JP6937258B2 - Total heat exchange element sheet, total heat exchange element, and total heat exchanger - Google Patents

Total heat exchange element sheet, total heat exchange element, and total heat exchanger Download PDF

Info

Publication number
JP6937258B2
JP6937258B2 JP2018050179A JP2018050179A JP6937258B2 JP 6937258 B2 JP6937258 B2 JP 6937258B2 JP 2018050179 A JP2018050179 A JP 2018050179A JP 2018050179 A JP2018050179 A JP 2018050179A JP 6937258 B2 JP6937258 B2 JP 6937258B2
Authority
JP
Japan
Prior art keywords
total heat
heat exchange
exchange element
thin layer
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018050179A
Other languages
Japanese (ja)
Other versions
JP2019158317A (en
Inventor
米津 麻紀
麻紀 米津
原田 耕一
耕一 原田
ひとみ 斉藤
ひとみ 斉藤
亮介 八木
亮介 八木
敏弘 今田
敏弘 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Carrier Corp
Original Assignee
Toshiba Corp
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Carrier Corp filed Critical Toshiba Corp
Priority to JP2018050179A priority Critical patent/JP6937258B2/en
Publication of JP2019158317A publication Critical patent/JP2019158317A/en
Application granted granted Critical
Publication of JP6937258B2 publication Critical patent/JP6937258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

実施形態は、全熱交換素子用シート、全熱交換素子、及び全熱交換器に関する。 The embodiment relates to a total heat exchange element sheet, a total heat exchange element, and a total heat exchanger.

近年、地球環境の保護や二酸化炭素の削減、エネルギー不足等の観点から、使用エネルギーの削減が要求されている。住宅やビル等の住空間は、建築基準法により義務付けられた換気を必要とする。しかし、換気による空調エネルギー損失が問題になっている。空調装置の一つである全熱交換器は、調温及び調湿された建物内部の空気と屋外の空気との間で全熱(顕熱(温度)と潜熱(湿度))を交換することにより熱のロスを抑制し、省エネルギー化を図る装置である。 In recent years, reduction of energy consumption has been required from the viewpoints of protection of the global environment, reduction of carbon dioxide, energy shortage, and the like. Living spaces such as houses and buildings require ventilation required by the Building Standards Law. However, air conditioning energy loss due to ventilation has become a problem. A total heat exchanger, which is one of the air conditioners, exchanges total heat (sensible heat (temperature) and latent heat (humidity)) between the temperature-controlled and humidity-controlled air inside the building and the outdoor air. This is a device that suppresses heat loss and saves energy.

従来の全熱交換素子は、特殊加工が施された紙からなる全熱交換素子用シートを用い、屋内の空気と屋外の空気との混合を抑制しながら、顕熱及び潜熱を交換している。しかし、全熱交換素子用シートは全熱の交換効率が70%前後と低い値に留まる。全熱交換素子用シートは、交換効率のより高い材料に置き換えることによって、さらに省エネルギーが図られた全熱交換器を実現することができる。 The conventional total heat exchange element uses a sheet for total heat exchange element made of specially processed paper, and exchanges sensible heat and latent heat while suppressing mixing of indoor air and outdoor air. .. However, the total heat exchange efficiency of the total heat exchange element sheet remains as low as around 70%. By replacing the sheet for the total heat exchange element with a material having higher exchange efficiency, it is possible to realize a total heat exchanger with further energy saving.

特公昭61−058759号公報Tokukousho 61-058759 Gazette 特開2004−154457号公報Japanese Unexamined Patent Publication No. 2004-154457 特開2010−234213号公報Japanese Unexamined Patent Publication No. 2010-234213

実施形態は、水蒸気と水蒸気を除く気体との分離率を維持しながら、水蒸気透過速度を向上した全熱交換素子用シート、全熱交換素子用シートを備えた全熱交換素子、及び全熱交換素子が組み込まれた全熱交換器を提供することを目的とする。 In the embodiment, a total heat exchange element sheet having an improved water vapor permeation rate, a total heat exchange element provided with a total heat exchange element sheet, and total heat exchange while maintaining the separation rate between water vapor and a gas other than water vapor. It is an object of the present invention to provide a total heat exchanger in which an element is incorporated.

実施形態に係る全熱交換素子用シートは、多孔質部材と、多孔質部材の一方の面に設けられた繊維径1nm以上50nm以下の無機繊維を含む膜とを備える。膜は、無機繊維の配向状態が異なる薄層を2層以上積層した多層構造を有する。 The sheet for a total heat exchange element according to the embodiment includes a porous member and a film provided on one surface of the porous member and containing inorganic fibers having a fiber diameter of 1 nm or more and 50 nm or less. The film has a multi-layer structure in which two or more thin layers having different orientation states of inorganic fibers are laminated.

実施形態に係る全熱交換素子用シートを示す断面模式図である。It is sectional drawing which shows the sheet for total heat exchange element which concerns on embodiment. 全熱交換素子用シートに対する外気と還気の流れを図1と異ならせた断面模式図である。It is sectional drawing which made the flow of outside air and return air different from FIG. 1 with respect to the sheet for total heat exchange element. 図1の膜の断面TEM写真を模式的に示す断面図である。It is sectional drawing which shows typically the sectional TEM photograph of the film of FIG. 実施形態に係る全熱交換素子を示す斜視図である。It is a perspective view which shows the total heat exchange element which concerns on embodiment. 夏場の全熱交換を説明するための実施形態に係る全熱交換器を示す概略図である。It is the schematic which shows the total heat exchanger which concerns on embodiment for demonstrating the total heat exchange in summer. 冬場の全熱交換を説明するための実施形態に係る全熱交換器を示す概略図である。It is the schematic which shows the total heat exchanger which concerns on embodiment for demonstrating the total heat exchange in winter.

以下、実施形態について図面を用いて説明する。各実施形態において、実質的に同一の構成部位には同一の符号を付し、その説明を一部省略する場合がある。図面は模式的なものであり、厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる場合がある。説明中の上下等の方向を示す用語は、重力加速度方向を基準とした現実の方向とは異なる場合がある。 Hereinafter, embodiments will be described with reference to the drawings. In each embodiment, substantially the same constituent parts may be designated by the same reference numerals, and the description thereof may be partially omitted. The drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each part, etc. may differ from the actual ones. The terms indicating the up and down directions in the explanation may differ from the actual direction based on the gravitational acceleration direction.

図1は、実施形態に係る全熱交換素子用シートを示す断面模式図、図2は全熱交換素子用シートに対する外気と還気の流れを図1と異ならせた断面模式図、図3は図1の膜の断面TEM写真を模式的に示す断面図、である。全熱交換素子用シート1は、多孔質部材2と多孔質部材2の一方の面に設けられた膜3とを具備し、多孔質部材2と膜3との積層体は水蒸気分離体としての機能を有する。 FIG. 1 is a schematic cross-sectional view showing a sheet for a total heat exchange element according to an embodiment, FIG. 2 is a schematic cross-sectional view showing the flow of outside air and return air with respect to the sheet for a total heat exchange element, and FIG. FIG. 1 is a cross-sectional view schematically showing a cross-sectional TEM photograph of the film of FIG. The sheet 1 for a total heat exchange element includes a porous member 2 and a film 3 provided on one surface of the porous member 2, and the laminated body of the porous member 2 and the film 3 serves as a water vapor separator. Has a function.

このような全熱交換素子用シート1に対し、コスト面などを考慮して通常は導入側を変化させないが、以下に説明するように導入側を夏と冬で変化させてもよい。 Normally, the introduction side of the total heat exchange element sheet 1 is not changed in consideration of cost and the like, but the introduction side may be changed between summer and winter as described below.

例えば、外気110aが還気110cよりも高温多湿である場合、図1に示すように外気110aは主に膜3の表面を流路(図示せず)に沿って流通して吸気110bとして室内に排出され、還気110cは主に多孔質部材2の表面を流路(図示せず)に沿って通過して排気110dとして室外に排出される。外気110a及び還気110cは、例えば互いに向き合うように流通させているが、全熱交換の設計により互いに角度を持って交差して流通させてもよい。このように外気110aを全熱交換素子用シート1の膜3表面、還気110cを全熱交換素子用シート1の多孔質部材2表面、に沿って流通させることによって、外気110aに含まれる水蒸気及び熱は全熱交換素子用シート1を透過して低湿低温に調整された還気110c側に移動する。 For example, when the outside air 110a is hotter and more humid than the return air 110c, as shown in FIG. 1, the outside air 110a mainly circulates on the surface of the membrane 3 along a flow path (not shown) and enters the room as an intake air 110b. The return air 110c is discharged, mainly passes through the surface of the porous member 2 along a flow path (not shown), and is discharged to the outside as an exhaust 110d. The outside air 110a and the return air 110c are circulated so as to face each other, for example, but may be circulated so as to intersect each other at an angle due to the design of total heat exchange. By circulating the outside air 110a along the film 3 surface of the total heat exchange element sheet 1 and the return air 110c along the surface of the porous member 2 of the total heat exchange element sheet 1 in this way, the water vapor contained in the outside air 110a. And the heat passes through the total heat exchange element sheet 1 and moves to the return air 110c side adjusted to low humidity and low temperature.

他方、外気110aが還気110cよりも低温低湿である場合、図2に示すように還気110cは主に膜3の表面を流路(図示せず)に沿って通過して排気110dとして室外に排出され、外気110aは主に多孔質部材2の表面を流路(図示せず)に沿って通過して吸気110bとして室内に排出される。還気110c及び外気110aは、互いに向き合うように流通させる。このように還気110cを全熱交換素子用シート1の膜3表面、外気110aを全熱交換素子用シート1の多孔質部材2表面、に沿って流通させることによって、還気110cに含まれる水蒸気及び熱(顕熱と潜熱)は全熱交換素子用シート1を透過して外気110a側に移動する。従って、全熱交換素子用シート1は外気110aと還気110cとの間で全熱を交換することができる。 On the other hand, when the outside air 110a has a lower temperature and lower humidity than the return air 110c, the return air 110c mainly passes through the surface of the membrane 3 along the flow path (not shown) as an exhaust 110d as shown in FIG. The outside air 110a mainly passes through the surface of the porous member 2 along a flow path (not shown) and is discharged indoors as an intake air 110b. The return air 110c and the outside air 110a are distributed so as to face each other. By circulating the return air 110c along the surface of the film 3 of the total heat exchange element sheet 1 and the outside air 110a along the surface of the porous member 2 of the total heat exchange element sheet 1 in this way, the return air 110c is included in the return air 110c. Water vapor and heat (sensible heat and latent heat) pass through the total heat exchange element sheet 1 and move to the outside air 110a side. Therefore, the total heat exchange element sheet 1 can exchange total heat between the outside air 110a and the return air 110c.

外気及び還気は、互いに接触しないように全熱交換素子用シート1の表面を流路に沿って通過させ、水蒸気とその他の気体とを効率よく分離することが好ましい。そのため、全熱交換素子用シート1は温度と湿度を効率よく交換する機能を有することが求められる。全熱の交換効率をより高めるためには、例えば水蒸気透過速度Vsと水蒸気と水蒸気を除く気体(空気等)とを分離する能力を示す分離率αとの両方が高いことが好ましい。 It is preferable that the outside air and the return air pass through the surface of the total heat exchange element sheet 1 along the flow path so as not to come into contact with each other, and the water vapor and other gases are efficiently separated. Therefore, the total heat exchange element sheet 1 is required to have a function of efficiently exchanging temperature and humidity. In order to further increase the total heat exchange efficiency, for example, it is preferable that both the water vapor permeation rate Vs and the separation rate α indicating the ability to separate water vapor and a gas (air or the like) excluding water vapor are high.

全熱交換素子用シート1の水蒸気透過速度Vsは、50g/h/m/kPa以上、80g/h/m/kPa、さらに120g/h/m/kPaであることが求められる。全熱交換素子用シートの水蒸気透過速度Vsは、次式(1)により表される。全熱交換素子用シート1の水蒸気透過速度Vsが低いと、湿度交換効率が低下し、全熱交換器としてのロスが大きくなる虞がある。 The water vapor permeation rate Vs of the total heat exchange element sheet 1 is required to be 50 g / h / m 2 / kPa or more, 80 g / h / m 2 / kPa, and further 120 g / h / m 2 / kPa. The water vapor permeation rate Vs of the total heat exchange element sheet is represented by the following equation (1). If the water vapor permeation rate Vs of the total heat exchange element sheet 1 is low, the humidity exchange efficiency may decrease and the loss as a total heat exchanger may increase.

全熱交換素子用シート1の水蒸気透過速度Vs(g/h/m/kPa)=(全熱交換素子用シート1を透過した水分量(g))/(全熱交換素子用シート1を水分が透過した時間(h))/(全熱交換素子用シート1の面積(m))/(全熱交換素子用シート1の両面における水蒸気圧差(kPa))…(1)
全熱交換素子用シート1の水蒸気と水蒸気を除く気体との分離率αは、10以上、20以上、さらに50以上であることが求められる。分離率αは、次式(2)により表される。
The water vapor permeation rate Vs (g / h / m 2 / kPa) of the total heat exchange element sheet 1 = (the amount of water permeated through the total heat exchange element sheet 1 (g)) / (the total heat exchange element sheet 1 Time permeated by water (h)) / (Area of total heat exchange element sheet 1 (m 2 )) / (Water vapor pressure difference (kPa) on both sides of total heat exchange element sheet 1) ... (1)
The separation ratio α between the water vapor and the gas excluding water vapor of the total heat exchange element sheet 1 is required to be 10 or more, 20 or more, and further 50 or more. The separation rate α is expressed by the following equation (2).

α=[(全熱交換素子用シート1を透過した水のモル数)/(排気7dの乾燥空気のモル数)]/[(外気7aの水のモル数)/(外気7aの乾燥空気のモル数)]…(2)
分離率αが低すぎると、水蒸気と水蒸気を除く気体との分離が困難になり、還気が効率よくおこなわれなくなる。その結果、室内の二酸化炭素等の排出が低下し、十分な換気のために余分な風量が必要になる。
α = [(the number of moles of water that has passed through the sheet 1 for the total heat exchange element) / (the number of moles of dry air in the exhaust 7d)] / [(the number of moles of water in the outside air 7a) / (the number of moles of the dry air in the outside air 7a) Number of moles)] ... (2)
If the separation rate α is too low, it becomes difficult to separate water vapor from the gas other than water vapor, and the return air cannot be efficiently performed. As a result, the emission of carbon dioxide and the like in the room is reduced, and an extra air volume is required for sufficient ventilation.

前述した多孔質部材2及び膜3について以下に詳述する。
<多孔質部材2>
多孔質部材2は、繊維径1μm以上100μm以下の有機繊維を主成分とすることが好ましい。有機繊維は、1μm以上50μm以下の繊維径であることがより好ましい。有機繊維は、高い柔軟性を有し、低コストであるため好ましい。多孔質部材2は、複数種の有機繊維を含んでもよい。また、多孔質部材2は10重量%以下の添加物、例えば紙のサイズ度を調整するためのサイズ剤、又は撥水、耐水の処理剤等、を含んでもよい。
The above-mentioned porous member 2 and membrane 3 will be described in detail below.
<Porous member 2>
The porous member 2 preferably contains an organic fiber having a fiber diameter of 1 μm or more and 100 μm or less as a main component. It is more preferable that the organic fiber has a fiber diameter of 1 μm or more and 50 μm or less. Organic fibers are preferred because they have high flexibility and low cost. The porous member 2 may contain a plurality of types of organic fibers. Further, the porous member 2 may contain an additive of 10% by weight or less, for example, a sizing agent for adjusting the size of paper, a water-repellent or water-resistant treatment agent, and the like.

多孔質部材2は、有機繊維の間に細孔をさらに有することが好ましい。繊維径を1μm以上100μm以下の範囲に調節して細孔径等を制御することにより多孔質部材2の水蒸気透過速度Vs等を高めることができる。 The porous member 2 preferably has additional pores between the organic fibers. By adjusting the fiber diameter to a range of 1 μm or more and 100 μm or less to control the pore diameter and the like, the water vapor permeation rate Vs and the like of the porous member 2 can be increased.

有機繊維は、例えば合成繊維や天然繊維等を用いることができる。天然繊維は、例えセルロースを主成分として含む。有機繊維は、径方向に平であってもよい。また有機繊維は中空繊維であってもよい。多孔質部材2は、例えば不織布、紙、有機多孔質体、又は合成繊維、天然繊維からなる成形体(紙を含む)であってもよい。多孔質部材2を構成する有機繊維は、サブミクロン以下のサイズの有機ナノ繊維の集合体であってもよい。有機ナノ繊維の集合体を用いることにより、多孔質部材2と膜3との結合力を増加させて、膜3が多孔質部材2から剥離するのを防ぐことができる。 As the organic fiber, for example, synthetic fiber, natural fiber and the like can be used. Natural fibers contain, for example, cellulose as a main component. The organic fibers may be flat in the radial direction. Further, the organic fiber may be a hollow fiber. The porous member 2 may be, for example, a non-woven fabric, paper, an organic porous body, or a molded body (including paper) made of synthetic fibers or natural fibers. The organic fiber constituting the porous member 2 may be an aggregate of organic nanofibers having a size of submicron or less. By using an aggregate of organic nanofibers, the bonding force between the porous member 2 and the membrane 3 can be increased, and the membrane 3 can be prevented from peeling from the porous member 2.

多孔質部材2は、例えばポアフロン(住友電気工業株式会社の登録商標)のようなフッ素系シートを延伸加工した多孔質シートから作製してもよい。 The porous member 2 may be produced from a porous sheet obtained by stretching a fluorine-based sheet such as Poaflon (registered trademark of Sumitomo Electric Industries, Ltd.).

多孔質部材2の平均細孔径は、好ましくは0.05μm以上100μm以下、より好ましくは0.05μm以上50μm以下、さらに好ましくは0.1μm以上10μm以下である。平均細孔径が大き過ぎると、当該多孔質部材2に膜3を形成する際、膜3が孔に侵入しやすくなって、ピンホール、亀裂が発生して分離性能が低下する可能性がある。 The average pore diameter of the porous member 2 is preferably 0.05 μm or more and 100 μm or less, more preferably 0.05 μm or more and 50 μm or less, and further preferably 0.1 μm or more and 10 μm or less. If the average pore diameter is too large, when the film 3 is formed on the porous member 2, the film 3 easily penetrates into the pores, and pinholes and cracks may occur to deteriorate the separation performance.

多孔質部材2の厚さは、特に限定されないが、好ましくは30μm以上3mm以下、さらに好ましくは50μm以上1mm以下である。多孔質部材2を薄くし過ぎると、ハンドリングの際、たわみ等の変形が生じ、多孔質部材2の一面に設けた膜3に亀裂等の欠陥が生じるだけでなく、破損する虞がある。また、多孔質部材2を厚くし過ぎると、水蒸気透過速度Vsが低下するだけでなく、熱伝導が低下するため、熱交換のロスが生じることが懸念される。 The thickness of the porous member 2 is not particularly limited, but is preferably 30 μm or more and 3 mm or less, and more preferably 50 μm or more and 1 mm or less. If the porous member 2 is made too thin, deformation such as bending occurs during handling, and the film 3 provided on one surface of the porous member 2 may not only have defects such as cracks but also be damaged. Further, if the porous member 2 is made too thick, not only the water vapor permeation rate Vs is lowered, but also the heat conduction is lowered, so that there is a concern that heat exchange loss may occur.

多孔質部材2の密度は、好ましくは0.8g/cm以下、さらに好ましくは0.7g/cm以下である。密度を高くし過ぎると、水蒸気の透過抵抗が高くなり、全熱の交換効率が低下する虞がある。 The density of the porous member 2 is preferably 0.8 g / cm 3 or less, more preferably 0.7 g / cm 3 or less. If the density is too high, the permeation resistance of water vapor becomes high, and the total heat exchange efficiency may decrease.

多孔質部材2の体積気孔率(細孔の体積率)は、好ましくは20%以上80%以下、より好ましくは25%以上70%以下である。多孔質部材2の体積気孔率が20%未満であると、水蒸気の透過抵抗が高くなり、全熱の交換効率が低下する虞がある。多孔質部材2の体積気孔率が80%を超えると、多孔質部材2の強度が低下して、多孔質部材2の一面に設けた膜3に亀裂が発生し、後述するウェットシールの形成を阻害する虞がある。なお、多孔質部材2の体積気孔率や細孔の形状(平均孔径等)は、水銀圧入法により測定することができる。 The volume porosity (volume fraction of pores) of the porous member 2 is preferably 20% or more and 80% or less, and more preferably 25% or more and 70% or less. If the volume porosity of the porous member 2 is less than 20%, the permeation resistance of water vapor becomes high, and the total heat exchange efficiency may decrease. When the volume porosity of the porous member 2 exceeds 80%, the strength of the porous member 2 decreases, cracks occur in the film 3 provided on one surface of the porous member 2, and a wet seal described later is formed. There is a risk of hindering. The volume porosity and the shape of the pores (average pore diameter, etc.) of the porous member 2 can be measured by the mercury press-fitting method.

多孔質部材2の水蒸気透過速度Vsは、50g/h/m2/kPa以上、70g/h/m2/kPa以上、さらに120g/h/m/kPa以上であることが好ましい。多孔質部材2の水蒸気透過速度Vsは、次式(3)により表される。 The water vapor permeation rate Vs of the porous member 2 is preferably 50 g / h / m 2 / kPa or more, 70 g / h / m 2 / kPa or more, and more preferably 120 g / h / m 2 / kPa or more. The water vapor permeation rate Vs of the porous member 2 is represented by the following equation (3).

多孔質部材2の水蒸気透過速度Vs(g/h/m/kPa)=(多孔質部材2を透過した水分量(g))/(多孔質部材2を水分が透過した時間(h))/(多孔質部材2の面積(m))/(多孔質部材2の両面における水蒸気圧差(kPa))…(3)
前記式(3)で求められる多孔質部材2の水蒸気透過速度Vsが低過ぎると、全熱交換素子用シート全体の水蒸気透過速度Vsが低下し、全熱の交換効率が低下する虞がある。
<膜3>
膜3は、多孔質部材2の一方の面に設けられる。膜3は、繊維径1nm以上50nm以下の無機繊維を含む。OH基を有する無機繊維は、水蒸気が吸着しやすいため好ましい。無機繊維の繊維長は、0.5μm以上15μm以下であることが好ましい。無機繊維は、繊維径が1nm以上10nm以下、繊維長が1μm以上3μm以下であることがより好ましい。繊維長を0.5μmよりも短くすると、繊維同士が絡み合う力が小さく、膜形成する際に亀裂が発生しやすくなる虞がある。繊維長が15μmよりも長くすると、繊維径に対するアスペクト比が大きくなり過ぎて繊維が折れやすくなる。無機繊維は、耐熱性が高いため好ましい。膜3は、複数種の無機繊維を含んでもよい。
Water vapor permeation rate Vs (g / h / m 2 / kPa) of the porous member 2 = (amount of water permeated through the porous member 2 (g)) / (time permeated through the porous member 2 (h)) / (Area of porous member 2 (m 2 )) / (Water vapor pressure difference (kPa) on both sides of porous member 2) ... (3)
If the water vapor permeation velocity Vs of the porous member 2 obtained by the above formula (3) is too low, the water vapor permeation velocity Vs of the entire sheet for the total heat exchange element may decrease, and the total heat exchange efficiency may decrease.
<Membrane 3>
The membrane 3 is provided on one surface of the porous member 2. The film 3 contains inorganic fibers having a fiber diameter of 1 nm or more and 50 nm or less. Inorganic fibers having an OH group are preferable because water vapor is easily adsorbed. The fiber length of the inorganic fiber is preferably 0.5 μm or more and 15 μm or less. It is more preferable that the inorganic fiber has a fiber diameter of 1 nm or more and 10 nm or less and a fiber length of 1 μm or more and 3 μm or less. If the fiber length is shorter than 0.5 μm, the force with which the fibers are entangled with each other is small, and cracks may easily occur when the film is formed. If the fiber length is longer than 15 μm, the aspect ratio with respect to the fiber diameter becomes too large and the fiber tends to break. Inorganic fibers are preferable because they have high heat resistance. The film 3 may contain a plurality of types of inorganic fibers.

無機繊維31は、特に限定されないが、親水性材料であることが好ましい。親水性材料は、例えばアルミニウム(Al)、ケイ素(Si)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、マグネシウム(Mg)、及び鉄(Fe)からなる群から選ばれる少なくとも一つを含む酸化物や水酸化物;アルカリ金属及びアルカリ土類金属からなる群から選ばれる少なくとも一つを含むアルミノケイ酸塩;マグネシウム(Mg)、カルシウム(Ca)、及びストロンチウム(Sr)からなる群から選ばれる少なくとも一つを含む炭酸塩;Mg、Ca、及びSrからなる群から選ばれる少なくとも一つを含むリン酸塩;Mg、Ca、Sr、及びAlからなる群から選ばれる少なくとも一つを含むチタン酸塩;又はこれらの複合物若しくは混合物等を用いることができる。また、金属水酸化物を前駆体とし、これを加水分解等で結合させ、反応を途中で止めてOH基の数を制御することにより形成された金属化合物であってもよい。 The inorganic fiber 31 is not particularly limited, but is preferably a hydrophilic material. The hydrophilic material is at least one selected from the group consisting of, for example, aluminum (Al), silicon (Si), titanium (Ti), zirconium (Zr), zinc (Zn), magnesium (Mg), and iron (Fe). Oxides and hydroxides containing: Aluminosilicates containing at least one selected from the group consisting of alkali metals and alkaline earth metals; from the group consisting of magnesium (Mg), calcium (Ca), and strontium (Sr). Carbonates containing at least one selected; phosphates containing at least one selected from the group consisting of Mg, Ca, and Sr; containing at least one selected from the group consisting of Mg, Ca, Sr, and Al. Titanate; or a composite or mixture thereof, etc. can be used. Further, it may be a metal compound formed by using a metal hydroxide as a precursor, binding the metal hydroxide by hydrolysis or the like, stopping the reaction in the middle, and controlling the number of OH groups.

具体的な親水性材料は、例えばアルミナ(ベーマイト又は擬ベーマイトを含む)、シリカ、チタニア、ジルコニア、マグネシア、酸化亜鉛、フェライト、ゼオライト、ハイドロキシアパタイト、チタン酸バリウム、又はその水和物等が挙げられるが、これらに限定されない。このような親水性材料からなる無機繊維を含む膜3は、耐熱性をより向上することができる。 Specific hydrophilic materials include, for example, alumina (including boehmite or pseudo-boehmite), silica, titania, zirconia, magnesia, zinc oxide, ferrite, zeolite, hydroxyapatite, barium titanate, or a hydrate thereof. However, it is not limited to these. The film 3 containing the inorganic fiber made of such a hydrophilic material can further improve the heat resistance.

無機繊維は、ベーマイト又は擬ベーマイトを含んでいることが特に好ましい。擬ベーマイトは、ベーマイトと結晶構造の一部が異なるアルミナ水和物を含む材料である。ベーマイト及び擬ベーマイトは、表面や結晶の層間にOH基が多く存在するため、水蒸気を吸着しやすく、ウェットシールの形成に有利である。 It is particularly preferable that the inorganic fiber contains boehmite or pseudo-boehmite. Pseudo-boehmite is a material containing alumina hydrate, which has a partially different crystal structure from boehmite. Since boehmite and pseudo-boehmite have many OH groups on the surface and between layers of crystals, they easily adsorb water vapor and are advantageous for forming a wet seal.

膜3は、無機繊維の配向状態が異なる薄層を2層以上積層した多層構造を有する。無機繊維の配向状態が異なる薄層は、図3に示す第1の薄層31及び第2の薄層32を例えば交互に配置されている。第1の薄層31及び第2の薄層32は、次に説明する構造を有する。 The film 3 has a multilayer structure in which two or more thin layers having different orientation states of inorganic fibers are laminated. As the thin layers having different orientation states of the inorganic fibers, the first thin layer 31 and the second thin layer 32 shown in FIG. 3 are arranged alternately, for example. The first thin layer 31 and the second thin layer 32 have the structure described below.

(1)第1の薄層31は、当該薄層31を平面視した時に無機繊維の配向がランダムで、かつ当該薄層31を断面視した時に無機繊維が当該薄層31表面に対して平行及び/又は傾斜して配向する。 (1) In the first thin layer 31, the orientation of the inorganic fibers is random when the thin layer 31 is viewed in a plan view, and the inorganic fibers are parallel to the surface of the thin layer 31 when the thin layer 31 is viewed in cross section. And / or tilt and orient.

(2)第2の薄層32は、当該薄層32を平面視した時に無機繊維の一端面及び/又は一端部が現れ、かつ当該薄層32を断面視した時に無機繊維が当該薄層32表面に垂直な軸に対して平行及び/又は傾斜して配向する。 (2) In the second thin layer 32, one end surface and / or one end portion of the inorganic fiber appears when the thin layer 32 is viewed in a plan view, and the inorganic fiber is formed in the thin layer 32 when the thin layer 32 is viewed in cross section. Oriented parallel to and / or tilted with respect to the axis perpendicular to the surface.

ここで、前記(1)の第1の薄層31において、「平面視した時に無機繊維の配向がランダム」とは、当該薄層31表面に対して特定の方向に揃って配向する無機繊維が全体の無機繊維の50%未満である。「平面視した時に無機繊維の配向がランダム」は、当該薄層31表面に対して特定の方向に揃って配向する無機繊維が全体の無機繊維の40%未満、より好ましくは全体の無機繊維の30%未満、である。 Here, in the first thin layer 31 of the above (1), "the orientation of the inorganic fibers is random when viewed in a plan view" means that the inorganic fibers aligned in a specific direction with respect to the surface of the thin layer 31 It is less than 50% of the total inorganic fiber. "Random orientation of inorganic fibers when viewed in a plan view" means that less than 40% of the total inorganic fibers are aligned in a specific direction with respect to the surface of the thin layer 31, more preferably the total inorganic fibers. Less than 30%.

前記(1)の第1の薄層31において、「断面視した時に無機繊維が当該薄層31表面に対して傾斜する」とは、好ましくは当該薄層31表面に対して0〜30°の角度、より好ましくは0〜15°の角度、で傾斜することである。 In the first thin layer 31 of the above (1), "the inorganic fiber is inclined with respect to the surface of the thin layer 31 when viewed in cross section" is preferably 0 to 30 ° with respect to the surface of the thin layer 31. Tilt at an angle, more preferably at an angle of 0-15 °.

1つの実施形態において、第1の薄層31は断面視した時に無機繊維が当該薄層31表面に対して平行した配向と傾斜した配向とが混在する。2つの配向の混在割合は、任意である。 In one embodiment, the first thin layer 31 has a mixture of orientations in which the inorganic fibers are parallel to and inclined with respect to the surface of the thin layer 31 when viewed in cross section. The mixing ratio of the two orientations is arbitrary.

他の実施形態において、第1の薄層31は断面視した時に無機繊維が当該薄層31表面に対して異なる角度で傾斜した配向が混在する。異なる角度で傾斜した配向の混在割合は、任意である。 In another embodiment, the first thin layer 31 has a mixture of orientations in which the inorganic fibers are inclined at different angles with respect to the surface of the thin layer 31 when viewed in cross section. The mixing ratio of orientations tilted at different angles is arbitrary.

また、前記(2)の第2の薄層32において、「平面視した時に無機繊維の一端面及び/又は一端部が現れる」とは、例えば無機繊維の一端が当該薄層32表面に毛羽立って現れる。 Further, in the second thin layer 32 of the above (2), "one end surface and / or one end portion of the inorganic fiber appears when viewed in a plan view" means that, for example, one end of the inorganic fiber is fluffed on the surface of the thin layer 32. appear.

前記(2)の第2の薄層32において、「断面視した時に無機繊維が当該薄層32表面に垂直な軸に対して傾斜する」とは、好ましくは垂直な軸に対して0〜45°の角度、より好ましくは0〜30°の角度、で傾斜することである。 In the second thin layer 32 of (2), "the inorganic fiber is inclined with respect to the axis perpendicular to the surface of the thin layer 32 when viewed in cross section" is preferably 0 to 45 with respect to the axis perpendicular to the vertical axis. It is tilted at an angle of °, more preferably an angle of 0-30 °.

1つの実施形態において、第2の薄層32は断面視した時に無機繊維が当該薄層32表面に垂直な軸に対して平行した配向と傾斜した配向とが混在する。2つの配向の混在割合は、任意である。 In one embodiment, the second thin layer 32 has a mixture of orientations in which the inorganic fibers are parallel to the axis perpendicular to the surface of the thin layer 32 and are inclined when viewed in cross section. The mixing ratio of the two orientations is arbitrary.

他の実施形態において、第2の薄層32は断面視した時に無機繊維が当該薄層32表面に垂直な軸に対して異なる角度で傾斜した配向が混在する。異なる角度で傾斜した配向の混在割合は、任意である。 In another embodiment, the second thin layer 32 has a mixture of orientations in which the inorganic fibers are inclined at different angles with respect to the axis perpendicular to the surface of the thin layer 32 when viewed in cross section. The mixing ratio of orientations tilted at different angles is arbitrary.

前述した第1、第2の薄層31,32は、それらの構造上の相違から、第1の薄層31が第2の薄層32に比べて高い密度を有する。 In the first and second thin layers 31 and 32 described above, the first thin layer 31 has a higher density than the second thin layer 32 due to their structural differences.

膜3を構成する多層構造は、第1、第2の薄層31,32をそれぞれ1層有すれば、単一の層からなる膜に比べて高い水蒸気透過速度を維持しつつ、水蒸気と水蒸気を除く気体(例えば空気)の分離率を向上できる、優位な効果を奏する。 If the multilayer structure constituting the membrane 3 has one first and one second thin layers 31 and 32 respectively, water vapor and water vapor can be maintained while maintaining a higher water vapor permeation rate than a membrane composed of a single layer. It has an advantageous effect of improving the separation rate of gas (for example, air) excluding water vapor.

第1、第2の薄層31,32を含む多層構造の膜3の層数は、6層以上、8層以上、10層以上、12層以上、14層以上、16層以上、18層以上、20層以上、24層以上、30層以上、40層以上又は50層以上であってもよい。このような層数の多層構造を有する膜3は、積層される複数の第1の薄層31、又は複数の第2の薄層32が前述した(1)、(2)の配向状態を満たす範囲内で、互いに同じであっても、異なってもよい。 The number of layers of the multi-layered film 3 including the first and second thin layers 31 and 32 is 6 or more, 8 or more, 10 or more, 12 or more, 14 or more, 16 or more, 18 or more. , 20 layers or more, 24 layers or more, 30 layers or more, 40 layers or more, or 50 layers or more. In the film 3 having a multilayer structure having such a number of layers, the plurality of first thin layers 31 or the plurality of second thin layers 32 to be laminated satisfy the orientation states (1) and (2) described above. Within the range, they may be the same or different from each other.

多層構造の膜3の層厚さ(第1又は第2の薄層の厚さ)は、好ましくは300nm以下、より好ましくは200nm以下、さらに好ましくは100nm以下である。第1又は第2の薄層の厚さは、互いに同じであって、異なってもよい。第1又は第2の薄層の下限厚さは、好ましくは10nm、より好ましくは15nm、最も好ましくは30nmである。 The layer thickness of the multi-layered film 3 (thickness of the first or second thin layer) is preferably 300 nm or less, more preferably 200 nm or less, still more preferably 100 nm or less. The thickness of the first or second thin layer may be the same as or different from each other. The lower limit thickness of the first or second thin layer is preferably 10 nm, more preferably 15 nm, and most preferably 30 nm.

多層構造の膜3自体の厚さは、第1、第2の薄層の厚さ及び層数により一概に規定できないが、例えば第1及び第2の薄層の厚さがそれぞれ300nm以下である場合、1〜50μm、より好ましくは1〜20μmにすることが望ましい。 The thickness of the multi-layered film 3 itself cannot be unconditionally defined by the thickness of the first and second thin layers and the number of layers, but for example, the thickness of the first and second thin layers is 300 nm or less, respectively. In the case, it is desirable to make it 1 to 50 μm, more preferably 1 to 20 μm.

次に、実施形態に係る全熱交換素子用シートの製造方法の一例を説明する。 Next, an example of a method for manufacturing a sheet for a total heat exchange element according to the embodiment will be described.

1)最初に、例えば繊維径1μm以上100μm以下の有機繊維を主成分とするシート状の多孔質部材を用意する。 1) First, for example, a sheet-shaped porous member containing an organic fiber having a fiber diameter of 1 μm or more and 100 μm or less as a main component is prepared.

2)シート状の多孔質部材を所望の径を有する回転可能なドラム表面に巻回して固定する。 2) A sheet-shaped porous member is wound and fixed on a rotatable drum surface having a desired diameter.

3)ドラムにノズルを対向して配置する。ノズルは、当該ドラムに巻回した多孔質部材の幅方向に往復動作する。 3) Arrange the nozzles facing the drum. The nozzle reciprocates in the width direction of the porous member wound around the drum.

4)ドラムを回転させながら、ノズルを多孔質部材の幅方向に往復動作し、その間に繊維径1nm以上50nm以下の無機繊維の分散液をノズルから多孔質部材の一方の面(表面)に向けて吹付ける。無機繊維の分散液は、例えば無機繊維を水に分散した液である。 4) While rotating the drum, the nozzle reciprocates in the width direction of the porous member, and during that time, the dispersion liquid of inorganic fibers having a fiber diameter of 1 nm or more and 50 nm or less is directed from the nozzle to one surface (surface) of the porous member. And spray. The dispersion liquid of the inorganic fiber is, for example, a liquid in which the inorganic fiber is dispersed in water.

5)ドラムからシート状の多孔質部材を取り外し、乾燥することによって、多孔質部材の一方の面に第1、第2の薄層を含む多層構造の膜が形成された全熱交換素子用シートを製造する。 5) A sheet for a total heat exchange element in which a multi-layered film including a first and second thin layers is formed on one surface of the porous member by removing the sheet-shaped porous member from the drum and drying it. To manufacture.

前記4)の工程のドラムの回転速度は、10〜800rpmにすることが好ましい。ノズルの往復動作は、1〜10cm/分にすることが好ましい。 The rotation speed of the drum in the step 4) is preferably 10 to 800 rpm. The reciprocating operation of the nozzle is preferably 1 to 10 cm / min.

なお、多層構造の膜の層数は前記4)の工程の無機繊維の分散液の吹付時間を調節することにより制御できる。 The number of layers of the multi-layered film can be controlled by adjusting the spraying time of the dispersion liquid of the inorganic fibers in the step 4).

前記製造方法において、膜の第1、第2の薄層の配向状態は主にドラムの回転速度及びノズルからの無機繊維の分散液の吹付速度(流量)により制御することができる。 In the manufacturing method, the orientation state of the first and second thin layers of the film can be controlled mainly by the rotation speed of the drum and the spraying speed (flow rate) of the dispersion liquid of the inorganic fibers from the nozzle.

以上説明した全熱交換素子用シート1は、多孔質部材2と、当該多孔質部材の一方の面に設けられた繊維径1nm以上50nm以下の無機繊維を含む膜3とを備えるため、多孔質部材2で高い水蒸気透過速度を担わせ、膜3で高い水蒸気透過速度及び水蒸気と水蒸気を除く気体との分離率を担わせることができる。 The sheet 1 for a total heat exchange element described above is porous because it includes a porous member 2 and a film 3 provided on one surface of the porous member and containing inorganic fibers having a fiber diameter of 1 nm or more and 50 nm or less. The member 2 can be responsible for a high water vapor permeation rate, and the membrane 3 can be responsible for a high water vapor permeation rate and a separation rate between water vapor and a gas other than water vapor.

また、多孔質部材が繊維径1μm以上100μm以下の有機繊維を含む形態にすることによって、シート自体に柔軟性を付与しつつ、高い水蒸気透過速度を実現できる。 Further, by forming the porous member into a form containing organic fibers having a fiber diameter of 1 μm or more and 100 μm or less, it is possible to realize a high water vapor permeation rate while imparting flexibility to the sheet itself.

他方、膜3が繊維径1nm以上50nm以下の無機繊維を含むことによって、成膜時やシートのたわみによる膜3の亀裂を抑制し、強度を向上できる。また、防燃性効果も有する。さらに、ナノサイズの無機繊維で構成される膜3は、無機繊維間に細孔が作られるため、外気等に含まれる水蒸気はケルビンの毛管凝縮理論により凝縮されて細孔内に満たされ、ウェットシールを形成する。ウェットシールは、外気等に含まれる水蒸気を吸着して膜3から多孔質部材2に移動させることができる。また、ウェットシールは水蒸気を除く気体の透過を抑制できる。 On the other hand, when the film 3 contains an inorganic fiber having a fiber diameter of 1 nm or more and 50 nm or less, cracks in the film 3 due to film formation or bending of the sheet can be suppressed and the strength can be improved. It also has a flameproof effect. Further, since the membrane 3 composed of nano-sized inorganic fibers has pores formed between the inorganic fibers, water vapor contained in the outside air or the like is condensed by Kelvin's capillary condensation theory to fill the pores and become wet. Form a seal. The wet seal can adsorb water vapor contained in the outside air or the like and move it from the membrane 3 to the porous member 2. In addition, the wet seal can suppress the permeation of gas other than water vapor.

膜3は、前記特定の繊維径を有する無機繊維による機能に加えて、無機繊維の配向状態が異なる薄層を2層(第1の薄層31、第2の薄層32)以上積層した多層構造を有する。第1の薄層31は、当該薄層31を平面視した時に前記無機繊維の配向がランダムで、かつ当該薄層31を断面視した時に無機繊維が当該薄層31表面に対して平行及び/又は傾斜して配向している。第2の薄層32は、当該薄層32を平面視した時に無機繊維の一端面及び/又は一端部が現れ、かつ当該薄層32を断面視した時に無機繊維が当該薄層32表面に垂直な軸に対して平行及び/又は傾斜して配向している。第1、第2の薄層31、32において、第1の薄層31は第2の薄層32に比べて高い密度を有する。 The film 3 is a multilayer in which two or more thin layers (first thin layer 31 and second thin layer 32) having different orientation states of the inorganic fibers are laminated in addition to the function of the inorganic fibers having a specific fiber diameter. Has a structure. In the first thin layer 31, the orientation of the inorganic fibers is random when the thin layer 31 is viewed in a plan view, and the inorganic fibers are parallel to the surface of the thin layer 31 and / / when the thin layer 31 is viewed in cross section. Or it is inclined and oriented. In the second thin layer 32, one end surface and / or one end portion of the inorganic fiber appears when the thin layer 32 is viewed in a plan view, and the inorganic fiber is perpendicular to the surface of the thin layer 32 when the thin layer 32 is viewed in cross section. Oriented parallel to and / or tilted with respect to the axis. In the first and second thin layers 31 and 32, the first thin layer 31 has a higher density than the second thin layer 32.

このような多層構造を持つ膜3は、単一の配向状態を持つ1層構造の膜に比べて以下のような優位な効果を奏する。
(1)第1の薄層31は、断面視した時に無機繊維が当該薄層31表面に対して平行及び/又は傾斜して配向するため、無機繊維間により多く、より微細な細孔を作ることができる。この第1の薄層31は、前述したウェットシールをより多く形成することができる。その結果、膜3表面に接触して流通する外気等に含まれる水蒸気の吸着性が向上して膜3から多孔質部材2に移動させる、つまり水蒸気透過速度をより一層高めることができる。また、第1の薄層31でのウェットシールの増大によって、水蒸気を除く気体の透過を効果的に抑制する、つまり水蒸気と水蒸気を除く気体との分離率をより一層高めることができる。
(2)第2の薄層32は、断面視した時に無機繊維が当該薄層32表面に垂直な軸に対して平行及び/又は傾斜して配向するため、水蒸気を当該薄層32表面に垂直な軸に対して平行及び/又は傾斜する無機繊維の配向方向に沿って移動させて水蒸気透過速度を高めることができる。
The film 3 having such a multi-layer structure has the following superior effects as compared with a film having a single-layer structure having a single orientation state.
(1) In the first thin layer 31, the inorganic fibers are oriented parallel to and / or inclined with respect to the surface of the thin layer 31 when viewed in cross section, so that more fine pores are formed between the inorganic fibers. be able to. The first thin layer 31 can form more of the wet seals described above. As a result, the adsorptivity of water vapor contained in the outside air that circulates in contact with the surface of the membrane 3 is improved, and the membrane 3 is moved from the membrane 3 to the porous member 2, that is, the water vapor permeation rate can be further increased. Further, by increasing the wet seal in the first thin layer 31, it is possible to effectively suppress the permeation of the gas other than water vapor, that is, the separation rate between the water vapor and the gas excluding water vapor can be further increased.
(2) In the second thin layer 32, the inorganic fibers are oriented parallel to and / or inclined with respect to the axis perpendicular to the surface of the thin layer 32 when viewed in cross section, so that water vapor is perpendicular to the surface of the thin layer 32. The water vapor permeation rate can be increased by moving the inorganic fibers parallel to and / or inclined with respect to the vertical axis along the orientation direction of the inorganic fibers.

また、第1の薄層31は無機繊維が当該薄層31表面に対して平行及び/又は傾斜して配向するため、その配向に沿って亀裂が発生する場合がある。亀裂箇所は、膜3の強度低下の要因になる。第1の薄層31に積層される前記第2の薄層32は、その配向構造により緩衝材として機能し、第1の薄層31の亀裂箇所の強度低下を補償することができる。
(3)第1、第2の薄層31、32が2層を超える層数、例えば10層の多層構造を持つ膜3は、第1、第2の薄層31、32の特性を際立たせることができる。すなわち、膜3の厚さ方向に第1、第2の薄層31、32を交互にかつそれぞれ2層以上積層することによって、各第1の薄層31に形成されるウェットシールによる水蒸気を除く気体の透過をより一層効果的に抑制できる。同時に、第1の薄層31でのウェットシールの形成と、第1の薄層31に対して多孔質部材2側に隣接する各第2の薄層32での水蒸気透過速度を高めることとの相互作用によって、水蒸気透過速度をより一層向上できる。
Further, since the inorganic fibers of the first thin layer 31 are oriented in parallel and / or inclined with respect to the surface of the thin layer 31, cracks may occur along the orientation. The cracked portion causes a decrease in the strength of the film 3. The second thin layer 32 laminated on the first thin layer 31 functions as a cushioning material due to its orientation structure, and can compensate for the decrease in strength of the cracked portion of the first thin layer 31.
(3) The number of layers in which the first and second thin layers 31 and 32 exceed two layers, for example, the film 3 having a multilayer structure of 10 layers emphasizes the characteristics of the first and second thin layers 31 and 32. be able to. That is, by alternately laminating two or more layers of the first and second thin layers 31 and 32 in the thickness direction of the film 3, water vapor due to the wet seal formed on each of the first thin layers 31 is removed. The permeation of gas can be suppressed more effectively. At the same time, the formation of the wet seal in the first thin layer 31 and the increase in the water vapor permeation rate in each of the second thin layers 32 adjacent to the porous member 2 side with respect to the first thin layer 31. The interaction can further improve the water vapor permeation rate.

また、各第1の薄層31は無機繊維が当該薄層31表面に対して平行及び/又は傾斜して配向するため、その配向に沿って亀裂が発生する場合がある。亀裂が膜の厚さ方向に伝搬すると、破損するのみならず、水蒸気と水蒸気を除く気体との分離率が低下する。第1の薄層31間にそれぞれ配置される第2の薄層32は、その配向構造により緩衝作用を有し、第1の薄層31に発生した亀裂が膜3の厚さ方向に伝搬するのを遮断(断絶)する。その結果、高い強度と優れたウェットシール性を兼ね備えた膜3を実現できる。 Further, since the inorganic fibers of each of the first thin layers 31 are oriented in parallel and / or inclined with respect to the surface of the thin layer 31, cracks may occur along the orientation. When the crack propagates in the thickness direction of the film, it not only breaks but also reduces the separation rate between water vapor and the gas other than water vapor. The second thin layer 32, which is arranged between the first thin layers 31, has a buffering action due to its orientation structure, and the cracks generated in the first thin layer 31 propagate in the thickness direction of the film 3. Block (disconnect). As a result, the film 3 having both high strength and excellent wet sealing property can be realized.

次に、実施形態に係る全熱交換素子を詳述する。 Next, the total heat exchange element according to the embodiment will be described in detail.

全熱交換素子は、前述した全熱交換素子用シートを複数備えた構造を有する。図4は、実施形態に係る全熱交換素子を示す斜視図である。全熱交換素子10は、複数枚、例えば6枚の前述した全熱交換素子用シート1と、2枚(最下層及び最上層に配置される)の補強シート12a,12bと、複数枚(例えば7枚)の断面波形、例えば断面三角波形の流路部材13と備えている。 The total heat exchange element has a structure including a plurality of sheets for the total heat exchange element described above. FIG. 4 is a perspective view showing a total heat exchange element according to the embodiment. The total heat exchange element 10 includes a plurality of sheets, for example, six sheets 1 for the above-mentioned total heat exchange element, two reinforcing sheets 12a and 12b (arranged in the lowermost layer and the uppermost layer), and a plurality of sheets (for example). It is provided with a flow path member 13 having a cross-sectional waveform (7 sheets), for example, a triangular cross-sectional waveform.

全熱交換素子用シート1は、その膜3が下面に位置するように互いに一定の間隔を積層されている。補強シート12a,12bは、積層体の最上層及び最下層に全熱交換素子用シート1に対して一定の間隔をあけて配置されている。断面三角波形の流路部材13は、補強シート12a、6枚の全熱交換素子用シート1及び補強シート12bの間に交互に例えば90°の角度で交差するように介在して固定されている。流路部材13は、特に限定されないが、例えばパルプを主成分とする紙製シートを波形に加工したもの、又はポリ塩化ビニル、ポリプロピレン等の汎用樹脂、或いはステンレス等の金属から作ることができる。第1の直線状流路21は、全熱交換素子用シート1の膜3と断面三角波形の流路部材13の断面三角波で囲まれて形成されている。第2の直線状流路22は、全熱交換素子用シート1の多孔質部材2と断面三角波形の流路部材13の断面三角波で囲まれて形成されている。第1、第2の直線状流路21,22は、全熱交換素子用シート1を挟んで例えば90°の角度で交差するように配置されている。 The sheets 1 for total heat exchange elements are laminated with each other at regular intervals so that the film 3 is located on the lower surface. The reinforcing sheets 12a and 12b are arranged on the uppermost layer and the lowermost layer of the laminated body at regular intervals with respect to the total heat exchange element sheet 1. The flow path member 13 having a triangular cross section is alternately interposed and fixed between the reinforcing sheet 12a, the six total heat exchange element sheets 1 and the reinforcing sheet 12b so as to intersect at an angle of, for example, 90 °. .. The flow path member 13 is not particularly limited, but can be made of, for example, a corrugated paper sheet containing pulp as a main component, a general-purpose resin such as polyvinyl chloride or polypropylene, or a metal such as stainless steel. The first linear flow path 21 is formed by being surrounded by the film 3 of the total heat exchange element sheet 1 and the cross-section triangular wave of the flow path member 13 having a triangular cross-section waveform. The second linear flow path 22 is formed by being surrounded by the porous member 2 of the total heat exchange element sheet 1 and the cross-section triangular wave of the flow path member 13 having a triangular cross-section waveform. The first and second linear flow paths 21 and 22 are arranged so as to intersect each other at an angle of, for example, 90 ° with the total heat exchange element sheet 1 interposed therebetween.

次に、実施形態に係る全熱交換器を詳述する。 Next, the total heat exchanger according to the embodiment will be described in detail.

全熱交換器は、前述した全熱交換素子を備えている。図5は、夏場の全熱交換を説明するための実施形態に係る全熱交換器を示す概略図である。すなわち、全熱交換器100は筐体101を備えている。筐体101内には、前述した図4に示す全熱交換素子10が配置されている。 The total heat exchanger includes the above-mentioned total heat exchange element. FIG. 5 is a schematic view showing a total heat exchanger according to an embodiment for explaining total heat exchange in summer. That is, the total heat exchanger 100 includes a housing 101. The total heat exchange element 10 shown in FIG. 4 described above is arranged in the housing 101.

筐体101内は、第1〜第4の区画室104a〜104dが全熱交換素子10を囲むように横方向の仕切壁102及び縦方向の隔壁103で区画されている。第1〜第4の区画室104a〜104dは全熱交換素子10の第1、第2の直線状流路(図示せず)の開口端とそれぞれ対向する箇所において、開放されている。第1〜第4の区画室104a〜104dは、それぞれ筐体101の左上部、右上部、左下部及び右下部に配置されている。 Inside the housing 101, the first to fourth partition chambers 104a to 104d are partitioned by a horizontal partition wall 102 and a vertical partition wall 103 so as to surround the total heat exchange element 10. The first to fourth compartments 104a to 104d are open at locations facing the open ends of the first and second linear flow paths (not shown) of the total heat exchange element 10. The first to fourth compartments 104a to 104d are arranged in the upper left portion, the upper right portion, the lower left portion, and the lower right portion of the housing 101, respectively.

第1、第3の区画室104a,104cがそれぞれ位置する筐体101の左側壁105aには、それぞれ第1、第3の開口部106a,106cが設けられている。第2、第4の区画室104b,104dがそれぞれ位置する筐体101の右側壁105bには、それぞれ第2、第4の開口部106b,106dが設けられている。第3の区画室104c内の第3の開口部106cが位置する左側壁105aには、第1のファン107aが配置されている。第4の区画室104d内の第4の開口部106cが位置する右側壁105bには、第2のファン107bが配置されている。 The left side walls 105a of the housing 101 in which the first and third compartments 104a and 104c are located are provided with first and third openings 106a and 106c, respectively. The right side walls 105b of the housing 101 in which the second and fourth compartments 104b and 104d are located are provided with the second and fourth openings 106b and 106d, respectively. A first fan 107a is arranged on the left side wall 105a where the third opening 106c in the third compartment 104c is located. A second fan 107b is arranged on the right side wall 105b where the fourth opening 106c in the fourth compartment 104d is located.

このような全熱交換素子10を備えた全熱交換器100は、次のような操作により全熱交換がなされる。
<夏場の高温多湿の時期の全熱交換>
第2のファン107bを駆動することにより、室外から矢印に示す外気(還気よりも高温多湿)110aは第4の開口部106d、第4の区画室104dを通して全熱交換素子10の複数の第1の直線状流路(図示せず)内に図1に示す全熱交換素子用シート1の膜3表面に接触して流通し、さらに第1の区画室104a、第1の開口部106aを通して矢印に示す吸気110bとして室内に導入される。同時に、第1のファン107aを駆動することにより、室内から矢印に示す還気110cは第3の開口部106c、第3の区画室104cを通して全熱交換素子10の複数の第2の直線状流路(図示せず)内に図1に示す全熱交換素子用シート1の多孔質部材2表面に接触して流通し、さらに第2の区画室104b、第2の開口部106bを通して矢印に示す排気110dとして室外に排出される。
In the total heat exchanger 100 provided with such a total heat exchange element 10, total heat exchange is performed by the following operation.
<Total heat exchange during hot and humid summer season>
By driving the second fan 107b, the outside air (higher temperature and higher humidity than the return air) 110a indicated by the arrow from the outside passes through the fourth opening 106d and the fourth partition chamber 104d, and a plurality of first total heat exchange elements 10 are used. It circulates in contact with the surface of the film 3 of the total heat exchange element sheet 1 shown in FIG. 1 in the linear flow path (not shown) of No. 1, and further passes through the first partition chamber 104a and the first opening 106a. It is introduced into the room as the intake air 110b shown by the arrow. At the same time, by driving the first fan 107a, the return air 110c indicated by the arrow from the room flows through the third opening 106c and the third partition room 104c through a plurality of second linear flows of the total heat exchange element 10. It circulates in contact with the surface of the porous member 2 of the total heat exchange element sheet 1 shown in FIG. 1 in a path (not shown), and is further indicated by an arrow through a second partition chamber 104b and a second opening 106b. It is discharged to the outside as exhaust 110d.

このような全熱交換素子10において、外気110aは全熱交換素子10の第1の直線状流路(図示せず)に導入されて、図1に示す全熱交換素子用シート1の膜3表面に接触して流通され、還気110cは全熱交換素子用シート1を挟んで第1の直線状流路と交差する第2の直線状流路(図示せず)に導入されて、図1に示す全熱交換素子用シート1の多孔質部材2表面に接触して流通される。このとき、外気110aは還気110cに比べて高温多湿であるため、全熱交換素子10において外気110aに含まれる水蒸気及び熱は全熱交換素子用シート1を通して還気110c側に移動される。
<冬場の低温低湿の時期の全熱交換>
図5を用いて説明した夏場の全熱交換に対して、冬場も外気、還気を同様な流路を流通させて全熱交換を行うことができる。また、冬場の全熱交換は、外気及び還気の導入流路、並びに第1、第2のファンによる送気方向をそれぞれ図6に示すように切り替えてもよい。図6は、冬場の全熱交換を説明するための実施形態に係る全熱交換器を示す概略図である。
In such a total heat exchange element 10, the outside air 110a is introduced into the first linear flow path (not shown) of the total heat exchange element 10, and the film 3 of the total heat exchange element sheet 1 shown in FIG. The return air 110c is circulated in contact with the surface, and is introduced into a second linear flow path (not shown) that intersects the first linear flow path with the total heat exchange element sheet 1 in between. It is circulated in contact with the surface of the porous member 2 of the total heat exchange element sheet 1 shown in 1. At this time, since the outside air 110a is hotter and more humid than the return air 110c, the water vapor and heat contained in the outside air 110a in the total heat exchange element 10 are transferred to the return air 110c side through the total heat exchange element sheet 1.
<Total heat exchange during low temperature and low humidity in winter>
In contrast to the total heat exchange in the summer described with reference to FIG. 5, the total heat exchange can be performed in the winter by circulating the outside air and the return air through the same flow path. Further, in the total heat exchange in winter, the introduction flow paths of the outside air and the return air, and the air supply directions by the first and second fans may be switched as shown in FIG. 6, respectively. FIG. 6 is a schematic view showing a total heat exchanger according to an embodiment for explaining total heat exchange in winter.

すなわち、第2のファン107bを駆動することにより、室内から矢印に示す還気110cは第1の開口部106a、第1の区画室104aを通して全熱交換素子10の複数の第1の直線状流路(図示せず)内に図1に示す全熱交換素子用シート1の膜3表面に接触して流通し、さらに第4の区画室104d、第4の開口部106dを通して矢印に示す排気110dとして室外に排出される。同時に、第1のファン107aを駆動することにより、室外から矢印に示す外気(還気よりも低温低湿)110aは第2の開口部106b、第2の区画室104bを通して全熱交換素子10の第2の直線状流路(図示せず)内に多孔質部材2表面に接触して流通し、さらに第3の区画室104c,第3の開口部106cを通して矢印に示す吸気110bとして室内に導入される。 That is, by driving the second fan 107b, the return air 110c indicated by the arrow from the room flows through the first opening 106a and the first partition room 104a through the first linear flow of the total heat exchange element 10. The exhaust 110d indicated by the arrow is circulated in the path (not shown) in contact with the surface of the film 3 of the total heat exchange element sheet 1 shown in FIG. 1 and further passed through the fourth partition chamber 104d and the fourth opening 106d. Is discharged to the outside of the room. At the same time, by driving the first fan 107a, the outside air (lower temperature and lower humidity than the return air) 110a indicated by the arrow from the outside passes through the second opening 106b and the second compartment 104b, and the total heat exchange element 10 is the first. It circulates in contact with the surface of the porous member 2 in the linear flow path (not shown) of 2, and is further introduced into the room as an intake air 110b indicated by an arrow through a third partition chamber 104c and a third opening 106c. NS.

このような全熱交換素子10において、還気110cは第1の直線状流路(図示せず)に導入されて、図1に示す全熱交換素子用シート1の膜3表面に接触して流通され、外気110aは全熱交換素子用シート1を挟んで第1の直線状流路と交差する第2の直線状流路(図示せず)に導入されて、図1に示す全熱交換素子用シート1の多孔質部材2表面に接触して流通される。このとき、外気110aが還気110cに比べて低温低湿であるため、全熱交換素子10において還気110cに含まれる水蒸気及び熱は全熱交換素子用シート1を通して外気110a側に移動される。 In such a total heat exchange element 10, the return air 110c is introduced into the first linear flow path (not shown) and comes into contact with the surface of the film 3 of the total heat exchange element sheet 1 shown in FIG. The outside air 110a is circulated and introduced into a second linear flow path (not shown) that intersects the first linear flow path with the total heat exchange element sheet 1 in between, and the total heat exchange is shown in FIG. It is circulated in contact with the surface of the porous member 2 of the element sheet 1. At this time, since the outside air 110a has a lower temperature and lower humidity than the return air 110c, the water vapor and heat contained in the return air 110c in the total heat exchange element 10 are transferred to the outside air 110a side through the total heat exchange element sheet 1.

従って、全熱交換器100に組み込まれた全熱交換素子10は水蒸気透過速度Vsと分離率αの両方が高い全熱交換用素子1を備えるため、外気と還気との間で全熱を効率的に交換することができる。 Therefore, since the total heat exchange element 10 incorporated in the total heat exchanger 100 includes the total heat exchange element 1 having a high water vapor permeation rate Vs and a high separation rate α, the total heat is transferred between the outside air and the return air. It can be replaced efficiently.

なお、流路部材13の断面波形は、断面三角波形に限らず、断面矩形波形、断面台形波形であってもよい。断面波形は、その山及び谷の形状が略同一、又は同一であることが好ましい。 The cross-sectional waveform of the flow path member 13 is not limited to a triangular cross-section waveform, but may be a rectangular cross-section waveform or a trapezoidal cross-section waveform. It is preferable that the cross-sectional waveform has substantially the same or the same shape of the peaks and valleys.

以下、実施例を詳細に説明する。
(実施例1)
最初に平均直径20μmの紙からなる厚さ120μmのシート状の多孔質部材を作製した。シート状の多孔質部材を直径が20cmの回転可能なドラム表面に巻回して固定した。ドラムにノズルを対向した配置した。ノズルは、当該ドラムに巻回した多孔質部材の幅方向に往復動作する。ドラムを600rpmの速度で回転させながら、ノズルをシート状の多孔質部材の一方の面(表面)に5cm/分の速度で往復動作させ、その間に平均直径4nm、平均長さ1μmの擬ベーマイトナノファイバを含む水系分散液を吹付け、ノズルから多孔質部材の表面に向けて吹付けた。その後、乾燥することにより多孔質部材の表面に厚さ20μmの膜を形成して全熱交換素子用シートを製造した。
Hereinafter, examples will be described in detail.
(Example 1)
First, a sheet-shaped porous member having a thickness of 120 μm made of paper having an average diameter of 20 μm was prepared. A sheet-shaped porous member was wound and fixed on a rotatable drum surface having a diameter of 20 cm. The nozzle was placed facing the drum. The nozzle reciprocates in the width direction of the porous member wound around the drum. While rotating the drum at a speed of 600 rpm, the nozzle is reciprocated on one surface (surface) of the sheet-shaped porous member at a speed of 5 cm / min, during which the pseudo-bemite nano with an average diameter of 4 nm and an average length of 1 μm is reciprocated. An aqueous dispersion containing fibers was sprayed from the nozzle toward the surface of the porous member. Then, by drying, a film having a thickness of 20 μm was formed on the surface of the porous member to produce a sheet for a total heat exchange element.

得られた全熱交換素子用シートの膜の断面をTEM観察した。その結果、膜は異なる配向状態の擬ベーマイトナノファイバ層(第1の薄層及び第2の薄層)が交互に積層され、1層の厚さはそれぞれ50〜100nmで、層数が25である積層膜であることを確認した。 The cross section of the film of the obtained total heat exchange element sheet was observed by TEM. As a result, the membrane is composed of pseudo-boehmite nanofiber layers (first thin layer and second thin layer) having different orientations alternately laminated, and each layer has a thickness of 50 to 100 nm and a number of layers of 25. It was confirmed that it was a certain laminated film.

第1の薄層は、平面視した時に膜の表面に現れる擬ベーマイトナノファイバの配向がランダムで、膜の表面に対して平行して配向する擬ベーマイトナノファイバが膜表面の全体の30%未満であった。第1の薄層は、断面視した時に擬ベーマイトナノファイバが膜表面に対して平行した配向と0〜10°の角度で傾斜した配向とが混在していた。 In the first thin layer, the orientation of the pseudo-bemite nanofibers appearing on the surface of the membrane when viewed in a plan view is random, and the pseudo-bemite nanofibers oriented parallel to the surface of the membrane account for less than 30% of the entire surface of the membrane. Met. In the first thin layer, the orientation in which the pseudo-boehmite nanofibers were parallel to the film surface and the orientation in which the pseudo-boehmite nanofibers were inclined at an angle of 0 to 10 ° were mixed when viewed in cross section.

他方、第2の薄層は平面視した時に擬ベーマイトナノファイバの一端面及び一端部が当該第2の薄層の表面に現れた。第2の薄層は、断面視した時に擬ベーマイトナノファイバが膜表面に垂直な軸に対して平行した配向と0〜30°の角度で傾斜した配向とが混在していた。
(実施例2)
シート状の多孔質部材としてフッ素樹脂多孔質シート(住友電気工業株式会社の登録商標:ポアフロン)を用い、ドラムの回転速度を100rpmに変更した以外、実施例1と同様な条件でドラムに巻回して固定した当該フッ素樹脂多孔質シートの表面に擬ベーマイトナノファイバを含む水系分散液を吹付けて厚さ20μmの膜を形成して全熱交換素子用シートを製造した。
On the other hand, when the second thin layer was viewed in a plan view, one end surface and one end portion of the pseudo-boehmite nanofiber appeared on the surface of the second thin layer. In the second thin layer, when viewed in cross section, the pseudo-boehmite nanofibers were mixed with an orientation parallel to the axis perpendicular to the film surface and an orientation inclined at an angle of 0 to 30 °.
(Example 2)
A fluororesin porous sheet (registered trademark of Sumitomo Electric Industry Co., Ltd .: Poaflon) was used as the sheet-like porous member, and the drum was wound around the drum under the same conditions as in Example 1 except that the rotation speed of the drum was changed to 100 rpm. A 20 μm-thick film was formed by spraying an aqueous dispersion containing pseudo-bemite nanofibers on the surface of the fluororesin porous sheet that had been fixed in place to produce a sheet for a total heat exchange element.

得られた全熱交換素子用シートの膜の断面をTEM観察した。その結果、膜は異なる配向状態の擬ベーマイトナノファイバ層(第1の薄層及び第2の薄層)が交互に積層され、1層の厚さはそれぞれ100〜200nmで、層数が13である積層膜であることを確認した。 The cross section of the film of the obtained total heat exchange element sheet was observed by TEM. As a result, the membrane was alternately laminated with pseudo-boehmite nanofiber layers (first thin layer and second thin layer) having different orientation states, and each layer had a thickness of 100 to 200 nm and a number of layers of 13. It was confirmed that it was a certain laminated film.

第1の薄層は、平面視した時に膜の表面に現れる擬ベーマイトナノファイバの配向がランダムで、膜の表面に対して平行して配向する擬ベーマイトナノファイバが膜表面の全体の30%未満であった。第1の薄層は、断面視した時に擬ベーマイトナノファイバが膜表面に対して平行した配向と0〜15°の角度で傾斜した配向とが混在していた。 In the first thin layer, the orientation of the pseudo-bemite nanofibers appearing on the surface of the membrane when viewed in a plan view is random, and the pseudo-bemite nanofibers oriented parallel to the surface of the membrane account for less than 30% of the entire surface of the membrane. Met. In the first thin layer, the orientation in which the pseudo-boehmite nanofibers were parallel to the film surface and the orientation in which the pseudo-boehmite nanofibers were inclined at an angle of 0 to 15 ° were mixed when viewed in cross section.

他方、第2の薄層は平面視した時に擬ベーマイトナノファイバの一端面及び一端部が当該第2の薄層の表面に現れた。第2の薄層は、断面視した時に擬ベーマイトナノファイバが膜表面に垂直な軸に対して平行した配向と0〜30°の角度で傾斜した配向とが混在していた。
(比較例1)
平均直径300μmのアルミナ繊維を主成分とする厚さ300μmのシート状の多孔質部材の一方の面に、実施例1と同様の擬ベーマイトナノファイバを分散した水系分散液を20g/m2の量でスキージ塗布し、乾燥して全熱交換素子用シートを製造した。
On the other hand, when the second thin layer was viewed in a plan view, one end surface and one end portion of the pseudo-boehmite nanofiber appeared on the surface of the second thin layer. In the second thin layer, when viewed in cross section, the pseudo-boehmite nanofibers were mixed with an orientation parallel to the axis perpendicular to the film surface and an orientation inclined at an angle of 0 to 30 °.
(Comparative Example 1)
An amount of 20 g / m 2 of an aqueous dispersion in which pseudo-bemite nanofibers similar to those in Example 1 are dispersed on one surface of a sheet-like porous member having a thickness of 300 μm and containing alumina fibers having an average diameter of 300 μm as a main component. A sheet for a total heat exchange element was manufactured by applying a squeegee to the material and drying it.

得られた全熱交換素子用シートの断面をTEM観察した。その結果、シート状の多孔質部材表面の多数の細孔に擬ベーマイトナノファイバの大部分が侵入して当該多孔質部材の裏面まで到達していた。このため、膜として観察されず、多孔質部材に擬ベーマイトナノファイバが一体化された複合材で、多数のピンホール及び亀裂が見られた。
(比較例2)
比較例1と同様なシート状の多孔質部材の一方の面に、平均繊維径1μmのアルミナファイバを分散した水系分散液を20g/m2の量でスキージ塗布し、乾燥して厚さ10μmの膜を形成して全熱交換素子用シートを製造した。
The cross section of the obtained total heat exchange element sheet was observed by TEM. As a result, most of the pseudoboehmite nanofibers invaded a large number of pores on the surface of the sheet-shaped porous member and reached the back surface of the porous member. Therefore, it was not observed as a film, and a large number of pinholes and cracks were observed in the composite material in which pseudo-boehmite nanofibers were integrated with the porous member.
(Comparative Example 2)
An aqueous dispersion in which alumina fibers having an average fiber diameter of 1 μm are dispersed is squeegee-coated at an amount of 20 g / m 2 on one surface of a sheet-like porous member similar to Comparative Example 1, dried and dried to a thickness of 10 μm. A film was formed to manufacture a sheet for a total heat exchange element.

得られた全熱交換素子用シートの断面をTEM観察した。その結果、シート状の多孔質部材の一方の面にその表面に平行に配向された膜が1層形成されていることを確認できた。しかしながら、多孔質部材の孔内にアルミナファイバが侵入し、膜内にピンホール及び亀裂が見られた。 The cross section of the obtained total heat exchange element sheet was observed by TEM. As a result, it was confirmed that one layer of a film oriented parallel to the surface was formed on one surface of the sheet-shaped porous member. However, the alumina fiber penetrated into the pores of the porous member, and pinholes and cracks were observed in the film.

得られた実施例1,2及び比較例1,2の全熱交換素子用シートの水蒸気透過速度Vs及び水蒸気分離率αを測定した。 The water vapor permeation rate Vs and the water vapor separation rate α of the obtained sheets for total heat exchange elements of Examples 1 and 2 and Comparative Examples 1 and 2 were measured.

最初に、全熱交換素子用シートの膜表面に断面三角波形の流路部材を接して配置し、当該膜と流路部材の各波とで囲まれた三角柱をなす複数の第1の直線状流路を形成した。つづいて、全熱交換素子用シートの多孔質部材表面に断面三角波形の流路部材を接して配置し、当該多孔質部材と流路部材の各波とで囲まれた三角柱をなす複数の第2の直線状流路を形成することにより評価用全熱交換セルを組立てた。この全熱交換セルの第1、第2の直線状流路は、互いに対向するとともに、平行になっている。また、第1、第2の直線状流路のピッチ、高さは既存の全熱変換素子に準じる形状とした。 First, a flow path member having a triangular cross section is placed in contact with the membrane surface of the total heat exchange element sheet, and a plurality of first linear shapes forming a triangular prism surrounded by the film and each wave of the flow path member. A flow path was formed. Subsequently, a plurality of thirds are arranged in contact with a flow path member having a triangular cross section on the surface of the porous member of the total heat exchange element sheet, and form a triangular prism surrounded by the porous member and each wave of the flow path member. The total heat exchange cell for evaluation was assembled by forming the linear flow path of 2. The first and second linear flow paths of the total heat exchange cell face each other and are parallel to each other. Further, the pitch and height of the first and second linear flow paths are shaped to conform to the existing total heat conversion element.

前記評価用全熱交換セルの水蒸気透過速度Vs及び水蒸気分離率αを以下の方法により測定した。 The water vapor permeation rate Vs and the water vapor separation rate α of the total heat exchange cell for evaluation were measured by the following methods.

1)水蒸気透過速度Vsの測定方法
全熱交換セルを恒温恒湿槽内に設置し、その第1の直線状流路の一端に高湿側ダクトを接続した。第1の直線状流路の高湿側ダクトの接続端と反対側に位置する第2の直線状流路の一端に低湿側ダクトを接続した。高湿側ダクトにはファンを介装し、低湿側ダクトには熱交換器が介装した。
1) Method for measuring water vapor permeation velocity Vs A total heat exchange cell was installed in a constant temperature and humidity chamber, and a high humidity side duct was connected to one end of the first linear flow path thereof. The low humidity side duct was connected to one end of the second linear flow path located on the opposite side of the connection end of the high humidity side duct of the first linear flow path. A fan was installed in the high-humidity duct, and a heat exchanger was installed in the low-humidity duct.

ファンの駆動により、高湿空気を第1の直線状流路に高湿ダクトを通して供給した。一方、恒温恒湿槽の外部から露点−110℃の窒素を第2の直線状流路に低湿側ダクトを通して供給した。当該窒素が低湿側ダクトを流通する間に、熱交換器で熱交換されて等温にし、乾燥窒素とすることにより、当該乾燥窒素を第2の直線状流路に供給した。すなわち、高湿空気と乾燥窒素は対向流として全熱交換セルの第1、第2の直線状流路にそれぞれ供給した。このとき、第1、第2の直線状流路での通過風速は全熱交換素子の評価時と同一になるようにした。 By driving the fan, high humidity air was supplied to the first linear flow path through the high humidity duct. On the other hand, nitrogen having a dew point of −110 ° C. was supplied from the outside of the constant temperature and humidity chamber to the second linear flow path through the low humidity side duct. While the nitrogen was flowing through the low-humidity duct, heat was exchanged by a heat exchanger to make the temperature equal, and the dry nitrogen was supplied to the second linear flow path. That is, the high-humidity air and the dry nitrogen were supplied as countercurrents to the first and second linear flow paths of the total heat exchange cell, respectively. At this time, the passing wind speed in the first and second linear flow paths was set to be the same as that at the time of evaluation of the total heat exchange element.

低湿側ダクトの出口において、排気空気の温度、湿度、酸素濃度を測定し、水蒸気透過速度を算出した。 At the outlet of the low humidity duct, the temperature, humidity, and oxygen concentration of the exhaust air were measured, and the water vapor permeation rate was calculated.

2)水蒸気の分離率α
本来、JIS規格に準じて二酸化炭素の透過量を把握する必要があるが、二酸化炭素と酸素では窒素中のガス拡散係数がほぼ同じであることから、本測定では低湿側ダクトの出口からの酸素の透過(濃度)をCO2の透過の代わりとし、水蒸気の分離率を算出した。
また、セルのピッチ、流路高さは既存の全熱交素子に準じる形状とし、通過風速が全熱交素子の評価時と同一になるようにした。高湿空気と低湿空気は対向流で供給した。
2) Water vapor separation rate α
Originally, it is necessary to grasp the permeation amount of carbon dioxide according to the JIS standard, but since the gas diffusion coefficient in nitrogen is almost the same for carbon dioxide and oxygen, oxygen from the outlet of the low humidity side duct is used in this measurement. The permeation (concentration) of CO 2 was used as a substitute for the permeation of CO 2, and the separation rate of water vapor was calculated.
In addition, the cell pitch and flow path height are shaped to conform to the existing total enthalpy heat exchange element so that the passing wind speed is the same as when evaluating the total enthalpy heat exchange element. High-humidity air and low-humidity air were supplied by countercurrent.

実施例1、2、及び比較例1,2における水蒸気透過速度Vsと分離率αの値を下記表1に示す。 The values of the water vapor permeation rate Vs and the separation rate α in Examples 1 and 2 and Comparative Examples 1 and 2 are shown in Table 1 below.

Figure 0006937258
Figure 0006937258

前記表1から明らかなように、実施例1、2の全熱交換素子用シートを組み込んだ評価用全熱交換セルは、水蒸気透過速度Vsが72g/h/m/kPa以上と高く、その上、分離率αが比較例1、2の全熱交換素子用シートを組み込んだ評価用全熱交換セルに比べてはるかに高い値を示すことがわかる。このことから、実施例1、2の全熱交換素子用シートは、比較例1、2の全熱交換素子用シートよりも全熱の交換効率が高いことがわかる。 As is clear from Table 1, the evaluation total heat exchange cell incorporating the total heat exchange element sheet of Examples 1 and 2 has a high water vapor permeation rate Vs of 72 g / h / m 2 / kPa or more. Above, it can be seen that the separation rate α shows a much higher value than the evaluation total heat exchange cell incorporating the total heat exchange element sheet of Comparative Examples 1 and 2. From this, it can be seen that the total heat exchange element sheets of Examples 1 and 2 have higher total heat exchange efficiency than the total heat exchange element sheets of Comparative Examples 1 and 2.

なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…全熱交換素子用シート、2…多孔質部材、3…膜、10…全熱交換素子、21…第1の直線状流路、22…第2の直線状流路、31…第1の薄層、32…第2の薄層、100…全熱交換器、110a…外気、110b…吸気、110c…還気、110d…排気。 1 ... Sheet for total heat exchange element, 2 ... Porous member, 3 ... Membrane, 10 ... Total heat exchange element, 21 ... First linear flow path, 22 ... Second linear flow path, 31 ... First Thin layer, 32 ... second thin layer, 100 ... total heat exchanger, 110a ... outside air, 110b ... intake, 110c ... return air, 110d ... exhaust.

Claims (8)

多孔質部材と、当該多孔質部材の一方の面に設けられた繊維径1nm以上50nm以下の無機繊維を含む膜とを備え、
前記膜は、前記無機繊維の配向状態が異なる薄層を2層以上積層した多層構造を有する全熱交換素子用シート。
A film containing an inorganic fiber having a fiber diameter of 1 nm or more and 50 nm or less provided on one surface of the porous member is provided.
The film is a sheet for a total heat exchange element having a multilayer structure in which two or more thin layers having different orientation states of the inorganic fibers are laminated.
前記多孔質部材は、繊維径1μm以上100μm以下の有機繊維を主成分とする請求項1に記載の全熱交換素子用シート。 The sheet for a total heat exchange element according to claim 1, wherein the porous member is mainly composed of an organic fiber having a fiber diameter of 1 μm or more and 100 μm or less. 前記無機繊維は、親水性を有する請求項1又は2に記載の全熱交換素子用シート。 The sheet for a total heat exchange element according to claim 1 or 2, wherein the inorganic fiber has hydrophilicity. 前記無機繊維は、ベーマイト及び擬ベーマイトからなる群から選ばれる少なくとも1つを含む請求項1〜3いずれか1項に記載の全熱交換素子用シート。 The sheet for a total heat exchange element according to any one of claims 1 to 3, wherein the inorganic fiber contains at least one selected from the group consisting of boehmite and pseudo-boehmite. 前記無機繊維の配向状態が異なる薄層において、
第1の薄層は、当該薄層を平面視した時に前記無機繊維の配向がランダムで、かつ当該薄層を断面視した時に前記無機繊維が当該薄層表面に対して平行及び/又は傾斜して配向し、
第2の薄層は、当該薄層を平面視した時に前記無機繊維の一端面及び/又は一端部が現れ、かつ当該薄層を断面視した時に前記無機繊維が当該薄層表面に垂直な軸に対して平行及び/又は傾斜して配向する請求項1〜4いずれか1項に記載の全熱交換素子用シート。
In thin layers in which the orientation state of the inorganic fibers is different,
In the first thin layer, the orientation of the inorganic fibers is random when the thin layer is viewed in a plan view, and the inorganic fibers are parallel and / or inclined with respect to the surface of the thin layer when the thin layer is viewed in cross section. Oriented,
In the second thin layer, one end surface and / or one end portion of the inorganic fiber appears when the thin layer is viewed in a plan view, and the axis of the inorganic fiber perpendicular to the surface of the thin layer when the thin layer is viewed in cross section. The sheet for a total heat exchange element according to any one of claims 1 to 4, which is oriented parallel to and / or inclined with respect to the surface.
前記第1、第2の薄層は、厚さが300nm以下である請求項1〜5いずれか1項に記載の全熱交換素子用シート。 The sheet for a total heat exchange element according to any one of claims 1 to 5, wherein the first and second thin layers have a thickness of 300 nm or less. 請求項1〜6いずれか1項に記載の全熱交換素子用シートを備える全熱交換素子。 A total heat exchange element including the sheet for the total heat exchange element according to any one of claims 1 to 6. 請求項7に記載の全熱交換素子を備える全熱交換器。 A total heat exchanger comprising the total heat exchange element according to claim 7.
JP2018050179A 2018-03-16 2018-03-16 Total heat exchange element sheet, total heat exchange element, and total heat exchanger Active JP6937258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018050179A JP6937258B2 (en) 2018-03-16 2018-03-16 Total heat exchange element sheet, total heat exchange element, and total heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018050179A JP6937258B2 (en) 2018-03-16 2018-03-16 Total heat exchange element sheet, total heat exchange element, and total heat exchanger

Publications (2)

Publication Number Publication Date
JP2019158317A JP2019158317A (en) 2019-09-19
JP6937258B2 true JP6937258B2 (en) 2021-09-22

Family

ID=67996836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018050179A Active JP6937258B2 (en) 2018-03-16 2018-03-16 Total heat exchange element sheet, total heat exchange element, and total heat exchanger

Country Status (1)

Country Link
JP (1) JP6937258B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630595A (en) * 1979-08-21 1981-03-27 Mitsubishi Electric Corp Total heat exchanger
JP3346680B2 (en) * 1995-05-11 2002-11-18 株式会社西部技研 Adsorbent for moisture exchange
JP2006150323A (en) * 2004-11-01 2006-06-15 Japan Gore Tex Inc Diaphragm and production method of the same and heat exchanger equipped with the same
JP2011237157A (en) * 2010-05-10 2011-11-24 Nippon Air Filter Kk Total heat exchange element of heat exchanger
JP6357651B2 (en) * 2014-03-19 2018-07-18 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP6387514B2 (en) * 2014-03-19 2018-09-12 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same

Also Published As

Publication number Publication date
JP2019158317A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
CN1217149C (en) Heat exchanger and heat exchange air interchanger
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
CA3193016C (en) System, components, and methods for air, heat, and humidity exchanger
US20110192579A1 (en) Total heat exchange element and total heat exchanger
CA2798928A1 (en) Separating membrane and heat exchanger using same
JP2011237157A (en) Total heat exchange element of heat exchanger
JP2020038023A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body
JP6387514B2 (en) Partition member for total heat exchange element, total heat exchange element and total heat exchange type ventilator using the same
JP2014018722A (en) Filter element for dehumidification
JP5987854B2 (en) Heat exchange element and heat exchanger
JP6937258B2 (en) Total heat exchange element sheet, total heat exchange element, and total heat exchanger
JP6571894B1 (en) Total heat exchange element paper and total heat exchange element
JP2009144930A (en) Total enthalpy heat exchanger
JP2020038024A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body
JP6961520B2 (en) Total heat exchange element sheet, total heat exchange element, and total heat exchanger
WO2019045057A1 (en) Sheet for total heat exchange elements, total heat exchange element, total heat exchanger, and water vapor separator
KR20100119583A (en) Heat exchange element and air conditioner or heating/cooling device using the same
JP6987681B2 (en) Total heat exchanger and total heat exchanger
JP2020038022A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body
JP2020037066A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and water vapor separator
US20180272311A1 (en) Composite member, gas separator, and gas separating device
KR100938917B1 (en) Total heat exchanger Element
JP2016080269A (en) Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device
JP6899739B2 (en) Gas separator and gas separator
US20170074529A1 (en) Vapor separator and dehumidifier using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200820

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210830

R150 Certificate of patent or registration of utility model

Ref document number: 6937258

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150