JPS6213048B2 - - Google Patents

Info

Publication number
JPS6213048B2
JPS6213048B2 JP54001437A JP143779A JPS6213048B2 JP S6213048 B2 JPS6213048 B2 JP S6213048B2 JP 54001437 A JP54001437 A JP 54001437A JP 143779 A JP143779 A JP 143779A JP S6213048 B2 JPS6213048 B2 JP S6213048B2
Authority
JP
Japan
Prior art keywords
moisture
gas shield
permeable gas
shield according
permeability coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54001437A
Other languages
Japanese (ja)
Other versions
JPS5594621A (en
Inventor
Kenzo Takahashi
Kimie Enmanji
Tatsuo Kitagawa
Hiroshi Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP143779A priority Critical patent/JPS5594621A/en
Publication of JPS5594621A publication Critical patent/JPS5594621A/en
Publication of JPS6213048B2 publication Critical patent/JPS6213048B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、空気調和(以下空調という)機器
の全熱交換器の仕切板等に用いられる透湿性気体
遮蔽物、特に気体の選択透過性及び難燃性を改善
した透湿性気体遮蔽物に関するものである。
[Detailed Description of the Invention] This invention provides a moisture-permeable gas shield used for partition plates of total heat exchangers of air conditioners (hereinafter referred to as air conditioning) equipment, and in particular has improved gas selective permeability and flame retardancy. It relates to a moisture permeable gas shield.

近時、暖房あるいは冷房などの空調機器が発達
かつ普及し、これを用いた居住空間が拡大される
につれて、換気の際に温度及び湿度が回収できる
空調用全熱交換器に対する要求が高まつてきてい
る。このような空調用全熱交換器の仕切板として
用いられる部材の特性としては、通気性が小さ
く、しかも透湿性が大きいと同時に難燃性である
ことが要求される。これは、使用時に屋外から屋
内に吸入される新鮮な空気と、屋内から屋外に排
出される汚れた空気とが混合することなく、しか
も顕熱と同時に潜熱(水蒸気がもつている気化
熱)も熱交換できるようにするため、水蒸気が吸
入空気と排出空気との間で効率よく移行するこ
と、及びこのような空調機器の部材には消防法上
難燃性であることが要求されるからである。
In recent years, as air conditioning equipment such as heating and cooling equipment has developed and become more widespread, and the living spaces using these equipment have expanded, there has been an increasing demand for total heat exchangers for air conditioning that can recover temperature and humidity during ventilation. ing. The characteristics of a member used as a partition plate of such a total heat exchanger for air conditioning are required to have low air permeability, high moisture permeability, and flame retardancy. This prevents the fresh air that is drawn into the room from the outdoors and the dirty air that is discharged from the room to the outdoors during use, and also generates latent heat (heat of vaporization of water vapor) at the same time as sensible heat. This is because water vapor must be efficiently transferred between intake air and exhaust air to enable heat exchange, and the components of such air conditioning equipment are required to be flame retardant under the Fire Service Act. be.

このような要求に対処するために、本発明者等
は既に吸湿剤としてハロゲン化リチウムと必要に
応じて難燃剤を含む水溶性高分子物質を、例えば
紙、布、不織布、アスベスト紙またはセラミツク
スの薄板などの多孔質部材に含浸または塗布する
ことにより、通気性が小さく、しかも透過性が大
きいという、透湿性を改善した気体遮蔽物を発明
した(特許第888975号)。
In order to meet such demands, the present inventors have already developed water-soluble polymeric substances containing lithium halide and optionally flame retardants as moisture absorbers, such as paper, cloth, nonwoven fabric, asbestos paper, or ceramics. We have invented a gas shield with improved moisture permeability, which has low air permeability and high permeability by impregnating or coating a porous member such as a thin plate (Patent No. 888975).

この透湿性気体遮蔽物の透湿係数(透湿性の定
量値)及び透気係数(通気性の定量値)は、前記
吸湿剤及び水溶性高分子物質の含有率に依存し、
透湿係数は主として吸湿剤の含有率の増加と共に
増大し、透気係数は主として水溶性高分子物質の
含有率の増加と共に減少する。しかし、透湿性気
体遮蔽物の透湿係数と透気係数はそれぞれ独立に
変化するのではなく、透気係数を小さくするため
に水溶性高分子物質の含有率を増加させると、透
湿係数も小さくなる。また、透湿係数を大きくす
るために吸湿剤の含有率を増加させると、高湿度
時にドレインが発生するという問題を生じる。量
産加工においても、吸湿剤及び水溶性高分子物質
の含有率の増加は、これらの含浸処理後乾燥した
透湿性気体遮蔽物の可撓性を低下させ、この遮蔽
物の巻取り時に折れたり、巻取つた透湿性気体遮
蔽物を巻戻すときに吸湿した薬剤が巻取り面を接
着して巻戻すことができなくなるという問題を生
じる。以上の理由によつて薬剤、即ち吸湿剤、高
分子物質の含有率を任意に増加させることはでき
ない。
The moisture permeability coefficient (quantitative value of moisture permeability) and the air permeability coefficient (quantitative value of air permeability) of this moisture-permeable gas shield depend on the content of the moisture absorbent and the water-soluble polymer substance,
The moisture permeability coefficient mainly increases with an increase in the content of the moisture absorbent, and the air permeability coefficient mainly decreases with an increase in the content of the water-soluble polymeric substance. However, the moisture permeability coefficient and the air permeability coefficient of a moisture-permeable gas shield do not change independently, but when the content of water-soluble polymeric substances is increased to reduce the air permeability coefficient, the moisture permeability coefficient also increases. becomes smaller. Furthermore, if the content of the moisture absorbent is increased in order to increase the moisture permeability coefficient, a problem arises in that drainage occurs at high humidity. Even in mass production processing, an increase in the content of moisture absorbers and water-soluble polymer substances reduces the flexibility of the moisture-permeable gas shield that is dried after impregnating them, causing the shield to bend or break when wound up. When unwinding the wound moisture-permeable gas shield, a problem arises in that the chemical that has absorbed moisture adheres to the wound surface, making it impossible to unwind it. For the above reasons, it is not possible to arbitrarily increase the content of the drug, ie, the moisture absorbent and the polymeric substance.

透湿性気体遮蔽物の素材としては、紙、布、不
織布、アスベスト紙などの繊維性多孔質部材が性
能、加工性、価格などの面から多用されている。
そこで、本発明者等は、薬剤の含有率を増加させ
ずに、透湿性気体遮蔽物の気体の選択透過性を改
善するための方法を見出すために、繊維性多孔質
部材の透湿係数PH2O及び炭酸ガスを代表とする
透気係数Pco2と、これらの部材の構成因子との関
係について詳細に調べた。その結果、繊維性多孔
質部材の透気係数Pco2は部材の空隙率をεと空隙
の屈曲率qの関数として次式のように表わせるこ
とがわかつた。
As materials for moisture-permeable gas shields, fibrous porous members such as paper, cloth, nonwoven fabric, and asbestos paper are often used in terms of performance, processability, and cost.
Therefore, in order to find a method for improving the gas selective permeability of a moisture-permeable gas shield without increasing the drug content, the present inventors investigated the moisture permeability coefficient PH of a fibrous porous member. The relationship between the air permeability coefficient Pco 2 , which is representative of 2 O and carbon dioxide gas, and the constituent factors of these members was investigated in detail. As a result, it was found that the air permeability coefficient Pco 2 of a fibrous porous member can be expressed as a function of the porosity of the member ε and the tortuosity q of the void as shown in the following equation.

Pco2=(ε/q2)・Pco2 ……(1) ただし、P゜co2は空気中における炭酸ガスの
透気係数を表わし、25℃で1.41×10-3Kg/mhcm
Hgの値をもつ。
Pco 2 = (ε/q 2 )・Pco 2 ...(1) However, P゜co 2 represents the air permeability coefficient of carbon dioxide gas in the air, which is 1.41×10 -3 Kg/mhcm at 25℃.
It has a value of Hg.

また、透湿係数PH2Oは水蒸気として透過する
成分と、部材の表面に吸着後凝集した液状水が毛
細管現象によつて背面に透過し、再び気化する成
分Plの和として次式のように表わせることもわか
つた。
In addition, the moisture permeability coefficient PH 2 O is calculated as the sum of the component that permeates as water vapor and the component Pl, which is liquid water that aggregates after being adsorbed on the surface of the member, passes through the back surface by capillary action, and vaporizes again, as shown in the following equation. I also found out how to express it.

PH2O=(ε/q2)・P゜H2O+Pl ……(2) ただし、P゜H2Oは空気中における透湿係数を
表わし、25℃で8.94×10-4Kg/mhcmHgの値をも
つ。
PH 2 O=(ε/q 2 )・P゜H 2 O+Pl ...(2) However, P゜H 2 O represents the moisture permeability coefficient in air, which is 8.94×10 -4 Kg/mhcmHg at 25℃. has value.

前記(1)式及び(2)式から、素材の空隙率及び屈曲
率が決まれば透気係数及び透湿係数の第1項が定
まり、素材に対する気体の選択透過性はPlが大き
いほどよくなることがわかる。そして、薬剤のう
ち水溶性高分子化合物は空隙率の減少及び屈曲率
の増大に作用し、吸湿剤はPlの増大に作用する。
From equations (1) and (2) above, if the porosity and curvature of the material are determined, the first terms of the air permeability coefficient and moisture permeability coefficient are determined, and the selective permeability of gas to the material becomes better as Pl increases. I understand. Of the drugs, the water-soluble polymer compound acts to reduce the porosity and increase the tortuosity, and the moisture absorbent acts to increase Pl.

繊維性多孔質部材は、素材の屈曲率を測定した
結果、繊維径が小さく、複雑な空間分布を有する
ほど大きくなることがわかつた。また、Plは材料
の含水率及び毛細管力の関数と考えられ、吸湿性
が大きいほど、また微細な繊維が緻密に絡み合つ
ているほど大きいことがわかつた。即ち、繊維径
が細く、かつ複雑な空間分布を有するような素材
を選択すれば薬剤の含有率を増加させなくても、
透湿性気体遮蔽物に対する気体の選択透過性を改
善できることが明らかとなつた。
As a result of measuring the flexural index of the material of the fibrous porous member, it was found that the smaller the fiber diameter and the more complex the spatial distribution, the larger the fiber diameter. In addition, Pl is considered to be a function of the water content of the material and capillary force, and it was found that the higher the hygroscopicity and the more closely intertwined the fine fibers, the higher the value. In other words, if you select a material with a narrow fiber diameter and a complex spatial distribution, you can eliminate the need to increase the drug content.
It has become clear that the selective permeability of gas to a moisture-permeable gas shield can be improved.

このような知見に基づいて、前述した要求を満
足する繊維性多孔質部材として、繊維径が5μm
以下のガラス繊維とセルロース繊維を混抄したガ
ラス繊維混抄紙を開発し、この混抄紙に吸湿剤と
難燃剤(必要に応じて)を含む水溶性高分子物質
を種々の含有率になるように含浸させて透湿性気
体遮蔽物を製造し、その透湿係数及び透気係数を
測定した結果、薬剤の含有率が低くても高度の気
体の選択透過性及び難燃性を実現できることを見
出し、この発明を完成させるに至つた。
Based on this knowledge, we have developed a fibrous porous member with a fiber diameter of 5 μm that satisfies the above-mentioned requirements.
We developed a glass fiber mixed paper made by mixing the following glass fibers and cellulose fibers, and impregnated this mixed paper with water-soluble polymeric substances containing moisture absorbers and flame retardants (as necessary) to various contents. As a result of manufacturing a moisture-permeable gas shield and measuring its moisture permeability coefficient and air permeability coefficient, we found that a high degree of gas selective permeability and flame retardance could be achieved even with a low drug content. The invention was completed.

この発明において、前記ガラス繊維としては繊
維径が5μm以下のものが好ましく、特に0.1〜
1.0μmのものが透湿、透気特性に優れ、好適で
ある。セルロース繊維としては長繊維の麻、楮、
綿繊維あるいはパルプが用いられる。
In this invention, the glass fiber preferably has a fiber diameter of 5 μm or less, particularly 0.1 to 5 μm.
A material with a diameter of 1.0 μm is preferable because it has excellent moisture permeability and air permeability. Cellulose fibers include long fiber hemp, kozo,
Cotton fibers or pulp are used.

前記吸湿剤としは、一般に乾燥剤として使用さ
れているハロゲン化合物、酸化物、塩類、水酸化
物をはじめ、吸湿性物質あるいは多価アルコール
類を用いることができ、特に塩化リチウムが好適
である。
As the hygroscopic agent, halogen compounds, oxides, salts, hydroxides, hygroscopic substances or polyhydric alcohols, which are generally used as drying agents, can be used, and lithium chloride is particularly suitable.

難燃剤としては、一般に紙類の難燃剤として使
用されているグアニジン塩類が用いられるが、特
に塩酸グアニジンは吸湿性が強く、吸湿剤も兼ね
るので好適である。
As the flame retardant, guanidine salts, which are generally used as flame retardants for paper, are used, but guanidine hydrochloride is particularly suitable because it has strong hygroscopicity and also serves as a hygroscopic agent.

前記水溶性高分子物質としては、通常一般の水
溶性高分子樹脂、天然樹脂あるいはこれらの混合
物、例えばポリビニルアルコール樹脂、ポリビニ
ルメチルエーテル樹脂、ポリアクリル酸樹脂、ポ
リメタクリル酸樹脂、メチルセルロースなどが用
いられる。特に、ポリビニルアルコールまたはヒ
ドロキシエチルセルロースが好適である。
As the water-soluble polymer substance, commonly used water-soluble polymer resins, natural resins, or mixtures thereof, such as polyvinyl alcohol resins, polyvinyl methyl ether resins, polyacrylic acid resins, polymethacrylic acid resins, methyl cellulose, etc. are used. . Particularly suitable are polyvinyl alcohol or hydroxyethyl cellulose.

前記繊維性多孔質部材に吸湿剤を含む高分子物
質を含有させる場合、吸湿剤1〜5重量%及び水
溶性高分子物質5〜20重量%の水溶液または必要
に応じて難燃剤10〜20重量%を含む水溶液を調製
し、この水溶液を用いて繊維性多孔質部材に含浸
または塗布する。このとき、これらの薬剤の含有
率は繊維性多孔質部材に対し10〜90重量%となる
ようにすることが好ましい。含有率が10重量%以
下では透気係数が大き過ぎ、また90重量%以上で
は前述したように透湿係数の低下、高湿度時のド
レイン発生という問題を生じるだけでなく、量産
加工時に巻取り、巻戻しが困難になるので好まし
くない。
When the fibrous porous member contains a polymeric substance containing a moisture absorbent, an aqueous solution containing 1 to 5% by weight of the moisture absorbent and 5 to 20% by weight of a water-soluble polymeric substance, or 10 to 20% by weight of a flame retardant as necessary. A fibrous porous member is impregnated or coated with this aqueous solution. At this time, it is preferable that the content of these drugs is 10 to 90% by weight based on the fibrous porous member. If the content is less than 10% by weight, the air permeability coefficient will be too high, and if it is more than 90% by weight, it will not only cause problems such as a decrease in the moisture permeability coefficient and the occurrence of drainage at high humidity, but also be difficult to wind during mass production. , which is not preferable because rewinding becomes difficult.

ガラス繊維混抄紙の機械強度の指標としての抗
張力とガラス混抄率の関係は第1図に示すように
なる。量産加工においては1Kg/15mm以上が必要
とされることより、ガラス繊維混抄率は80%以下
とすることが好ましい。
The relationship between tensile strength as an index of mechanical strength of glass fiber mixed paper and glass mixing ratio is shown in Figure 1. Since 1Kg/15mm or more is required in mass production processing, the glass fiber mixing ratio is preferably 80% or less.

薬剤含有率が30重量%の透湿性気体遮蔽物の透
湿係数及び難燃性の定量値である酸素指数(JIS
K7201にその試験法が規定されている)のガラス
繊維混抄率依存性をそれぞれ第2図、第3図に示
す。第2図における曲線イは相対湿度60%、曲線
ロは相対湿度20%の低湿度条件下での透湿係数で
ある。
The oxygen index (JIS
Figures 2 and 3 show the glass fiber mixing ratio dependence of the test method for which the test method is specified in K7201, respectively. Curve A in Figure 2 is the moisture permeability coefficient under low humidity conditions of 60% relative humidity and curve B is 20% relative humidity.

この第2図よりガラス繊維混抄率が高い透湿性
気体遮蔽物ほど湿度の影響が少なくなり、低湿度
条件下においても高い透湿係数が保持させること
がわかる。また、相対湿度60%で透湿係数が1×
10-4Kg/mhcmHg以上の好適な値が得られるのは
ガラス繊維混抄率30%以上である。
From FIG. 2, it can be seen that the moisture permeable gas shield having a higher glass fiber mixing ratio is less affected by humidity, and can maintain a high moisture permeability coefficient even under low humidity conditions. Also, the moisture permeability coefficient is 1× at relative humidity of 60%.
A suitable value of 10 -4 Kg/mhcmHg or more can be obtained when the glass fiber mixing ratio is 30% or more.

一方、第3図における曲線イは上記試料、曲線
ロは薬剤から難燃剤を除いた試料の酸素指数であ
る。これから、混抄率の増加と共に酸素指数が急
激に増大することがわかる。曲線イの場合には混
抄率10%以上で耐燃性に優れるノーメツクスシー
トの酸素指数30を越えている。
On the other hand, curve A in FIG. 3 is the oxygen index of the above sample, and curve B is the oxygen index of the sample obtained by removing the flame retardant from the chemical. From this, it can be seen that the oxygen index increases rapidly as the paper mixing ratio increases. In the case of curve A, the oxygen index of Nomex sheet, which has excellent flame resistance, is over 30 at a mixing ratio of 10% or more.

以上、繊維性多孔質部材及び透湿性気体遮蔽物
の諸特性のガラス繊維混抄率依存性を検討した結
果、ガラス繊維混抄率10%〜90%の範囲で有効な
特性を示し、30%〜80%が特に好適な特性となつ
ている。
As mentioned above, as a result of examining the dependence of various properties of fibrous porous members and moisture permeable gas shields on the glass fiber mixing ratio, it was found that the properties are effective in the range of glass fiber mixing ratio of 10% to 90%, and that the properties are effective in the range of glass fiber mixing ratio of 30% to 80%. % is a particularly preferred characteristic.

この発明に係る透湿性気体遮蔽物は、空気や炭
酸ガスのような気体は繊維間に形成された緻密な
高分子物質の薄膜に遮断されて透過することが殆
ど不可能であるが、水蒸気は前記繊維及び薄膜が
吸湿性を有しているので、これらの表面に吸着さ
れ、凝集して液状水となり、微細な繊維間に存在
する毛細管を毛細管現象によつて移動し、背面で
気化することによつて透過する。また、毛細管を
充満させた液状水は、これらの毛細管を通しての
気体の透過を阻止しており、高度の気体の選択透
過性を与えることになる。更に、素材として不燃
性のガラス繊維を混抄したので、全体としての難
燃性も大幅に向上する。
In the moisture-permeable gas shield according to the present invention, gases such as air and carbon dioxide are blocked by the thin film of dense polymer material formed between the fibers, making it almost impossible for them to pass through. Since the fibers and thin film have hygroscopic properties, it is adsorbed on their surfaces, aggregates, becomes liquid water, moves through the capillaries existing between the fine fibers by capillary action, and vaporizes on the back surface. Transmitted by. Additionally, the liquid water that fills the capillaries prevents gas from permeating through these capillaries, providing a high degree of gas selective permselectivity. Furthermore, since nonflammable glass fiber is mixed as a material, the overall flame retardance is greatly improved.

この種の気体遮蔽物は、例えば空調機器用の全
熱交換器にそのまま、あるいは積層して使用され
るが、その特性上屋外から屋内に取入れられる新
鮮な空気と、屋内から屋外に排出される汚れた空
気とが混合されることなく熱交換及び水蒸気がも
つ潜熱の交換を行うことができる。これは、全熱
交換器の熱回収率を高くするだけではなく、屋内
の湿度変化を少なくするため、衛生管理上からも
極めて有益である。また、高度の難燃性を有する
ために消防法の規定を満たすことができ、安全で
ある。
This type of gas shield is used, for example, in total heat exchangers for air conditioning equipment, either as is or in layers, but due to its characteristics, fresh air is taken in from the outdoors into the indoors, and fresh air is discharged from the indoors to the outdoors. Heat exchange and the latent heat of water vapor can be performed without mixing with dirty air. This not only increases the heat recovery rate of the total heat exchanger, but also reduces indoor humidity changes, which is extremely beneficial from a sanitary management perspective. In addition, because it has a high degree of flame retardancy, it can meet the provisions of the Fire Service Act and is safe.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る透湿性気体遮蔽物の素
材となるガラス繊維混抄紙の抗張力とガラス繊維
混抄率との関係を示す図、第2図は上記気体遮蔽
物の透湿係数とガラス繊維混抄率との関係を示す
図、第3図は上記気体遮蔽物の酸素指数とガラス
繊維混抄率との関係を示す図である。
Fig. 1 is a diagram showing the relationship between the tensile strength of the glass fiber mixed paper that is the material of the moisture permeable gas shield according to the present invention and the glass fiber mixing ratio, and Fig. 2 is a diagram showing the relationship between the moisture permeability coefficient of the gas shield and the glass fiber blending ratio. FIG. 3 is a diagram showing the relationship between the oxygen index of the gas shield and the glass fiber mixing ratio.

Claims (1)

【特許請求の範囲】 1 繊維径が5μm以下のガラス繊維とセルロー
ス繊維とを混抄した繊維性多孔質部材に、吸湿剤
及び難燃剤のうち少なくとも吸湿剤を含む高分子
物質を含浸または塗布して含有させたことを特徴
とする透湿性気体遮蔽物。 2 ガラス繊維の混抄率を10〜90%とした特許請
求の範囲第1項記載の透湿性気体遮蔽物。 3 セルロース繊維として、長繊維の麻、楮、綿
繊維あるいは木材パルプを用いる特許請求の範囲
第1項記載の透湿性気体遮蔽物。 4 吸湿剤として、塩化リチウムを用いる特許請
求の範囲第1項記載の透湿性気体遮蔽物。 5 難燃剤として、グアニジン塩類を用いる特許
請求の範囲第1項記載の透湿性気体遮蔽物。 6 高分子物質として、水溶性のポリビニルアル
コールを用いる特許請求の範囲第1項記載の透湿
性気体遮蔽物。
[Scope of Claims] 1 A fibrous porous material made by mixing glass fibers and cellulose fibers with a fiber diameter of 5 μm or less is impregnated or coated with a polymeric substance containing at least a hygroscopic agent among a hygroscopic agent and a flame retardant. A moisture permeable gas shield characterized by containing: 2. The moisture-permeable gas shield according to claim 1, wherein the glass fiber mixing ratio is 10 to 90%. 3. The moisture-permeable gas shield according to claim 1, wherein long-fiber hemp, mulberry, cotton fiber, or wood pulp is used as the cellulose fiber. 4. The moisture-permeable gas shield according to claim 1, wherein lithium chloride is used as the moisture absorbent. 5. The moisture permeable gas shield according to claim 1, which uses guanidine salts as the flame retardant. 6. The moisture-permeable gas shield according to claim 1, in which water-soluble polyvinyl alcohol is used as the polymeric substance.
JP143779A 1979-01-08 1979-01-08 Moisture-permeable gas shielding Granted JPS5594621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP143779A JPS5594621A (en) 1979-01-08 1979-01-08 Moisture-permeable gas shielding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP143779A JPS5594621A (en) 1979-01-08 1979-01-08 Moisture-permeable gas shielding

Publications (2)

Publication Number Publication Date
JPS5594621A JPS5594621A (en) 1980-07-18
JPS6213048B2 true JPS6213048B2 (en) 1987-03-24

Family

ID=11501411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP143779A Granted JPS5594621A (en) 1979-01-08 1979-01-08 Moisture-permeable gas shielding

Country Status (1)

Country Link
JP (1) JPS5594621A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60175521A (en) * 1984-02-21 1985-09-09 Seibu Giken:Kk Production of element for dehumidifier
US4857081A (en) * 1987-10-15 1989-08-15 Separation Dynamics, Inc. Separation of water from hydrocarbons and halogenated hydrocarbons
JP2006150323A (en) * 2004-11-01 2006-06-15 Japan Gore Tex Inc Diaphragm and production method of the same and heat exchanger equipped with the same
PL2138792T3 (en) 2007-04-17 2019-01-31 Mitsubishi Electric Corporation Process for manufacturing total heat exchanger element and total heat exchanger element

Also Published As

Publication number Publication date
JPS5594621A (en) 1980-07-18

Similar Documents

Publication Publication Date Title
CA2644476C (en) Sheet for total heat exchanger
US7299862B2 (en) Total heat exchanging element
US4484938A (en) Total heat exchanger
KR100893819B1 (en) Heat exchanger and heat exchange ventilator
CA2798928A1 (en) Separating membrane and heat exchanger using same
JP2010214298A (en) Moisture permeable diaphragm material
JPS6235596B2 (en)
JPS6130609B2 (en)
WO2007116567A1 (en) Total enthalpy heat exchanger
JPS6213048B2 (en)
JPH0425476B2 (en)
JPH0124529B2 (en)
JPS5846325B2 (en) Method for manufacturing a moisture-permeable gas shield
JPS58124196A (en) Total heat-exchanging element
GB2417315A (en) Heat exchange element with flame retardant and moisture permeable portions
KR101322049B1 (en) Paper for total heat exchange element, preparation method thereof and total heat exchange element comprising the same
JP2005262827A (en) Moisture absorbing and releasing material
JPS58124521A (en) Moisture permeable gas barrier
JPS6123477B2 (en)
JPH10183492A (en) Base paper for total heat exchanging element
JPS6028660B2 (en) Moisture-permeable gas shield
JPH0515959B2 (en)
JP3536949B2 (en) Water-permeable sheet and method for producing the same
JPS6219210B2 (en)
JPS5818599B2 (en) Bouenseino Kaizensareta Toshitsu Seiki Taisiya Heibutsu