換気装置が知られている。   2. Description of the Related Art Conventionally, a heat exchange type ventilator that exchanges heat between air supply and exhaust during ventilation is known as a device that can ventilate without impairing the effects of cooling or heating.

熱交換形換気装置には、熱交換を行うための熱交換素子が含まれており、素材には給気と排気が交じり合わないようにするガスバリア性(主として二酸化炭素バリア性)と伝熱性が求められる。特に、顕熱と同時に潜熱の熱交換も行う全熱交換素子に関しては、高い透湿性も合わせて有する必要がある。   The heat exchange type ventilator includes a heat exchange element for performing heat exchange, and the material has gas barrier properties (mainly carbon dioxide barrier properties) and heat transfer properties that prevent air supply and exhaust from intermingling. Desired. In particular, a total heat exchange element that also performs heat exchange of latent heat simultaneously with sensible heat needs to have high moisture permeability.

従って、全熱交換素子用仕切部材には、緻密性の高い基材を用いることが検討されると同時に、親水性有機化合物などの各種透湿性を備えた薬剤の添加が検討されており、下記のような従来技術が開示されている。   Therefore, it is considered to use a highly dense base material for the partition member for the total heat exchange element, and at the same time, addition of chemicals having various moisture permeability such as hydrophilic organic compounds is being studied. Such conventional techniques are disclosed.

例えば、特許文献1を挙げる。(図面は示さず)。   For example, Patent Document 1 is cited. (The drawing is not shown).

特許文献1では、透気度が20秒/100cc以上となるように緻密性を持たせた多孔質シートに、非水溶性の親水性有機化合物を塗工してなることを特徴とする全熱交換器用シートを用いている。   In Patent Document 1, the total heat is characterized by coating a water-insoluble hydrophilic organic compound on a porous sheet having a denseness so that the air permeability is 20 seconds / 100 cc or more. An exchange sheet is used.

特開昭61−46899号公報JP 61-46899 A

全熱交換形換気装置は前述のようにガスバリア性が必要であると同時に、潜熱交換を行なうために高い透湿性が必要である。   As described above, the total heat exchange type ventilator needs a gas barrier property, and at the same time, needs a high moisture permeability to perform latent heat exchange.

例えば特許文献1では、緻密性の高い基材に親水性有機化合物を塗工する手法で作製している。しかし、この手法は、緻密性の高い基材を用いるため、全熱交換器用シートとして透湿性が不十分であるという課題が存在した。   For example, in patent document 1, it produces with the method of coating a hydrophilic organic compound on a highly dense base material. However, since this method uses a highly dense base material, there is a problem that moisture permeability is insufficient as a sheet for a total heat exchanger.

そこで本発明は、前記従来の課題を解決するものであり、透湿性能の高い全熱交換素子用仕切部材およびその素材を用いた全熱交換素子及びその素子を用いた熱交換形換気装置を提供することを目的とする。   Then, this invention solves the said conventional subject, the partition member for total heat exchange elements with high moisture permeability, the total heat exchange element using the raw material, and the heat exchange type ventilation apparatus using the element The purpose is to provide.

そして、この目的を達成するために、本発明は、両面を流れる2気流間で潜熱と顕熱を交換させる全熱交換素子用仕切部材が、親水性の無機化合物と、親水性の官能基を持つ有
機化合物とを含み、前記無機化合物と前記有機化合物は水に不溶であり、前記有機化合物と前記無機化合物が共に分極し、前記全熱交換素子用仕切部材の両面に亘って水の通り道を形成することを特徴とする全熱交換素子用仕切部材とした。
In order to achieve this object, the present invention provides a partition member for a total heat exchange element that exchanges latent heat and sensible heat between two airflows flowing on both sides, and includes a hydrophilic inorganic compound and a hydrophilic functional group. The organic compound and the organic compound are insoluble in water, the organic compound and the inorganic compound are both polarized, and the path of water is passed over both surfaces of the partition member for the total heat exchange element. A partition member for a total heat exchange element that is formed.

これにより所期の目的を達成するものである。   This achieves the intended purpose.

本発明によれば、両面を流れる2気流間で潜熱と顕熱を交換させる全熱交換素子用仕切部材が、親水性の無機化合物と、親水性の官能基を持つ有機化合物とを含み、前記無機化合物と前記有機化合物は水に不溶であり、前記有機化合物と前記無機化合物が共に分極し、前記全熱交換素子用仕切部材の両面に亘って水の通り道を形成することを特徴とする全熱交換素子用仕切部材とした。
According to the present invention, a partition member for a total heat exchange element that exchanges latent heat and sensible heat between two airflows flowing on both sides includes a hydrophilic inorganic compound and an organic compound having a hydrophilic functional group, The inorganic compound and the organic compound are insoluble in water, the organic compound and the inorganic compound are both polarized, and a water passage is formed across both surfaces of the partition member for the total heat exchange element. A partition member for a heat exchange element was obtained.

それにより、無機化合物が親水性であるため、無機化合物を中心として有機化合物に含まれる親水性の官能基が集まることで水の通り道を太くすることができ、全熱交換素子用仕切部材の透湿性を高めることができる。   As a result, since the inorganic compound is hydrophilic, the hydrophilic functional groups contained in the organic compound centering on the inorganic compound can be gathered to thicken the water path, and the total heat exchange element partition member can be made transparent. Can increase the wettability.

また、無機化合物と有機化合物が水に不溶であるため、様々な湿度環境でも全熱交換素子用仕切部材からの溶出や流出による透湿性能低下を抑制することができる。   Further, since the inorganic compound and the organic compound are insoluble in water, it is possible to suppress a decrease in moisture permeability performance due to elution or outflow from the partition member for the total heat exchange element even in various humidity environments.

以上の理由により、透湿性能が高い全熱交換素子用仕切部材を得ることができる。   For the above reasons, a partition member for a total heat exchange element with high moisture permeability can be obtained.

本発明の実施の形態の全熱交換素子用仕切部材を示す断面図Sectional drawing which shows the partition member for total heat exchange elements of embodiment of this invention 本発明の実施の形態における全熱熱交換素子の概略図Schematic of total heat exchange element in an embodiment of the present invention

本発明の請求項1記載の全熱交換素子用仕切部材は、両面を流れる2気流間で潜熱と顕熱を交換させる全熱交換素子用仕切部材が、親水性の無機化合物と、親水性の官能基を持つ有機化合物とを含み、前記無機化合物と前記有機化合物は水に不溶であり、前記有機化合物と前記無機化合物が共に分極し、前記全熱交換素子用仕切部材の両面に亘って水の通り道を形成することを特徴とする全熱交換素子用仕切部材とした。
The partition member for a total heat exchange element according to claim 1 of the present invention includes a partition member for a total heat exchange element that exchanges latent heat and sensible heat between two airflows flowing on both sides, and a hydrophilic inorganic compound and a hydrophilic An organic compound having a functional group, the inorganic compound and the organic compound are insoluble in water, the organic compound and the inorganic compound are both polarized, and water is formed on both surfaces of the partition member for the total heat exchange element. A partition member for a total heat exchange element, characterized in that a passage is formed.

本発明によれば、無機化合物を中心として有機化合物に含まれる親水性の官能基が集まることで水の通り道を太くすることができ、透湿性を高めることができる。   ADVANTAGE OF THE INVENTION According to this invention, the water passage can be thickened by the hydrophilic functional group contained in an organic compound centering on an inorganic compound, and moisture permeability can be improved.

また、無機化合物と有機化合物が水に不溶であるため、様々な湿度環境でも全熱交換素子用仕切部材からの溶出や流出による透湿性能低下を抑制することができる。   Further, since the inorganic compound and the organic compound are insoluble in water, it is possible to suppress a decrease in moisture permeability performance due to elution or outflow from the partition member for the total heat exchange element even in various humidity environments.

以上の理由により、透湿性能が高い全熱交換素子用仕切部材を得ることができる。   For the above reasons, a partition member for a total heat exchange element with high moisture permeability can be obtained.

さらに、前記全熱交換素子用仕切部材は多孔質基材に前記有機化合物を含浸して固化し形成されることを特徴とする全熱交換素子用仕切部材とした。   Furthermore, the partition member for total heat exchange element is a partition member for total heat exchange element, wherein the partition member is formed by impregnating a porous base material with the organic compound and solidifying.

この構成により、無機化合物が親水性であるため、無機化合物を中心として有機化合物に含まれる親水性の官能基が集まることで水の通り道を太くすることができ、透湿性を高めることができる。さらに、多孔質基材に前記有機化合物を固化することで、前記全熱交換素子用仕切部材の形状が湿度環境によらず安定し、様々な湿度環境で使用することができる。   With this configuration, since the inorganic compound is hydrophilic, the hydrophilic functional groups contained in the organic compound centering on the inorganic compound can be gathered to thicken the water path and increase moisture permeability. Furthermore, by solidifying the organic compound on the porous substrate, the shape of the partition member for the total heat exchange element is stable regardless of the humidity environment, and can be used in various humidity environments.

また、前記全熱交換素子用仕切部材は、空隙の少なくとも一部に前記無機化合物を含んだ多孔質基材に前記有機化合物を含浸して固化することにより形成されることを特徴とする全熱交換素子用仕切部材とした。   The total heat exchange element partition member is formed by impregnating and solidifying a porous base material containing the inorganic compound in at least a part of the gap. It was set as the partition member for exchange elements.

この構成により、無機化合物と有機化合物に含まれる官能基が共に親水性なので、空隙にある無機化合物に有機化合物が引き付けられることで、多孔質基材の空隙を効率よく埋めることができる。さらに、空隙に無機化合物を中心として有機化合物に含まれる親水性の官能基が集まることで水の通り道を太くすることができ、前記全熱交換素子用仕切部材の透湿性を高めることができる。   With this configuration, since the functional groups contained in the inorganic compound and the organic compound are both hydrophilic, the organic compound is attracted to the inorganic compound in the void, so that the void in the porous substrate can be efficiently filled. Further, the hydrophilic functional groups contained in the organic compound centering on the inorganic compound are gathered in the gap, so that the water passage can be thickened, and the moisture permeability of the partition member for the total heat exchange element can be improved.

また、前記有機化合物と前記無機化合物が共に分極している物質である全熱交換素子用仕切部材とした。   The partition member for a total heat exchange element, which is a substance in which both the organic compound and the inorganic compound are polarized, is used.

前記有機化合物と無機化合物が共に分極していることで、ファンデルワールス力によりお互いに引き付け合う。それにより、前記無機化合物と有機化合物の親水性部分が集まるので水の通り道を太くすることができ、透湿性をより高めることができる。   Since the organic compound and the inorganic compound are both polarized, they are attracted to each other by van der Waals force. Thereby, since the hydrophilic part of the said inorganic compound and an organic compound gathers, the passage of water can be thickened and moisture permeability can be improved more.

また、前記有機化合物は、疎水性の炭化水素鎖と、親水性の官能基として第四級アンモニウム基とを含むこと特徴とする全熱交換素子用仕切部材とした。   Further, the organic compound includes a partition member for a total heat exchange element, which includes a hydrophobic hydrocarbon chain and a quaternary ammonium group as a hydrophilic functional group.

第四級アンモニウム基は電荷の偏りが大きな強塩基であり、水をひきつけることができる。また、第四級アンモニウム基は、水分子と水素結合せず、適度に水分子が移動しやすい構造である。このため、前記全熱交換素子用仕切部材の透湿性をより高めることができる。   The quaternary ammonium group is a strong base with a large charge bias and can attract water. In addition, the quaternary ammonium group has a structure in which water molecules do not hydrogen bond with water molecules and the water molecules easily move moderately. For this reason, the moisture permeability of the partition member for a total heat exchange element can be further enhanced.

また、前記構成の全熱交換素子用仕切板部材を用いた全熱交換素子とした。   Moreover, it was set as the total heat exchange element using the partition plate member for total heat exchange elements of the said structure.

透湿性能の高い全熱交換素子用仕切部材によって、全熱交換効率が高い全熱交換素子を得ることができる。   A total heat exchange element with high total heat exchange efficiency can be obtained by the partition member for total heat exchange elements with high moisture permeability.

また、前記構成の全熱交換素子を用いた熱交換形換気装置とした。   Moreover, it was set as the heat exchange type | mold ventilation apparatus using the total heat exchange element of the said structure.

この構成により、全熱交換効率が高い熱交換形換気装置を得ることができる。   With this configuration, it is possible to obtain a heat exchange type ventilator with high total heat exchange efficiency.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

(実施の形態)
図1は、本発明の実施の形態の全熱交換素子用仕切部材1を示す断面図である。
(Embodiment)
FIG. 1 is a cross-sectional view showing a partition member 1 for a total heat exchange element according to an embodiment of the present invention.

全熱交換素子用仕切部材1は、親水性無機化合物としての無機粒子2を含む多孔質基材3に、疎水性の炭化水素鎖と親水性の官能基として第四級アンモニウム基とを含む有機化合物として親水性樹脂4の溶液を塗布して固化したものである。   The partition member 1 for a total heat exchange element is an organic material containing a hydrophobic hydrocarbon chain and a quaternary ammonium group as a hydrophilic functional group in a porous substrate 3 containing inorganic particles 2 as a hydrophilic inorganic compound. A solution of the hydrophilic resin 4 as a compound is applied and solidified.

多孔質基材3は、両面を貫通した空隙5が多数存在し、無機粒子2の少なくとも一部が、空隙5から一部露出した構造となっている。そして、親水性樹脂4が空隙5を塞いでいる。   The porous substrate 3 has a structure in which a large number of voids 5 penetrating both surfaces exist, and at least a part of the inorganic particles 2 is partially exposed from the voids 5. The hydrophilic resin 4 closes the gap 5.

上記のように、無機粒子2が親水性であるため、無機粒子2を中心として親水性樹脂4に含まれる親水性の官能基が集まることで水の通り道を太くすることができ、透湿性を高めることができる。また、無機粒子2と親水性樹脂4が水に不溶であるため、全熱交換素子用仕切部材1からの溶出や流出などを抑制することができる。   As described above, since the inorganic particles 2 are hydrophilic, the hydrophilic functional groups contained in the hydrophilic resin 4 are gathered around the inorganic particles 2 so that the water passage can be thickened and moisture permeability can be increased. Can be increased. Moreover, since the inorganic particles 2 and the hydrophilic resin 4 are insoluble in water, elution or outflow from the partition member 1 for the total heat exchange element can be suppressed.

さらに、多孔質基材3に親水性樹脂4を固化することで、全熱交換素子用仕切部材1の形状が湿度環境によらず安定し、様々な湿度環境で使用することができる。   Furthermore, by solidifying the hydrophilic resin 4 on the porous substrate 3, the shape of the partition member 1 for the total heat exchange element is stabilized regardless of the humidity environment, and can be used in various humidity environments.

無機粒子2と親水性樹脂4に含まれる官能基が共に親水性なので、空隙5にある無機粒子2に親水性樹脂4が引き付けられることで、空隙5を効率よく埋めることができる。   Since both the functional groups contained in the inorganic particles 2 and the hydrophilic resin 4 are hydrophilic, the hydrophilic resin 4 is attracted to the inorganic particles 2 in the voids 5 so that the voids 5 can be filled efficiently.

親水性樹脂4と無機粒子2が共に分極していることで、ファンデルワールス力によりお互いに引き付け合う。それにより、無機粒子2と親水性樹脂4の親水性部分が集まるので水の通り道を太くすることができ、透湿性をより高めることができる。   Since both the hydrophilic resin 4 and the inorganic particles 2 are polarized, they are attracted to each other by van der Waals force. Thereby, since the hydrophilic part of the inorganic particle 2 and the hydrophilic resin 4 gathers, the passage of water can be thickened and moisture permeability can be improved more.

また、親水性樹脂4に含まれる第四級アンモニウム基は電荷の偏りが大きな強塩基であり、水をひきつけることができる。また、第四級アンモニウム基は、水分子と水素結合せず、適度に水分子が移動しやすい構造である。このため、全熱交換素子用仕切部材1の透湿性をより高めることができる。   Moreover, the quaternary ammonium group contained in the hydrophilic resin 4 is a strong base with a large bias in charge, and can attract water. In addition, the quaternary ammonium group has a structure in which water molecules do not hydrogen bond with water molecules and the water molecules easily move moderately. For this reason, the moisture permeability of the partition member 1 for total heat exchange elements can be improved more.

なお、無機粒子2を構成する際に用いる無機化合物としては、親水性であり、水に不溶であればよい。例えば、シリカ、炭酸カルシウム、チタン酸バリウムなどが挙げられる。   In addition, as an inorganic compound used when comprising the inorganic particle 2, it is hydrophilic and should just be insoluble in water. Examples thereof include silica, calcium carbonate, barium titanate and the like.

特に、分極しているものとしてチタン酸バリウムがより好適である。   In particular, barium titanate is more preferable as a polarized one.

なお、無機粒子2の径の平均は、例えば0.01〜50μm、より好ましくは0.01〜5μmである。0.01μmを下回ると、無機粒子2の周辺に充分に親水性の官能基を配置することが出来ず、水の通り道が狭くなり、透湿性能が低下する可能性がある。また、無機粒子2の径の周りに水の通り道が形成されるため、無機粒子2の径が50μmを上回ると、水が多孔質基材3内部を通過する移動距離が長くなり、水の移動抵抗が増加して透湿性能が低下する可能性がある。   In addition, the average diameter of the inorganic particles 2 is, for example, 0.01 to 50 μm, and more preferably 0.01 to 5 μm. When the thickness is less than 0.01 μm, a sufficiently hydrophilic functional group cannot be arranged around the inorganic particles 2, the water passage becomes narrow, and the moisture permeability may be lowered. In addition, since a water passage is formed around the diameter of the inorganic particles 2, if the diameter of the inorganic particles 2 exceeds 50 μm, the movement distance of the water passing through the inside of the porous substrate 3 becomes long, and the movement of the water There is a possibility that the resistance increases and the moisture permeation performance decreases.

なお、多孔質基材3の空隙5の径の平均は例えば0.05〜100μm、より好ましくは0.05〜10μmである。空隙5の径が0.05μmを下回ると、親水性樹脂4が多孔質基材3の空隙5内に充填しにくくなり、多孔質基材3内部に微細な空間が生じて水の移動抵抗となるため、透湿性能が低下する恐れがある。空隙5の径が100μmを上回ると、多孔質基材3内部に充填した親水性樹脂4が、水の吸脱着によってその体積を変化させた場合に、多孔質基材3から抜け落ちてしまいガスバリア性が低下する可能性がある。   In addition, the average of the diameter of the space | gap 5 of the porous base material 3 is 0.05-100 micrometers, for example, More preferably, it is 0.05-10 micrometers. If the diameter of the void 5 is less than 0.05 μm, the hydrophilic resin 4 is difficult to fill in the void 5 of the porous base material 3, and a fine space is generated inside the porous base material 3, so Therefore, there is a possibility that the moisture permeability performance is lowered. When the diameter of the void 5 exceeds 100 μm, the hydrophilic resin 4 filled in the porous base material 3 falls out of the porous base material 3 when its volume is changed by adsorption / desorption of water, and gas barrier properties. May be reduced.

なお、空隙5の形状は直線的でも、曲線部を備えているもしくは分岐しているか途中で孔径に変化を生じているなどの形状でも良く、多孔質基材3の両面を貫通しているものであれば良い。   In addition, the shape of the void 5 may be linear, may have a curved portion, or may be branched or a shape in which the pore diameter is changed in the middle, and penetrates both surfaces of the porous substrate 3. If it is good.

多孔質基材3の厚さは例えば0.1〜200μm、より好ましくは1〜60μmのものである。多孔質基材3の厚みが0.1μmを下回ると強度が低くなりすぎて全熱交換素子用仕切部材1として強度が不足してしまう恐れがある。多孔質基材3の厚みが200μmを上回ると、水が多孔質基材3内部を通過する移動距離が長くなり、水の移動抵抗が増加するため、透湿性能が不足してしまう恐れがある。   The thickness of the porous substrate 3 is, for example, 0.1 to 200 μm, more preferably 1 to 60 μm. If the thickness of the porous substrate 3 is less than 0.1 μm, the strength becomes too low, and the strength as the partition member 1 for the total heat exchange element may be insufficient. If the thickness of the porous substrate 3 exceeds 200 μm, the movement distance through which the water passes through the porous substrate 3 becomes longer, and the movement resistance of the water increases, so that the moisture permeability performance may be insufficient. .

なお、多孔質基材3の空隙率が30〜95%、より好ましくは50〜95%であるのものがよい。空隙率が30%を下回ると、空隙5に充填される親水性樹脂4の割合が小さくなりすぎて、全熱交換素子用仕切部材1とした場合に透湿性能が不足してしまう恐れがある。また、この空隙率が95%を上回ると、親水性樹脂4の割合が大きくなりすぎて全熱交換素子用仕切部材1として強度が不足してしまう恐れがある。   In addition, the thing whose porosity of the porous base material 3 is 30 to 95%, More preferably, it is 50 to 95% is good. If the porosity is less than 30%, the ratio of the hydrophilic resin 4 filled in the void 5 becomes too small, and the moisture permeation performance may be insufficient when the partition member 1 for a total heat exchange element is used. . Moreover, when this porosity exceeds 95%, the ratio of the hydrophilic resin 4 will become large too much, and there exists a possibility that intensity | strength may be insufficient as the partition member 1 for total heat exchange elements.

なお、本発明の多孔質基材3の材質は、耐水性を備えていれば特に制限は無く、無機材料ではガラス、アルミナまたはシリカなどのセラミックスなどが挙げられる。また、有機材料では、ポリプロピレンやポリエチレン、ポリウレタン、ポリテトラフルオロエチレン、セルロースアセテート、ニトロセルロース、麻、ポリエステル、ポリケトン、ポリアミド、エチレン‐テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン‐六フッ化プロピレン共重合体などが挙げられる。形状はフィルム状のものや、不織布、織布など条件を満たすものであれば特に制限は無く、単一材料からなるものでも複合材料からなるものでも良い。   The material of the porous substrate 3 of the present invention is not particularly limited as long as it has water resistance, and examples of inorganic materials include glass, ceramics such as alumina or silica, and the like. Organic materials include polypropylene, polyethylene, polyurethane, polytetrafluoroethylene, cellulose acetate, nitrocellulose, hemp, polyester, polyketone, polyamide, ethylene-tetrafluoroethylene copolymer, and polytetrafluoroethylene-perfluoroalkyl vinyl ether. Examples thereof include a polymer and a polytetrafluoroethylene-hexafluoropropylene copolymer. The shape is not particularly limited as long as it satisfies the conditions such as a film shape, a non-woven fabric, and a woven fabric. The shape may be a single material or a composite material.

なお、多孔質基材3に無機粒子2を含める方法としては、例えば、上記有機材料に無機粒子2を練りこんでから延伸して多孔質化する方法や、上記無機材料に無機粒子2を塗布して焼き固める方法、多孔質化した材料に塗布して接着させる方法など、既知の手法を用いることができる。   In addition, as a method of including the inorganic particles 2 in the porous substrate 3, for example, the inorganic particles 2 are kneaded into the organic material and then stretched to make it porous, or the inorganic particles 2 are applied to the inorganic material. Then, known methods such as a method of baking and solidifying and a method of applying and bonding to a porous material can be used.

なお、親水性樹脂4は水に不溶で、親水性の官能基を持つものであればよい。親水性の官能基は例えば、スルホン酸基、アミノ基、カルボキシル基、ヒドロキシ基、ポリオキシレン基などが挙げられ、特に、第四級アンモニウム基が好ましい。これらの官能基を末端あるいは側鎖に持つ非水溶性高分子化合物や、上記親水性の官能基を含む有機化合物を重合/架橋等によって高分子化し水に溶けにくくしたものを親水性樹脂4として使用できる。   The hydrophilic resin 4 only needs to be insoluble in water and have a hydrophilic functional group. Examples of the hydrophilic functional group include a sulfonic acid group, an amino group, a carboxyl group, a hydroxy group, and a polyoxylene group, and a quaternary ammonium group is particularly preferable. A water-insoluble polymer compound having these functional groups at the terminal or side chain, or an organic compound containing the above-mentioned hydrophilic functional group that has been polymerized by polymerization / crosslinking or the like to make it difficult to dissolve in water is designated as hydrophilic resin 4 Can be used.

なお、図1では多孔質基材3の両面に親水性樹脂4が固化しているが、片面や空隙5内部だけに固化した場合でも効果は同じである。   In FIG. 1, the hydrophilic resin 4 is solidified on both surfaces of the porous substrate 3, but the effect is the same even when solidified only on one surface or inside the void 5.

また、図2に、全熱交換素子用仕切部材1を用いた全熱交換素子ピース6を積層し、給気流7と排気流8を交互に通過させ、熱交換を行う全熱交換素子9の概略図を示した。   Further, in FIG. 2, the total heat exchange element piece 6 using the partition member 1 for the total heat exchange element is stacked, and the total heat exchange element 9 that performs heat exchange by alternately passing the supply air flow 7 and the exhaust flow 8 is shown. A schematic diagram is shown.

この構成により、透湿性能の高い全熱交換素子用仕切部材1によって、全熱交換効率が高い全熱交換素子9を得ることができる。   With this configuration, the total heat exchange element 9 with high total heat exchange efficiency can be obtained by the partition member 1 for total heat exchange element with high moisture permeability.

また、熱交換形換気装置として、全熱交換素子9を用いた構成としてもよい。   Moreover, it is good also as a structure using the total heat exchange element 9 as a heat exchange type ventilator.

この構成により、全熱交換効率が高い熱交換形換気装置を得ることができる。   With this configuration, it is possible to obtain a heat exchange type ventilator with high total heat exchange efficiency.

本発明にかかる全熱交換素子用仕切部材およびその素材を用いた全熱交換素子及びその素子を用いた熱交換形換気装置は、全熱交換効率が高いので、例えば室内の空気を排気する排気流と、室外の空気を室内へ給気する給気流との間で熱交換する熱交換形換気装置などとして有用である。   The total heat exchange element partition member according to the present invention, the total heat exchange element using the material, and the heat exchange ventilator using the element have high total heat exchange efficiency. For example, exhaust for exhausting indoor air This is useful as a heat exchange ventilator that exchanges heat between the air flow and an air supply air that supplies outdoor air into the room.

1 全熱交換素子用仕切部材
2 無機粒子
3 多孔質基材
4 親水性樹脂
5 空隙
6 全熱交換素子ピース
7 給気流
8 排気流
9 全熱交換素子
DESCRIPTION OF SYMBOLS 1 Partition member for total heat exchange elements 2 Inorganic particle 3 Porous base material 4 Hydrophilic resin 5 Void 6 Total heat exchange element piece 7 Supply air flow 8 Exhaust flow 9 Total heat exchange element

Claims (6)

両面を流れる2気流間で潜熱と顕熱を交換させる全熱交換素子用仕切部材が、親水性の無機化合物と、親水性の官能基を持つ有機化合物とを含み、前記無機化合物と前記有機化合物は水に不溶であり、前記有機化合物と前記無機化合物が共に分極し、前記全熱交換素子用仕切部材の両面に亘って水の通り道を形成することを特徴とする全熱交換素子用仕切部材。 A partition member for a total heat exchange element that exchanges latent heat and sensible heat between two airflows flowing on both sides includes a hydrophilic inorganic compound and an organic compound having a hydrophilic functional group, and the inorganic compound and the organic compound the Ri insoluble der in water, wherein the inorganic compound and the organic compound is polarized both total heat exchange element for a partition, characterized in that the over the both surfaces of the total heat-exchanging element for the partition member to form the passage of water Element. 前記全熱交換素子用仕切部材は多孔質基材を備え、この多孔質基材の空隙の少なくとも一部に前記無機化合物と親水性の官能基を持つ前記有機化合物とが含まれていることを特徴とする請求項1に記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element includes a porous substrate, and the inorganic compound and the organic compound having a hydrophilic functional group are included in at least a part of the void of the porous substrate. The partition member for a total heat exchange element according to claim 1, wherein the partition member is a total heat exchange element. 前記全熱交換素子用仕切部材は多孔質基材を備え、この多孔質基材に前記無機化合物と親水性の官能基を持つ前記有機化合物とが含まれていることを特徴とする請求項1に記載の全熱交換素子用仕切部材。 Claim 1, wherein the total heat exchanging element for the partition member comprises a porous substrate, wherein said contains an organic compound having the above to the porous substrate inorganic compound and a hydrophilic functional group The partition member for total heat exchange elements as described in 2. 前記有機化合物は、疎水性の炭化水素鎖と、親水性の官能基として第四級アンモニウム基とを含むこと特徴とする請求項1からのいずれかに記載の全熱交換素子用仕切部材。 The partition member for a total heat exchange element according to any one of claims 1 to 3 , wherein the organic compound includes a hydrophobic hydrocarbon chain and a quaternary ammonium group as a hydrophilic functional group. 請求項1から4のいずれかに記載の全熱交換素子用仕切板部材を用いた全熱交換素子。 A total heat exchange element using the partition plate member for a total heat exchange element according to claim 1. 請求項5に記載の全熱交換素子を用いた熱交換形換気装置。
A heat exchange type ventilator using the total heat exchange element according to claim 5.
JP2012280669A 2012-12-25 2012-12-25 Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member Active JP6142282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012280669A JP6142282B2 (en) 2012-12-25 2012-12-25 Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012280669A JP6142282B2 (en) 2012-12-25 2012-12-25 Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member

Publications (2)

Publication Number Publication Date
JP2014126213A JP2014126213A (en) 2014-07-07
JP6142282B2 true JP6142282B2 (en) 2017-06-07

Family

ID=51405861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012280669A Active JP6142282B2 (en) 2012-12-25 2012-12-25 Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member

Country Status (1)

Country Link
JP (1) JP6142282B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364618B2 (en) * 2013-09-17 2018-08-01 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62170381A (en) * 1986-01-24 1987-07-27 Canon Inc Recorded material
JPH0649132B2 (en) * 1987-03-05 1994-06-29 ニチアス株式会社 Dehumidifying element manufacturing method
JP3346680B2 (en) * 1995-05-11 2002-11-18 株式会社西部技研 Adsorbent for moisture exchange
US6145588A (en) * 1998-08-03 2000-11-14 Xetex, Inc. Air-to-air heat and moisture exchanger incorporating a composite material for separating moisture from air technical field
JP4980789B2 (en) * 2006-06-05 2012-07-18 レンゴー株式会社 Total heat exchanger seat
JP2011141065A (en) * 2010-01-06 2011-07-21 Panasonic Corp Heat exchange element

Also Published As

Publication number Publication date
JP2014126213A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
US9517433B2 (en) Selective water vapour transport membranes comprising a nanofibrous layer and methods for making the same
TWI311636B (en)
JP5816821B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
WO2012018089A1 (en) Diaphragm and heat exchanger using same
JP5230821B2 (en) Total heat exchanger and method of manufacturing partition plate used therefor
JP2011163651A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2008089199A (en) Total enthalpy heat exchanger
WO2017090232A1 (en) Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
JP6387514B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP6357651B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP6142282B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
WO2007116567A1 (en) Total enthalpy heat exchanger
JP2017150805A (en) Partition member for total heat exchange element, and total heat exchange element and total heat exchange type ventilation device using the material
JP2007315649A (en) Total enthalpy heat exchanger
JP2013242130A (en) Partition member for total heat exchange element, total heat exchange element using the partition member, and heat exchange ventilator
CN203060970U (en) Superfine one-felt two-membrane needle punched filter material
US20160123609A1 (en) Partition member for total heat exchange element, total heat exchange element using this member, and total heat exchange type ventilation device
JP6340577B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
JP2016080269A (en) Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device
JP6364618B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JPS6130609B2 (en)
Abdullah et al. Synthesis, Characterization and Permeance Evaluation of Nanofiller-Enhanced Polyvinyl Alcohol/Potassium Formate-Based Membranes
JP2008292061A (en) Total enthalpy heat exchanger
CN104248914A (en) Reverse osmosis membrane and preparation method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170321

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170403

R151 Written notification of patent or utility model registration

Ref document number: 6142282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151