JPS5846325B2 - Method for manufacturing a moisture-permeable gas shield - Google Patents

Method for manufacturing a moisture-permeable gas shield

Info

Publication number
JPS5846325B2
JPS5846325B2 JP53021717A JP2171778A JPS5846325B2 JP S5846325 B2 JPS5846325 B2 JP S5846325B2 JP 53021717 A JP53021717 A JP 53021717A JP 2171778 A JP2171778 A JP 2171778A JP S5846325 B2 JPS5846325 B2 JP S5846325B2
Authority
JP
Japan
Prior art keywords
moisture
gas shield
permeable gas
porous member
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53021717A
Other languages
Japanese (ja)
Other versions
JPS54114481A (en
Inventor
健造 高橋
英昭 草川
昌孝 吉野
芳樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53021717A priority Critical patent/JPS5846325B2/en
Publication of JPS54114481A publication Critical patent/JPS54114481A/en
Publication of JPS5846325B2 publication Critical patent/JPS5846325B2/en
Expired legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 この発明は、空気調整(以下空調という)機器の全熱交
換器などに用いられる透湿性気体遮蔽物の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a moisture-permeable gas shield used in a total heat exchanger of an air conditioning (hereinafter referred to as air conditioning) equipment.

近時、暖房あるいは冷房などの空調機器が発達かつ普及
し、これを用いた居住区域が拡大されるにつれて、換気
のために温度および湿度が回収できる空調用熱交換器に
対する要求が高まって来ている。
In recent years, as air-conditioning equipment such as heating or cooling equipment has developed and become more widespread, and the living areas using these equipment have expanded, there has been an increasing demand for air-conditioning heat exchangers that can recover temperature and humidity for ventilation. There is.

このような空調用熱交換器の素材となる透湿性気体遮蔽
物の特性としては、通気性が小さく、しかも透湿性が大
きいことが要求される。
The characteristics of the moisture permeable gas shield that is the material of such an air conditioning heat exchanger are required to have low air permeability and high moisture permeability.

これは、使用時に屋外から屋内に吸入される新鮮な空気
と屋内から屋外に排出される汚れた空気とが混合するこ
となく、しかも顕熱と同時に潜熱(水蒸気がもっている
気化熱)も熱交換できるようにするために、水蒸気が吸
入空気と排出空気の間で効率よく移行することが要求さ
れるからである。
This prevents the fresh air that is drawn into the room from the outdoors and the dirty air that is discharged from the room to the outdoors during use, and also exchanges both sensible heat and latent heat (heat of vaporization of water vapor). This is because, in order to achieve this, it is required that water vapor is efficiently transferred between intake air and exhaust air.

そして、このような要求に対処するために、この発明の
発明者らは、数年前に吸湿剤としてノ・ロダン化リチウ
ムを含む水溶性高分子物質を、例えハ紙、布、不織布、
アスベスト紙またはセラミックスの薄板などの多孔質部
材に含浸または塗布することにより、通気性が小さく、
しかも透湿性が大きいという、透湿性が改善された気体
遮蔽物を発明した(特公昭52−1.5071号)。
In order to meet such demands, the inventors of the present invention several years ago developed a water-soluble polymer material containing lithium rhodanide as a moisture absorbent, such as paper, cloth, non-woven fabric, etc.
By impregnating or coating a porous material such as asbestos paper or ceramic thin plate, it has low air permeability.
Moreover, he invented a gas shield with improved moisture permeability (Japanese Patent Publication No. 52-1.5071).

この透湿性気体遮蔽物の透気係数(通気性の定量値)お
よび透湿係数(透湿性の定量値)は前記吸湿剤および水
溶性高分子物質の含有率に依存し、透気係数は主として
水溶性高分子物質の含有率の増加と共に減少し、透湿係
数は主として吸湿剤の含有率の増加と共に増大する。
The air permeability coefficient (quantitative value of air permeability) and moisture permeability coefficient (quantitative value of moisture permeability) of this moisture-permeable gas shield depend on the content of the moisture absorbent and water-soluble polymer substance, and the air permeability coefficient mainly depends on the content of the moisture absorbent and water-soluble polymer substance. The moisture permeability coefficient decreases as the content of the water-soluble polymer substance increases, and the moisture permeability coefficient mainly increases as the content of the moisture absorbent increases.

しかし、透湿性気体遮蔽物の透気係数と透湿係数はそれ
ぞれ独立に変化するのではなく、透気係数を小さくする
ために水溶性高分子物質の含有率を増加させると透湿係
数も小さくなり透湿性を改善するためには吸湿剤の含有
率を増加させるだけでは十分でなく、水溶性高分子物質
の含有率を同時に減少させる必要があるこの水溶性高分
子物質の含有率に関して、相反する関係にある透気係数
と透湿係数の両方を満足させる方法として、吸湿剤を含
む水溶性高分子物質の含有率につぎ多孔質部材の厚さ方
向に異った分布を与えることを考え、多孔質部材の表層
に緻密な吸湿性の薄層を形成した透湿性気体遮蔽物とし
て、先に特許出願した。
However, the air permeability coefficient and the moisture permeability coefficient of a moisture-permeable gas shield do not change independently; if the content of water-soluble polymeric substances is increased in order to reduce the air permeability coefficient, the moisture permeability coefficient also decreases. In order to improve moisture permeability, it is not enough to increase the content of moisture absorbers, but it is also necessary to decrease the content of water-soluble polymer substances at the same time. As a method to satisfy both the air permeability coefficient and the moisture permeability coefficient, which have a relationship between , previously filed a patent application for a moisture-permeable gas shield with a dense hygroscopic thin layer formed on the surface layer of a porous member.

その後、前記のような薬剤の含有率分布を有する透湿性
気体遮蔽物を工業的な規模で試作を重ねた結果、次の3
つの条件がすべて満足されないと、高度な気体の選択透
過性を満足する透湿性気体遮蔽物が得られないことがわ
かった。
After that, as a result of repeated trial production on an industrial scale of a moisture-permeable gas shield having the above-mentioned drug content distribution, the following three results were discovered.
It has been found that a moisture-permeable gas shield that satisfies a high degree of gas selective permeability cannot be obtained unless all of the following conditions are satisfied.

(1)最適なサイズ度を有する原紙を用いること、(1
1)薬剤の含有率分布を破壊しない加工法を用いること
、 (11:)薬剤の含有率を最適な範囲内に納めること、
そして、多孔質部材としてサイズ度の異る工業用沢紙を
用い、これを吸湿剤を含む水溶性高分子物質を含浸法、
塗布法、コーティング法のいずれかによって処理し、得
られた透湿性気体遮蔽物の透気係数および透湿係数の検
討を重ねた結果、サイズ度が20〜200秒の弱練水性
の多孔質部材に、吸湿剤を含む高分子物質の水溶液を含
浸または塗布あるいはコーティングし、前記水溶液が多
孔質部材の内部まで浸透する前に乾燥を行ない、薬剤の
含有率分布を固定することにより、高度の気体の選択透
過性を満足する透湿性気体遮蔽物が製造できることを見
い出し、この発明を完成させるに至ったものである。
(1) Using a base paper with an optimal size degree; (1)
1) Use a processing method that does not destroy the drug content distribution; (11:) Keep the drug content within an optimal range;
Then, industrial paper of different sizes is used as a porous member, and it is impregnated with a water-soluble polymeric substance containing a moisture absorbent.
As a result of repeated studies on the air permeability and moisture permeability coefficients of the moisture-permeable gas shield obtained by treatment using either the coating method or the coating method, we found that a weakly water-resistant porous member with a size degree of 20 to 200 seconds was obtained. The porous member is impregnated, applied, or coated with an aqueous solution of a polymeric substance containing a moisture absorbent, and dried before the aqueous solution penetrates into the porous member to fix the drug content distribution. The inventors have discovered that it is possible to produce a moisture-permeable gas shield that satisfies the selective permselectivity of the present invention, and have completed the present invention.

この発明において、前記多孔質部材としては、疎水性で
ない和紙、沢紙、洋紙などの紙類、またはガーゼ、木綿
布、不織布などの布類、あるいはセラミックス薄板など
が用いられるが、紙類が好適である。
In this invention, as the porous member, paper such as non-hydrophobic Japanese paper, sashimi paper, western paper, cloth such as gauze, cotton cloth, non-woven fabric, or thin ceramic plate is used, but paper is preferable. It is.

前記多孔質部材にロジン、膠などの天然サイズ剤または
ポリマロン、パールガムなどの合成サイズ剤を1〜10
重量%の範囲で予め添加するか後で含浸させることによ
り、JIS規格P8]、22−54によるサイズ度試験
法によるサイズ度20〜200秒とする。
A natural sizing agent such as rosin or glue or a synthetic sizing agent such as polymeron or pearl gum is added to the porous member from 1 to 10%.
By adding it in advance or impregnating it later in a range of % by weight, the sizing degree is set to 20 to 200 seconds according to the sizing degree test method according to JIS Standard P8], 22-54.

このサイズ度が20秒以下では、吸湿剤を含む水溶性高
分子物質の水溶液が多孔質部分の内部に比較的速やかに
浸透するため、薬剤の含有率分布を形成するのが難しく
、また、一定のサイズ度の原紙を再現性よくつくること
が困難になる。
If this size degree is less than 20 seconds, an aqueous solution of a water-soluble polymeric substance containing a hygroscopic agent will penetrate into the porous part relatively quickly, making it difficult to form a drug content distribution. It becomes difficult to produce base paper with a good reproducibility.

サイズ度が200秒以上では、薬剤が含有され難くなり
、その含有率の最適値を満たすことができなくなるので
適さない。
A size degree of 200 seconds or more is not suitable because it becomes difficult to contain the drug and the optimum content rate cannot be met.

なお、サイズ度がと(に好ましいのは、40〜150秒
の範囲である。
In addition, it is preferable that the size degree is in the range of 40 to 150 seconds.

前記吸湿剤としては、一般に乾燥剤として用いられてい
る例えばハロゲン化物、酸化物、塩類、水酸化物をはじ
め、吸湿性物質あるいは多価アルコール類なども用いる
ことができ、とくにハロゲン化リチウムが好適する。
As the moisture absorbent, halides, oxides, salts, and hydroxides, which are generally used as drying agents, as well as hygroscopic substances or polyhydric alcohols can be used, and lithium halides are particularly preferred. do.

前記水溶性高分子物質としては、通常一般の水溶性高分
子樹脂、天然樹脂あるいはこれらの混合物、例えばポリ
ビニルアルコール樹脂、ポリビニルメチルエーテル樹脂
、ポリアクリル酸樹脂、ポリメタクリル樹脂、メチルセ
ルロースなどが用いられる。
As the water-soluble polymer substance, commonly used water-soluble polymer resins, natural resins, or mixtures thereof, such as polyvinyl alcohol resins, polyvinyl methyl ether resins, polyacrylic acid resins, polymethacrylic resins, and methyl cellulose, are used.

なお、ポリビニルアルコールまたはヒドロキシエチルセ
ルロースが好適スる。
Note that polyvinyl alcohol or hydroxyethyl cellulose is preferred.

さらに、前記弱練水性多孔質部材に前記吸湿剤を含む高
分子物質の緻密な薄層を形成させる場合に、前記多孔質
部材に対し10〜50重量%の含有率になるように吸湿
剤を含む高分子物質を含浸、塗布あるいはコーイングす
ることが好ましい。
Furthermore, when forming a dense thin layer of the polymeric material containing the moisture absorbent in the weakly water-dispersible porous member, the moisture absorbent is added to the porous member at a content of 10 to 50% by weight. It is preferable to impregnate, coat or coat with a polymeric substance containing the material.

前記含有率が10重量%以下では通気性が大きくなり過
ぎ、また50重量%以上では透湿性が悪いだけではなく
、得られた透湿性気体遮蔽物が吸湿してベタついたり、
ドレインを発生するので好ましくない。
If the content is less than 10% by weight, the breathability becomes too high, and if it is more than 50% by weight, not only is the moisture permeability poor, but the resulting moisture-permeable gas shield absorbs moisture and becomes sticky.
This is not preferable because it generates drain.

前記吸湿剤を含む高分子物質の緻密な薄層は、吸湿剤I
〜5重量%および高分子物質5〜20重量%の水溶液を
調整し、この水溶液を用いて前記弱練水性の多孔質部材
に含浸させるか塗布またはコーティングすることによっ
て形成される。
The dense thin layer of polymeric material containing the hygroscopic agent is
It is formed by preparing an aqueous solution of ~5% by weight and 5~20% by weight of a polymeric substance, and using this aqueous solution to impregnate, apply, or coat the weakly wetted porous member.

この時含浸法では、絞り圧が高過ぎると、薬液が多孔質
部材である原紙の中に押込まれて含有率分布を破壊する
At this time, in the impregnation method, if the squeezing pressure is too high, the chemical solution will be forced into the base paper, which is a porous member, and the content distribution will be destroyed.

なお、必要に応じて前記水溶液中に防炎剤などを加えて
もよい。
Incidentally, a flame retardant or the like may be added to the aqueous solution as necessary.

前述したようなこの発明の方法によって得られた透湿性
気体遮蔽物は吸湿剤を含む高分子物質が基体である弱練
水性の多孔質部材の表層に緻密な吸湿性の薄層として形
成されており、例えば空気や炭酸ガスのような気体は緻
密な薄層に遮断されて透過することがほとんど不可能で
あるが、水蒸気は緻密な薄層が吸湿性を有しているので
、この薄層の表面に吸着され、凝集して液状水となり、
緻密な薄層中に存在する毛細管を毛細管力によって移動
し、前記多孔質部材の背面に達し、この背面から再び気
化することによって、多孔質部材を透過することができ
る。
The moisture-permeable gas shield obtained by the method of the present invention as described above is formed as a dense hygroscopic thin layer on the surface layer of a weakly wrenable porous member whose base is a polymeric material containing a hygroscopic agent. For example, gases such as air and carbon dioxide are blocked by a dense thin layer and are almost impossible to pass through, but water vapor is absorbed by this thin layer because the dense thin layer has hygroscopic properties. It is adsorbed on the surface of water, aggregates and becomes liquid water,
It is possible to permeate the porous member by moving the capillary existing in the dense thin layer by capillary force, reaching the back surface of the porous member, and vaporizing again from this back surface.

また、前記毛細管を充満させた液状水は、これらの毛細
管を通しての気体の透過を十分に阻止することができ、
高度の気体の選択透過性を与えることになる。
Further, the liquid water filling the capillary tubes can sufficiently prevent gas from permeating through these capillary tubes,
This will provide a high degree of gas selective permselectivity.

このようにして、この発明の方法で得られた透湿性気体
遮蔽物は、例えば空調機器用の全熱交換器などにそのま
まあるいは積層して用いられ、例えば全熱交換器の場合
、屋外から屋内に取り入れられる新鮮な空気と屋内から
屋外に排出される汚れた空気とが混合されることなく、
熱交換および水蒸気のもつ潜熱の交換を行なうことがで
きる。
In this way, the moisture-permeable gas shield obtained by the method of the present invention can be used as it is or in a stacked manner, for example, in a total heat exchanger for air conditioning equipment. The fresh air taken in and the dirty air discharged from indoors to outdoors are not mixed.
Heat exchange and latent heat of water vapor can be exchanged.

このことにより、全熱交換器は熱回収効率が高いばかり
ではなく、屋内の湿度変化を少なくするため、衛生管理
上もきわめて有利である。
As a result, the total heat exchanger not only has high heat recovery efficiency, but also reduces indoor humidity changes, which is extremely advantageous in terms of hygiene management.

また、この透湿性気体遮蔽物は、気体分子の透過選択性
を有するので、前記熱交換器以外の種々の分野にも広範
囲にわたって利用できるものである。
Further, since this moisture-permeable gas shield has permeation selectivity for gas molecules, it can be used in a wide range of fields other than the heat exchanger.

以下この発明を実施例について説明する。This invention will be described below with reference to embodiments.

実施例 ■ サイズ剤として天然サイズ剤であるロジンを含むパルプ
を抄造し、第1図に示す弱練水性の工業用沢紙1を得た
Example 2 A pulp containing rosin, which is a natural sizing agent, was made into paper to obtain a weak water-based industrial paper 1 shown in FIG. 1.

この沢紙の乾燥後、沢紙のサイズ度を測定したところ]
、 80秒であった。
After drying this Sawagami, we measured the size of Sawagami]
, it was 80 seconds.

次に塩化リチウム3,5重量%およびポリビニルアルコ
ール12重量%を含む水溶液を調整し、トリーター装置
を用いて前記弱練水性の沢紙すなわち多孔質部材を前記
水溶液に10〜20秒間浸漬した後、余剰の水溶液をエ
ツジを用いて40〜60秒以内に掻き落し、速やかに乾
燥炉に搬入し、乾燥後、巻き取った。
Next, an aqueous solution containing 3.5% by weight of lithium chloride and 12% by weight of polyvinyl alcohol is prepared, and after immersing the weakly kneaded water-based paper, that is, the porous member, in the aqueous solution for 10 to 20 seconds using a treater device, The excess aqueous solution was scraped off within 40 to 60 seconds using an edge, and the film was immediately carried into a drying oven, dried, and then rolled up.

以上のようにして得られた透湿性気体遮蔽物は、工業用
沢紙の表層に緻密な吸湿性の薄層が形成され、塩化リチ
ウムおよびポリビニルアルコールの含有率は26重量%
であった。
In the moisture-permeable gas shield obtained as described above, a dense hygroscopic thin layer is formed on the surface layer of industrial grade paper, and the content of lithium chloride and polyvinyl alcohol is 26% by weight.
Met.

この透湿性気体遮蔽物の断面は第2図に示す構成をして
おり、電子顕微鏡で観察すると前記リチウムおよびポリ
ビニルアルコールは、前記工業用沢紙からなる弱練水性
多孔質部材10表層に比較的緻密でしかも数ミクロン程
度の毛細管が存在する多孔質膜状をなした吸湿性の薄層
2が形成されていた。
The cross-section of this moisture-permeable gas shield has the structure shown in FIG. 2, and when observed with an electron microscope, the lithium and polyvinyl alcohol are relatively present on the surface layer of the weakly wrenable porous member 10 made of industrial paper. A thin hygroscopic layer 2 was formed which was dense and had a porous membrane shape in which capillaries of several microns were present.

実施例 ■ サイズ剤として合成サイズ剤であるポリマロンを含む原
料パルプを抄造することにより、サイズ度100秒の洋
紙を得た。
Example 2 Western paper with a sizing degree of 100 seconds was obtained by paper-making a raw material pulp containing a synthetic sizing agent, Polymalon, as a sizing agent.

この弱練水性の洋紙に塩化リチウム7.0重量%および
ヒドロキシエチルセルロース24重量%を含む水溶液を
調整し、コーティング装置を用いて前記洋紙の上面にコ
ーティングを施した。
An aqueous solution containing 7.0% by weight of lithium chloride and 24% by weight of hydroxyethyl cellulose was prepared on this weakly kneaded water-based Western paper, and a coating was applied to the upper surface of the Western paper using a coating device.

これを、コーティング俊速やかに乾燥炉に通して巻き取
った。
This was quickly coated and passed through a drying oven and wound up.

以上のようにして得られた透湿性気体遮蔽物の断面は第
3図に示す構造をしており、電子顕微鏡で観察すると前
記塩化リチウムおよびポリビニルアルコールは前記洋紙
からなる弱練水性多孔質部材10表層に緻密でしかも数
ミクロン程度の毛細管が存在する多孔質膜状をなした吸
湿性の薄層2が形成されていた。
The cross section of the moisture-permeable gas shield obtained as described above has the structure shown in FIG. A thin hygroscopic layer 2 in the form of a porous membrane with dense capillaries of several microns in size was formed on the surface layer.

参考例 弱練水化処理が施されていない、サイズ度が1秒以下の
工業用沢紙を用い、前述した実施例Iと同様にして、第
4図に示すような透湿性気体遮蔽物を得た。
Reference Example A moisture-permeable gas shield as shown in FIG. 4 was prepared in the same manner as in Example I described above, using industrial grade paper with a sizing degree of 1 second or less that had not been subjected to a weak water refining treatment. Obtained.

この透湿性気体遮蔽物は、弱練水化処理が施されていな
いため、吸湿剤を含む高分子物質7が1紙からなる多孔
質部材1′の内部にまで含浸され、高分子物質2の含有
率は35重量%であった。
Since this moisture permeable gas shielding material has not been subjected to a weak water mixing treatment, the polymer material 7 containing the moisture absorbent is impregnated into the inside of the porous member 1' made of a piece of paper. The content was 35% by weight.

前記実施例■、■および参考例で得た透湿性気体遮蔽物
の特性(a)およびこれらを全熱交換器に用いた場合の
特性(b)は下表に示す通りであった。
The properties (a) of the moisture-permeable gas shields obtained in Examples (1), (2) and Reference Examples and the properties (b) when these were used in a total heat exchanger were as shown in the table below.

なお、前記衣に示した(a)は前記実施例および参考例
で得た板状の試料について測定したものであり、(b)
は前記板状のものを用いて全熱交換器を製作して測定し
たものである。
Note that (a) shown in the above clothing was measured on the plate-shaped samples obtained in the above Examples and Reference Examples, and (b)
The results were measured by manufacturing a total heat exchanger using the above-mentioned plate-shaped material.

また、比ガス漏れ率は炭酸ガスを用いて測定した。Further, the specific gas leakage rate was measured using carbon dioxide gas.

前記衣から明らかなように、この発明の実施例Iおよび
■で得たものは、参考例で得たものと比較して熱交換効
率(顕熱)および湿度交換効率(潜熱)を保持しながら
比ガス漏れ率の改善が顕著である。
As is clear from the above-mentioned clothing, the products obtained in Examples I and ① of this invention have higher heat exchange efficiency (sensible heat) and humidity exchange efficiency (latent heat) than those obtained in Reference Example. The improvement in specific gas leakage rate is remarkable.

以上詳述したようにこの発明は、多孔質部材として弱練
水化されたものを用い、これに吸湿性の高分子物質の薄
層を形成して透湿性気体遮蔽物を製造することにより、
良好な透湿性を保ちながら透気性が小さい透湿性気体遮
蔽物が得られる効果がある。
As described in detail above, the present invention uses a porous member that has been slightly wetted, and forms a thin layer of a hygroscopic polymer material thereon to produce a moisture permeable gas shield.
This has the effect of providing a moisture-permeable gas shield with low air permeability while maintaining good moisture permeability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は弱練水化された多孔質部材の一例を示す断面図
、第2図および第3図はこの発明の実施例■および■の
製造方法で得た透湿性気体遮蔽物をそれぞれ示す断面図
、第4図は参考例の製造方法で得た透湿性気体遮蔽物の
断面図である。 1・・・・・・弱練水性多孔質部材、1′・・・・・・
多孔質部材、2・・・・・・吸湿性の高分子物質の薄層
、2′・・・・・・吸湿性の高分子物質。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing an example of a porous member subjected to weak water mixing, and FIGS. 2 and 3 show moisture-permeable gas shields obtained by the manufacturing methods of Examples ① and ② of the present invention, respectively. Cross-sectional view, FIG. 4 is a cross-sectional view of a moisture-permeable gas shield obtained by a manufacturing method of a reference example. 1...Weak water-wetting porous member, 1'...
Porous member, 2... Thin layer of hygroscopic polymeric material, 2'... Hygroscopic polymeric material. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 サイズ度が20〜200秒の弱練水性の多孔質部材
に、吸湿剤を含む高分子物質の水溶液を含浸または塗布
あるいはコーティングし、前記水溶液が多孔質部材の内
部まで浸透する前に乾燥させ、吸湿剤を含む高分子物質
の薄層を多孔質部材の表層に形成させることを特徴とす
る透湿性気体遮蔽物の製造方法。 2 弱練水性の多孔質部材として、疎水性でない多孔質
部材に弱練水性材料を含浸させたものを用いる特許請求
の範囲第1項記載の透湿性気体遮蔽物の製造方法。 3 疎水性でない多孔質部材として紙類を用いる特許請
求の範囲第2項記載の透湿性気体遮蔽物の製造方法。 4 疎水性でない多孔質部材として布類を用いる特許請
求の範囲第2項記載の透湿性気体遮蔽物の製造方法。 5 疎水性でない多孔質部材としてセラミックスを用い
る特許請求の範囲第2項記載の透湿性気体遮蔽物の製造
方法。 6 弱練水性の材料として、天然サイズ剤を用いる特許
請求の範囲第2項記載の透湿性気体遮蔽物の製造方法。 7 弱練水性の材料として合成サイズ剤を用いる特許請
求の範囲第2項記載の透湿性気体遮蔽物の製造方法。 8 吸湿剤として、塩化リチウムを用いる特許請求の範
囲第1項記載の透湿性気体遮蔽物の製造方法。 9 高分子物質として、水溶性のポリビニルアルコール
を用いる特許請求の範囲第1項記載の透湿性気体遮蔽物
の製造方法。
[Scope of Claims] 1. A weakly kneaded water-based porous member having a sizing degree of 20 to 200 seconds is impregnated, applied or coated with an aqueous solution of a polymeric substance containing a moisture absorbent, and the aqueous solution reaches the inside of the porous member. A method for producing a moisture-permeable gas shield, which comprises drying the porous material and forming a thin layer of a polymeric substance containing a moisture absorbent on the surface layer of the porous member before penetration. 2. The method for producing a moisture-permeable gas shield according to claim 1, wherein the weakly water-wetting porous member is a non-hydrophobic porous member impregnated with a weakly water-wetting material. 3. The method for producing a moisture-permeable gas shield according to claim 2, in which paper is used as the non-hydrophobic porous member. 4. The method for producing a moisture-permeable gas shield according to claim 2, in which cloth is used as the non-hydrophobic porous member. 5. The method of manufacturing a moisture-permeable gas shield according to claim 2, in which ceramic is used as the non-hydrophobic porous member. 6. The method for producing a moisture-permeable gas shield according to claim 2, in which a natural sizing agent is used as the weakly water-dispersible material. 7. The method for producing a moisture-permeable gas shield according to claim 2, using a synthetic sizing agent as the weak water-dispersing material. 8. The method for producing a moisture-permeable gas shield according to claim 1, using lithium chloride as the moisture absorbent. 9. The method for producing a moisture-permeable gas shield according to claim 1, using water-soluble polyvinyl alcohol as the polymeric substance.
JP53021717A 1978-02-27 1978-02-27 Method for manufacturing a moisture-permeable gas shield Expired JPS5846325B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53021717A JPS5846325B2 (en) 1978-02-27 1978-02-27 Method for manufacturing a moisture-permeable gas shield

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53021717A JPS5846325B2 (en) 1978-02-27 1978-02-27 Method for manufacturing a moisture-permeable gas shield

Publications (2)

Publication Number Publication Date
JPS54114481A JPS54114481A (en) 1979-09-06
JPS5846325B2 true JPS5846325B2 (en) 1983-10-15

Family

ID=12062819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53021717A Expired JPS5846325B2 (en) 1978-02-27 1978-02-27 Method for manufacturing a moisture-permeable gas shield

Country Status (1)

Country Link
JP (1) JPS5846325B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052458A2 (en) 1999-05-10 2000-11-15 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and method for preparing it
JPWO2002099193A1 (en) * 2001-06-01 2004-09-16 三菱製紙株式会社 Total heat exchange element paper
JP2007147279A (en) * 2007-03-05 2007-06-14 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator
WO2020226048A1 (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Method for using sheet-shaped member
WO2020226047A1 (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Total heat exchange element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002447A1 (en) * 1987-09-10 1989-03-23 Hewlett-Packard Company Water-vapour permeable material
CN110936683B (en) * 2019-11-05 2021-07-02 东华大学 Waterproof moisture-permeable functional cellulose-based porous composite material and preparation and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1052458A2 (en) 1999-05-10 2000-11-15 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and method for preparing it
US6536514B1 (en) 1999-05-10 2003-03-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and method for preparing it
JPWO2002099193A1 (en) * 2001-06-01 2004-09-16 三菱製紙株式会社 Total heat exchange element paper
JP2007147279A (en) * 2007-03-05 2007-06-14 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator
WO2020226048A1 (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Method for using sheet-shaped member
WO2020226047A1 (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Total heat exchange element
JP2020183841A (en) * 2019-05-09 2020-11-12 ダイキン工業株式会社 Total heat exchange element
JPWO2020226048A1 (en) * 2019-05-09 2021-10-28 ダイキン工業株式会社 How to use the sheet-shaped member

Also Published As

Publication number Publication date
JPS54114481A (en) 1979-09-06

Similar Documents

Publication Publication Date Title
EP2026029B1 (en) Sheets for total heat exchangers
JPWO2002099193A1 (en) Total heat exchange element paper
CN101173093A (en) Multifunctional mixture, teflon film and method for producing the same
JPS5846325B2 (en) Method for manufacturing a moisture-permeable gas shield
JPS6235596B2 (en)
JPH0425476B2 (en)
JPS5915574A (en) Garment material
JPH0124529B2 (en)
JPS6130609B2 (en)
JP2011062816A (en) Moisture absorbing and releasing material
KR101322049B1 (en) Paper for total heat exchange element, preparation method thereof and total heat exchange element comprising the same
JPS5932921A (en) Activated carbon fiber used in dehumidification and preparation thereof
JPS6213048B2 (en)
JPS6146899A (en) Total heat exchange element
EP1130161A1 (en) Method for the production of a dehumidifying element
JPS6219210B2 (en)
KR101322046B1 (en) Paper and preparation method thereof
JPS6028660B2 (en) Moisture-permeable gas shield
CN107599532A (en) A kind of viscose activated carbon non-woven cloth for being used to filter and preparation method thereof
JPS5818599B2 (en) Bouenseino Kaizensareta Toshitsu Seiki Taisiya Heibutsu
CN111749049B (en) Anhydrous humidifying device and preparation method and application thereof
JPS6226498A (en) Total heat exchanging element
JPS5960137A (en) Humidifier
JPS6122198A (en) Manufacturing of fuel heat exchange elememt
JPS5541376A (en) Moisture permeable gas shielding material