JP6387514B2 - Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same - Google Patents

Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same Download PDF

Info

Publication number
JP6387514B2
JP6387514B2 JP2014055935A JP2014055935A JP6387514B2 JP 6387514 B2 JP6387514 B2 JP 6387514B2 JP 2014055935 A JP2014055935 A JP 2014055935A JP 2014055935 A JP2014055935 A JP 2014055935A JP 6387514 B2 JP6387514 B2 JP 6387514B2
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
exchange element
partition member
ultrafine fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014055935A
Other languages
Japanese (ja)
Other versions
JP2015178199A (en
Inventor
洋祐 浜田
洋祐 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014055935A priority Critical patent/JP6387514B2/en
Publication of JP2015178199A publication Critical patent/JP2015178199A/en
Application granted granted Critical
Publication of JP6387514B2 publication Critical patent/JP6387514B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、伝熱性と透湿性を有する全熱交換素子用仕切部材、およびその全熱交換素子用仕切部材を仕切板に用いた全熱交換素子、およびその全熱交換素子を用いた全熱交換形換気装置に関するものである。   The present invention relates to a partition member for a total heat exchange element having heat conductivity and moisture permeability, a total heat exchange element using the partition member for the total heat exchange element as a partition plate, and a total heat using the total heat exchange element The present invention relates to a replaceable ventilation device.

従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換を行う全熱交換形換気装置が知られている。   2. Description of the Related Art Conventionally, a total heat exchange type ventilator that exchanges heat between air supply and exhaust during ventilation is known as a device that can ventilate without impairing the effects of cooling or heating.

全熱交換形換気装置には、熱交換を行うための熱交換素子が含まれており、熱交換素子用仕切部材には給気と排気が交じり合わないようにするガスバリア性(主として二酸化炭素バリア性)と伝熱性が求められる。特に、温度と同時に湿度の交換も行う全熱交換素子用の仕切部材に関しては、高い透湿性も合わせて有する必要がある。   The total heat exchange type ventilator includes a heat exchange element for performing heat exchange, and the partition member for the heat exchange element has a gas barrier property (mainly a carbon dioxide barrier) that prevents supply air and exhaust gas from intermingling. Property) and heat conductivity. In particular, a partition member for a total heat exchange element that exchanges humidity at the same time as temperature must also have high moisture permeability.

また、寒冷地や熱帯地など室内外で温湿度差が大きな条件で使用する場合、素子内部に結露・結氷が発生するため、耐水性も必要である。   In addition, when used in indoor and outdoor conditions such as cold or tropical areas, condensation and icing occur inside the element, so water resistance is also required.

これらを実現するために、この種の全熱交換素子に用いる全熱交換素子用仕切部材は、以下のような構成となっていた。   In order to realize these, the total heat exchange element partition member used for this type of total heat exchange element has the following configuration.

すなわち、セルロースパルプと熱可塑性高分子のナノファイバーを含む構成となっていた。   That is, it was the structure containing the nanofiber of a cellulose pulp and a thermoplastic polymer.

例えば、これに類似する先行文献として下記特許文献1参照。   For example, see the following Patent Document 1 as a similar prior document.

特開2010−248680号公報JP 2010-248680 A

上記従来例の課題は、セルロースパルプをベースに用いることにより、周囲の環境に応じてセルロースが吸湿することにある。上記寒冷地や熱帯地などの室内外で温湿度差が大きな条件で使用する場合、素子内部に結露・結氷が発生することでセルロースが水分を吸収し、膨張する。   The subject of the said prior art example is that cellulose absorbs moisture according to the surrounding environment by using cellulose pulp as a base. When used under conditions where the temperature and humidity are large both indoors and outdoors, such as in cold regions and tropical regions, the cellulose absorbs moisture and expands due to the formation of condensation and icing inside the device.

全熱交換素子は全熱交換形換気装置に入れて用いられるため、製品ごとに一定のサイズが決められており、そのサイズ内に一定の面積の全熱交換素子用仕切部材が収められている。例えば、所定の間隔をおいて全熱交換素子用仕切部材が積層されている静置型熱交換素子では、決められたサイズに切られた全熱交換素子用仕切部材が樹脂枠または間隔板等に固定されており、風路を形成している。   Since the total heat exchange element is used in a total heat exchange type ventilator, a certain size is determined for each product, and a partition member for the total heat exchange element of a certain area is accommodated within the size. . For example, in a stationary heat exchange element in which partition members for total heat exchange elements are laminated at a predetermined interval, the partition member for total heat exchange elements cut to a predetermined size is attached to a resin frame or a spacing plate, etc. It is fixed and forms an air passage.

ここで、セルロースが水分を吸収して膨張すると、固定された全熱交換素子用仕切部材が伸長し、風路をつぶす形で歪みやシワが生じる。そのため、全熱交換素子の通風抵抗が増加し、必要な換気量が得られなくなる恐れがあるという課題が存在した。   Here, when cellulose absorbs moisture and expands, the fixed partition member for the total heat exchange element expands, and distortion and wrinkles are generated in the form of crushing the air path. Therefore, there existed a subject that the ventilation resistance of a total heat exchange element increased and there existed a possibility that required ventilation could not be obtained.

また、全熱交換素子に流れ込む空気は完全に均一な状態ではないため、全熱交換素子内部を流れる風量のバラつきから全熱交換素子内部での熱交換にも分布が生じている。室内外の温湿度条件差が大きい場合は、この熱交換が良い部分ほど結露が発生しやすくなるため、前述のように熱交換が良い部分から通風抵抗が増加し空気が流れなくなるため、結果として素子の熱交換効率が低下するという課題が存在した。   Further, since the air flowing into the total heat exchange element is not completely uniform, there is a distribution in the heat exchange inside the total heat exchange element due to the variation in the amount of air flowing inside the total heat exchange element. When the temperature / humidity difference between the indoor and outdoor is large, the better the heat exchange, the easier it is for condensation to occur.As mentioned above, the ventilation resistance increases from the good heat exchange and the air does not flow. There existed a subject that the heat exchange efficiency of an element fell.

また、従来例では、セルロースパルプ内にナノファイバーを含むことにより、セルロースパルプの湿潤時の強度低下を抑制するするとあるが、セルロースパルプ間隙にナノファイバーを含んでいるため、セルロースの膨潤を抑制する効果は小さく、この構成で前記課題を解決することはできない。   In addition, in the conventional example, by including nanofibers in the cellulose pulp, there is a suppression of strength reduction when the cellulose pulp is wet. The effect is small, and this problem cannot be solved with this configuration.

さらにセルロースは親水性の材料のため、表面に結露が付着しやすい。このため、時間経過に従って結露が成長すると、結露が風路を閉塞し、前記のように換気量が低下し、熱交換効率も低下するという課題が存在した。   Furthermore, since cellulose is a hydrophilic material, condensation tends to adhere to the surface. For this reason, when condensation grows over time, there is a problem that the condensation blocks the air passage, reducing the ventilation amount as described above, and reducing the heat exchange efficiency.

そこで本発明は、前記室内外の温湿度差の大きな条件下においても全熱交換素子の換気量の低下および熱交換効率の低下が抑制された熱交換形換気装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide a heat exchange type ventilator in which a decrease in ventilation amount and a decrease in heat exchange efficiency of the total heat exchange element are suppressed even under a large temperature and humidity difference between the room and the outside. .

そして、この目的を達成するために、本発明は、全熱交換素子用仕切部材であって、基材となる多孔質シートの両面に、繊維径が100nmから1500nmである極細繊維を備え、前記極細繊維は、長さが1μmから15μmであり、前記極細繊維の目付が0.5g/m2から10g/m2である極細繊維層を備え、前記極細繊維が疎水性高分子からなり、前記極細繊維層の表面は、前記極細繊維の重なりによって凹凸が形成され、撥水性を備えることを特徴とするものであり、これにより所期の目的を達成するものである。 And in order to achieve this object, the present invention is a partition member for a total heat exchange element , comprising ultrafine fibers having a fiber diameter of 100 nm to 1500 nm on both sides of a porous sheet as a base material, The ultrafine fiber has a length of 1 μm to 15 μm, and includes an ultrafine fiber layer in which the basis weight of the ultrafine fiber is 0.5 g / m2 to 10 g / m2, the ultrafine fiber is made of a hydrophobic polymer, and the ultrafine fiber The surface of the layer is characterized by being provided with irregularities due to the superposition of the ultrafine fibers and having water repellency , thereby achieving the intended purpose.

本発明は、全熱交換素子用仕切部材であって、基材となる多孔質シートの両面に極細繊維層を備え、前記極細繊維層が疎水性高分子からなることを特徴とするものであり、室内外の温湿度差の大きな条件下においても全熱交換素子の換気量の低下および熱交換効率の低下が抑制された熱交換形換気装置を得ることができるものである。   The present invention is a partition member for a total heat exchange element, comprising ultrafine fiber layers on both sides of a porous sheet serving as a base material, wherein the ultrafine fiber layer is made of a hydrophobic polymer. Thus, it is possible to obtain a heat exchange type ventilator in which a decrease in the ventilation amount of the total heat exchange element and a decrease in the heat exchange efficiency are suppressed even under a condition where the temperature / humidity difference between the inside and the outside is large.

すなわち、本発明によれば、疎水性高分子からなる極細繊維層が強い撥水性を発揮することを利用したものであり、極細繊維層が結露をはじくことによって、全熱交換素子に通風する圧力のみで結露を排水することが可能となり、結露による換気量の低下および熱交換効率の低下を抑制することができる。   That is, according to the present invention, it is utilized that the ultrafine fiber layer made of a hydrophobic polymer exhibits strong water repellency, and the pressure that ventilates all the heat exchange elements when the ultrafine fiber layer repels condensation. It becomes possible to drain the dew only by this, and it is possible to suppress a decrease in ventilation amount and a decrease in heat exchange efficiency due to the dew condensation.

以下により詳細に説明する。極細繊維によって層を形成することにより、層の表面には無数の極細繊維による非常に細かい凹凸を形成することができる。さらに疎水性高分子からなる極細繊維を用いることでこの細かい凹凸が疎水性を帯び、凹凸が強い撥水性を示す状態となる。   This will be described in more detail below. By forming a layer with ultrafine fibers, very fine irregularities due to countless ultrafine fibers can be formed on the surface of the layer. Further, by using ultrafine fibers made of a hydrophobic polymer, the fine irregularities become hydrophobic and the irregularities exhibit a strong water repellency.

この凹凸がその撥水性によって表面に付着した結露を球に近い形状に保つことにより、結露と全熱交換素子用仕切部材との摩擦を軽減し、全熱交換素子に流れる空気の圧力でも結露を移動させることができる。このため、結露による通風抵抗の増加が生じないため、全熱交換素子の通風抵抗の増加、あるいは全熱交換素子に流れる空気の偏りの悪化による熱交換効率の低下を抑制できる。   By maintaining the condensate that adheres to the surface due to the water repellency in a shape close to a sphere, the friction between the condensation and the partition member for the total heat exchange element is reduced, and dew condensation occurs even with the pressure of the air flowing through the total heat exchange element. Can be moved. For this reason, since the increase in the ventilation resistance due to condensation does not occur, it is possible to suppress the increase in the ventilation resistance of the total heat exchange element or the decrease in the heat exchange efficiency due to the deterioration of the bias of the air flowing through the total heat exchange element.

また、疎水性高分子からなる極細繊維層が多孔質シートを挟むことによって、多孔質シートと結露が直接接することを防ぐことができる。液状の結露水との接触を妨げることで、仮に多孔質シートが吸湿性の素材であったとしても、本来高湿環境下で多孔質シートが吸収する水分以上の水分を吸水することを抑制できるため、多孔質シートの吸水による変形を抑制することができる。そのうえ、極細繊維層を疎水性高分子で構成することによって、極細繊維層の吸湿による変形はほとんど生じず、極細繊維層が多孔質シートの変形を押さえ込むことで、多孔質シートの変形が抑制できる。   In addition, since the ultrafine fiber layer made of the hydrophobic polymer sandwiches the porous sheet, it is possible to prevent the porous sheet and the dew condensation from coming into direct contact with each other. By preventing contact with liquid dew condensation water, even if the porous sheet is a hygroscopic material, it is possible to suppress water absorption beyond the water that the porous sheet originally absorbs in a high humidity environment. Therefore, deformation of the porous sheet due to water absorption can be suppressed. In addition, by forming the ultrafine fiber layer with a hydrophobic polymer, deformation due to moisture absorption of the ultrafine fiber layer hardly occurs, and by suppressing the deformation of the porous sheet by the ultrafine fiber layer, the deformation of the porous sheet can be suppressed. .

すなわち、前述のように全熱交換素子用仕切部材が吸湿によって変形し、通風抵抗が増加することで生じる換気量の低下と熱交換効率の低下を抑制できる。   That is, as described above, the total heat exchange element partition member is deformed by moisture absorption, and it is possible to suppress a decrease in ventilation amount and a decrease in heat exchange efficiency caused by an increase in ventilation resistance.

さらに、極細繊維を用いることにより、上記効果のみならず、全熱交換素子にとって重要な透湿性能を向上させるという効果も得ることができる。すなわち、基材として多孔質シートを用いることにより、全熱交換素子用仕切部材に必要な強度を確保することが出来るため、極細繊維層はガスバリア性と透湿性を備えていればよい。ガスバリア性を確保するためには、密に形成された層が必要であるが、極細繊維を用いることで、繊維の細さから、繊維間の空隙を小さくすることができるため、上記密に形成された層を得ることができる。さらに、同じく繊維が細いため、上記密に形成された層を薄くすることができ、高い透湿性能を得ることができる。その上、繊維径が細い繊維で構成されていることにより、細かい空隙を多数備えることができるため、毛細管現象により透湿性を高めることができる。   Furthermore, by using ultrafine fibers, not only the above effects but also the effect of improving the moisture permeability performance important for the total heat exchange element can be obtained. That is, by using a porous sheet as the base material, the strength required for the partition member for the total heat exchange element can be ensured, and therefore the ultrafine fiber layer only needs to have gas barrier properties and moisture permeability. In order to ensure gas barrier properties, a densely formed layer is necessary. However, by using ultrafine fibers, the gap between the fibers can be reduced due to the fineness of the fibers, so the above densely formed layers are used. Layer can be obtained. Furthermore, since the fibers are also thin, the densely formed layer can be thinned, and high moisture permeability can be obtained. In addition, since the fiber has a small fiber diameter, a large number of fine voids can be provided, so that the moisture permeability can be increased by a capillary phenomenon.

以上のことから、疎水性高分子からなる極細繊維層が強い撥水性を発揮することを利用したものであり、極細繊維層が結露をはじくことによって、全熱交換素子に通風する圧力のみで結露を排水することが可能となり、結露による換気量の低下および熱交換効率の低下を抑制することができ、熱交換効率の高い全熱交換形換気装置を得ることができる。   Based on the above, it is based on the fact that the ultrafine fiber layer made of hydrophobic polymer exhibits strong water repellency. It is possible to drain water, and it is possible to suppress a decrease in ventilation amount and a decrease in heat exchange efficiency due to condensation, and a total heat exchange type ventilator with high heat exchange efficiency can be obtained.

本発明の実施の形態1にかかる全熱交換形換気装置の設置例を示す概要図Schematic diagram showing an installation example of the total heat exchange ventilator according to the first embodiment of the present invention. 同全熱交換形換気装置の構造を示す図Diagram showing the structure of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す斜視図A perspective view showing a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す分解斜視図An exploded perspective view showing a total heat exchange element of the total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材を示す断面図Sectional drawing which shows the partition member for total heat exchange elements of the total heat exchange type ventilator

以下、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

(実施の形態1)
図1において、家1の屋内に全熱交換形換気装置2が設置されている。
(Embodiment 1)
In FIG. 1, a total heat exchange type ventilator 2 is installed in a house 1.

例として日本の冬季を挙げると、屋内からの空気を、黒色矢印のごとく、全熱交換形換気装置2を介して屋外に放出する。   Taking winter in Japan as an example, indoor air is discharged to the outdoors through a total heat exchange type ventilator 2 as indicated by a black arrow.

また、屋外の空気は、白色矢印のごとく、全熱交換形換気装置2を介して室内にとり入れる。   Outdoor air is taken into the room through the total heat exchange type ventilator 2 as indicated by the white arrow.

そして、このことにより換気を行うとともに、この換気時に、屋内空気の熱を屋外空気へと伝達し、不用意な熱の放出を抑制しているのである。   And while ventilating by this, the heat of indoor air is transmitted to outdoor air at the time of this ventilation, and the discharge | emission of inadvertent heat is suppressed.

全熱交換形換気装置2は図2に示すように、本体ケース3に全熱交換素子4を配置し、ファン5を駆動することで、屋内空気を内気口6から吸い込み、全熱交換素子4、ファン5を経由し、排気口7から屋外へと排出する。   As shown in FIG. 2, the total heat exchange type ventilator 2 has a total heat exchange element 4 disposed in the main body case 3, and drives the fan 5, thereby sucking indoor air from the interior air port 6, and the total heat exchange element 4. Then, the air is discharged from the exhaust port 7 to the outside via the fan 5.

また、ファン8を駆動することで、屋外空気を外気口9から吸い込み、全熱交換素子4、ファン8を経由し、給気口10から屋内へと取り入れる構成となっている。   Further, by driving the fan 8, outdoor air is sucked from the outside air port 9 and taken into the indoor through the air supply port 10 via the total heat exchange element 4 and the fan 8.

また、前記全熱交換素子4は、図3、図4に示すように、枠体11の矩形開口部に全熱交換素子用仕切部材14を装着したものを、屋内空気風路リブ12および屋外空気風路リブ13を交互に挟んで所定間隔で配置し、隣接する枠体11間に上述した屋内空気15、次に隣接する枠体11間に上述した屋外空気16を流すことで、熱交換を行わせる構造となっている。   Further, as shown in FIGS. 3 and 4, the total heat exchange element 4 is formed by mounting the total heat exchange element partition member 14 on the rectangular opening of the frame 11, and the indoor air air duct rib 12 and the outdoor. Heat exchange is performed by arranging air air passage ribs 13 alternately at predetermined intervals, and flowing the indoor air 15 described above between adjacent frame bodies 11 and the outdoor air 16 described above between adjacent frame bodies 11. It has a structure that makes it.

冬季の場合、屋内空気15は暖房や人の呼気などから湿気を含んだ状態であり、屋外空気16は乾燥した状態となっている。全熱交換素子用仕切部材14の両面を屋内空気15と屋外空気16がそれぞれ流れることで、全熱交換素子用仕切部材14を介した熱伝達により、屋内空気15の熱が屋外空気16に伝えられる。また、全熱交換素子用仕切部材14を介した湿気伝達により、屋内空気15の水分が屋外空気16に伝えられる。   In the winter season, the indoor air 15 is in a state of containing moisture from heating or human breath, and the outdoor air 16 is in a dry state. The indoor air 15 and the outdoor air 16 respectively flow on both surfaces of the partition member for total heat exchange element 14, so that the heat of the indoor air 15 is transmitted to the outdoor air 16 by heat transfer via the partition member for total heat exchange element 14. It is done. Further, moisture in the indoor air 15 is transmitted to the outdoor air 16 by moisture transmission through the partition member for total heat exchange element 14.

本発明では、図5に断面を示したように、多孔質シートからなる基材部18の両面に極細繊維部17が積層されたものであって、極細繊維部17が疎水性高分子からなる。極細繊維部17の表面には無数の極細繊維19による非常に細かい凹凸が形成される。さらに疎水性高分子からなる極細繊維19を用いることでこの細かい凹凸が疎水性を帯び、凹凸が強い撥水性を示す状態となる。   In the present invention, as shown in the cross section in FIG. 5, the ultrafine fiber portions 17 are laminated on both surfaces of the base material portion 18 made of a porous sheet, and the ultrafine fiber portions 17 are made of a hydrophobic polymer. . Very fine irregularities are formed on the surface of the ultrafine fiber portion 17 by countless ultrafine fibers 19. Further, by using the ultrafine fiber 19 made of a hydrophobic polymer, the fine irregularities become hydrophobic and the irregularities exhibit a strong water repellency.

この凹凸がその撥水性によって表面に付着した結露を球に近い形状に保つことにより、結露と全熱交換素子用仕切部材14との摩擦を軽減し、全熱交換素子4に流れる空気の圧力で結露を移動させることができる。このため、結露による通風抵抗の増加が生じないため、全熱交換素子4の通風抵抗の増加、あるいは全熱交換素子4に流れる空気の偏りの悪化による熱交換効率の低下を抑制できる。   By maintaining the condensate on the surface due to the water repellency in a shape close to a sphere, the unevenness reduces the friction between the dew and the partition member 14 for the total heat exchange element, and the pressure of the air flowing through the total heat exchange element 4 Condensation can be moved. For this reason, since the increase in the ventilation resistance due to condensation does not occur, the increase in the ventilation resistance of the total heat exchange element 4 or the decrease in the heat exchange efficiency due to the deterioration of the bias of the air flowing through the total heat exchange element 4 can be suppressed.

また、疎水性高分子からなる極細繊維部17が基材部18を挟むことによって、基材部18と結露が直接接することを防ぐことができる。液状の結露水との接触を妨げることで、仮に基材部18が吸湿性の素材であったとしても、本来高湿環境下で基材部18が吸収する水分以上の水分を吸水することを抑制できるため、基材部18の吸水による変形を抑制することができる。そのうえ、極細繊維部17は疎水性高分子で構成されているため、極細繊維部17の吸湿による変形はほとんど生じず、極細繊維部17が基材部18の変形を両面から押さえ込むことで、全熱交換素子用仕切部材14の変形が抑制できる。   In addition, since the ultrafine fiber portion 17 made of a hydrophobic polymer sandwiches the base material portion 18, it is possible to prevent the base material portion 18 from coming into direct contact with dew condensation. By preventing contact with the liquid dew condensation water, even if the base material portion 18 is a hygroscopic material, it absorbs more water than the water that the base material portion 18 originally absorbs in a high humidity environment. Since it can suppress, the deformation | transformation by the water absorption of the base material part 18 can be suppressed. In addition, since the ultrafine fiber portion 17 is composed of a hydrophobic polymer, the ultrafine fiber portion 17 hardly deforms due to moisture absorption, and the ultrafine fiber portion 17 suppresses the deformation of the base material portion 18 from both sides. The deformation of the heat exchange element partition member 14 can be suppressed.

すなわち、全熱交換素子用仕切部材14が吸湿によって変形し、通風抵抗が増加することで生じる換気量の低下と熱交換効率の低下を抑制できる。   That is, the total heat exchange element partition member 14 is deformed by moisture absorption, and the decrease in ventilation amount and the decrease in heat exchange efficiency caused by the increase in ventilation resistance can be suppressed.

さらに、極細繊維19を用いることにより、上記効果のみならず、全熱交換素子4にとって重要な透湿性能を向上させるという効果も得ることができる。すなわち、基材部18が全熱交換素子用仕切部材14に必要な強度を確保することで、極細繊維部17はガスバリア性と透湿性を備えていればよい。ガスバリア性を確保するためには、密に形成された層が必要であるが、極細繊維19を用いることで、繊維の細さから、繊維間の空隙を小さくすることができるため、上記密に形成された層を得ることができる。さらに、同じく繊維が細いため、上記密に形成された層を薄くすることができ、高い透湿性能を得ることができる。その上、繊維径が細い繊維で構成されていることにより、細かい空隙を多数備えることができるため、毛細管現象により透湿性を高めることができる。   Furthermore, by using the ultrafine fibers 19, not only the above effects but also an effect of improving the moisture permeability performance important for the total heat exchange element 4 can be obtained. That is, it is only necessary for the ultrafine fiber portion 17 to have gas barrier properties and moisture permeability by ensuring that the base material portion 18 has a strength necessary for the partition member 14 for the total heat exchange element. In order to ensure the gas barrier property, a densely formed layer is necessary, but by using the ultrafine fiber 19, the gap between the fibers can be reduced from the fineness of the fiber. A formed layer can be obtained. Furthermore, since the fibers are also thin, the densely formed layer can be thinned, and high moisture permeability can be obtained. In addition, since the fiber has a small fiber diameter, a large number of fine voids can be provided, so that the moisture permeability can be increased by a capillary phenomenon.

透湿性の向上は、屋外空気16と屋内空気15との間の水分の移動を促進するため、全熱交換素子4で生じる熱の移動に応じて水分を移動させることが可能となり、空気が露点以下に冷やされることによる結露の発生を抑制するという効果も得ることができる。   The improvement in moisture permeability promotes the movement of moisture between the outdoor air 16 and the indoor air 15, so that the moisture can be moved according to the movement of heat generated in the total heat exchange element 4, and the air has a dew point. The effect of suppressing generation | occurrence | production of the dew condensation by being cooled below can also be acquired.

以上のことから、疎水性高分子からなる極細繊維部17が強い撥水性を発揮することを利用し、極細繊維部17が結露をはじくことによって、全熱交換素子4に通風する圧力のみで結露を排水することが可能となり、結露による換気量の低下および熱交換効率の低下を抑制することができ、熱交換効率の高い全熱交換形換気装置2を得ることができる。   From the above, using the fact that the ultrafine fiber portion 17 made of a hydrophobic polymer exhibits strong water repellency, the ultrafine fiber portion 17 repels dew condensation, so that dew condensation can be achieved only by the pressure passing through the total heat exchange element 4. It is possible to drain water, and it is possible to suppress a decrease in ventilation amount and a decrease in heat exchange efficiency due to condensation, and a total heat exchange type ventilator 2 having a high heat exchange efficiency can be obtained.

極細繊維部17の厚みに関しては、基材部18を覆うことができて、必要なガスバリア性と透湿性を得られる範囲であれば特に制限は無いが、好ましくは15μmから1μmの範囲、さらに好ましくは、10μmから5μmの範囲である。   The thickness of the ultrafine fiber portion 17 is not particularly limited as long as the base material portion 18 can be covered and the necessary gas barrier properties and moisture permeability can be obtained, but preferably in the range of 15 μm to 1 μm, more preferably Is in the range of 10 μm to 5 μm.

また、極細繊維19の繊維径が100nmから1500nmであることを特徴とする材料を用いてもよい。   Moreover, you may use the material characterized by the fiber diameter of the ultrafine fiber 19 being 100 nm to 1500 nm.

この繊維径をもつことにより、繊維同士の重なりによって極細繊維部17の表面にマイクロオーダーからナノオーダーの細かい凹凸が生じる。疎水性の極細繊維19でこの凹凸を形成した場合、例えば水の接触角が100°から140°となるような撥水性の強い表面を得ることができる。   By having this fiber diameter, fine irregularities of micro-order to nano-order are generated on the surface of the ultrafine fiber portion 17 by overlapping of the fibers. When this unevenness is formed by the hydrophobic ultrafine fiber 19, a surface having a strong water repellency such that the contact angle of water is 100 ° to 140 ° can be obtained.

さらに、この繊維径をもつことにより、極細繊維19間の空隙を小さくでき、空隙に働く毛細管現象による透湿性の向上を図ることができる。   Furthermore, by having this fiber diameter, the space | gap between the ultrafine fibers 19 can be made small, and the moisture permeability improvement by the capillary phenomenon which acts on a space | gap can be aimed at.

前記機能を得るための極細繊維部17の空隙は、例えばパームポロシメータ等の測定器具を用いて測定される平均細孔径が0.1μmから10μmの範囲が好ましく、さらに0.3μmから5μmの範囲がより好ましい。ただし、極細繊維19の材質および断面形状によって特性は変化するため、必要なガスバリア性と透湿性を得られる範囲であれば上記範囲に限定されない。   The gap of the ultrafine fiber part 17 for obtaining the function is preferably in the range of 0.1 to 10 μm, and more preferably in the range of 0.3 to 5 μm, for example, with an average pore diameter measured using a measuring instrument such as a palm porosimeter. More preferred. However, since the characteristics change depending on the material and the cross-sectional shape of the ultrafine fibers 19, the characteristics are not limited to the above ranges as long as necessary gas barrier properties and moisture permeability can be obtained.

また、極細繊維部17の目付が0.5g/m2から10g/m2であるものを用いてもよい。 Also, the basis weight of the microfine fiber portion 17 may also be used as from 0.5 g / m 2 is 10 g / m 2.

極細繊維部17の目付が0.5g/m2を下回ると、極細繊維19が付着せずに基材部18が露出する部位が生じる恐れがあり、不適である。また、目付が10g/m2を上回ると、全熱交換素子用仕切部材14としての透湿性が不足する恐れがある。好ましくは、1.0g/m2から5g/m2、さらに好ましくは2.0g/m2から4.0g/m2である。 If the basis weight of the ultrafine fiber portion 17 is less than 0.5 g / m 2 , there is a possibility that a portion where the ultrafine fiber 19 does not adhere and the base material portion 18 is exposed is unsuitable. On the other hand, if the basis weight exceeds 10 g / m 2 , the moisture permeability as the total heat exchange element partition member 14 may be insufficient. Preferably, it is 1.0 g / m 2 to 5 g / m 2 , more preferably 2.0 g / m 2 to 4.0 g / m 2 .

また、基材部18が熱可塑性樹脂を含む材質で構成されていてもよい。   Moreover, the base material part 18 may be comprised with the material containing a thermoplastic resin.

基材部18が熱可塑性樹脂を含むことで、基材部18と極細繊維部17を基材部18の樹脂で熱溶着することが可能となる。基材部18と極細繊維部17とを接着する必要性は低いが、接着されることによって結露等の原因により全熱交換素子用仕切部材14から極細繊維部17が失われる危険性を下げることができるため、全熱交換素子用仕切部材14の耐久性を向上させることができる。   When the base material part 18 contains a thermoplastic resin, the base material part 18 and the ultrafine fiber part 17 can be heat-welded with the resin of the base material part 18. Although the necessity to adhere | attach the base material part 18 and the ultrafine fiber part 17 is low, reducing the danger that the ultrafine fiber part 17 will be lost from the partition member 14 for total heat exchange elements by causes, such as dew condensation, by bonding. Therefore, the durability of the partition member for total heat exchange element 14 can be improved.

この場合、基材部18と極細繊維部17を接着剤等により接着すると、接着剤が基材部18や極細繊維部17に浸みこむことで透湿抵抗となり、全熱交換素子用仕切部材14の透湿性能が低下する。しかし、基材部18が熱可塑性樹脂を含む材質で構成され、基材部18と極細繊維部17を熱によって溶着することで、基材部18と極細繊維部17の接点で、両者を溶着することが可能となる。このことにより、基材部18や極細繊維部17の空隙が接着によって減少する危険性を低下させることができるため、透湿性が高く、耐久性のある全熱交換素子用仕切部材14を得ることができる。   In this case, when the base material portion 18 and the ultrafine fiber portion 17 are bonded with an adhesive or the like, the adhesive soaks into the base material portion 18 or the ultrafine fiber portion 17 to provide moisture permeability resistance, and the partition member 14 for the total heat exchange element. The moisture permeation performance is reduced. However, the base material portion 18 is made of a material containing a thermoplastic resin, and the base material portion 18 and the ultrafine fiber portion 17 are welded by heat, so that both are welded at the contact point of the base material portion 18 and the ultrafine fiber portion 17. It becomes possible to do. Thereby, since the danger that the space | gap of the base material part 18 and the microfiber part 17 reduces by adhesion | attachment can be reduced, the moisture-permeable and durable partition member 14 for total heat exchange elements is obtained. Can do.

さらに、接着剤が表面に露出してしまうと、極細繊維部17の撥水性が失われる恐れがあるため、基材部18と極細繊維部17の接点で溶着することにより、全熱交換素子用仕切部材14の撥水性の低下を抑制することができる。   Furthermore, if the adhesive is exposed on the surface, the water repellency of the ultrafine fiber portion 17 may be lost. Therefore, by welding at the contact point between the base material portion 18 and the ultrafine fiber portion 17, the total heat exchange element is used. A decrease in water repellency of the partition member 14 can be suppressed.

また、全熱交換素子4に、前記構成の全熱交換素子用仕切部材14を用いた構成としてもよい。   Moreover, it is good also as a structure using the partition member 14 for the total heat exchange elements of the said structure for the total heat exchange element 4. FIG.

この構成により、撥水性が高く、透湿性能の高い全熱交換素子用仕切部材14を用いることにより、結露に強い全熱交換素子4を得ることが出来る。   With this configuration, by using the partition member 14 for the total heat exchange element having high water repellency and high moisture permeability, the total heat exchange element 4 resistant to condensation can be obtained.

また、全熱交換形換気装置2に、前記構成の全熱交換素子4を用いた構成としてもよい。   Moreover, it is good also as a structure which used the total heat exchange element 4 of the said structure for the total heat exchange type | formula ventilation apparatus 2. FIG.

この構成により、潜熱交換効率の高い全熱交換素子4を用いることにより、結露に強く全熱交換効率の高い全熱交換形換気装置2を得ることが出来る。   With this configuration, by using the total heat exchange element 4 having a high latent heat exchange efficiency, it is possible to obtain the total heat exchange type ventilator 2 that is resistant to condensation and has a high total heat exchange efficiency.

なお、基材部18としては、多孔質シートであれば特に制限されないが、例えば不織布、プラスチックフィルム、織布が挙げられる。材質としては、例えばポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリエステル、ポリフッ化ビニリデン等が挙げられる。   The substrate portion 18 is not particularly limited as long as it is a porous sheet, and examples thereof include a nonwoven fabric, a plastic film, and a woven fabric. Examples of the material include polypropylene, polyethylene, polytetrafluoroethylene, polyester, and polyvinylidene fluoride.

なお、基材部18の厚みは、25μm以上150μm以下が好ましく、40μm以上100μm以下が特に好ましいがこれに制限されない。厚みが25μm未満では、全熱交換素子用仕切部材14として必要な強度が得られない恐れがあり、厚みが150μmよりも大きくなると全熱交換素子用仕切部材14として必要な透湿性能が得られない恐れがある。   In addition, the thickness of the base material portion 18 is preferably 25 μm or more and 150 μm or less, and particularly preferably 40 μm or more and 100 μm or less, but is not limited thereto. If the thickness is less than 25 μm, the strength required for the partition member 14 for the total heat exchange element may not be obtained. If the thickness exceeds 150 μm, the moisture permeability required for the partition member 14 for the total heat exchange element is obtained. There is no fear.

なお、極細繊維19の材質も、疎水性高分子からなるものであって、例えばポリプロピレン、ポリエチレン、ポリテトラフルオロエチレン、ポリエステル、ポリフッ化ビニリデン等が挙げられる。また、製造方法としては、メルトブローン法、静電紡糸法等が挙げられるがこれに限らず既知の手法を用いることが出来る。   The material of the ultrafine fiber 19 is also made of a hydrophobic polymer, and examples thereof include polypropylene, polyethylene, polytetrafluoroethylene, polyester, and polyvinylidene fluoride. In addition, examples of the manufacturing method include a melt blown method and an electrostatic spinning method, but are not limited thereto, and a known method can be used.

以上のように本実施形態にかかる全熱交換素子用仕切部材は、室内外の温湿度差が大きな環境であっても結露の影響を受けにくい全熱交換素子を提供するものであって、全熱交換形換気装置等に用いる全熱交換素子用仕切部材として有用である。   As described above, the partition member for a total heat exchange element according to the present embodiment provides a total heat exchange element that is not easily affected by condensation even in an environment where the temperature and humidity difference between the outside and the room is large. It is useful as a partition member for a total heat exchange element used in a heat exchange type ventilator.

1 家
2 全熱交換形換気装置
3 本体ケース
4 全熱交換素子
5 ファン
6 内気口
7 排気口
8 ファン
9 外気口
10 給気口
11 枠体
12 屋内空気風路リブ
13 屋外空気風路リブ
14 全熱交換素子用仕切部材
15 屋内空気
16 屋外空気
17 極細繊維部
18 基材部
19 極細繊維
DESCRIPTION OF SYMBOLS 1 House 2 Total heat exchange type ventilator 3 Main body case 4 Total heat exchange element 5 Fan 6 Inside air port 7 Exhaust port 8 Fan 9 Outside air port 10 Air supply port 11 Frame 12 Indoor air wind path rib 13 Outdoor air wind path rib 14 Partition member 15 for total heat exchange element Indoor air 16 Outdoor air 17 Extra fine fiber part 18 Substrate part 19 Extra fine fiber

Claims (3)

基材となる多孔質シートの両面に、前記基材と溶着した極細繊維層を備え、
前記基材は熱可塑性樹脂を含む材質で構成され、前記極細繊維層は疎水性高分子からなり、
前記極細繊維層は、繊維径が100nmから1500nmである極細繊維を備え、厚みが1μmから15μmであり、目付が0.5g/m から10g/m であり、
前記極細繊維層の表面は、前記極細繊維の重なりによって凹凸が形成され、撥水性を備えることを特徴とする全熱交換素子用仕切部材。
Provided on both sides of the porous sheet as a base material with an ultrafine fiber layer welded to the base material ,
The substrate is made of a material containing a thermoplastic resin, and the ultrafine fiber layer is made of a hydrophobic polymer,
The ultrafine fiber layer includes ultrafine fibers having a fiber diameter of 100 nm to 1500 nm, a thickness of 1 μm to 15 μm, and a basis weight of 0.5 g / m 2 to 10 g / m 2 ;
A partition member for a total heat exchange element, wherein the surface of the ultrafine fiber layer has irregularities formed by overlapping of the ultrafine fibers and has water repellency.
請求項に記載の全熱交換素子用仕切部材を用いた全熱交換素子。 A total heat exchange element using the partition member for a total heat exchange element according to claim 1 . 請求項2に記載の全熱交換素子を用いた全熱交換形換気装置。 A total heat exchange type ventilator using the total heat exchange element according to claim 2.
JP2014055935A 2014-03-19 2014-03-19 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same Active JP6387514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014055935A JP6387514B2 (en) 2014-03-19 2014-03-19 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014055935A JP6387514B2 (en) 2014-03-19 2014-03-19 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same

Publications (2)

Publication Number Publication Date
JP2015178199A JP2015178199A (en) 2015-10-08
JP6387514B2 true JP6387514B2 (en) 2018-09-12

Family

ID=54262618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014055935A Active JP6387514B2 (en) 2014-03-19 2014-03-19 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same

Country Status (1)

Country Link
JP (1) JP6387514B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6364618B2 (en) * 2013-09-17 2018-08-01 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP6937258B2 (en) * 2018-03-16 2021-09-22 株式会社東芝 Total heat exchange element sheet, total heat exchange element, and total heat exchanger
JP7089178B2 (en) * 2018-07-23 2022-06-22 ダイキン工業株式会社 Total heat exchange element and its manufacturing method
MX2021003780A (en) 2018-10-02 2021-09-08 Harvard College Hydrophobic barrier layer for ceramic indirect evaporative cooling systems.
JP6648849B1 (en) * 2019-02-06 2020-02-14 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
US20220178630A1 (en) * 2019-02-27 2022-06-09 Panasonic Intellectual Property Management Co., Ltd. Heat exchange element and heat exchange-type ventilation device using same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5678443B2 (en) * 2009-03-24 2015-03-04 東レ株式会社 Total heat exchange base paper and total heat exchange element using the same
JP5506441B2 (en) * 2010-02-09 2014-05-28 三菱電機株式会社 Total heat exchange element and total heat exchanger
JP2011237157A (en) * 2010-05-10 2011-11-24 Nippon Air Filter Kk Total heat exchange element of heat exchanger
EP2875950A4 (en) * 2012-07-19 2015-07-15 Asahi Kasei Fibers Corp Multilayered structure comprising fine fiber cellulose layer

Also Published As

Publication number Publication date
JP2015178199A (en) 2015-10-08

Similar Documents

Publication Publication Date Title
JP6387514B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP5506441B2 (en) Total heat exchange element and total heat exchanger
US20100032145A1 (en) Heat conduction unit with improved laminar
TWI525294B (en) Heat exchange components and air conditioning devices
JP6357651B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
US20110209858A1 (en) Indirect Evaporative Cooling Apparatus
US20140262125A1 (en) Energy exchange assembly with microporous membrane
JPH06194093A (en) Total enthalpy heat exchanger
WO2017090232A1 (en) Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
JP2008089199A (en) Total enthalpy heat exchanger
JP2016080269A (en) Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device
JP5987854B2 (en) Heat exchange element and heat exchanger
US7264044B2 (en) Heat exchange structure
JP2013015286A (en) Total heat exchanger, and method for manufacturing partition plate used therefor
JP6194472B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2017150805A (en) Partition member for total heat exchange element, and total heat exchange element and total heat exchange type ventilation device using the material
JP2013092320A (en) Air conditioning device
JP6364618B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2015059703A (en) Material for total heat exchange element and heat exchange type ventilation device using the material
JP2006258401A (en) Gas-liquid separator and liquid draining method for element for gas-liquid separation
JP2020051655A (en) Heat exchange element and heat exchange type ventilation device using the same
JP6340577B2 (en) Total heat exchange element partition member and total heat exchange element and heat exchange type ventilator using the total heat exchange element partition member
JP2020034242A (en) Heat exchange element and heat exchange type ventilation device using the same
JP2019060582A (en) Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device
JP6167325B2 (en) Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20160519

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180716

R151 Written notification of patent or utility model registration

Ref document number: 6387514

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151