JP2008292061A - Total enthalpy heat exchanger - Google Patents

Total enthalpy heat exchanger Download PDF

Info

Publication number
JP2008292061A
JP2008292061A JP2007137908A JP2007137908A JP2008292061A JP 2008292061 A JP2008292061 A JP 2008292061A JP 2007137908 A JP2007137908 A JP 2007137908A JP 2007137908 A JP2007137908 A JP 2007137908A JP 2008292061 A JP2008292061 A JP 2008292061A
Authority
JP
Japan
Prior art keywords
partition plate
heat exchanger
total heat
total enthalpy
calcium chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007137908A
Other languages
Japanese (ja)
Inventor
Michio Murai
道雄 村井
Shinya Tokizaki
晋也 鴇崎
Masaru Takada
勝 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007137908A priority Critical patent/JP2008292061A/en
Publication of JP2008292061A publication Critical patent/JP2008292061A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a total enthalpy heat exchanger capable of maintaining high efficiency of moisture exchange even in the environment causing dew condensation repeatedly and having high efficiency of total enthalpy heat exchange. <P>SOLUTION: This total enthalpy heat exchanger exchanges heat between sensible heat and latent heat of two air currents through a partition plate by letting two air currents flow across the partition plate. The partition plate is constituted by a gas shutting-out material including a cross-linking component formed by cross-linking polysaccharide derived from sea weeds in an ionic manner by ion cross-linking agent. Preferably, the polysaccharide derived from sea weeds is alginate or carageenan and the ion cross-linking agent is calcium chloride. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新鮮な外気の給気と汚濁した室内空気の排気を同時に行う換気装置やビル等の空調機械室の空気処理装置(給気と排気との全熱交換装置)等に用いる全熱交換器に関するものである。   The present invention provides total heat used in a ventilation device that simultaneously supplies fresh outside air and exhausts polluted indoor air, an air processing device in an air conditioning machine room such as a building (total heat exchange device between supply air and exhaust), and the like. It relates to an exchanger.

室内の冷暖房効果を損なわずに換気を行う方法としては、給気と排気との間で熱交換を行いながら換気を行う方法がある。また、熱交換の効率を向上させるためには、給気と排気との間で温度(顕熱)とともに湿度(潜熱)の交換も同時に行う(即ち、全熱交換を行う)のが有効である。   As a method of performing ventilation without impairing the indoor heating / cooling effect, there is a method of performing ventilation while exchanging heat between supply air and exhaust. In order to improve the efficiency of heat exchange, it is effective to simultaneously exchange temperature (sensible heat) and humidity (latent heat) between supply air and exhaust (that is, to perform total heat exchange). .

従来、吸湿剤を含有する親水性高分子を高分子多孔質部材に含浸又は塗布した仕切板を介して給気及び排気間の全熱交換を行う全熱交換器が提案されている(例えば、特許文献1を参照)。
また、従来、多孔質シートの片面に非水溶性の親水性高分子薄膜を形成した仕切板を介して給気及び排気間の全熱交換を行う全熱交換器も提案されている(例えば、特許文献2を参照)。
更に、従来、スルホン化統計的スチレン共重合体からなる水伝導膜を仕切板に使用することも提案されている(例えば、特許文献3及び4を参照)。
Conventionally, a total heat exchanger that performs total heat exchange between air supply and exhaust through a partition plate in which a porous polymer member is impregnated or coated with a hydrophilic polymer containing a hygroscopic agent has been proposed (for example, (See Patent Document 1).
Conventionally, a total heat exchanger that performs total heat exchange between air supply and exhaust through a partition plate in which a water-insoluble hydrophilic polymer thin film is formed on one side of a porous sheet has also been proposed (for example, (See Patent Document 2).
Furthermore, conventionally, it has been proposed to use a water conductive membrane made of a sulfonated statistical styrene copolymer as a partition plate (see, for example, Patent Documents 3 and 4).

特開昭60−205193号公報JP 60-205193 A 特開平6−194093号公報JP-A-6-194093 特表2004−504928号公報JP-T-2004-504928 特表2004−535270号公報JP-T-2004-535270

しかしながら、特許文献1に記載の全熱交換器では、吸湿剤と親水性高分子との相溶性が良くないため、仕切板表面に発生した結露により吸湿剤が流失し、仕切板の透湿性能が低下するという問題があった。また、特許文献2に記載の全熱交換器では、仕切板が吸湿剤を含有する場合に比較して、透湿性能が低いという問題があった。更に、特許文献3及び4に記載の水伝導膜を得るには、毒性が高く且つ臭気の強いスチレンなどのアリールビニル単量体を使用する必要がある上に、臭気や有害性のある有機溶剤を使うためこの有機溶剤の除去に高温で長時間乾燥させる必要があるという問題があった。
従って、本発明は、上記のような問題を解決するためになされたものであり、結露を繰り返すような環境下でも高い湿度交換効率を維持できるとともに、高い全熱交換効率を有する全熱交換器を提供することを目的としている。
However, in the total heat exchanger described in Patent Document 1, since the compatibility between the hygroscopic agent and the hydrophilic polymer is not good, the hygroscopic agent is washed away due to condensation that occurs on the surface of the partition plate, and the moisture permeability of the partition plate There was a problem that decreased. Moreover, in the total heat exchanger of patent document 2, there existed a problem that moisture permeability performance was low compared with the case where a partition plate contains a hygroscopic agent. Furthermore, in order to obtain the water conductive membranes described in Patent Documents 3 and 4, it is necessary to use an aryl vinyl monomer such as styrene having high toxicity and strong odor, and also an organic solvent having odor and harmfulness. In order to remove the organic solvent, it is necessary to dry at a high temperature for a long time.
Therefore, the present invention has been made to solve the above problems, and is capable of maintaining high humidity exchange efficiency even in an environment where condensation is repeated, and is a total heat exchanger having high total heat exchange efficiency. The purpose is to provide.

そこで、本発明者らは上記のような従来の問題点を解決すべく鋭意研究、開発を遂行した結果、このような問題点を解決するためには、仕切板として、海藻由来の多糖類をイオン架橋剤でイオン的に架橋させた架橋体を含む気体遮蔽性材料を用いることが有効であることに想到し、本発明を完成するに至った。
即ち、本発明は、仕切板を隔てて二種の気流を流動させ、前記仕切板を介して前記二種の気流の顕熱及び潜熱を熱交換させる全熱交換器であって、前記仕切板を、海藻由来の多糖類をイオン架橋剤でイオン的に架橋させた架橋体を含む気体遮蔽性材料で構成したことを特徴とする。
Therefore, as a result of intensive research and development to solve the conventional problems as described above, in order to solve such problems, the present inventors used a seaweed-derived polysaccharide as a partition plate. The inventors have conceived that it is effective to use a gas shielding material containing a crosslinked product ionically crosslinked with an ionic crosslinking agent, and have completed the present invention.
That is, the present invention is a total heat exchanger that causes two kinds of airflows to flow through a partition plate, and exchanges sensible heat and latent heat of the two kinds of airflows via the partition plate, wherein the partition plate Is composed of a gas shielding material containing a crosslinked product obtained by ionically crosslinking a polysaccharide derived from seaweed with an ionic crosslinking agent.

本発明によれば、結露を繰り返すような環境下でも高い湿度交換効率を維持できるとともに、高い全熱交換効率を有する全熱交換器を提供することができる。   According to the present invention, it is possible to provide a total heat exchanger having high total heat exchange efficiency while maintaining high humidity exchange efficiency even in an environment where condensation is repeated.

以下、本発明の実施形態を図面に基づいて説明する。
実施の形態1.
図1は、実施の形態1に係る全熱交換器を示す斜視図である。図1において、全熱交換器1は、給気の気流が通される給気層2と、排気の気流が通される排気層3とが仕切板4を介して交互に積層された積層体である。給気層2には、仕切板4に沿って給気の気流を導く給気通路5が設けられている。排気層3には、仕切板4に沿って排気の気流を導く排気通路6が設けられている。給気通路5及び排気通路6は、各仕切板4の間隔を保持する波形の間隔板7によりそれぞれ形成されている。給気の気流が給気通路5により導かれる方向Aと、排気の気流が排気通路6により導かれる方向Bとは、互いに垂直になっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
1 is a perspective view showing a total heat exchanger according to Embodiment 1. FIG. In FIG. 1, the total heat exchanger 1 includes a stacked body in which an air supply layer 2 through which an air flow of supply air passes and an exhaust layer 3 through which an air flow of exhaust passes are alternately stacked via a partition plate 4. It is. The air supply layer 2 is provided with an air supply passage 5 that guides the airflow of the supply air along the partition plate 4. The exhaust layer 3 is provided with an exhaust passage 6 that guides an exhaust airflow along the partition plate 4. The air supply passage 5 and the exhaust passage 6 are respectively formed by corrugated spacing plates 7 that keep the spacing between the partition plates 4. A direction A in which the supply airflow is guided by the supply passage 5 and a direction B in which the exhaust airflow is guided by the exhaust passage 6 are perpendicular to each other.

各仕切板4は、海藻由来の多糖類をイオン架橋剤でイオン的に架橋させた架橋体を多孔質基材に含有させてなる気体遮蔽性材料から構成される。海藻由来の多糖類には、アルギン酸及びその塩(例えば、アルギン酸ナトリウム)、カラギーナン、フコダイン、ポルフィランが挙げられ、結露耐性向上の観点からアルギン酸塩又はカラギーナンが特に好ましい。イオン架橋剤としては、アルギン酸ナトリウム、カラギーナンなどの海藻由来の多糖類をイオン的に架橋させ、これらの海藻由来の多糖類水溶液をゲル化し得るものであればよい。アルギン酸ナトリウム等の海藻由来の多糖類をイオン架橋し得るものとしては、マグネシウム、水銀を除く2価以上の電荷を有する金属イオンであり、入手容易性、透湿性向上の観点から塩化カルシウムが特に好ましい。多孔質基材としては、多孔質の基材であれば特に限定されるものではなく、多孔紙、不織布、多孔性樹脂フィルムなどが挙げられる。多孔質基材の坪量は、高くなるほど気体遮蔽性に優れた仕切板4を製造し易くなる反面、仕切板4の透湿性が低下し、湿度交換効率が低下する傾向にある。そのため、多孔質基材の坪量は8g/cm2〜30g/cm2が好ましい。また、多孔質基材の厚さは、仕切板4の強度や透湿性を考慮すると、20μm〜100μmが好ましい。 Each partition plate 4 is composed of a gas-shielding material in which a porous base material contains a cross-linked body obtained by ionically cross-linking a polysaccharide derived from seaweed with an ionic cross-linking agent. Examples of the seaweed-derived polysaccharide include alginic acid and a salt thereof (for example, sodium alginate), carrageenan, fucodyne, and porphyran. Alginate or carrageenan is particularly preferable from the viewpoint of improving condensation resistance. Any ion cross-linking agent may be used as long as it can ionically cross-link seaweed-derived polysaccharides such as sodium alginate and carrageenan to gel these seaweed-derived polysaccharide aqueous solutions. What can ion-crosslink polysaccharides derived from seaweeds such as sodium alginate is a metal ion having a bivalent or higher charge excluding magnesium and mercury, and calcium chloride is particularly preferred from the viewpoint of availability and improved moisture permeability. . The porous substrate is not particularly limited as long as it is a porous substrate, and examples thereof include porous paper, nonwoven fabric, and porous resin film. The higher the basis weight of the porous substrate, the easier it is to manufacture the partition plate 4 having excellent gas shielding properties, but the moisture permeability of the partition plate 4 is lowered and the humidity exchange efficiency tends to be lowered. Therefore, the basis weight of the porous substrate is preferably 8g / cm 2 ~30g / cm 2 . Further, the thickness of the porous substrate is preferably 20 μm to 100 μm in consideration of the strength and moisture permeability of the partition plate 4.

アルギン酸及びその塩やカラギーナンのイオン架橋体は、高い透湿性を示す上に、結露により流出するような吸湿剤を含まない。そのため、この架橋体を多孔質基材に含有させてなる気体遮蔽性材料は、結露が発生するような高湿度雰囲気下でも透湿性能が低下しない。また、このイオン架橋体は高い耐水性を有するために結露などにより溶解することがなく、高湿度雰囲気下でも気体遮蔽性が維持できる。更に、仕切板4を製造する際に有機溶剤を使用する必要がないという利点も有している。   Algonic acid and its salts and ionic cross-linked products of carrageenan have high moisture permeability and do not contain a hygroscopic agent that flows out due to condensation. For this reason, the gas-shielding material in which the crosslinked material is contained in the porous base material does not deteriorate in moisture permeability even under a high humidity atmosphere where condensation occurs. Moreover, since this ion crosslinked body has high water resistance, it does not melt | dissolve by dew condensation etc., and gas-shielding property can be maintained also in a high humidity atmosphere. Furthermore, there is an advantage that it is not necessary to use an organic solvent when the partition plate 4 is manufactured.

透湿性を向上させる観点からは、気体遮蔽性材料としての仕切板4に含有されるイオン架橋体の量が少ないほど好ましい。ただし、イオン架橋体の量が少なすぎるとピンホールが発生しやすく気体遮蔽性が損なわれる恐れがある。透湿性と気体遮蔽性との両方を考慮すると、イオン架橋体の量は、仕切板4の面積1m2当たり3g〜30gが好ましい。 From the viewpoint of improving moisture permeability, it is preferable that the amount of the ionically crosslinked body contained in the partition plate 4 as the gas shielding material is smaller. However, if the amount of the ionic crosslinked product is too small, pinholes are likely to be generated, and the gas shielding property may be impaired. In consideration of both moisture permeability and gas shielding properties, the amount of the ion-crosslinked body is preferably 3 g to 30 g per 1 m 2 of the partition plate 4 area.

波形の間隔板7は、特に限定されるものではなく、公知の波形の加工紙等を使用することができる。また、間隔板7の厚さは、特に限定されるものではなく、通常、50μm〜200μmの範囲で適宜設定される。   The corrugated spacing plate 7 is not particularly limited, and known corrugated processed paper or the like can be used. Moreover, the thickness of the space | interval board 7 is not specifically limited, Usually, it sets suitably in the range of 50 micrometers-200 micrometers.

次に、全熱交換器1の動作について説明する。例えば、冷たくて乾燥した外気が給気として給気層2に通され、暖かくて湿気の高い室内空気が排気として排気層3に通されると、給気及び排気の各気流(二種の気流)が各仕切板4を隔てて流れる。このとき、仕切板4を熱及び水蒸気が通り、給気と排気との間で顕熱及び潜熱の熱交換が各仕切板4を介して行われる。これにより、給気は暖められるとともに加湿されて室内に供給され、排気は冷やされるとともに減湿されて室外へ排出される。   Next, the operation of the total heat exchanger 1 will be described. For example, when cold and dry outside air is passed through the supply layer 2 as supply air, and warm and humid room air is passed through the exhaust layer 3 as exhaust, each supply air flow and exhaust air flow (two air flows) ) Flows across each partition plate 4. At this time, heat and water vapor pass through the partition plate 4, and heat exchange of sensible heat and latent heat is performed via the partition plates 4 between the supply air and the exhaust air. Thus, the supply air is warmed and humidified and supplied to the room, and the exhaust is cooled and dehumidified and discharged to the outside.

次に、全熱交換器1の製造方法について説明する。まず、イオン架橋剤を含む水溶液中に多孔質基材を浸漬した後、これを加熱乾燥することにより、イオン架橋剤を含浸させた多孔質基材を作製する。多孔質基材に含浸させるイオン架橋剤の量は、この後の工程で塗布される海藻由来の多糖類水溶液をゲル化するのに十分な量であればよい。次いで、海藻由来の多糖類水溶液を多孔質基材の表面にバーコータ等により塗布した後、これを加熱乾燥させることにより、海藻由来の多糖類をイオン架橋剤でイオン的に架橋させた架橋体を含む気体遮蔽性材料としての仕切板4が作製される。このようにして作製された仕切板4から未反応のイオン架橋剤や海藻由来の多糖類などの水溶性成分を除去する目的で、仕切板4を水中に浸漬してもよい。この後、この仕切板4を波形の間隔板7と貼り合わせて積層体単位を作製し、間隔板7の波溝の方向が交互に直交するように上記積層体単位を所望の数だけ積層させることにより、全熱交換器1が得られる。   Next, the manufacturing method of the total heat exchanger 1 is demonstrated. First, a porous substrate impregnated with an ionic crosslinking agent is prepared by immersing the porous substrate in an aqueous solution containing an ionic crosslinking agent and then drying it by heating. The amount of the ionic crosslinking agent impregnated into the porous substrate may be an amount sufficient to gel the aqueous solution of polysaccharide derived from seaweed applied in the subsequent step. Subsequently, after applying an aqueous solution of polysaccharides derived from seaweed to the surface of the porous substrate with a bar coater or the like, a crosslinked product obtained by ionically crosslinking the polysaccharides derived from seaweed with an ionic crosslinking agent is obtained by heating and drying this. A partition plate 4 as a gas shielding material is prepared. For the purpose of removing water-soluble components such as unreacted ionic crosslinking agents and seaweed-derived polysaccharides from the partition plate 4 thus produced, the partition plate 4 may be immersed in water. Thereafter, the partition plate 4 is bonded to the corrugated spacing plate 7 to produce a laminate unit, and a desired number of the laminate units are laminated so that the wave grooves of the spacing plate 7 are alternately orthogonal. Thus, the total heat exchanger 1 is obtained.

[実施例1]
厚さ50μmで坪量20g/cm2の多孔紙を塩化カルシウム水溶液中に浸漬した後、これを加熱乾燥することで、塩化カルシウムを8g/m2含む多孔紙を得た。この塩化カルシウムを含む多孔紙の片面に、2質量%のアルギン酸ナトリウム水溶液をバーコータにて塗布した。塗布したアルギン酸ナトリウム水溶液は直ちにゲル化し、イオン架橋体であるアルギン酸カルシウムが形成されていることが確認された。その後、この多孔紙を加熱乾燥させ、さらにこれを水中に浸漬し、多孔紙に付着する塩化カルシウム、アルギン酸ナトリウムなどの水溶性成分を除去し、これを再度加熱乾燥することで、アルギン酸カルシウムを4g/m2含有する仕切板を得た。さらにこの仕切板を、厚さ100μmの加工紙を波板状に加工した間隔板と貼り合わせ、積層体単位を作製した。その後、仕切板の形状が30cm角の正方形になるように積層体単位を成形した後、図1に示すように、間隔板の波溝の方向が交互に直交するように複数の積層体単位を積層させ、高さが50cmの全熱交換器を得た。
[Example 1]
A porous paper having a thickness of 50 μm and a basis weight of 20 g / cm 2 was dipped in an aqueous calcium chloride solution and then dried by heating to obtain a porous paper containing 8 g / m 2 of calcium chloride. A 2% by mass aqueous sodium alginate solution was applied to one side of the porous paper containing calcium chloride with a bar coater. The applied sodium alginate aqueous solution immediately gelled, and it was confirmed that calcium alginate which is an ionic cross-linked product was formed. Thereafter, the porous paper is dried by heating, and further immersed in water to remove water-soluble components such as calcium chloride and sodium alginate adhering to the porous paper, and this is dried again by heating, whereby 4 g of calcium alginate is obtained. A partition plate containing / m 2 was obtained. Furthermore, this partition plate was bonded to a spacing plate obtained by processing a processed paper having a thickness of 100 μm into a corrugated plate shape, thereby producing a laminate unit. Thereafter, after forming the laminate unit so that the shape of the partition plate is a square of 30 cm square, as shown in FIG. 1, a plurality of laminate units are arranged so that the direction of the wave groove of the spacing plate is alternately orthogonal. Lamination was performed to obtain a total heat exchanger having a height of 50 cm.

[実施例2]
2質量%のアルギン酸ナトリウム水溶液の代わりに2質量%のι−カラギーナン水溶液を用いる以外は実施例1と同様にして、ι−カラギーナンのカルシウムイオン架橋体を4g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Example 2]
A partition plate containing 4 g / m 2 of the crosslinked calcium ion of ι-carrageenan was obtained in the same manner as in Example 1 except that a 2% by weight ι-carrageenan aqueous solution was used instead of the 2% by weight sodium alginate aqueous solution. . A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[実施例3]
2質量%のアルギン酸ナトリウム水溶液の代わりに2質量%のκ−カラギーナン水溶液を用いる以外は実施例1と同様にして、カラギーナンのカルシウムイオン架橋体を4g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Example 3]
A partition plate containing 4 g / m 2 of a carrageenan calcium ion crosslinked product was obtained in the same manner as in Example 1 except that a 2% by mass κ-carrageenan aqueous solution was used instead of the 2% by mass sodium alginate aqueous solution. A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[実施例4]
厚さ50μmで坪量20g/cm2の多孔紙を硫酸アルミニウム水溶液中に浸漬した後、これを加熱乾燥することで、硫酸アルミニウムを6g/m2含む多孔紙を得た。この硫酸アルミニウムを含む多孔紙を用いる以外は実施例1と同様にして、アルギン酸アルミニウムを4g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Example 4]
A porous paper having a thickness of 50 μm and a basis weight of 20 g / cm 2 was immersed in an aluminum sulfate aqueous solution and then dried by heating to obtain a porous paper containing 6 g / m 2 of aluminum sulfate. A partition plate containing 4 g / m 2 of aluminum alginate was obtained in the same manner as in Example 1 except that this porous paper containing aluminum sulfate was used. A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[比較例1]
厚さ50μmで坪量20g/cm2の多孔紙(塩化カルシウムを含浸させていない)の片面に、2質量%のアルギン酸ナトリウム水溶液をバーコータにて塗布した。その後、この多孔紙を加熱乾燥させ、アルギン酸ナトリウムを4g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Comparative Example 1]
A 2% by mass aqueous sodium alginate solution was applied to one side of a porous paper (not impregnated with calcium chloride) having a thickness of 50 μm and a basis weight of 20 g / cm 2 with a bar coater. Thereafter, this porous paper was dried by heating to obtain a partition plate containing 4 g / m 2 of sodium alginate. A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[比較例2]
比較例1におけるアルギン酸ナトリウム水溶液の塗布及び加熱乾燥を複数回繰り返すことにより、アルギン酸ナトリウムを24g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Comparative Example 2]
By repeating the application of the sodium alginate aqueous solution and the heat drying in Comparative Example 1 several times, a partition plate containing 24 g / m 2 of sodium alginate was obtained. A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[比較例3]
2質量%のアルギン酸ナトリウム水溶液の代わりに2質量%のι−カラギーナン水溶液を用いる以外は比較例1と同様にして、ι−カラギーナンを4g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Comparative Example 3]
A partition plate containing 4 g / m 2 of ι-carrageenan was obtained in the same manner as in Comparative Example 1 except that a 2% by weight ι-carrageenan aqueous solution was used instead of the 2% by weight sodium alginate aqueous solution. A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[比較例4]
2質量%のアルギン酸ナトリウム水溶液の代わりに2質量%のカルボキシメチルセルロース水溶液を用いる以外は実施例1と同様にして、カルボキシメチルセルロースのカルシウムイオン架橋体を4g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Comparative Example 4]
A partition plate containing 4 g / m 2 of a calcium ion crosslinked product of carboxymethyl cellulose was obtained in the same manner as in Example 1 except that a 2% by mass carboxymethyl cellulose aqueous solution was used instead of the 2% by mass sodium alginate aqueous solution. A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[比較例5]
2質量%のアルギン酸ナトリウム水溶液の代わりに2質量%のポリスチレンスルホン酸ナトリウム水溶液を用いる以外は実施例1と同様にして、ポリスチレンスルホン酸カルシウムを4g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Comparative Example 5]
A partition plate containing 4 g / m 2 of polystyrene sulfonate was obtained in the same manner as in Example 1 except that a 2% by weight sodium polystyrene sulfonate aqueous solution was used instead of the 2% by weight sodium alginate aqueous solution. A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[比較例6]
比較例5における2質量%のポリスチレンスルホン酸ナトリウム水溶液の代わりに20質量%のポリスチレンスルホン酸ナトリウム水溶液を用い、ポリスチレンスルホン酸ナトリウム水溶液の塗布及び加熱乾燥を複数回繰り返すことにより、ポリスチレンスルホン酸カルシウムを63g/m2含有する仕切板を得た。得られた仕切板を用いて実施例1と同様に全熱交換器を得た。
[Comparative Example 6]
By using 20% by weight polystyrene sodium sulfonate aqueous solution instead of 2% by weight polystyrene sodium sulfonate aqueous solution in Comparative Example 5 and repeating the application of the sodium polystyrene sulfonate aqueous solution and heat drying several times, A partition plate containing 63 g / m 2 was obtained. A total heat exchanger was obtained in the same manner as in Example 1 using the obtained partition plate.

[比較例7]
塩化カルシウムを2g/m2含有する厚さ30μmの無孔紙からなる仕切板を用いて実施例1と同様に全熱交換器を得た。
[Comparative Example 7]
A total heat exchanger was obtained in the same manner as in Example 1 using a partition plate made of non-porous paper having a thickness of 30 μm and containing 2 g / m 2 of calcium chloride.

<全熱交換器の性能評価>
実施例1〜4及び比較例1〜7の各全熱交換器の性能を評価した。
全熱交換器の交換効率及び二酸化炭素移行率は、JIS B8628に準じた方式で行った。なお、空気条件は1次気流(給気)として温度27℃、相対湿度52.7%RH、2次気流(排気)として温度35℃、相対湿度64.3%RH(冷房条件)としてある。
上記測定後、各全熱交換器を常温の水中に1時間浸漬した後、80℃で加熱乾燥させることを5回繰り返して結露状態を模擬した後、上記と同様の試験条件で交換効率及び二酸化炭素移行率を再度測定した。なお、二酸化炭素移行率(結露試験前及び結露試験後)の評価は、5%未満のものを気体遮蔽性が良好(○)とし、5%以上のものを気体遮蔽性が劣る(×)とした。結露試験後の湿度交換効率の評価は、湿度交換効率の低下が結露試験の前後で10%未満のものを良好(○)とし、湿度交換効率の低下が結露試験の前後で10%以上のものを劣る(×)とした。
これらの結果を表1に示した。
<Performance evaluation of total heat exchanger>
The performance of each total heat exchanger of Examples 1-4 and Comparative Examples 1-7 was evaluated.
The exchange efficiency and the carbon dioxide transfer rate of the total heat exchanger were carried out in accordance with JIS B8628. The air condition is a primary airflow (supply air) at a temperature of 27 ° C., a relative humidity of 52.7% RH, and a secondary airflow (exhaust) of a temperature of 35 ° C. and a relative humidity of 64.3% RH (cooling conditions).
After the above measurement, after immersing each total heat exchanger in normal temperature water for 1 hour and then heating and drying at 80 ° C. 5 times to simulate the dew condensation state, the exchange efficiency and dioxide dioxide were tested under the same test conditions as above. The carbon transfer rate was measured again. In addition, the evaluation of the carbon dioxide migration rate (before and after the dew condensation test) is less than 5% for good gas shielding (○), and 5% or more for poor gas shielding (×). did. In the evaluation of the humidity exchange efficiency after the dew condensation test, the humidity exchange efficiency decrease is less than 10% before and after the dew condensation test (○), and the humidity exchange efficiency decrease is 10% or more before and after the dew condensation test. Was inferior (x).
These results are shown in Table 1.

Figure 2008292061
Figure 2008292061

以上の結果から、温度交換効率は実施例及び比較例いずれも78%で変わりはないが、実施例1〜4の全熱交換器は高い湿度交換効率及び全熱交換効率を有する上に、二酸化炭素移行率が小さいことが分かった。更に、実施例1〜4の全熱交換器は、結露試験後においても湿度交換効率や二酸化炭素移行率が維持された。塩化カルシウムは潮解性を有する無機塩であるため、比較例7のように無孔紙に含有させただけで高い透湿度を示す。実施例1〜3において、海藻由来の多糖類をイオン架橋させた後の水中浸漬工程を省略すると、塩化カルシウムが仕切板に残存する。その場合、初期の湿度交換効率は水中浸漬したものより更に高くなる。これが塩化カルシウムが特に好ましい理由である。但し、結露などにより塩化カルシウムが仕切板から徐々に流失することにより、実施例1〜3と同等の湿度交換効率になる。   From the above results, the temperature exchange efficiency is 78% in both the examples and the comparative examples, but the total heat exchangers of Examples 1 to 4 have high humidity exchange efficiency and total heat exchange efficiency, and It was found that the carbon transfer rate was small. Furthermore, the total heat exchangers of Examples 1 to 4 maintained the humidity exchange efficiency and the carbon dioxide transfer rate even after the dew condensation test. Since calcium chloride is an inorganic salt having deliquescence, it shows high moisture permeability just by being contained in non-porous paper as in Comparative Example 7. In Examples 1 to 3, if the step of immersing in water after ion-crosslinking a polysaccharide derived from seaweed is omitted, calcium chloride remains on the partition plate. In that case, the initial humidity exchange efficiency is further higher than that in water. This is why calcium chloride is particularly preferred. However, the humidity exchange efficiency is equivalent to those of Examples 1 to 3 because calcium chloride is gradually washed away from the partition plate due to condensation or the like.

比較例1及び5は、初期の二酸化炭素移行率が大きくなった。これは仕切板にピンホールなどの穴が生じ、仕切板の気体遮蔽性が損なわれた結果、全熱交換器の給気側と排気側との空気が混合していることを表す。このような状態は全熱交換器として欠陥であり、正確な交換効率が測定できないことから、比較例1及び5では交換効率を測定していない。   In Comparative Examples 1 and 5, the initial carbon dioxide transfer rate increased. This means that holes such as pin holes are formed in the partition plate and the gas shielding property of the partition plate is impaired, and as a result, the air on the supply side and the exhaust side of the total heat exchanger are mixed. Such a state is defective as a total heat exchanger, and accurate exchange efficiency cannot be measured. Therefore, in Comparative Examples 1 and 5, the exchange efficiency is not measured.

実施例1及び2の結果から、多孔紙に塩化カルシウムを含浸させた後、少量のアルギン酸ナトリウムあるいはι−カラギーナンの水溶液を塗布するだけで、ゲル化したアルギン酸カルシウムあるいはι−カラギーナンのカルシウムイオン架橋体が形成されるので、仕切板の気体遮蔽性が確保されることが分かる。   From the results of Examples 1 and 2, after impregnating the porous paper with calcium chloride, the calcium ion crosslinked product of calcium alginate or ι-carrageenan gelled by simply applying a small amount of sodium alginate or ι-carrageenan aqueous solution. It is understood that the gas shielding property of the partition plate is secured.

これに対し、比較例1よりもアルギン酸ナトリウム量を増量した比較例2は、初期の二酸化炭素移行率は5%未満に抑えることができたものの、仕切板中に含まれるアルギン酸ナトリウム量が増えた結果、仕切板の透湿性が低下し、湿度交換効率が低下した。またアルギン酸ナトリウム自体は水溶性であるため結露試験により二酸化炭素移行率が大きくなり、仕切板の気体遮蔽性が損なわれた。
また、多孔紙に塩化カルシウムを含浸させずに、ι−カラギーナンの水溶液を塗布して加熱乾燥した比較例3は、初期の二酸化炭素移行率は5%未満に抑えることができたものの、結露試験後は二酸化炭素移行率が大きくなり、仕切板の気体遮蔽性が損なわれた。
In contrast, Comparative Example 2 in which the amount of sodium alginate was increased as compared with Comparative Example 1 was able to suppress the initial carbon dioxide transfer rate to less than 5%, but the amount of sodium alginate contained in the partition plate increased. As a result, the moisture permeability of the partition plate was lowered and the humidity exchange efficiency was lowered. Moreover, since sodium alginate itself is water-soluble, the carbon dioxide transfer rate was increased by the dew condensation test, and the gas shielding property of the partition plate was impaired.
Further, in Comparative Example 3 in which an aqueous solution of ι-carrageenan was applied to porous paper without impregnation with calcium chloride and dried by heating, the initial carbon dioxide transfer rate could be suppressed to less than 5%, but the dew condensation test After that, the carbon dioxide transfer rate increased, and the gas shielding property of the partition plate was impaired.

比較例4は、カルボキシメチルセルロースのカルシウムイオン架橋体を使用した例である。カルボキシメチルセルロースはセルロース由来の多糖類である。比較例4では、結露試験の前後で二酸化炭素移行率が維持されたものの、湿度交換効率が低かった。   Comparative Example 4 is an example using a calcium ion crosslinked product of carboxymethyl cellulose. Carboxymethylcellulose is a polysaccharide derived from cellulose. In Comparative Example 4, although the carbon dioxide transfer rate was maintained before and after the dew condensation test, the humidity exchange efficiency was low.

比較例5及び6は、多孔紙にポリスチレンスルホン酸カルシウムを形成した例である。比較例5では初期の二酸化炭素移行率が大きくなった。これはポリスチレンスルホン酸ナトリウム水溶液と塩化カルシウムとが混合された際、水溶液がゲル化せず、ポリスチレンスルホン酸カルシウムが析出するためと考えられる。比較例5よりもポリスチレンスルホン酸カルシウムの塗布量を増やした比較例6では、初期の二酸化炭素移行率は維持されたもの、透湿度は小さく、また結露試験後に二酸化炭素移行率が大きくなった。   Comparative Examples 5 and 6 are examples in which calcium polystyrene sulfonate was formed on a porous paper. In Comparative Example 5, the initial carbon dioxide transfer rate increased. This is presumably because when the aqueous polystyrene sulfonate solution and calcium chloride are mixed, the aqueous solution does not gel, and calcium polystyrene sulfonate precipitates. In Comparative Example 6 in which the coating amount of polystyrene sulfonate calcium was increased as compared with Comparative Example 5, the initial carbon dioxide migration rate was maintained, the moisture permeability was small, and the carbon dioxide migration rate was large after the condensation test.

比較例7は、無孔紙に塩化カルシウムを含有させただけの仕切板を使用している。比較例7では、初期の交換効率及び二酸化炭素移行率は実施例1〜4と遜色ないが、結露試験により湿度交換効率が大きく低下した。これは仕切板の湿度交換効率が塩化カルシウムに依るものであり、結露試験により塩化カルシウムが流失したため湿度交換効率が大きく低下したと考えられる。   The comparative example 7 uses the partition plate which made the non-porous paper contain calcium chloride. In Comparative Example 7, the initial exchange efficiency and the carbon dioxide transfer rate were comparable to those of Examples 1 to 4, but the humidity exchange efficiency was greatly reduced by the dew condensation test. This is because the humidity exchange efficiency of the partition plate depends on calcium chloride, and it is considered that the humidity exchange efficiency was greatly reduced because calcium chloride was washed away in the dew condensation test.

実施の形態1に係る全熱交換器を示す斜視図である。1 is a perspective view showing a total heat exchanger according to Embodiment 1. FIG.

符号の説明Explanation of symbols

1 全熱交換器、2 給気層、3 排気層、4 仕切板、5 給気通路、6 排気通路、7 間隔板。   DESCRIPTION OF SYMBOLS 1 Total heat exchanger, 2 Supply layer, 3 Exhaust layer, 4 Partition plate, 5 Supply path, 6 Exhaust path, 7 Space plate

Claims (3)

仕切板を隔てて二種の気流を流動させ、前記仕切板を介して前記二種の気流の顕熱及び潜熱を熱交換させる全熱交換器であって、
前記仕切板が、海藻由来の多糖類をイオン架橋剤でイオン的に架橋させた架橋体を含む気体遮蔽性材料から構成されることを特徴とする全熱交換器。
A total heat exchanger for flowing two kinds of airflows across the partition plate, and exchanging heat between sensible heat and latent heat of the two kinds of airflows via the partition plate,
The total heat exchanger, wherein the partition plate is composed of a gas shielding material including a crosslinked body obtained by ionically crosslinking a seaweed-derived polysaccharide with an ionic crosslinking agent.
前記海藻由来の多糖類が、アルギン酸塩又はカラギーナンであることを特徴とする請求項1に記載の全熱交換器。   The total heat exchanger according to claim 1, wherein the seaweed-derived polysaccharide is alginate or carrageenan. 前記イオン架橋剤が、塩化カルシウムであることを特徴とする請求項1又は2に記載の全熱交換器。   The total heat exchanger according to claim 1, wherein the ionic crosslinking agent is calcium chloride.
JP2007137908A 2007-05-24 2007-05-24 Total enthalpy heat exchanger Pending JP2008292061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007137908A JP2008292061A (en) 2007-05-24 2007-05-24 Total enthalpy heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007137908A JP2008292061A (en) 2007-05-24 2007-05-24 Total enthalpy heat exchanger

Publications (1)

Publication Number Publication Date
JP2008292061A true JP2008292061A (en) 2008-12-04

Family

ID=40166969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007137908A Pending JP2008292061A (en) 2007-05-24 2007-05-24 Total enthalpy heat exchanger

Country Status (1)

Country Link
JP (1) JP2008292061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000016996A1 (en) * 2020-07-13 2022-01-13 Torino Politecnico HEAT AND MASS EXCHANGER MADE WITH AN ALGINATE-BENTONITE HYDROGEL BIOCOMPOSURE TO CAPTURE WATER VAPOR AND RELATED PRODUCTION PROCESS

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119159A (en) * 1978-03-08 1979-09-14 Sekisui Chem Co Ltd Heat exchanger
JPS57207795A (en) * 1981-06-17 1982-12-20 Mitsubishi Electric Corp Total heat exchanging element
JPS61205796A (en) * 1985-03-08 1986-09-11 Japan Vilene Co Ltd Total heat exchanging element
JPS63256119A (en) * 1987-04-10 1988-10-24 Kuraray Co Ltd Dehumidifying and humidifying method
JPH0221931A (en) * 1988-07-12 1990-01-24 Agency Of Ind Science & Technol Hydrophilic polyamide-imide permselective membrane
JPH11189666A (en) * 1997-12-26 1999-07-13 Showa Sangyo Co Ltd Method for imparting water resistance to polysaccharide molded article
WO2002099193A1 (en) * 2001-06-01 2002-12-12 Mitsubishi Paper Mills Limited Total heat exchange element-use paper
JP2003148892A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator
JP2005263858A (en) * 2004-03-16 2005-09-29 Research Institute Of Innovative Technology For The Earth Water absorbing material, method for producing the same and water absorbing article
JP2006097958A (en) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006200850A (en) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing method
JP2007095350A (en) * 2005-09-27 2007-04-12 Asahi Kasei Chemicals Corp Complex vapor permeable membrane
JP2007119969A (en) * 2005-10-31 2007-05-17 Oji Paper Co Ltd Base paper for total heat exchanger element
JP2008014623A (en) * 2006-06-05 2008-01-24 Rengo Co Ltd Sheet for total heat exchangers

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54119159A (en) * 1978-03-08 1979-09-14 Sekisui Chem Co Ltd Heat exchanger
JPS57207795A (en) * 1981-06-17 1982-12-20 Mitsubishi Electric Corp Total heat exchanging element
JPS61205796A (en) * 1985-03-08 1986-09-11 Japan Vilene Co Ltd Total heat exchanging element
JPS63256119A (en) * 1987-04-10 1988-10-24 Kuraray Co Ltd Dehumidifying and humidifying method
JPH0221931A (en) * 1988-07-12 1990-01-24 Agency Of Ind Science & Technol Hydrophilic polyamide-imide permselective membrane
JPH11189666A (en) * 1997-12-26 1999-07-13 Showa Sangyo Co Ltd Method for imparting water resistance to polysaccharide molded article
WO2002099193A1 (en) * 2001-06-01 2002-12-12 Mitsubishi Paper Mills Limited Total heat exchange element-use paper
JP2003148892A (en) * 2001-11-16 2003-05-21 Mitsubishi Electric Corp Heat exchanger and heat exchanging ventilator
JP2005263858A (en) * 2004-03-16 2005-09-29 Research Institute Of Innovative Technology For The Earth Water absorbing material, method for producing the same and water absorbing article
JP2006097958A (en) * 2004-09-29 2006-04-13 Matsushita Electric Ind Co Ltd Heat exchanger
JP2006200850A (en) * 2005-01-21 2006-08-03 Japan Exlan Co Ltd Sorption type heat exchange module, and its manufacturing method
JP2007095350A (en) * 2005-09-27 2007-04-12 Asahi Kasei Chemicals Corp Complex vapor permeable membrane
JP2007119969A (en) * 2005-10-31 2007-05-17 Oji Paper Co Ltd Base paper for total heat exchanger element
JP2008014623A (en) * 2006-06-05 2008-01-24 Rengo Co Ltd Sheet for total heat exchangers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT202000016996A1 (en) * 2020-07-13 2022-01-13 Torino Politecnico HEAT AND MASS EXCHANGER MADE WITH AN ALGINATE-BENTONITE HYDROGEL BIOCOMPOSURE TO CAPTURE WATER VAPOR AND RELATED PRODUCTION PROCESS
WO2022013724A1 (en) * 2020-07-13 2022-01-20 Politecnico Di Torino Heat and mass exchanger made with alginate-bentonite biocomposite hydrogel for water vapor capture, and the production process thereof
US11898333B2 (en) 2020-07-13 2024-02-13 Politecnico Di Torino Heat and mass exchanger made with alginate-bentonite biocomposite hydrogel for water vapor capture, and production process thereof

Similar Documents

Publication Publication Date Title
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
JP5506441B2 (en) Total heat exchange element and total heat exchanger
TWI311636B (en)
JP2639303B2 (en) Total heat exchanger
JP5230821B2 (en) Total heat exchanger and method of manufacturing partition plate used therefor
JP2008014623A (en) Sheet for total heat exchangers
KR102234761B1 (en) Hygroscopic polymer particles, as well as sheet, element, and total heat exchanger having said particles
US20230129711A1 (en) Laminate
JP2009144930A (en) Total enthalpy heat exchanger
JP2008292061A (en) Total enthalpy heat exchanger
JP2007315649A (en) Total enthalpy heat exchanger
JP2012016645A (en) Permeable film and heat exchange element using the same
JP2009250585A (en) Total enthalpy heat exchange element and total enthalpy heat exchanger
JP2011145003A (en) Total enthalpy heat exchange element
KR100837023B1 (en) Total heat exchanging element and total heat exchanger
CN110305362A (en) It is a kind of intelligently to control dampness barrier composite film and its preparation method and application
JP2005288216A (en) Latent heat exchange membrane
JP6822517B2 (en) Total heat exchange element
JP2021162295A (en) Partition member for total heat exchange elements, total heat exchange element and ventilator
JPH08233485A (en) Total heat exchanger
JP7146867B2 (en) laminate
WO2021200384A1 (en) Laminate
JPS60251903A (en) Total heat exchange element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121225