JPH0425476B2 - - Google Patents

Info

Publication number
JPH0425476B2
JPH0425476B2 JP5989284A JP5989284A JPH0425476B2 JP H0425476 B2 JPH0425476 B2 JP H0425476B2 JP 5989284 A JP5989284 A JP 5989284A JP 5989284 A JP5989284 A JP 5989284A JP H0425476 B2 JPH0425476 B2 JP H0425476B2
Authority
JP
Japan
Prior art keywords
total heat
heat exchanger
partition plate
air
moisture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5989284A
Other languages
Japanese (ja)
Other versions
JPS60205193A (en
Inventor
Kenzo Takahashi
Shohei Eto
Toshio Nakamura
Yasushi Minamimaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5989284A priority Critical patent/JPS60205193A/en
Publication of JPS60205193A publication Critical patent/JPS60205193A/en
Publication of JPH0425476B2 publication Critical patent/JPH0425476B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 この発明は、新鮮な外気の給気と汚れた空気の
排出を同時に行なう換気装置、あるいはビル等の
空調機械室の新鮮空気処理装置(外気と室内空気
の全熱交換)等に用いる全熱交換器に関し、特に
寒冷地等の結露し易い環境での使用に耐えるよう
に改良した全熱交換器に関するものである。 〔従来技術〕 近時、冷暖房効果を高めるために居住空間の断
熱化、気密化が進むにつれて換気の重要性が再認
識されてきている。冷暖房効果を損わずに換気を
行なう方法として、排気と給気の間で熱交換する
方法が有効である。この時、温度(顕熱)と共に
湿度(潜熱)の交換も同時に行なうことができれ
ばその効果は著しい。この要求に応えるものとし
て、従来より図面に示すような給気と排気を仕切
板を介して全熱交換させる静止式全熱交換器(特
許第930986号)がある。 この静止式全熱交換器は図面に示すように平ら
な仕切板1と波形をした間隔板2を交互に積層す
る際に、間隔板の方向を一段おきに直交させるこ
とにより、給気の流路3と排気の流路4を形成す
る。なお矢印イ,ロはそれぞれ給気と排気の方向
を示す。例えば給気として冬期の戸外の新鮮であ
るが冷たくて乾燥した空気を通し、排気として暖
房された空内の汚れているが暖かくて湿気の高い
空気を通してやると、上記仕切板を介して温度と
湿度の交換が行なわれ、給気は暖められ、加湿さ
れて室内に給気される。一方排気は冷やされ、減
湿されて屋外に排出される。従来、上記仕切板に
は吸湿剤を含む親水性高分子で処理された加工紙
が用いられ、給気と排気を隔離するとともに高い
全熱交換効率を発現している。 全熱交換器の普及に伴ない、寒冷地や温水プー
ル等に対する設置の要求が強まつたが、給気と排
気の温度差が大きいために結露を生じ、上記加工
紙では変形等により長期の使用に耐えられないと
いう問題を生じた。そこで本発明者らは結露した
場合にも変形を生じず、長期の使用に耐える全熱
交換器を開発すべく鋭意研究を重ねた。 まず耐水性に優れる高分子多孔質シートに着目
し、その仕切板への適用を検討したが、温度およ
び湿度の交換効率は優れているものの、仕切板を
通して給気と排気が混合することがわかつた。そ
こで上記高分子多孔質シートの持つ高い温・湿度
交換特性を保持しながら、仕切板を通しての給気
と排気の混合を抑えるための研究を重ねた結果、
吸湿剤を含有する親水性高分子、あるいはカチオ
ン性高分子電解質を上記高分子多孔質シートに含
浸または塗布することにより「水蒸気は通すが、
空気は通さない」という透湿性気体遮蔽物を得る
ことができ、上記透湿性気体遮蔽物を仕切板に用
いることにより、耐結露性に優れる全熱交換器を
実現できることを見い出し、この発明を完成させ
るに至つた。 〔発明の概要〕 この発明は、仕切板を隔てて二種の気流を流通
させ、上記仕切板を介して上記二種の気流の顕熱
及び潜熱を熱交換させるものにおいて、上記仕切
板を吸湿性物質を含有する高分子多孔質部材より
なる透湿性気体遮蔽物で構成することにより、寒
冷地や温水プール等の結露しやすい環境での使用
に耐えるととに、温・湿度交換効率を保持しなが
ら気体の移行率を極めて少なくできる全熱交換器
を提供することを目的としてい。 〔発明の実施例〕 以下この発明を詳細に説明する。市販のポリエ
チレン、ポリプロピレン、硝酸セルロース、ポリ
テトラフルオロエチレン等を素材とする高分子多
孔質シートは吸湿性が低いため、水蒸気は多孔質
シート表面の細孔を気体として通過する。一方空
気成分の酸素、窒素、二酸化炭素等も上記細孔を
通過することができるためこれらの高分子多孔質
シートを仕切板に用いた全熱交換器においては上
記のように仕切板を通して給気と排気が混合する
という問題を生ずる。この発明の全熱交換器は、
高分子多孔質部材として平均孔径が0.1〜10μmの
細孔を無数に有する高分子多孔質シートを用い吸
湿性物質を含浸または塗布することにより含有さ
せた透湿性気体遮蔽物を仕切板として用いること
により、水蒸気は仕切板の表面に一旦吸着・凝縮
され、液状水として上記細孔を輸送され、背面よ
り再び気化することにより透過する。一方空気成
分は細孔が液状水により満たされるため通過する
ことができない。高分子多孔質部材の平均孔径と
しては上記のように0.1〜10μmが好ましく、
0.1μm以下では液状水を輸送するに十分な細孔を
確保することができず、10μm以上では吸湿性物
質を含有させても細孔を液状水により満たすには
大き過ぎる。吸湿性物質としては、吸湿剤を含有
する親水性高分子またはカチオン性高分子電解質
が有効に用いられる。吸湿剤としてはハロゲン化
リチウム、特に塩化リチウムが好適である。親水
性高分子としてはポリビニルアルコール、ポリビ
ニルメチルエーテル樹脂、ポリアクリル酸樹脂、
カゼイン、ゼラチン、メチルセルロース等が用い
られるが特に平均重合度が2000以上のポリビニル
アルコールが結露時にも変形が少なく好適であ
る。平均重合度が2000以上のポリビニルアルコー
ルは実際の使用時において結露程度では水に溶け
にくいためである。またカチオン性高分子電解質
としては、ポリビニルベンジルトリメチルアンモ
ニウムクロライド(ダウケミカル社製)、ポリピ
ペリジニウムクロライド(メルク社製)、ポリ
(2−アクリルオキシエチレンジメチルスルホニ
ウムクロライド)及びポリグリシジルトリブチル
フオスフオニウムクロライド等が用いられる。 吸湿剤濃度2〜10重量%、親水性高分子濃度10
〜20重量%の水溶液、またはカチオン性高分子電
解質10〜30重量%の水溶液が用いられ、厚さが
100μm程度(機械強度と圧力損失との兼ねあいか
ら好適)の上記高分子多孔質シートに含浸あるい
は塗布することにより含有させる。得られた透湿
性気体遮蔽物は吸湿率が5〜20重量%と高く、透
湿性および気体遮蔽性に優れたものであつた。上
記透湿性気体遮蔽物を仕切板とし、厚さが100〜
200μm(機械強度と圧力損失との兼ねあいから好
適)の硬質の高分子シートを波板状に加工した間
隔板と貼り合わせた部材を間隔板の方向が一段置
きに直交するように積み重ねて図面のような全熱
交換器を作製した。ただし、仕切板同志の間隔は
2mm、間隔板の波状のピツチは4mmとした。上記
全熱交換器の給気として湿気の高い温風を流し、
排気として乾燥した冷気を流し、温・湿度交換効
率を測定すると共に、給気と排気の混合の度合を
評価するために給気に二酸化炭素ボンベより二酸
化炭素を加え、給気側と排気側のそれぞれ出口に
おける二酸化炭素濃度を測定した。その結果、標
準的な処理風量において温度交換効率は70〜80
%、湿度交換効率60〜70%と従来の加工紙を用い
た全熱交換器と変わらず、二酸化炭素の移行率も
従来の約20%に対して3%以下と低い値を示し
た。 以下この発明を実施例および比較例を記して説
明する。 実施例 1 吸湿剤として塩化リチウムを用い、親水性高分
子として平均重合度2000のポリビニルアルコール
を用い、それぞれ5重量%、15重量%の水溶液を
調製した。次に坪量が60g/m2膜厚が120μm、細
孔の平均径が1μmのポリエチレン製高分子多孔質
シートを用い、上記水溶液をワイヤーバーを用い
て塗布した。塗布量は10g/m2で、温度25℃、相
対湿度60%における吸湿率は8重量%であつた。
得られた透湿性気体遮蔽物を仕切板として図面に
示すような全熱交換器を作製した。 実施例 2 吸湿性物質としてカチオン性高分子電解質の一
つであるポリビニルベンジルトリメチルアンモニ
ウムクロライドを用い、20重量%の水溶液を調製
した。次に実施例1と同じポリエチレン製高分子
多孔質シートを用い、上記水溶液をワイヤバーを
用いて塗布した。塗布量は10g/m2で、温度25
℃、相対湿度60%における吸湿率は6重量%であ
つた。得られた透湿性気体遮蔽物を仕切板として
図面に示すような全熱交換器を作製した。 比較例 実施例1と同じポリエチレン製高分子多孔質シ
ートを用いて図面に示すような全熱交換器を作製
した。 上記実施例および比較例で得た全熱交換器の温
度および湿度交換効率と二酸化炭素の移行率を測
定した。その結果を表に示す。 表より明らかなように、実施例の温度交換効率
は比較例と変わらず、湿度交換効率も実施例2が
僅かに小さい程度でほぼ等しい。一方、気体移行
率は比較例の〜20%に対して〜3%とほぼ1/10
[Technical Field of the Invention] This invention relates to a ventilation system that simultaneously supplies fresh outside air and exhausts contaminated air, or a fresh air treatment system for an air conditioning machine room in a building (total heat exchange between outside air and indoor air). The present invention relates to a total heat exchanger for use in, for example, a total heat exchanger that has been improved to withstand use in environments where condensation is likely to occur, particularly in cold regions. [Prior Art] In recent years, as living spaces have become more insulated and airtight in order to improve heating and cooling effects, the importance of ventilation has been reaffirmed. An effective method for ventilation without impairing the heating and cooling effect is to exchange heat between exhaust air and supply air. At this time, if both temperature (sensible heat) and humidity (latent heat) can be exchanged at the same time, the effect will be significant. To meet this demand, there has been a static total heat exchanger (Japanese Patent No. 930986) that exchanges total heat between supply air and exhaust air via a partition plate, as shown in the drawing. As shown in the drawing, this static total heat exchanger is constructed by alternately stacking flat partition plates 1 and corrugated spacing plates 2, and by making the direction of the spacing plates orthogonal to each other every other layer, the supply air flow is improved. A passage 3 and an exhaust passage 4 are formed. Note that arrows A and B indicate the directions of air supply and exhaust, respectively. For example, if fresh, cold, dry air from outside in winter is passed through as supply air, and dirty, warm, and humid air from inside a heated space is passed through as exhaust air, the temperature will be changed through the above-mentioned partition plate. Humidity exchange takes place, and the supply air is warmed, humidified, and supplied into the room. Meanwhile, the exhaust air is cooled, dehumidified, and discharged outdoors. Conventionally, processed paper treated with a hydrophilic polymer containing a moisture absorbent has been used for the partition plate, which isolates supply air and exhaust air and exhibits high total heat exchange efficiency. With the spread of total heat exchangers, there has been an increasing demand for installation in cold regions and heated pools, etc. However, due to the large temperature difference between supply air and exhaust air, condensation occurs, and the above-mentioned processed paper has problems with long-term deformation. The problem arose that it was unusable. Therefore, the inventors of the present invention have conducted extensive research in order to develop a total heat exchanger that does not deform even when condensed and can withstand long-term use. First, we focused on a porous polymer sheet with excellent water resistance and considered its application to partition plates. However, although it has excellent temperature and humidity exchange efficiency, we found that supply air and exhaust air mix through the partition plate. Ta. Therefore, as a result of repeated research to suppress the mixing of supply air and exhaust air through the partition plate while maintaining the high temperature and humidity exchange characteristics of the above-mentioned porous polymer sheet, we found that
By impregnating or coating the above-mentioned porous polymer sheet with a hydrophilic polymer containing a moisture absorbent or a cationic polymer electrolyte, water vapor can pass through it, but
They discovered that it was possible to obtain a moisture-permeable gas shield that does not allow air to pass through, and that by using the moisture-permeable gas shield as a partition plate, a total heat exchanger with excellent condensation resistance could be realized, and this invention was completed. I ended up letting it happen. [Summary of the Invention] The present invention allows two types of airflow to flow through a partition plate, and exchanges sensible heat and latent heat of the two types of airflow through the partition plate, in which the partition plate is used to absorb moisture. By being constructed with a moisture-permeable gas shield made of a porous polymer material containing a chemical substance, it can withstand use in environments prone to condensation, such as cold regions and heated pools, and maintains temperature and humidity exchange efficiency. The purpose of the present invention is to provide a total heat exchanger that can extremely reduce the gas transfer rate. [Embodiments of the Invention] The present invention will be described in detail below. Commercially available porous polymer sheets made of materials such as polyethylene, polypropylene, cellulose nitrate, and polytetrafluoroethylene have low hygroscopicity, so water vapor passes through the pores on the surface of the porous sheet as a gas. On the other hand, air components such as oxygen, nitrogen, and carbon dioxide can also pass through the pores, so in total heat exchangers that use these polymer porous sheets as partition plates, air is supplied through the partition plates as described above. This causes a problem of mixing of the exhaust gas and the exhaust gas. The total heat exchanger of this invention is
A porous polymer sheet having countless pores with an average pore diameter of 0.1 to 10 μm is used as a porous polymer member, and a moisture permeable gas shield containing a hygroscopic substance by impregnation or coating is used as a partition plate. As a result, water vapor is once adsorbed and condensed on the surface of the partition plate, transported through the pores as liquid water, and permeated through the back surface by vaporizing again. On the other hand, air components cannot pass through because the pores are filled with liquid water. As mentioned above, the average pore diameter of the polymeric porous member is preferably 0.1 to 10 μm;
If the diameter is 0.1 μm or less, sufficient pores cannot be secured to transport liquid water, and if the diameter is 10 μm or more, it is too large to fill the pores with liquid water even if a hygroscopic substance is contained. As the hygroscopic substance, a hydrophilic polymer or a cationic polymer electrolyte containing a hygroscopic agent is effectively used. Lithium halides, particularly lithium chloride, are suitable as the moisture absorbent. Hydrophilic polymers include polyvinyl alcohol, polyvinyl methyl ether resin, polyacrylic acid resin,
Casein, gelatin, methylcellulose, etc. are used, but polyvinyl alcohol having an average degree of polymerization of 2000 or more is particularly suitable because it is less deformed even when dew condenses. This is because polyvinyl alcohol with an average degree of polymerization of 2,000 or more is difficult to dissolve in water even if it condenses during actual use. Examples of cationic polymer electrolytes include polyvinylbenzyltrimethylammonium chloride (manufactured by Dow Chemical), polypiperidinium chloride (manufactured by Merck & Co.), poly(2-acryloxyethylenedimethylsulfonium chloride), and polyglycidyltributylphosphonium Chloride etc. are used. Moisture absorbent concentration 2-10% by weight, hydrophilic polymer concentration 10
~20% by weight aqueous solution or 10-30% by weight cationic polyelectrolyte solution is used, and the thickness
It is contained by impregnating or coating the above-mentioned porous polymer sheet with a diameter of about 100 μm (suitable from the viewpoint of mechanical strength and pressure loss). The obtained moisture permeable gas shielding material had a high moisture absorption rate of 5 to 20% by weight, and had excellent moisture permeability and gas shielding properties. The above moisture permeable gas shield is used as a partition plate, and the thickness is 100~
A drawing in which a member is made by laminating a 200 μm (suitable for mechanical strength and pressure loss) hard polymer sheet with a corrugated spacer plate so that the direction of the spacer plate is perpendicular to every other row. A total heat exchanger was fabricated. However, the distance between the partition plates was 2 mm, and the wavy pitch of the spacer plates was 4 mm. Highly humid hot air is flowed as air supply to the total heat exchanger,
Dry cold air is passed through as exhaust air, and the temperature and humidity exchange efficiency is measured. In order to evaluate the degree of mixing between supply air and exhaust air, carbon dioxide is added from a carbon dioxide cylinder to the supply air, and carbon dioxide is added to the supply air and exhaust side. The carbon dioxide concentration at each outlet was measured. As a result, the temperature exchange efficiency is 70 to 80 at standard processing air volume.
% and humidity exchange efficiency of 60 to 70%, which is the same as that of conventional total heat exchangers using processed paper, and the carbon dioxide transfer rate was also lower at less than 3%, compared to about 20% for conventional products. This invention will be described below with reference to Examples and Comparative Examples. Example 1 Using lithium chloride as a moisture absorbent and polyvinyl alcohol with an average degree of polymerization of 2000 as a hydrophilic polymer, aqueous solutions of 5% by weight and 15% by weight, respectively, were prepared. Next, a porous polyethylene sheet having a basis weight of 60 g/m 2 , a film thickness of 120 μm, and an average pore diameter of 1 μm was coated with the aqueous solution using a wire bar. The coating amount was 10 g/m 2 , and the moisture absorption rate was 8% by weight at a temperature of 25° C. and a relative humidity of 60%.
A total heat exchanger as shown in the drawing was manufactured using the obtained moisture permeable gas shield as a partition plate. Example 2 A 20% by weight aqueous solution was prepared using polyvinylbenzyltrimethylammonium chloride, which is one of the cationic polymer electrolytes, as a hygroscopic substance. Next, using the same polyethylene porous sheet as in Example 1, the above aqueous solution was applied using a wire bar. The coating amount was 10g/ m2 , and the temperature was 25
The moisture absorption rate at 60% relative humidity was 6% by weight. A total heat exchanger as shown in the drawing was manufactured using the obtained moisture permeable gas shield as a partition plate. Comparative Example A total heat exchanger as shown in the drawing was manufactured using the same polyethylene porous sheet as in Example 1. The temperature and humidity exchange efficiency and carbon dioxide transfer rate of the total heat exchangers obtained in the above Examples and Comparative Examples were measured. The results are shown in the table. As is clear from the table, the temperature exchange efficiency of the example is the same as that of the comparative example, and the humidity exchange efficiency is almost the same, with Example 2 being slightly lower. On the other hand, the gas transfer rate is ~3% compared to ~20% in the comparative example, which is approximately 1/10

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、仕切
板を隔てて二種の気流を流通させ、上記仕切板を
介して上記二種の気流の顕熱及び潜熱を熱交させ
るものにおいて、上記仕切板を吸湿性物質を含有
する高分子多孔質部材よりなる透湿性気体遮蔽物
で構成することにより、寒冷地や温水プール等の
結露しやすい環境での使用に耐えるとともに、
温・湿度交換効率を保持しながら気体の移行率を
極めて少なくできる全熱交換器が得られるという
効果がある。
As explained above, according to the present invention, in the device in which two types of air currents are circulated through a partition plate, and sensible heat and latent heat of the two types of air flows are exchanged via the partition plate, the partition plate is separated from the partition plate. By constructing the board with a moisture-permeable gas shield made of a porous polymer material containing a hygroscopic substance, it can withstand use in environments prone to condensation, such as cold regions and heated pools.
This has the effect of providing a total heat exchanger that can extremely reduce the gas transfer rate while maintaining temperature/humidity exchange efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

図面は一般的な全熱交換器の構造を示す斜視図
で、図において1は仕切板、2は間隔板、3は給
気の流路、4は排気の流路で、イ,ロはそれぞれ
給気と排気の方向を表わす。
The drawing is a perspective view showing the structure of a general total heat exchanger. In the figure, 1 is a partition plate, 2 is a spacing plate, 3 is a supply air flow path, 4 is an exhaust flow path, and a and b are respectively. Indicates the direction of air supply and exhaust.

Claims (1)

【特許請求の範囲】 1 仕切板を隔てて二種の気流を流通させ、上記
仕切板を介して上記二種の気流の顕熱及び潜熱を
熱交換させるものにおいて、上記仕切板を吸湿性
物質を含有する高分子多孔質部材よりなる透湿性
気体遮蔽物で構成したことを特徴とする全熱交換
器。 2 高分子多孔質部材が平均孔径が0.1〜10μmの
細孔を有するシートである特許請求の範囲第1項
記載の全熱交換器。 3 吸湿性物質が吸湿剤を含有する親水性高分子
である特許請求の範囲第1項又は第2項記載の全
熱交換器。 4 親水性高分子が平均重合度が2000以上のポリ
ビニルアルコールである特許請求の範囲第3項記
載の全熱交換器。 5 吸湿性物質がカチオン性高分子電解質である
特許請求の範囲第1項又は第2項記載の全熱交換
器。
[Scope of Claims] 1. A device in which two types of air streams are passed through a partition plate, and sensible heat and latent heat of the two types of air streams are exchanged via the partition plate, wherein the partition plate is made of a hygroscopic substance. 1. A total heat exchanger comprising a moisture-permeable gas shield made of a porous polymer member containing. 2. The total heat exchanger according to claim 1, wherein the polymeric porous member is a sheet having pores with an average pore diameter of 0.1 to 10 μm. 3. The total heat exchanger according to claim 1 or 2, wherein the hygroscopic substance is a hydrophilic polymer containing a hygroscopic agent. 4. The total heat exchanger according to claim 3, wherein the hydrophilic polymer is polyvinyl alcohol having an average degree of polymerization of 2000 or more. 5. The total heat exchanger according to claim 1 or 2, wherein the hygroscopic substance is a cationic polymer electrolyte.
JP5989284A 1984-03-28 1984-03-28 All weather heat exchanger Granted JPS60205193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5989284A JPS60205193A (en) 1984-03-28 1984-03-28 All weather heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5989284A JPS60205193A (en) 1984-03-28 1984-03-28 All weather heat exchanger

Publications (2)

Publication Number Publication Date
JPS60205193A JPS60205193A (en) 1985-10-16
JPH0425476B2 true JPH0425476B2 (en) 1992-04-30

Family

ID=13126216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5989284A Granted JPS60205193A (en) 1984-03-28 1984-03-28 All weather heat exchanger

Country Status (1)

Country Link
JP (1) JPS60205193A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137430A1 (en) * 2020-12-24 2022-06-30 三菱電機株式会社 Flow path plate for total heat exchange element, total heat exchange element, total heat exchange ventilation device, and method for manufacturing flow path plate for total heat exchange element
JP7154458B1 (en) * 2021-12-06 2022-10-17 三菱電機株式会社 Channel plate for total heat exchange element, total heat exchange element and total heat exchange ventilator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874042A (en) * 1988-05-27 1989-10-17 William Becker Corrugated cardboard heat exchanger
JP2522592B2 (en) * 1990-07-25 1996-08-07 ミサワホーム株式会社 Ventilation heat exchanger
JP3306591B2 (en) * 1999-12-21 2002-07-24 株式会社西部技研 Cross-flow type total heat exchanger
US20140014289A1 (en) * 2012-07-11 2014-01-16 Kraton Polymers U.S. Llc Enhanced-efficiency energy recovery ventilation core
JP5816821B2 (en) * 2012-09-11 2015-11-18 パナソニックIpマネジメント株式会社 Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
JP6167325B2 (en) * 2013-01-24 2017-07-26 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same
CA3177362A1 (en) * 2020-03-31 2021-10-07 Daicel Corporation Laminate
JP7142065B2 (en) * 2020-03-31 2022-09-26 ダイキン工業株式会社 Partition member for total heat exchange element, total heat exchange element, and ventilator
JP7146867B2 (en) * 2020-03-31 2022-10-04 株式会社ダイセル laminate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022137430A1 (en) * 2020-12-24 2022-06-30 三菱電機株式会社 Flow path plate for total heat exchange element, total heat exchange element, total heat exchange ventilation device, and method for manufacturing flow path plate for total heat exchange element
JP7154458B1 (en) * 2021-12-06 2022-10-17 三菱電機株式会社 Channel plate for total heat exchange element, total heat exchange element and total heat exchange ventilator
WO2023105552A1 (en) * 2021-12-06 2023-06-15 三菱電機株式会社 Moisture-permeable resin sheet, flow path plate for total heat exchange element, total heat exchange element, and total heat exchange ventilation device

Also Published As

Publication number Publication date
JPS60205193A (en) 1985-10-16

Similar Documents

Publication Publication Date Title
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
JP2639303B2 (en) Total heat exchanger
US20110192579A1 (en) Total heat exchange element and total heat exchanger
US8550151B2 (en) Heat exchanger
CA2283089C (en) Heat exchanger and method for preparing it
US4484938A (en) Total heat exchanger
US7299862B2 (en) Total heat exchanging element
JPS6255079B2 (en)
JPH0425476B2 (en)
JPS6235596B2 (en)
JP2009144930A (en) Total enthalpy heat exchanger
JP2738284B2 (en) Method of manufacturing heat exchanger, spacing plate thereof and partition plate of heat exchanger
JPH0124529B2 (en)
KR100837023B1 (en) Total heat exchanging element and total heat exchanger
GB2417315A (en) Heat exchange element with flame retardant and moisture permeable portions
JPH09280765A (en) Heat-exchange element
JPS5846325B2 (en) Method for manufacturing a moisture-permeable gas shield
JPS6123477B2 (en)
JPS6130609B2 (en)
JPS5924793B2 (en) total heat exchanger
JP2001215097A (en) Heat exchange element with added harmful gas elimination function
JPS6213048B2 (en)
JPS6335264Y2 (en)
JPS6335262Y2 (en)
JPH08233485A (en) Total heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term