JPS6130609B2 - - Google Patents

Info

Publication number
JPS6130609B2
JPS6130609B2 JP54025831A JP2583179A JPS6130609B2 JP S6130609 B2 JPS6130609 B2 JP S6130609B2 JP 54025831 A JP54025831 A JP 54025831A JP 2583179 A JP2583179 A JP 2583179A JP S6130609 B2 JPS6130609 B2 JP S6130609B2
Authority
JP
Japan
Prior art keywords
moisture
gas shield
permeable gas
shield according
white carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54025831A
Other languages
Japanese (ja)
Other versions
JPS55119421A (en
Inventor
Kenzo Takahashi
Kimie Enmanji
Hiroshi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2583179A priority Critical patent/JPS55119421A/en
Publication of JPS55119421A publication Critical patent/JPS55119421A/en
Publication of JPS6130609B2 publication Critical patent/JPS6130609B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • F24F2203/1036Details

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 この発明は、空気調和(以下空調という)機器
の全熱交換器の仕切板等に用いられる透湿性気体
遮蔽物、特に気体の選択透過性および難燃性を改
善した透湿性気体遮蔽物に関するものである。
[Detailed Description of the Invention] This invention provides a moisture-permeable gas shield used for partition plates of total heat exchangers of air conditioners (hereinafter referred to as air conditioning) equipment, and in particular has improved gas selective permeability and flame retardancy. It relates to a moisture permeable gas shield.

近時、暖房あるいは冷戻等の空調機器が発達、
かつ普及し、これを用いた居住空間が拡大される
につれて、換気の際に温度および湿度を回収でき
る空調用全熱交換器に対する要求が高まつてきて
いる。このような空調用全熱交換器の仕切板とし
て用いられる部材の特性としては、通気性が小さ
く、しかも透湿性が大きいことと同時に難燃性を
もつことが要求される。これは、使用時に屋外か
ら屋内に吸入される新鮮な空気と、屋内から屋外
に排出される汚れた空気とが混合することなく、
しかも顕熱と同時に潜熱(水蒸気がもつている気
化熱)も熱交換できるようにするために、水蒸気
が吸入空気と排出空気との間で効率良く移行する
こと、およびこのような空調機器の部材には消防
法上難燃性をもつことが要求されるからである。
Recently, air conditioning equipment such as heating or cooling has been developed.
As they become more popular and the living spaces using them expand, there is an increasing demand for air conditioning total heat exchangers that can recover temperature and humidity during ventilation. The characteristics of the member used as the partition plate of such a total heat exchanger for air conditioning are required to have low air permeability, high moisture permeability, and flame retardancy. This prevents the fresh air taken into the room from outdoors from mixing with the dirty air exhausted from the indoors to the outdoors during use.
Moreover, in order to enable heat exchange of latent heat (heat of vaporization of water vapor) at the same time as sensible heat, it is important that water vapor is transferred efficiently between intake air and exhaust air, and that the components of such air conditioning equipment are This is because fire retardancy is required under the Fire Service Act.

このような要求に対処するために、この発明の
発明者等は既に吸湿剤としてハロゲン化リチウム
と必要に応じて難燃剤を含む水溶性高分子物質
を、例えば紙、布、不織布、アスベスト紙または
セラミツクスの薄板等の多孔質部材に含浸または
塗布することにより、通気性が小さく、しかも透
湿性が大きいという、透湿性を改善した気体遮蔽
物を発明した(特許第888975号)。
In order to meet such demands, the inventors of the present invention have already developed water-soluble polymeric materials containing lithium halide and optionally flame retardants as moisture absorbers, such as paper, cloth, non-woven fabric, asbestos paper or We have invented a gas shield with improved moisture permeability, which has low air permeability and high moisture permeability by impregnating or coating a porous member such as a thin ceramic plate (Patent No. 888975).

この透湿性気体遮蔽物の透湿係数(透湿性の定
量値)および透気係数(通気性の定量値)は、前
記吸湿剤および水溶性高分子物質の含有率に依存
するもので、透湿係数は主として吸湿剤の含有率
の増加と共に増大し、透気係数は主として水溶性
高分子物質の含有率の増加と共に減少する。しか
し、透湿性気体遮蔽物の透湿係数と透気係数はそ
れぞれ独立に変化するのではなく、透気係数を小
さくするために水溶性高分子物質の含有率を増加
させると、透湿係数も小さくなる。また、透湿係
数を大きくするために吸湿剤の含有率を増加させ
ると、高湿度時にドレインが発生するという問題
を生じる。量産加工においても、吸湿剤および水
溶性高分子物質の含有率の増加は、これらを含浸
処理後乾燥した透湿性気体遮蔽物の可撓性を低下
させ、この透湿性気体遮蔽物の巻き取り時に折れ
たり、巻き取つた透湿性気体遮蔽物を巻き戻す時
に吸湿した薬剤が巻き取り面を接着して巻き戻す
ことができなくなるという問題を生じる。以上の
理由によつて薬剤、すなわち吸湿剤、高分子物質
の含有率を任意に増加させることはできない。
The moisture permeability coefficient (quantitative value of moisture permeability) and the air permeability coefficient (quantitative value of air permeability) of this moisture-permeable gas shield depend on the content of the moisture absorbent and water-soluble polymeric substance. The coefficient increases mainly with an increase in the content of the moisture absorbent, and the air permeability coefficient decreases mainly with an increase in the content of the water-soluble polymeric substance. However, the moisture permeability coefficient and the air permeability coefficient of a moisture-permeable gas shield do not change independently, but when the content of water-soluble polymeric substances is increased to reduce the air permeability coefficient, the moisture permeability coefficient also increases. becomes smaller. Furthermore, if the content of the moisture absorbent is increased in order to increase the moisture permeability coefficient, a problem arises in that drainage occurs at high humidity. Even in mass production processing, an increase in the content of moisture absorbers and water-soluble polymer substances reduces the flexibility of the moisture-permeable gas shield that is dried after impregnating them. When the moisture-permeable gas shield is folded or rolled up, the moisture-absorbed drug adheres to the rolled-up surface, causing a problem that it becomes impossible to unwind it. For the above reasons, it is not possible to arbitrarily increase the content of the drug, ie, the moisture absorbent and the polymeric substance.

透湿性気体遮蔽物の素材としては、紙、布、不
織布、アスベスト紙等の繊維性多孔質部材が性
能、加工性、価格等の面で有利であることから多
用されている。そこで、この発明の発明者等は、
薬剤の含有率を増加させずに、透湿性気体遮蔽物
の気体の選択透過性を改善するための方法を見い
出すために、繊維性多孔質部材の透湿係数PH2O
および炭酸ガスを代表とする透気係数PCO2と、
これらの部材の構成因子との関係について詳細に
調べた。その結果、繊維性多孔質部材の透気係数
CO2は部材の空隙率εと空隙の屈曲率qの関数
として次の(1)式のように表わせることが分かつ
た。
As materials for moisture-permeable gas shields, fibrous porous members such as paper, cloth, nonwoven fabric, and asbestos paper are often used because they are advantageous in terms of performance, workability, cost, and the like. Therefore, the inventors of this invention,
In order to find a way to improve the gas selective permeability of a moisture-permeable gas barrier without increasing the drug content, the moisture permeability coefficient P H2O of the fibrous porous member was investigated.
and the air permeability coefficient P CO2 represented by carbon dioxide gas,
The relationship between these components and their constituent factors was investigated in detail. As a result, it was found that the air permeability coefficient P CO2 of the fibrous porous member can be expressed as a function of the porosity ε of the member and the curvature q of the voids as shown in the following equation (1).

CO2=(ε/q2)・P゜CO2… (1) ただし、P゜CO2は空気中における炭酸ガスの
透気係数を表わし、25℃で1.41×10-3Kg/m・
h・cmHgの値をもつ。
P CO2 = (ε/q 2 )・P゜CO2 … (1) However, P゜CO2 represents the permeability coefficient of carbon dioxide gas in the air, which is 1.41×10 -3 Kg/m・
It has a value of h・cmHg.

また、透湿係数PH2Oは水蒸気として透過する
成分と、部材の表面に吸着後凝集した液状水が毛
細管現象によつて背面に透過し、再び気化する成
分Plの和として次の(2)式のように表わせることも
分かつた。
In addition, the moisture permeability coefficient P H2O is calculated as the sum of the component that permeates as water vapor and the component Pl, which is liquid water that aggregates after being adsorbed on the surface of the member, passes through the back surface by capillary action, and vaporizes again. I also found that it can be expressed as

H2O=(ε/q2)・P゜H2O+Pl… (2) ただし、P゜H2Oは空気中における透湿係数を
表わし、25℃で8.94×10-4Kg/m・h・cmHgの
値をもつ。
P H2O = (ε/q 2 )・P゜H2O + Pl… (2) However, P゜H2O represents the moisture permeability coefficient in air, which is 8.94×10 -4 Kg/m・h・cmHg at 25℃. have.

上記(1)式および(2)式から、素材の空隙率および
屈曲率が決まれば透気係数および透湿係数の第1
項が定まり、素材に対する気体の選択透過性はPl
が大きいほど良くなることが分かる。そして、薬
剤のうち水溶性高分子化合物は空隙率の減少およ
び屈曲率の増大に作用し、吸湿剤はPlの増大に作
用する。
From equations (1) and (2) above, if the porosity and curvature of the material are determined, the first coefficient of air permeability and moisture permeability
The term is determined, and the selective permeability of gas to the material is Pl
It can be seen that the larger the value, the better. Of the drugs, the water-soluble polymer compound acts to reduce the porosity and increase the tortuosity, and the hygroscopic agent acts to increase Pl.

繊維性多孔質部材の屈曲率は、その測定結果に
より、微細な繊維が緻密に絡まり合つて複雑な空
間分布を有するほど大きくなることが分かつた。
また、Plは材料の含水率および毛細管力の関数と
考えられ、吸湿性が大きいほど、また微細な繊維
が緻密に絡み合つているほど大きいことが分かつ
た。さらに、これに多孔性の微粒子を充填するこ
とによつて特性がより改善されることを見い出し
た。このような素材を選択すれば薬剤の含有率を
増加させなくても、透湿性気体遮蔽物に対する気
体の選択透過性を改善できることが明らかとなつ
た。
The measurement results showed that the flexural index of a fibrous porous member increases as the fine fibers become more closely intertwined and have a more complex spatial distribution.
In addition, Pl is considered to be a function of the water content of the material and capillary force, and it was found that the higher the hygroscopicity and the more closely intertwined the fine fibers, the higher the value. Furthermore, it has been found that the properties can be further improved by filling this with porous fine particles. It has become clear that by selecting such a material, the selective permeability of gas to the moisture-permeable gas shield can be improved without increasing the drug content.

このような知見に基づいて、上述した要求を満
足する繊維性多孔質部材として、粒径が0.01〜
0.5μmの多孔性のホワイトカーボンとセルロー
ス繊維を混抄したホワイトカーボン紙を試作し、
この混抄紙に吸湿剤と必要に応じて難燃剤を含む
水溶性高分子物質を種々の含有率になるように含
浸させて透湿性気体遮蔽物を製造し、その透湿係
数および透気係数を測定した結果、薬剤の含有率
が低くても高度の気体の選択透過性および難燃性
を実現できることを見い出し、この発明を完成さ
せるに至つた。
Based on this knowledge, we have developed a fibrous porous material that satisfies the above requirements with a particle size of 0.01~
We prototyped white carbon paper made by mixing 0.5μm porous white carbon and cellulose fibers.
This mixed paper is impregnated with a water-soluble polymer substance containing a moisture absorbent and, if necessary, a flame retardant at various contents to produce a moisture permeable gas shield, and its moisture permeability coefficient and air permeability coefficient are determined. As a result of measurements, it was found that high gas selective perms and flame retardance can be achieved even with a low drug content, leading to the completion of this invention.

この発明において、上記ホワイトカーボンとし
ては、粒径が0.01〜0.5μmのものが好ましく、
特に0.05μm以下のものが気体の選択透過性に優
れ、好適である。
In this invention, the white carbon preferably has a particle size of 0.01 to 0.5 μm,
In particular, those having a diameter of 0.05 μm or less are preferable because they have excellent gas selective permeability.

セルロース繊維としては、長繊維の麻、楮、三
椏、綿繊維あるいは木材パルプが用いられる。
As the cellulose fiber, long-fiber hemp, mulberry, mitsumata, cotton fiber, or wood pulp is used.

上記吸湿剤としては、一般に乾燥剤として使用
されているハロゲン化合物、酸化物、塩類、水酸
化物をはじめ、吸湿性物質あるいは多価アルコー
ル類を用いることができ、特に塩化リチウムが好
適である。
As the hygroscopic agent, halogen compounds, oxides, salts, hydroxides, hygroscopic substances or polyhydric alcohols, which are generally used as drying agents, can be used, and lithium chloride is particularly suitable.

難燃剤としては、一般に紙類の難燃剤として使
用されているグアニジン塩類が用いられるが、特
に塩酸グアニジンは吸湿性が強く、吸湿剤も兼ね
るので好適である。
As the flame retardant, guanidine salts, which are generally used as flame retardants for paper, are used, but guanidine hydrochloride is particularly suitable because it has strong hygroscopicity and also serves as a hygroscopic agent.

上記水溶性高分子物質としては、通常一般の水
溶性高分子樹脂、天然樹脂あるいはこれらの混合
物、例えばポリビニルアルコール樹脂、ポリビニ
ルメチルエーテル樹脂、ポリアクリル酸樹脂、ポ
リメタクリル酸樹脂、メチルセルロース等が用い
られるが、特にポリビニルアルコールまたはヒド
ロキシエチルセルロースが好適である。
As the water-soluble polymer substance, commonly used water-soluble polymer resins, natural resins, or mixtures thereof, such as polyvinyl alcohol resins, polyvinyl methyl ether resins, polyacrylic acid resins, polymethacrylic acid resins, methyl cellulose, etc. are used. However, polyvinyl alcohol or hydroxyethyl cellulose is particularly suitable.

上記繊維性多孔質部材に吸湿剤を含む高分子物
質を含有させる場合、吸湿剤1〜5重量%および
水溶性高分子物質5〜20重量%の水溶液または必
要に応じて難燃剤10〜20重量%を含む水溶液を調
整し、この水溶液を用いて繊維性多孔質部材に含
浸または塗布する。この時、これらの薬剤の含有
率は繊維性多孔質部材に対して10〜90重量%とな
るようにすることが好ましい。含有率が10重量%
以下では透気係数が大き過ぎ、また90重量%以上
では上述したように透湿係数の低下、高湿度時の
ドレイン発生という問題を生じるだけでなく、量
産加工時に巻き取り、巻き戻しが困難になるので
好ましくない。
When the above-mentioned fibrous porous member contains a polymeric substance containing a moisture absorbent, an aqueous solution of 1 to 5% by weight of the moisture absorbent and 5 to 20% by weight of a water-soluble polymeric substance, or 10 to 20% by weight of a flame retardant as necessary. A fibrous porous member is impregnated or coated with this aqueous solution. At this time, it is preferable that the content of these drugs is 10 to 90% by weight based on the fibrous porous member. Content is 10% by weight
If it is less than 90% by weight, the air permeability coefficient will be too large, and if it is more than 90% by weight, it will not only cause problems such as a decrease in the moisture permeability coefficient and the occurrence of drains at high humidity as described above, but also make it difficult to wind and unwind during mass production processing. This is not desirable.

ホワイトカーボン紙の機械強度の指標となる抗
張力とホワイトカーボン混抄率の関係は第1図に
示すようになる。量産加工においては1Kg/15mm
以上が必要とされることにより、ホワイトカーボ
ン混抄率は60%以下とすることが好ましい。
The relationship between the tensile strength, which is an index of the mechanical strength of white carbon paper, and the white carbon mixing ratio is shown in Figure 1. 1Kg/15mm in mass production processing
Because of the above requirements, the white carbon mixing ratio is preferably 60% or less.

薬剤含有率が30重量%の透湿性気体遮蔽物の透
湿係数および難燃性の定量値である酸素指数
(JIS−K7201にその試験法が規定されている)の
ホワイトカーボン混抄率依存性をそれぞれ第2図
および第3図に示す。
The dependence of the oxygen index (the test method is specified in JIS-K7201), which is a quantitative value of the moisture permeability coefficient and flame retardance of a moisture-permeable gas shield with a drug content of 30% by weight, on the white carbon mixing ratio was determined. They are shown in FIGS. 2 and 3, respectively.

尚上記において吸湿剤としては塩化リチウム、
又高分子物質としてポリビニルアルコール、難燃
剤として塩酸グアニジンを用い、各々5重量%、
10重量%及び20重量%の水溶液を調製し、ホワイ
トカーボンの混抄率の異る混抄紙に対して約30重
量%(固形分量)含有させた。
In the above, the moisture absorbent is lithium chloride,
In addition, polyvinyl alcohol was used as a polymeric substance, and guanidine hydrochloride was used as a flame retardant, each at 5% by weight.
Aqueous solutions of 10% by weight and 20% by weight were prepared, and the white carbon was added to about 30% by weight (solid content) of mixed papers with different mixing ratios.

第2図における曲線イは相対湿度60%、曲線ロ
は相対湿度20%の低湿度条件下での透湿係数であ
る。この第2図よりホワイトカーボン混抄率が高
い透湿性気体遮蔽物ほど湿度の影響が少なくな
り、低湿度条件下においても高い透湿係数を保持
できることが分かる。また、相対湿度60%の透湿
係数が1×10-4Kg/m・h・cmHg以上の好適な
値が得られるのはホワイトカーボン混抄紙が30%
以上である。
Curve A in Figure 2 is the moisture permeability coefficient under low humidity conditions of 60% relative humidity and curve B is 20% relative humidity. It can be seen from FIG. 2 that the moisture permeable gas shield having a higher white carbon mixing rate is less affected by humidity and can maintain a high moisture permeability coefficient even under low humidity conditions. In addition, white carbon mixed paper has a moisture permeability coefficient of 1×10 -4 Kg/m・h・cmHg or more at 60% relative humidity, which is 30%.
That's all.

一方、第3図における曲線イは上記試料、曲線
ロは薬剤から難燃剤を除いた試料の酸素指数であ
る。この第3図から、混抄率の増加と共に酸素指
数が急激に増大することが分かる。曲線イの場合
には混抄率10%以上で耐熱性に優れるノーメツク
スシートの酸素指数30を越えている。
On the other hand, curve A in FIG. 3 is the oxygen index of the above sample, and curve B is the oxygen index of the sample obtained by removing the flame retardant from the chemical. From FIG. 3, it can be seen that the oxygen index increases rapidly as the mixing ratio increases. In the case of curve A, the oxygen index of Nomex sheet, which has excellent heat resistance, exceeds 30 at a mixing ratio of 10% or more.

以上、透湿性気体遮蔽物の透湿性および難燃性
のホワイトカーボン混抄率依存性を検討した結
果、混抄率10〜60%の範囲で有効な特性を示し、
30〜60%が特に好適な特性となつている。
As a result of examining the dependence of the moisture permeability and flame retardance of the moisture permeable gas shield on the white carbon mixing ratio, we found that the properties are effective in the mixing ratio range of 10 to 60%.
A ratio of 30 to 60% is particularly suitable.

この発明による透湿性気体遮蔽物は、空気や炭
酸ガスのような気体は繊維間に形成された緻密な
高分子物質の薄膜に遮蔽されて透過することが殆
んど不可能であるが、水蒸気は上記繊維および薄
膜が吸湿性を有しているので、これらの表面に吸
着され、凝集して液状水となり、微細な繊維間に
存在する毛細管現象によつて移動し、背面で気化
することによつて透過する。また、毛細管を充満
させた液状水は、これらの毛細管を通しての気体
の透過を阻止しており、高度の気体の選択透過性
を与えることになる。さらに、素材として不燃性
のホワイトカーボンを混抄したので、全体として
の難燃性も大幅に向上する。
In the moisture-permeable gas shield according to the present invention, gases such as air and carbon dioxide are blocked by the thin film of dense polymer material formed between the fibers, making it almost impossible for them to pass through. Since the above-mentioned fibers and thin film have hygroscopic properties, water is adsorbed on their surfaces, aggregates, becomes liquid water, moves by the capillary phenomenon that exists between the fine fibers, and vaporizes on the back surface. It passes through. Additionally, the liquid water that fills the capillaries prevents gas from permeating through these capillaries, providing a high degree of gas selective permselectivity. Furthermore, since non-combustible white carbon is mixed as a material, the flame retardance as a whole is greatly improved.

この種の気体遮蔽物は、例えば空調機器用の全
熱交換器にそのまま、あるいは積層して使用され
るが、その特性上屋外から屋内に取り入れられる
新鮮な空気と、屋内から屋外に排出される汚れた
空気とが混合されることなく熱交換および水蒸気
がもつ潜熱の交換を行うことができる。これは、
全熱交換器の熱回収率を高くするだけでなく、屋
内の温度変化を少なくするため、衛生管理上から
も極めて有益である。また、高度の難燃性を有す
るために消防法の規定を満たすことができ、安全
である。
This type of gas shield is used, for example, in total heat exchangers for air conditioning equipment, either as is or in layers, but due to its characteristics, fresh air is taken in from the outdoors into the indoors, and fresh air is exhausted from the indoors to the outdoors. Heat exchange and the latent heat of water vapor can be performed without mixing with dirty air. this is,
This not only increases the heat recovery rate of the total heat exchanger, but also reduces indoor temperature changes, which is extremely beneficial from a sanitary management perspective. In addition, because it has a high degree of flame retardancy, it can meet the provisions of the Fire Service Act and is safe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る透湿性気体遮蔽物の素
材となるホワイトカーボン紙の抗張力とホワイト
カーボン混抄率との関係を示す図、第2図は上記
気体遮蔽物の透湿係数とホワイトカーボン混抄率
との関係を示す図、第3図は上記気体遮蔽物の酸
素指数とホワイトカーボン混抄率との関係を示す
図である。
Figure 1 is a diagram showing the relationship between the tensile strength of white carbon paper, which is the material of the moisture-permeable gas shield according to the present invention, and the white carbon mixing ratio, and Figure 2 is a diagram showing the relationship between the moisture permeability coefficient of the gas shield and the white carbon mixing ratio. FIG. 3 is a diagram showing the relationship between the oxygen index of the gas shield and the white carbon mixing ratio.

Claims (1)

【特許請求の範囲】 1 ホワイトカーボンとセルロース繊維を混抄し
た繊維性多孔質部材に、吸湿剤および難燃剤のう
ち少なくとも吸湿剤を含む水溶性高分子樹脂、天
然樹脂あるいはこれらの混合物である水溶性高分
子物質を含浸または塗布することにより含有させ
たことを特徴とする透湿性気体遮蔽物。 2 ホワイトカーボンとして、粒径0.01〜0.5μ
mの多孔質のシリカ微粒子を用いる特許請求の範
囲第1項記載の透湿性気体遮蔽物。 3 セルロース繊維として、長繊維の麻、楮、三
椏、綿繊維あるいは木材パルプを用いる特許請求
の範囲第1項記載の透湿性気体遮蔽物。 4 繊維性多孔質部材として、混抄率が10〜60重
量%のホワイトカーボン混抄紙を用いる特許請求
の範囲第1項記載の透湿性気体遮蔽物。 5 吸湿剤として、塩化リチウムを用いる特許請
求の範囲第1項記載の透湿性気体遮蔽物。 6 難燃剤として、グアニジン塩類を用いる特許
請求の範囲第1項記載の透湿性気体遮蔽物。 7 高分子物質として、水溶性のポリビニルアル
コールを用いる特許請求の範囲第1項記載の透湿
性気体遮蔽物。
[Scope of Claims] 1. A fibrous porous material made of a mixture of white carbon and cellulose fibers, and a water-soluble polymer resin, a natural resin, or a mixture thereof containing at least a hygroscopic agent among a hygroscopic agent and a flame retardant. A moisture-permeable gas shield characterized by containing a polymeric substance by impregnation or coating. 2 As white carbon, particle size 0.01~0.5μ
The moisture permeable gas shield according to claim 1, which uses porous silica fine particles of m. 3. The moisture-permeable gas shield according to claim 1, wherein long-fiber hemp, kozo, mitsumata, cotton fiber, or wood pulp is used as the cellulose fiber. 4. The moisture-permeable gas shield according to claim 1, wherein white carbon mixed paper having a mixing ratio of 10 to 60% by weight is used as the fibrous porous member. 5. The moisture permeable gas shield according to claim 1, wherein lithium chloride is used as the moisture absorbent. 6. The moisture-permeable gas shield according to claim 1, which uses guanidine salts as the flame retardant. 7. The moisture-permeable gas shield according to claim 1, in which water-soluble polyvinyl alcohol is used as the polymeric substance.
JP2583179A 1979-03-06 1979-03-06 Moisture permeable gas shield material Granted JPS55119421A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2583179A JPS55119421A (en) 1979-03-06 1979-03-06 Moisture permeable gas shield material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2583179A JPS55119421A (en) 1979-03-06 1979-03-06 Moisture permeable gas shield material

Publications (2)

Publication Number Publication Date
JPS55119421A JPS55119421A (en) 1980-09-13
JPS6130609B2 true JPS6130609B2 (en) 1986-07-15

Family

ID=12176797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2583179A Granted JPS55119421A (en) 1979-03-06 1979-03-06 Moisture permeable gas shield material

Country Status (1)

Country Link
JP (1) JPS55119421A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009649A1 (en) * 1988-04-05 1989-10-19 Shinkohjinkasei Co., Ltd. Highly functional regenerated cellulose composition
JPH02137329U (en) * 1989-04-18 1990-11-15

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129199A (en) * 1982-01-28 1983-08-02 Nippon Soken Inc Total heat exchanger
US6358300B1 (en) * 2000-03-28 2002-03-19 Honeywell Commercial Vehicle Systems Co. Lithium chloride desiccant for trailer air dryer and pressure swing dehydration
JP4932320B2 (en) * 2006-05-11 2012-05-16 富士電機株式会社 Adsorbing member with excellent adsorption / desorption performance and manufacturing method thereof
CN110756021A (en) * 2019-11-13 2020-02-07 徐州沿湖粮油储备库 Drying agent with anti-static function for grain bin

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989009649A1 (en) * 1988-04-05 1989-10-19 Shinkohjinkasei Co., Ltd. Highly functional regenerated cellulose composition
JPH02137329U (en) * 1989-04-18 1990-11-15

Also Published As

Publication number Publication date
JPS55119421A (en) 1980-09-13

Similar Documents

Publication Publication Date Title
WO2012018089A1 (en) Diaphragm and heat exchanger using same
EP2026029B1 (en) Sheets for total heat exchangers
KR100893819B1 (en) Heat exchanger and heat exchange ventilator
US20080047699A1 (en) Total heat exchanging element
US20120061045A1 (en) Coated membranes for enthalpy exchange and other applications
WO2010106900A1 (en) Water vapor-permeable diaphragm material
JPS6130609B2 (en)
JPS6235596B2 (en)
WO2007116567A1 (en) Total enthalpy heat exchanger
JPS6213048B2 (en)
CN110305362A (en) It is a kind of intelligently to control dampness barrier composite film and its preparation method and application
JPH0124529B2 (en)
JPS5846325B2 (en) Method for manufacturing a moisture-permeable gas shield
JPS58124196A (en) Total heat-exchanging element
GB2417315A (en) Heat exchange element with flame retardant and moisture permeable portions
JPS6123477B2 (en)
JPS6028660B2 (en) Moisture-permeable gas shield
JPS58124521A (en) Moisture permeable gas barrier
JP3536949B2 (en) Water-permeable sheet and method for producing the same
JPS6219210B2 (en)
JPH0515959B2 (en)
JPS5818599B2 (en) Bouenseino Kaizensareta Toshitsu Seiki Taisiya Heibutsu
US5972812A (en) Ionic substance removing material for use in super-clean room and method of manufacturing the material
JP2000246097A (en) Paper for humidifier element
JPS63319020A (en) Production of hygroscopic element