JP2020038022A - Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body - Google Patents

Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body Download PDF

Info

Publication number
JP2020038022A
JP2020038022A JP2018164745A JP2018164745A JP2020038022A JP 2020038022 A JP2020038022 A JP 2020038022A JP 2018164745 A JP2018164745 A JP 2018164745A JP 2018164745 A JP2018164745 A JP 2018164745A JP 2020038022 A JP2020038022 A JP 2020038022A
Authority
JP
Japan
Prior art keywords
total heat
heat exchange
porous member
exchange element
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018164745A
Other languages
Japanese (ja)
Inventor
米津 麻紀
Maki Yonezu
麻紀 米津
原田 耕一
Koichi Harada
耕一 原田
ひとみ 斉藤
Hitomi Saito
ひとみ 斉藤
亮介 八木
Ryosuke Yagi
亮介 八木
敏弘 今田
Toshihiro Imada
敏弘 今田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Carrier Corp
Original Assignee
Toshiba Corp
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Carrier Corp filed Critical Toshiba Corp
Priority to JP2018164745A priority Critical patent/JP2020038022A/en
Publication of JP2020038022A publication Critical patent/JP2020038022A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Gases (AREA)

Abstract

To provide a sheet for a total heat exchange element, a total heat exchange element, a total heat exchanger, and a steam separation body that have improved a separation ratio of steam and gas other than steam while maintaining a high water vapor permeation speed.SOLUTION: A sheet for a total heat exchange element includes: a porous member including an organic fiber and having an opening of 10 μm to 1 mm in diameter on one surface; and a membrane including an inorganic fiber provided on one surface of the porous member. A fiber with an average fiber diameter of 100 nm to 5 μm, and an average fiber length of 0.35-5 mm is interposed on the boundary surface of the porous member and the membrane.SELECTED DRAWING: Figure 5

Description

実施形態は、全熱交換素子用シート、全熱交換素子、全熱交換器、及び水蒸気分離体に関する。   Embodiments relate to a sheet for a total heat exchange element, a total heat exchange element, a total heat exchanger, and a steam separator.

近年、地球環境の保護や二酸化炭素の削減、エネルギー不足等の観点から、使用エネルギーの削減が要求されている。住宅やビル等の住空間は、建築基準法により義務付けられた換気を必要とする。しかし、換気による空調エネルギー損失が問題になっている。空調装置の一つである全熱交換器は、調温及び調湿された建物内部の空気と屋外の空気との間で全熱(顕熱(温度)と潜熱(湿度))を交換することにより熱のロスを抑制し、省エネルギー化を図る装置である。   2. Description of the Related Art In recent years, reduction of energy consumption has been demanded from the viewpoint of protection of the global environment, reduction of carbon dioxide, energy shortage, and the like. Living spaces such as houses and buildings require ventilation required by the Building Standards Law. However, air conditioning energy loss due to ventilation is a problem. The total heat exchanger, one of the air conditioners, exchanges total heat (sensible heat (temperature) and latent heat (humidity)) between temperature- and humidity-controlled air inside the building and outside air. This is a device that suppresses heat loss and saves energy.

従来の全熱交換素子は、特殊加工が施された紙からなる全熱交換素子用シートを用い、屋内の空気と屋外の空気との混合を抑制しながら、顕熱及び潜熱を交換している。しかし、全熱交換素子用シートは全熱の交換効率が70%前後と低い値に留まる。全熱交換素子用シートは、交換効率のより高い材料に置き換えることによって、さらに省エネルギーが図られた全熱交換器を実現することができる。   The conventional total heat exchange element uses a sheet for a total heat exchange element made of specially processed paper, and exchanges sensible heat and latent heat while suppressing mixing of indoor air and outdoor air. . However, the total heat exchange element sheet has a low total heat exchange efficiency of about 70%. By replacing the sheet for total heat exchange elements with a material having a higher exchange efficiency, a total heat exchanger with further energy saving can be realized.

特公昭61−058759号公報JP-B-61-058759 特開2004−154457号公報JP-A-2004-154457 特開2010−234213号公報JP 2010-234213 A

本発明が解決しようとする課題は、高い水蒸気透過速度を維持しながら、水蒸気と水蒸気を除く気体との分離率を向上した全熱交換素子用シート、全熱交換素子、全熱交換器、及び水蒸気分離体を提供する。   The problem to be solved by the present invention is a sheet for a total heat exchange element, a total heat exchange element, a total heat exchanger, which has an improved separation ratio between water vapor and a gas excluding water vapor while maintaining a high water vapor transmission rate. Provide a steam separator.

実施形態に係る全熱交換素子用シートは、有機繊維を含み、一方の面に孔径が10μm以上1mm以下の開孔を有する多孔質部材と、多孔質部材の一方の面に設けられた無機繊維を含む膜とを備える。平均繊維径が100nm以上5μm以下で、平均繊維長が0.35mm以上5mm以下の繊維が、多孔質部材と膜の界面に存在する。   The sheet for a total heat exchange element according to the embodiment includes an organic fiber, a porous member having an opening having a hole diameter of 10 μm or more and 1 mm or less on one surface, and an inorganic fiber provided on one surface of the porous member. And a film containing: Fibers having an average fiber diameter of 100 nm or more and 5 μm or less and an average fiber length of 0.35 mm or more and 5 mm or less exist at the interface between the porous member and the membrane.

実施形態に係る全熱交換素子用シートを示す断面模式図である。It is a cross section showing the sheet for total heat exchange elements concerning an embodiment. 実施形態に係る全熱交換素子用シートに対する外気と還気の流れを図1と異ならせた断面模式図である。FIG. 2 is a schematic cross-sectional view in which the flow of outside air and return air to the sheet for a total heat exchange element according to the embodiment is different from that in FIG. 1. 図1の全熱交換素子用シートを拡大した断面模式図である。It is the cross-sectional schematic diagram which expanded the sheet | seat for total heat exchange elements of FIG. 図1の多孔質部材の一方の面のSEM写真を模式的に示す平面図である。FIG. 2 is a plan view schematically showing an SEM photograph of one surface of the porous member of FIG. 1. 図1の全熱交換素子用シートの膜を取り除いた繊維領域から多孔質部材に向けて撮影したSEM写真を模式的に示す平面図である。FIG. 2 is a plan view schematically showing an SEM photograph taken from a fiber region of the sheet for a total heat exchange element sheet of FIG. 1 from which a film is removed toward a porous member. 実施形態に係る全熱交換素子を示す斜視図である。It is a perspective view showing the total heat exchange element concerning an embodiment. 夏場の全熱交換を説明するための実施形態に係る全熱交換器を示す概略図である。It is a schematic diagram showing a total heat exchanger concerning an embodiment for explaining total heat exchange in summer. 冬場の全熱交換を説明するための実施形態に係る全熱交換器を示す概略図である。It is a schematic diagram showing a total heat exchanger concerning an embodiment for explaining total heat exchange in winter.

以下、実施形態について図面を用いて説明する。各実施形態において、実質的に同一の構成部位には同一の符号を付し、その説明を一部省略する場合がある。図面は模式的なものであり、厚さと平面寸法との関係、各部の厚さの比率等は現実のものとは異なる場合がある。説明中の上下等の方向を示す用語は、重力加速度方向を基準とした現実の方向とは異なる場合がある。   Hereinafter, embodiments will be described with reference to the drawings. In each embodiment, substantially the same components are denoted by the same reference numerals, and the description thereof may be partially omitted. The drawings are schematic, and the relationship between the thickness and the plane dimension, the ratio of the thickness of each part, and the like may be different from the actual one. The terms indicating directions such as up and down in the description may be different from the actual directions based on the direction of gravitational acceleration.

図1は、実施形態に係る全熱交換素子用シートを示す断面模式図、図2は実施形態に係る全熱交換素子用シートに対する外気と還気の流れを図1と異ならせた断面模式図、図3は図1の全熱交換素子用シートを拡大した断面模式図、である。   FIG. 1 is a schematic cross-sectional view showing a sheet for a total heat exchange element according to an embodiment, and FIG. 2 is a schematic cross-sectional view in which flows of outside air and return air to the sheet for a total heat exchange element according to the embodiment are different from those in FIG. FIG. 3 is an enlarged schematic sectional view of the sheet for total heat exchange element of FIG.

全熱交換素子用シート1は、図1〜図3に示すように多孔質部材2と多孔質部材2の一方の面に設けられた膜4とを具備し、多孔質部材2と膜4の界面には繊維領域3が存在する。このような多孔質部材2、繊維領域3及び膜4の積層体は水蒸気分離体としての機能を有する。   The sheet 1 for a total heat exchange element includes a porous member 2 and a film 4 provided on one surface of the porous member 2 as shown in FIGS. The fiber region 3 exists at the interface. Such a laminate of the porous member 2, the fiber region 3, and the membrane 4 has a function as a water vapor separator.

このような全熱交換素子用シート1に対し、コスト面などを考慮して通常は導入側を変化させないが、以下に説明するように導入側を夏と冬で変化させてもよい。   In general, the introduction side is not changed in such a total heat exchange element sheet 1 in consideration of cost and the like, but may be changed between summer and winter as described below.

例えば、外気110aが還気110cよりも高温多湿である場合、図1に示すように外気110aは主に膜4の表面41を流路(図示せず)に沿って流通して吸気110bとして室内に排出され、還気110cは主に多孔質部材2の表面21を流路(図示せず)に沿って通過して排気110dとして室外に排出される。外気110a及び還気110cは、例えば互いに向き合うように流通させているが、全熱交換の設計により互いに角度を持って交差して流通させてもよい。このように外気110aを全熱交換素子用シート1の膜4の表面41、還気110cを全熱交換素子用シート1の多孔質部材2の表面21、に沿って流通させることによって、外気110aに含まれる水蒸気及び熱は全熱交換素子用シート1を透過して低湿低温に調整された還気110c側に移動する。   For example, when the outside air 110a is hotter and humid than the return air 110c, as shown in FIG. 1, the outside air 110a mainly circulates along the flow path (not shown) on the surface 41 of the membrane 4 and becomes the indoor air as the intake air 110b. The return air 110c mainly passes through the surface 21 of the porous member 2 along a flow path (not shown) and is discharged outside as an exhaust 110d. The outside air 110a and the return air 110c are circulated, for example, so as to face each other. However, the outside air 110a and the return air 110c may cross each other at an angle depending on the design of total heat exchange. In this way, the outside air 110a is caused to flow along the surface 41 of the membrane 4 of the sheet for total heat exchange elements 1 and the return air 110c along the surface 21 of the porous member 2 of the sheet 1 for total heat exchange elements. The water vapor and heat contained in the gas pass through the sheet for total heat exchange element 1 and move to the return air 110c side adjusted to low humidity and low temperature.

他方、外気110aが還気110cよりも低温低湿である場合、図2に示すように還気110cは主に膜4の表面41を流路(図示せず)に沿って通過して排気110dとして室外に排出され、外気110aは主に多孔質部材2の表面21を流路(図示せず)に沿って通過して吸気110bとして室内に排出される。還気110c及び外気110aは、互いに向き合うように流通させる。このように還気110cを全熱交換素子用シート1の膜4の表面41、外気110aを全熱交換素子用シート1の多孔質部材2の表面21、に沿って流通させることによって、還気110cに含まれる水蒸気及び熱(顕熱と潜熱)は全熱交換素子用シート1を透過して外気110a側に移動する。従って、全熱交換素子用シート1は外気110aと還気110cとの間で全熱を交換することができる。   On the other hand, when the outside air 110a is lower in temperature and humidity than the return air 110c, the return air 110c mainly passes through the surface 41 of the membrane 4 along the flow path (not shown) as the exhaust 110d as shown in FIG. The outside air 110a is discharged outside the room, passes mainly along the surface 21 of the porous member 2 along a flow path (not shown), and is discharged into the room as intake air 110b. The return air 110c and the outside air 110a are circulated so as to face each other. By returning the return air 110c along the surface 41 of the membrane 4 of the sheet for total heat exchange elements 1 and the outside air 110a along the surface 21 of the porous member 2 of the sheet 1 for total heat exchange elements, the return air Water vapor and heat (sensible heat and latent heat) contained in 110c pass through the total heat exchange element sheet 1 and move to the outside air 110a side. Therefore, the total heat exchange element sheet 1 can exchange total heat between the outside air 110a and the return air 110c.

外気及び還気は、互いに接触しないように全熱交換素子用シート1の膜4の表面41及び多孔質部材2の表面21を流路に沿って通過させ、水蒸気とその他の気体とを効率よく分離することが好ましい。そのため、全熱交換素子用シート1は温度と湿度を効率よく交換する機能を有することが求められる。全熱の交換効率をより高めるためには、例えば水蒸気透過速度Vsと水蒸気と水蒸気を除く気体(空気等)とを分離する能力を示す分離率αとの両方が高いことが好ましい。   The outside air and the return air pass through the surface 41 of the membrane 4 of the sheet for total heat exchange element 1 and the surface 21 of the porous member 2 along the flow path so that they do not come into contact with each other, so that water vapor and other gases are efficiently exchanged. Separation is preferred. Therefore, the sheet for total heat exchange elements 1 is required to have a function of efficiently exchanging temperature and humidity. In order to further increase the total heat exchange efficiency, for example, it is preferable that both the water vapor transmission rate Vs and the separation rate α indicating the ability to separate water vapor and a gas other than water vapor (such as air) be high.

全熱交換素子用シート1の水蒸気透過速度Vsは、50g/h/m/kPa以上、80g/h/m/kPa、さらに120g/h/m/kPaであることが求められる。全熱交換素子用シートの水蒸気透過速度Vsは、次式(1)により表される。全熱交換素子用シート1の水蒸気透過速度Vsが低いと、湿度交換効率が低下し、全熱交換器としてのロスが大きくなる虞がある。 The water vapor transmission rate Vs of the sheet for total heat exchange element 1 is required to be 50 g / h / m 2 / kPa or more, 80 g / h / m 2 / kPa, and further 120 g / h / m 2 / kPa. The water vapor transmission rate Vs of the sheet for the total heat exchange element is represented by the following equation (1). If the water vapor transmission rate Vs of the sheet for total heat exchange elements 1 is low, the efficiency of humidity exchange is reduced, and there is a possibility that the loss as a total heat exchanger increases.

全熱交換素子用シート1の水蒸気透過速度Vs(g/h/m/kPa)=(全熱交換素子用シート1を透過した水分量(g))/(全熱交換素子用シート1を水分が透過した時間(h))/(全熱交換素子用シート1の面積(m))/(全熱交換素子用シート1の両面における水蒸気圧差(kPa))…(1)
全熱交換素子用シート1の水蒸気と水蒸気を除く気体との分離率αは、10以上、20以上、さらに50以上であることが求められる。分離率αは、次式(2)により表される。
Water vapor transmission rate Vs (g / h / m 2 / kPa) of sheet 1 for total heat exchange element = (moisture amount (g) permeated through sheet 1 for total heat exchange element) / (sheet 1 for total heat exchange element) Time (h) permeated by water / (area (m 2 ) of total heat exchange element sheet 1) / (water vapor pressure difference (kPa) on both surfaces of total heat exchange element sheet 1) (1)
It is required that the separation rate α of water vapor and gas excluding water vapor of the sheet for total heat exchange element 1 be 10 or more, 20 or more, and 50 or more. The separation rate α is represented by the following equation (2).

α=[(全熱交換素子用シート1を透過した水のモル数)/(排気7dの乾燥空気のモル数)]/[(外気7aの水のモル数)/(外気7aの乾燥空気のモル数)]…(2)
分離率αが低すぎると、水蒸気と水蒸気を除く気体との分離が困難になり、還気が効率よくおこなわれなくなる。その結果、室内の二酸化炭素等の排出が低下し、十分な換気のために余分な風量が必要になる。
α = [(moles of water permeated through sheet for total heat exchange element 1) / (moles of dry air of exhaust 7d)] / [(moles of water of outside air 7a) / (moles of dry air of outside air 7a) Moles)] (2)
If the separation rate α is too low, it becomes difficult to separate the water vapor from the gas other than the water vapor, and the return air cannot be efficiently performed. As a result, the emission of carbon dioxide and the like in the room is reduced, and an extra air volume is required for sufficient ventilation.

前述した多孔質部材2、繊維領域3及び膜4について以下に詳述する。
<多孔質部材2>
多孔質部材2は、有機繊維を含む。有機繊維は、高い柔軟性を有し、低コストであるため好ましい。
The above-described porous member 2, fiber region 3, and membrane 4 will be described in detail below.
<Porous member 2>
The porous member 2 contains an organic fiber. Organic fibers are preferred because of their high flexibility and low cost.

図4は、全熱交換素子用シートの多孔質部材の一方の面のSEM写真を模式的に示す平面図である。多孔質部材2は、図4に示すように有機繊維2aを含み、一方の面に孔径が10μm以上1mm以下の開孔2bを有する。ここで、「孔径」とは開孔の形状が楕円又は多角形である場合、その楕円又は多角形を囲む真円を仮想し、当該仮想真円の直径を孔径と定義する。   FIG. 4 is a plan view schematically showing an SEM photograph of one surface of the porous member of the sheet for a total heat exchange element. As shown in FIG. 4, the porous member 2 includes an organic fiber 2a, and has an opening 2b having a hole diameter of 10 μm or more and 1 mm or less on one surface. Here, when the shape of the hole is an ellipse or a polygon, the “hole diameter” is imagined as a perfect circle surrounding the ellipse or the polygon, and the diameter of the virtual perfect circle is defined as the hole diameter.

孔径を10μm未満にすると、全熱交換素子用シートの水蒸気透過速度Vsが低下する虞がある。他方、孔径が1mmを超えると、多孔質部材2の一方の面に後述する繊維を存在させても、当該多孔質部材2に一方の面に膜4を形成する際、膜4が多孔質部材2の開孔に侵入し易くなり、ピンホール、亀裂が発生して水蒸気と水蒸気を除く気体(例えば空気)との分離性能が低下する虞がある。好ましい開孔2bの孔径は、10μm以上200μm以下である。   If the hole diameter is less than 10 μm, the water vapor transmission rate Vs of the sheet for all heat exchange elements may decrease. On the other hand, when the pore diameter exceeds 1 mm, even when fibers described later are present on one surface of the porous member 2, when forming the film 4 on one surface of the porous member 2, the film 4 It is easy to penetrate into the opening of No. 2 and pinholes and cracks may be generated, which may lower the performance of separating water vapor and a gas other than water vapor (for example, air). The preferred diameter of the opening 2b is 10 μm or more and 200 μm or less.

開孔2bは、多孔質部材2の一方の面に対して10%以上90%以下の面積割合で存在することが好ましい。   It is preferable that the openings 2 b be present in an area ratio of 10% or more and 90% or less with respect to one surface of the porous member 2.

多孔質部材2に含まれる有機繊維2aは、平均繊維径1μm以上100μm以下であることが好ましい。このような有機繊維2aは、多孔質部材2の構成材料に対して50重量%以上、より好ましくは75重量%超、さらにより好ましくは90重量%超、含むことが望ましい。有機繊維2aは、単一種の有機繊維であっても、複数種の有機繊維多孔質部材2には、有機繊維の他に、添加物、例えば有機繊維間の空隙を調整するための高分子成分を含んでいてもよく、多孔質部材2に難燃性を付与するために吸湿剤や酸化物等のセラミックス粒子等を含んでいてもよい。また、撥水性や耐水性を調整するための処理剤や、有機成分を含んでいてもよい。添加物は、多孔質部材2の構成材料に対して0.1〜10重量%含むことが好ましい。   The organic fibers 2a contained in the porous member 2 preferably have an average fiber diameter of 1 μm or more and 100 μm or less. It is desirable that such organic fibers 2a contain 50% by weight or more, more preferably more than 75% by weight, and even more preferably more than 90% by weight with respect to the constituent material of the porous member 2. Even if the organic fiber 2a is a single kind of organic fiber, a plurality of kinds of organic fiber porous members 2 may have, in addition to the organic fiber, an additive, for example, a polymer component for adjusting a gap between the organic fibers. May be contained, and ceramic particles such as a hygroscopic agent or an oxide may be included in order to provide the porous member 2 with flame retardancy. Further, it may contain a treating agent for adjusting water repellency and water resistance and an organic component. It is preferable that the additive contains 0.1 to 10% by weight based on the constituent material of the porous member 2.

有機繊維2aは、例えば合成繊維や天然繊維等を用いることができる。天然繊維は、例えばセルロースを主成分として含む。有機繊維は、径方向に平であってもよい。また有機繊維は中空繊維であってもよい。   As the organic fibers 2a, for example, synthetic fibers, natural fibers, or the like can be used. The natural fiber contains, for example, cellulose as a main component. The organic fibers may be flat in the radial direction. Further, the organic fibers may be hollow fibers.

多孔質部材2は、例えば不織布、紙、有機多孔質体、又は合成繊維、天然繊維からなる成形体(紙を含む)であってもよい。多孔質部材2に含まれる有機繊維2aは、サブミクロン以下のサイズの有機ナノ繊維の集合体であってもよい。有機ナノ繊維の集合体を用いることにより、多孔質部材2と多孔質部材2の一方の面に存在する繊維3aとの結合力を増加させて、結果として膜4が多孔質部材2から剥離するのを防ぐことができる。   The porous member 2 may be, for example, a nonwoven fabric, paper, an organic porous material, or a molded product (including paper) made of synthetic fiber or natural fiber. The organic fibers 2a included in the porous member 2 may be an aggregate of organic nanofibers having a size of submicron or less. By using the aggregate of the organic nanofibers, the bonding force between the porous member 2 and the fibers 3a existing on one surface of the porous member 2 is increased, and as a result, the membrane 4 is separated from the porous member 2. Can be prevented.

多孔質部材2の厚さは、特に限定されないが、好ましくは30μm以上3mm以下、さらに好ましくは50μm以上500μm以下である。多孔質部材2を薄くし過ぎると、ハンドリングの際、たわみ等の変形が生じ、繊維が存在する多孔質部材2の一方の面に設けた膜4に亀裂等の欠陥が生じるだけでなく、破損する虞がある。また、多孔質部材2を厚くし過ぎると、水蒸気透過速度Vsが低下するだけでなく、熱伝導が低下するため、全熱の交換効率が低下する虞がある。   The thickness of the porous member 2 is not particularly limited, but is preferably 30 μm or more and 3 mm or less, and more preferably 50 μm or more and 500 μm or less. If the porous member 2 is too thin, deformation such as bending occurs during handling, and not only a defect such as a crack occurs in the film 4 provided on one surface of the porous member 2 where fibers exist, but also a breakage. There is a risk of doing so. If the porous member 2 is too thick, not only does the water vapor transmission rate Vs decrease, but also the heat conduction decreases, so that the total heat exchange efficiency may decrease.

多孔質部材2の密度は、好ましくは0.8g/cm以下、さらに好ましくは0.7g/cm以下である。密度を高くし過ぎると、水蒸気の透過抵抗が高くなり、全熱の交換効率が低下する虞がある。 The density of the porous member 2 is preferably 0.8 g / cm 3 or less, more preferably 0.7 g / cm 3 or less. If the density is too high, the permeation resistance of water vapor increases, and the efficiency of exchanging total heat may decrease.

多孔質部材2の体積気孔率(細孔の体積率)は、好ましくは20%以上80%以下、より好ましくは25%以上70%以下である。多孔質部材2の体積気孔率が20%未満であると、水蒸気の透過抵抗が高くなり、全熱の交換効率が低下する虞がある。多孔質部材2の体積気孔率が80%を超えると、多孔質部材2の強度が低下して、繊維が存在する多孔質部材2の一方の面に設けた膜4に亀裂が発生し、後述するウェットシールの形成を阻害する虞がある。なお、多孔質部材2の開孔及び体積気孔率は、水銀圧入法により測定することができる。   The volume porosity (volume ratio of pores) of the porous member 2 is preferably 20% or more and 80% or less, more preferably 25% or more and 70% or less. If the volume porosity of the porous member 2 is less than 20%, the permeation resistance of water vapor will increase, and the total heat exchange efficiency may decrease. If the volume porosity of the porous member 2 exceeds 80%, the strength of the porous member 2 decreases, and cracks occur in the film 4 provided on one surface of the porous member 2 in which fibers exist, which will be described later. There is a possibility that the formation of a wet seal may be hindered. In addition, the opening and volume porosity of the porous member 2 can be measured by a mercury intrusion method.

多孔質部材2の水蒸気透過速度Vsは、50g/h/m2/kPa以上、70g/h/m2/kPa以上、さらに120g/h/m/kPa以上であることが好ましい。多孔質部材2の水蒸気透過速度Vsは、次式(3)により表される。 The water vapor transmission rate Vs of the porous member 2 is preferably 50 g / h / m 2 / kPa or more, 70 g / h / m 2 / kPa or more, and more preferably 120 g / h / m 2 / kPa or more. The water vapor transmission rate Vs of the porous member 2 is represented by the following equation (3).

多孔質部材2の水蒸気透過速度Vs(g/h/m/kPa)=(多孔質部材2を透過した水分量(g))/(多孔質部材2を水分が透過した時間(h))/(多孔質部材2の面積(m))/(多孔質部材2の両面における水蒸気圧差(kPa))…(3)
前記式(3)で求められる多孔質部材2の水蒸気透過速度Vsが低過ぎると、全熱交換素子用シート全体の水蒸気透過速度Vsが低下し、全熱の交換効率が低下する虞がある。
<繊維領域3>
繊維領域3は、多孔質部材2と膜4の界面に存在する繊維を含む。図5は、全熱交換素子用シート1の膜4を取り除いた繊維領域3から多孔質部材2に向けて撮影したSEM写真を模式的に示す平面図である。図5に示すように繊維領域3は、多孔質部材2の一方の面に平均繊維径が100nm以上5μm以下で、平均繊維長が0.35mm以上5mm以下の繊維3aが存在して含み、繊維3aは多孔質部材2の一方の面の開孔2b(孔径が10μm以上1mm以下)を部分的に覆う。
Water vapor transmission rate Vs of porous member 2 (g / h / m 2 / kPa) = (moisture amount permeating through porous member 2 (g)) / (time (h) during which moisture permeates porous member 2) / (Area (m 2 ) of porous member 2) / (water vapor pressure difference (kPa) on both surfaces of porous member 2) (3)
If the water vapor transmission rate Vs of the porous member 2 determined by the above equation (3) is too low, the water vapor transmission rate Vs of the entire heat exchange element sheet decreases, and the total heat exchange efficiency may decrease.
<Fiber region 3>
The fiber region 3 contains fibers existing at the interface between the porous member 2 and the membrane 4. FIG. 5 is a plan view schematically showing an SEM photograph taken from the fiber region 3 of the total heat exchange element sheet 1 from which the membrane 4 has been removed toward the porous member 2. As shown in FIG. 5, the fiber region 3 includes a fiber 3a having an average fiber diameter of 100 nm or more and 5 μm or less and an average fiber length of 0.35 mm or more and 5 mm or less present on one surface of the porous member 2. Reference numeral 3a partially covers the opening 2b (having a diameter of 10 μm or more and 1 mm or less) on one surface of the porous member 2.

繊維3aを多孔質部材2と膜4の界面(多孔質部材2の一方の面)に存在させた場合、多孔質部材2の開孔2bの開孔寸法に対する繊維3aの平均繊維径及び平均繊維長を前記範囲に規定し、適正化することによって、図5に示すように繊維3aが多孔質部材2の開孔2bを部分的に覆う形態になる。即ち、繊維3aは多孔質部材2の開孔2bの寸法を小さくし、繊維3aが存在する多孔質部材2の一方の面にさらに膜4を設けた時、その膜成分が開孔2bに侵入するのを抑制又は防止することができる。   When the fibers 3a are present at the interface between the porous member 2 and the membrane 4 (one surface of the porous member 2), the average fiber diameter and average fiber of the fibers 3a with respect to the opening size of the openings 2b of the porous member 2 By defining the length in the above range and optimizing the length, the fiber 3a partially covers the opening 2b of the porous member 2 as shown in FIG. That is, the fiber 3a reduces the size of the opening 2b of the porous member 2, and when a film 4 is further provided on one surface of the porous member 2 where the fiber 3a is present, the film component enters the opening 2b. Can be suppressed or prevented.

繊維3aは、全熱交換素子用シートに対して0.1重量%以上5重量%以下占めることが好ましい。   The fibers 3a preferably account for 0.1% by weight or more and 5% by weight or less based on the total heat exchange element sheet.

繊維3aは、高分子繊維であることが好ましい。高分子繊維は、特に限定されないが、例えばセルロース、たんぱく質などの天然高分子、ポリエチレン、ポリプロピレン、歩視塩化ビニル、ポリスチレン、ポリ酢酸ビニル、ポリウレタン、アクリロニトリル・ブタジエン・スチレン共重合体樹脂(ABS樹脂)、アクリロニトリル・スチレン共重合体樹脂(AS樹脂)、アクリル樹脂、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステル、ポリフェニレンスルファイド、液晶ポリマー、ポリエーテルエーテルケトン、ポリイミド、アラミドなどの合成高分子等を用いることができる。
<膜4>
膜4は、多孔質部材2の、繊維3aが存在する一方の面に設けられ、無機繊維を含む。無機繊維は、平均繊維径が1nm以上50nm以下であることが好ましい。無機繊維は、耐熱性が高いため好ましい。親水性基、例えばOH基を有する無機繊維は、水蒸気が吸着しやすいため好ましい。
The fibers 3a are preferably polymer fibers. The polymer fiber is not particularly limited. For example, cellulose, a natural polymer such as protein, polyethylene, polypropylene, vinyl chloride, polystyrene, polyvinyl acetate, polyurethane, acrylonitrile-butadiene-styrene copolymer resin (ABS resin) And synthetic polymers such as acrylonitrile / styrene copolymer resin (AS resin), acrylic resin, polyamide, polyacetal, polycarbonate, polyester, polyphenylene sulfide, liquid crystal polymer, polyetheretherketone, polyimide, and aramid. .
<Membrane 4>
The membrane 4 is provided on one surface of the porous member 2 where the fibers 3a are present, and includes inorganic fibers. The inorganic fibers preferably have an average fiber diameter of 1 nm or more and 50 nm or less. Inorganic fibers are preferred because of their high heat resistance. Inorganic fibers having a hydrophilic group, for example, an OH group, are preferable because water vapor is easily adsorbed.

膜4は、平均繊維径が1nm以上50nm以下の無機繊維を含む場合、膜の構成材料に対して当該無機繊維が好ましくは80重量%以上、より好ましくは90重量%以上含む。無機繊維は、単一種の無機繊維であっても、複数種の無機繊維であってもよい。   When the membrane 4 contains inorganic fibers having an average fiber diameter of 1 nm or more and 50 nm or less, the inorganic fibers preferably contain 80% by weight or more, more preferably 90% by weight or more of the constituent materials of the membrane. The inorganic fiber may be a single type of inorganic fiber or a plurality of types of inorganic fibers.

無機繊維の平均繊維長は、0.5μm以上15μm以下であることが好ましい。無機繊維の平均繊維長は、より好ましくは1μm以上3μm以下である。平均繊維長を0.5μmよりも短くすると、繊維同士が絡み合う力が小さく、膜形成する際に亀裂が発生しやすくなる虞がある。平均繊維長が15μmよりも長くすると、繊維径に対するアスペクト比が大きくなり過ぎて繊維が折れやすくなる。   The average fiber length of the inorganic fibers is preferably 0.5 μm or more and 15 μm or less. The average fiber length of the inorganic fibers is more preferably 1 μm or more and 3 μm or less. When the average fiber length is shorter than 0.5 μm, the force at which the fibers are entangled with each other is small, and there is a possibility that cracks are likely to occur when forming a film. When the average fiber length is longer than 15 μm, the aspect ratio with respect to the fiber diameter becomes too large, and the fiber is easily broken.

無機繊維は、特に限定されないが、親水性材料であることが好ましい。親水性材料は、例えばアルミニウム(Al)、ケイ素(Si)、チタン(Ti)、ジルコニウム(Zr)、亜鉛(Zn)、マグネシウム(Mg)、及び鉄(Fe)からなる群から選ばれる少なくとも一つを含む酸化物や水酸化物;アルカリ金属及びアルカリ土類金属からなる群から選ばれる少なくとも一つを含むアルミノケイ酸塩;マグネシウム(Mg)、カルシウム(Ca)、及びストロンチウム(Sr)からなる群から選ばれる少なくとも一つを含む炭酸塩;Mg、Ca、及びSrからなる群から選ばれる少なくとも一つを含むリン酸塩;Mg、Ca、Sr、及びAlからなる群から選ばれる少なくとも一つを含むチタン酸塩;又はこれらの複合物若しくは混合物等を用いることができる。また、金属水酸化物を前駆体とし、これを加水分解等で結合させ、反応を途中で止めてOH基の数を制御することにより形成された金属化合物であってもよい。   The inorganic fiber is not particularly limited, but is preferably a hydrophilic material. The hydrophilic material is, for example, at least one selected from the group consisting of aluminum (Al), silicon (Si), titanium (Ti), zirconium (Zr), zinc (Zn), magnesium (Mg), and iron (Fe). Oxides and hydroxides containing: aluminosilicates containing at least one selected from the group consisting of alkali metals and alkaline earth metals; from the group consisting of magnesium (Mg), calcium (Ca), and strontium (Sr) A carbonate containing at least one selected from the group consisting of: a phosphate containing at least one selected from the group consisting of Mg, Ca, and Sr; a phosphate containing at least one selected from the group consisting of Mg, Ca, Sr, and Al Titanate; or a composite or a mixture thereof can be used. Alternatively, a metal compound formed by using a metal hydroxide as a precursor, binding the precursor by hydrolysis or the like, stopping the reaction halfway, and controlling the number of OH groups may be used.

具体的な親水性の無機繊維は、例えばアルミナ(ベーマイト又は擬ベーマイトを含む)、シリカ、チタニア、ジルコニア、マグネシア、酸化亜鉛、フェライト、ゼオライト、ハイドロキシアパタイト、チタン酸バリウム、又はその水和物等が挙げられるが、これらに限定されない。   Specific hydrophilic inorganic fibers include, for example, alumina (including boehmite or pseudo-boehmite), silica, titania, zirconia, magnesia, zinc oxide, ferrite, zeolite, hydroxyapatite, barium titanate, and hydrates thereof. But not limited thereto.

無機繊維は、ベーマイト又は擬ベーマイトを含んでいることが特に好ましい。擬ベーマイトは、ベーマイトと結晶構造の一部が異なるアルミナ水和物を含む材料である。ベーマイト及び擬ベーマイトは、表面や結晶の層間にOH基が多く存在するため、水蒸気を吸着しやすく、ウェットシールの形成に有利である。   It is particularly preferred that the inorganic fibers include boehmite or pseudo-boehmite. Pseudo-boehmite is a material containing alumina hydrate whose crystal structure is partially different from that of boehmite. Boehmite and pseudo-boehmite have a large amount of OH groups between the surface and the layers of crystals, and therefore easily adsorb water vapor, which is advantageous for forming a wet seal.

次に、実施形態に係る全熱交換素子用シートの製造方法の一例を説明する。   Next, an example of a method for manufacturing a sheet for a total heat exchange element according to the embodiment will be described.

1)最初に、一方の面に孔径が10μm以上1mm以下の開孔を有するシート状の多孔質部材を用意する。   1) First, a sheet-like porous member having an opening with a hole diameter of 10 μm or more and 1 mm or less on one surface is prepared.

2)シート状の多孔質部材をその一方の面が外側に位置するように所望の径を有する回転可能なドラム表面に巻回して固定する。   2) The sheet-shaped porous member is wound and fixed on a rotatable drum surface having a desired diameter such that one surface thereof is located outside.

3)ドラムにノズルの先端を対向して配置する。ノズルは、当該ドラムに巻回した多孔質部材の幅方向に往復動作する。   3) Dispose the tip of the nozzle opposite the drum. The nozzle reciprocates in the width direction of the porous member wound around the drum.

4)ドラムを回転させながら、ノズルを多孔質部材の幅方向に往復動作し、その間にノズルから平均繊維径が100nm以上5μm以下、平均繊維長が0.35mm以上5mm以下の繊維を含む水系分散液をシート状の多孔質部材の一方の面(表面)に向けて所望の速度で吹付ける。その後、乾燥させることにより多孔質部材の一方の面に繊維を含む繊維領域を形成する。   4) While the drum is rotating, the nozzle reciprocates in the width direction of the porous member, during which an aqueous dispersion containing fibers having an average fiber diameter of 100 nm to 5 μm and an average fiber length of 0.35 mm to 5 mm from the nozzle. The liquid is sprayed at a desired speed toward one surface (surface) of the sheet-like porous member. Then, by drying, a fiber region containing fibers is formed on one surface of the porous member.

5)ドラムを再度、回転させながら、ノズルを多孔質部材の幅方向に往復動作し、その間にノズルから無機繊維を含む水系分散液を繊維が存在する多孔質部材の一方の面に吹付ける。その後、乾燥することにより多孔質部材の、前記工程4)で形成した繊維が存在する一方の面に所望厚さの膜を形成して全熱交換素子用シートを製造する。   5) While rotating the drum again, the nozzle is reciprocated in the width direction of the porous member, and during this time, an aqueous dispersion containing inorganic fibers is sprayed from the nozzle onto one surface of the porous member in which the fibers are present. Thereafter, by drying, a film having a desired thickness is formed on one surface of the porous member on which the fibers formed in the step 4) are present, to manufacture a sheet for a total heat exchange element.

前記4)の工程で多孔質部材の一方の面に繊維を存在させた後、当該繊維側から多孔質部材に向けて走査型電子顕微鏡にて微細構造を観察すると、前述した図5の模式図に示す形態を確認できる。   After the fibers are present on one surface of the porous member in the step 4), when the fine structure is observed with a scanning electron microscope from the fiber side toward the porous member, the schematic diagram of FIG. 5 described above is obtained. Can be confirmed.

以上説明した実施形態によれば、多孔質部材の孔径が10μm以上1mm以下の開孔を有する一方の面にピンホール、亀裂の発生を抑制又は防止した、無機繊維を含む薄く、緻密な膜を設けることができる。その結果、膜が形成されるべき多孔質部材2の一方の面に開孔を有する、通気度の高い多孔質部材による高い水蒸気透過速度を維持しながら、多孔質部材の一方の面に配置された、ピンホール、亀裂の発生を抑制又は防止した緻密な膜による水蒸気と水蒸気を除く気体(例えば空気)との分離率を向上した全熱交換素子用シートを提供できる。   According to the embodiment described above, the pore diameter of the porous member is 10 μm or more and 1 mm or less The pinhole on one surface having a hole, the generation of cracks is suppressed or prevented, a thin and dense film containing inorganic fibers is formed. Can be provided. As a result, the porous member 2 on which the membrane is to be formed has openings on one surface, and is arranged on one surface of the porous member while maintaining a high water vapor transmission rate by the porous member having high air permeability. Further, it is possible to provide a sheet for a total heat exchange element in which the separation rate of water vapor and a gas other than water vapor (for example, air) is improved by a dense film in which pinholes and cracks are suppressed or prevented from occurring.

即ち、孔径が10μm以上1mm以下の開孔を有する、通気度の高い多孔質部材の一方の面に薄く、緻密な膜を直接設けると、多孔質部材の開孔内に膜成分が侵入する。その結果、多孔質部材の開孔を埋めて水蒸気透過速度を低下させばかりか、多孔質部材の一方の面に形成された膜にピンホール、亀裂が発生する。多孔質部材の一方の面に設けられた膜にピンホール、亀裂が発生すると、膜の水蒸気分離率が急激に低下して高い交換効率が得られなくなる。   That is, when a thin and dense membrane is directly provided on one surface of a porous member having a pore size of 10 μm or more and 1 mm or less and having high air permeability, a membrane component enters the pores of the porous member. As a result, not only do the pores of the porous member be filled to lower the water vapor transmission rate, but also pinholes and cracks occur in the film formed on one surface of the porous member. When pinholes and cracks occur in the membrane provided on one surface of the porous member, the water vapor separation rate of the membrane rapidly decreases and high exchange efficiency cannot be obtained.

このようなことから、実施形態は孔径が10μm以上1mm以下の開孔2aを有する多孔質部材2の一方の面(多孔質部材と膜の界面)に平均繊維径が100nm以上5μm以下、平均繊維長が0.35mm以上5mm以下の繊維3aを存在させている。このような繊維3aを多孔質部材2の一方の面に存在させると、有機繊維2aを含む多孔質部材2の開孔2bの寸法に対する繊維3aの平均繊維径及び平均繊維長を前記範囲に規定し、適正化することによって、図5に示すように繊維3aが多孔質部材2の開孔2bを部分的に覆う形態になり、開孔の孔径を実質的に小さくできる。即ち、繊維3aは多孔質部材2の開孔2bの表出面積を小さくし、繊維3aが存在する多孔質部材2の一方の面に膜4を設けた時、その膜成分が開孔2bに侵入するのを抑制又は防止することができる。その結果、膜4の厚さを薄くしても、ピンホール、亀裂の発生を抑制又は防止した緻密な膜4を繊維3aが存在する多孔質部材2の一方の面に設けることができる。   For this reason, in the embodiment, the average fiber diameter is 100 nm or more and 5 μm or less on one surface (the interface between the porous member and the membrane) of the porous member 2 having the openings 2 a having a hole diameter of 10 μm or more and 1 mm or less. The fibers 3a having a length of 0.35 mm or more and 5 mm or less exist. When such fibers 3a are present on one surface of the porous member 2, the average fiber diameter and average fiber length of the fibers 3a with respect to the size of the openings 2b of the porous member 2 including the organic fibers 2a are defined in the above ranges. Then, by optimizing, as shown in FIG. 5, the fiber 3a partially covers the opening 2b of the porous member 2, and the diameter of the opening can be substantially reduced. That is, the fiber 3a reduces the exposed area of the opening 2b of the porous member 2, and when the film 4 is provided on one surface of the porous member 2 where the fiber 3a exists, the film component is transferred to the opening 2b. Intrusion can be suppressed or prevented. As a result, even if the thickness of the membrane 4 is reduced, the dense membrane 4 in which the generation of pinholes and cracks is suppressed or prevented can be provided on one surface of the porous member 2 where the fibers 3a exist.

従って、多孔質部材2の通気度を維持したまま、当該多孔質部材に少ない膜成分量で、緻密な膜を設けることができ、高い分離率及び高い水蒸気透過速度を有する全熱交換素子用シートを提供できる。   Therefore, while maintaining the air permeability of the porous member 2, a dense membrane can be provided on the porous member with a small amount of membrane components, and the sheet for a total heat exchange element having a high separation rate and a high water vapor transmission rate. Can be provided.

また、繊維3aが存在する多孔質部材2の一方の面に設けられた膜4は、ピンホール、亀裂の発生を抑制又は防止した薄く、緻密な膜である。このため、ピンホール、亀裂に起因する膜の水蒸気分離率の低下を抑制できる。その上、膜4の無機繊維間に微細な細孔を形成できるため、外気等に含まれる水蒸気はケルビンの毛管凝縮理論により凝縮されて細孔内に満たされ、ウェットシールを形成できる。ウェットシールは、外気等に含まれる水蒸気を吸着して膜4から多孔質部材2に円滑に移動させることができる。即ち、膜4と多孔質部材2の一方の面の界面は層ではなく、繊維3aが存在するため、膜4から多孔質部材2への水蒸気の移動を阻害せずに円滑かつ迅速に移動させることができる。ウェットシールは、水蒸気を除く気体(例えば空気)の透過を抑制できる。これらの作用から水蒸気分離率のより高い全熱交換素子用シートを提供できる。   Further, the film 4 provided on one surface of the porous member 2 in which the fibers 3a are present is a thin and dense film that suppresses or prevents the occurrence of pinholes and cracks. For this reason, a decrease in the water vapor separation rate of the membrane due to pinholes and cracks can be suppressed. In addition, since fine pores can be formed between the inorganic fibers of the membrane 4, water vapor contained in the outside air or the like is condensed by Kelvin's capillary condensation theory and filled in the pores to form a wet seal. The wet seal adsorbs water vapor contained in the outside air or the like, and can smoothly move from the membrane 4 to the porous member 2. That is, since the interface between the membrane 4 and one surface of the porous member 2 is not a layer but the fibers 3a are present, the water vapor is smoothly and quickly moved from the membrane 4 to the porous member 2 without hindering the movement. be able to. The wet seal can suppress the permeation of gas (for example, air) excluding water vapor. From these effects, a sheet for a total heat exchange element having a higher water vapor separation rate can be provided.

実施形態において、緻密な膜4に含まれる無機繊維として平均繊維径が1nm以上50nm以下のものを用いることによって、無機繊維間に一層微細な細孔をより多く形成でき、膜4にウェットシールをより多く形成することができる。その結果、膜4表面に接触して流通する外気等に含まれる水蒸気の吸着性が向上され、水蒸気を膜4から多孔質部材2に移動させる、つまり水蒸気透過速度をより一層高めることができる。また、ウェットシールの増大によって、水蒸気を除く気体の透過を効果的に抑制する、つまり水蒸気と水蒸気を除く気体との分離率をより一層高めることができる。   In the embodiment, by using inorganic fibers having an average fiber diameter of 1 nm or more and 50 nm or less as the inorganic fibers contained in the dense film 4, more fine pores can be formed between the inorganic fibers, and a wet seal is formed on the film 4. More can be formed. As a result, the adsorbability of water vapor contained in the outside air or the like flowing in contact with the surface of the membrane 4 is improved, and the water vapor can be moved from the membrane 4 to the porous member 2, that is, the water vapor transmission rate can be further increased. Further, by increasing the wet seal, the permeation of gas excluding water vapor can be effectively suppressed, that is, the separation rate between water vapor and gas excluding water vapor can be further increased.

実施形態に係る全熱交換素子用シートは、前述した優れた機能を有するため、水蒸気分離体として使用することができる。   Since the sheet for a total heat exchange element according to the embodiment has the above-described excellent functions, it can be used as a water vapor separator.

また、実施形態に係る全熱交換素子用シートは、全熱交換素子以外にも適用できる。例えば、除湿シート、フィルタ、調湿素子等に用いることができる。また、具体的な応用は、除湿ローター素子、空調気化式加湿用素子、燃料電池の加湿用素子、除湿器用除湿素子、自動販売機などの吸水蒸散素子、冷却用吸水蒸散素子、デシカント空調の除湿ローター素子、車載用エアコン等が挙げられる。   Further, the sheet for a total heat exchange element according to the embodiment can be applied to other than the total heat exchange element. For example, it can be used for a dehumidifying sheet, a filter, a humidity control element, and the like. Specific applications include a dehumidifying rotor element, an air-conditioning vaporizing humidifying element, a humidifying element for a fuel cell, a dehumidifying element for a dehumidifier, a water absorption and evaporation element for a vending machine, a water absorption and evaporation element for cooling, and a desiccant air conditioner. Examples include a rotor element and a vehicle air conditioner.

次に、実施形態に係る全熱交換素子を詳述する。   Next, the total heat exchange element according to the embodiment will be described in detail.

全熱交換素子は、前述した全熱交換素子用シートを複数備えた構造を有する。図6は、実施形態に係る全熱交換素子を示す斜視図である。全熱交換素子10は、複数枚、例えば6枚の前述した全熱交換素子用シート1と、2枚(最下層及び最上層に配置される)の補強シート12a,12bと、複数枚(例えば7枚)の断面波形、例えば断面三角波形の流路部材13と備えている。   The total heat exchange element has a structure including a plurality of sheets for the total heat exchange element described above. FIG. 6 is a perspective view showing the total heat exchange element according to the embodiment. The total heat exchange element 10 includes a plurality of, for example, six sheets of the total heat exchange element sheet 1 described above, two sheets (arranged in the lowermost layer and the uppermost layer) of reinforcing sheets 12a and 12b, and a plurality of sheets (for example, (Seven sheets) of cross-sectional waveforms, for example, a channel member 13 having a triangular waveform in cross section.

全熱交換素子用シート1は、その膜4が下面に位置するように互いに一定の間隔を積層されている。補強シート12a,12bは、積層体の最上層及び最下層に全熱交換素子用シート1に対して一定の間隔をあけて配置されている。断面三角波形の流路部材13は、補強シート12a、6枚の全熱交換素子用シート1及び補強シート12bの間に交互に例えば90°の角度で交差するように介在して固定されている。流路部材13は、特に限定されないが、例えばパルプを主成分とする紙製シートを波形に加工したもの、又はポリ塩化ビニル、ポリプロピレン等の汎用樹脂、或いはステンレス等の金属から作ることができる。第1の直線状流路51は、全熱交換素子用シート1の膜4と断面三角波形の流路部材13の断面三角波で囲まれて形成されている。第2の直線状流路52は、全熱交換素子用シート1の多孔質部材2と断面三角波形の流路部材13の断面三角波で囲まれて形成されている。第1、第2の直線状流路51,52は、全熱交換素子用シート1を挟んで例えば90°の角度で交差するように配置されている。   The sheets for total heat exchange elements 1 are stacked at a constant interval from each other such that the film 4 is located on the lower surface. The reinforcing sheets 12a and 12b are arranged on the uppermost layer and the lowermost layer of the laminate at a fixed distance from the total heat exchange element sheet 1. The channel member 13 having a triangular waveform in cross section is interposed and fixed between the reinforcing sheet 12a, the six total heat exchange element sheets 1 and the reinforcing sheet 12b alternately at an angle of, for example, 90 °. . The flow path member 13 is not particularly limited. For example, the flow path member 13 can be made of a paper sheet mainly composed of pulp processed into a corrugated form, a general-purpose resin such as polyvinyl chloride or polypropylene, or a metal such as stainless steel. The first straight flow path 51 is formed so as to be surrounded by the membrane 4 of the sheet for total heat exchange elements 1 and the cross-sectional triangular wave of the flow path member 13 having a triangular cross-section. The second straight flow path 52 is formed so as to be surrounded by the porous member 2 of the total heat exchange element sheet 1 and the triangular wave cross section of the flow path member 13 having a triangular cross section. The first and second linear flow paths 51 and 52 are arranged so as to intersect at an angle of, for example, 90 ° with the total heat exchange element sheet 1 interposed therebetween.

次に、実施形態に係る全熱交換器を詳述する。   Next, the total heat exchanger according to the embodiment will be described in detail.

全熱交換器は、前述した全熱交換素子を備えている。図7は、夏場の全熱交換を説明するための実施形態に係る全熱交換器を示す概略図である。すなわち、全熱交換器100は筐体101を備えている。筐体101内には、前述した図6に示す全熱交換素子10が配置されている。   The total heat exchanger includes the above-described total heat exchange element. FIG. 7 is a schematic diagram illustrating a total heat exchanger according to an embodiment for explaining total heat exchange in summer. That is, the total heat exchanger 100 includes the housing 101. In the housing 101, the above-described total heat exchange element 10 shown in FIG.

筐体101内は、第1〜第4の区画室104a〜104dが全熱交換素子10を囲むように横方向の仕切壁102及び縦方向の隔壁103で区画されている。第1〜第4の区画室104a〜104dは全熱交換素子10の第1、第2の直線状流路(図示せず)の開口端とそれぞれ対向する箇所において、開放されている。第1〜第4の区画室104a〜104dは、それぞれ筐体101の左上部、右上部、左下部及び右下部に配置されている。   Inside the housing 101, first to fourth compartments 104 a to 104 d are partitioned by a horizontal partition wall 102 and a vertical partition wall 103 so as to surround the total heat exchange element 10. The first to fourth compartments 104a to 104d are open at locations facing the open ends of the first and second linear flow paths (not shown) of the total heat exchange element 10, respectively. The first to fourth compartments 104a to 104d are arranged at the upper left, upper right, lower left, and lower right of the housing 101, respectively.

第1、第3の区画室104a,104cがそれぞれ位置する筐体101の左側壁105aには、それぞれ第1、第3の開口部106a,106cが設けられている。第2、第4の区画室104b,104dがそれぞれ位置する筐体101の右側壁105bには、それぞれ第2、第4の開口部106b,106dが設けられている。第3の区画室104c内の第3の開口部106cが位置する左側壁105aには、第1のファン107aが配置されている。第4の区画室104d内の第4の開口部106cが位置する右側壁105bには、第2のファン107bが配置されている。   First and third openings 106a and 106c are provided on the left side wall 105a of the housing 101 where the first and third compartments 104a and 104c are located, respectively. Second and fourth openings 106b and 106d are provided on the right side wall 105b of the housing 101 where the second and fourth compartments 104b and 104d are respectively located. A first fan 107a is disposed on the left side wall 105a in which the third opening 106c is located in the third compartment 104c. A second fan 107b is disposed on the right side wall 105b where the fourth opening 106c is located in the fourth compartment 104d.

このような全熱交換素子10を備えた全熱交換器100は、次のような操作により全熱交換がなされる。
<夏場の高温多湿の時期の全熱交換>
第2のファン107bを駆動することにより、室外から矢印に示す外気(還気よりも高温多湿)110aは第4の開口部106d、第4の区画室104dを通して全熱交換素子10の複数の第1の直線状流路(図示せず)内に図1に示す全熱交換素子用シート1の膜4の表面41に接触して流通し、さらに第1の区画室104a、第1の開口部106aを通して矢印に示す吸気110bとして室内に導入される。同時に、第1のファン107aを駆動することにより、室内から矢印に示す還気110cは第3の開口部106c、第3の区画室104cを通して全熱交換素子10の複数の第2の直線状流路(図示せず)内に図1に示す全熱交換素子用シート1の多孔質部材2の表面21に接触して流通し、さらに第2の区画室104b、第2の開口部106bを通して矢印に示す排気110dとして室外に排出される。
The total heat exchanger 100 provided with such a total heat exchange element 10 performs total heat exchange by the following operation.
<Total heat exchange in hot and humid summer season>
By driving the second fan 107b, the outside air (hotter and humid than the return air) 110a indicated by an arrow from outside the room is passed through the fourth opening 106d and the fourth compartment 104d. The first heat exchange element sheet 1 shown in FIG. 1 circulates in a straight flow path (not shown) in contact with the surface 41 of the membrane 4, and further flows into the first compartment 104 a and the first opening. The air is introduced into the room through an air inlet 110b indicated by an arrow through the air inlet 106a. At the same time, by driving the first fan 107a, the return air 110c indicated by the arrow from the room is passed through the third opening 106c and the third compartment 104c to the plurality of second linear flows of the total heat exchange element 10. In the passage (not shown), the sheet flows through the surface 21 of the porous member 2 of the sheet for total heat exchange element 1 shown in FIG. 1 and further flows through the second compartment 104b and the second opening 106b. Is discharged outside as an exhaust 110d shown in FIG.

このような全熱交換素子10において、外気110aは全熱交換素子10の第1の直線状流路(図示せず)に導入されて、図1に示す全熱交換素子用シート1の膜4の表面41に接触して流通され、還気110cは全熱交換素子用シート1を挟んで第1の直線状流路と交差する第2の直線状流路(図示せず)に導入されて、図1に示す全熱交換素子用シート1の多孔質部材2の表面21に接触して流通される。このとき、外気110aは還気110cに比べて高温多湿であるため、全熱交換素子10において外気110aに含まれる水蒸気及び熱は全熱交換素子用シート1を通して還気110c側に移動される。
<冬場の低温低湿の時期の全熱交換>
図7を用いて説明した夏場の全熱交換に対して、冬場も外気、還気を同様な流路を流通させて全熱交換を行うことができる。また、冬場の全熱交換は、外気及び還気の導入流路、並びに第1、第2のファンによる送気方向をそれぞれ図8に示すように切り替えてもよい。図8は、冬場の全熱交換を説明するための実施形態に係る全熱交換器を示す概略図である。
In such a total heat exchange element 10, the outside air 110a is introduced into a first linear flow path (not shown) of the total heat exchange element 10, and the membrane 4 of the sheet 1 for a total heat exchange element shown in FIG. The return air 110c is introduced into a second linear flow path (not shown) intersecting the first linear flow path with the total heat exchange element sheet 1 interposed therebetween. 1 is circulated in contact with the surface 21 of the porous member 2 of the sheet for total heat exchange element 1 shown in FIG. At this time, since the outside air 110a has a higher temperature and a higher humidity than the return air 110c, the steam and heat contained in the outside air 110a in the total heat exchange element 10 are moved to the return air 110c through the total heat exchange element sheet 1.
<Total heat exchange during low temperature and low humidity in winter>
In contrast to the total heat exchange in the summer described with reference to FIG. 7, in the winter, the total heat exchange can be performed by circulating the outside air and the return air through the same flow path. Further, in the total heat exchange in winter, the introduction flow path of the outside air and the return air, and the direction of the air supply by the first and second fans may be switched as shown in FIG. FIG. 8 is a schematic diagram illustrating a total heat exchanger according to an embodiment for explaining total heat exchange in winter.

すなわち、第2のファン107bを駆動することにより、室内から矢印に示す還気110cは第1の開口部106a、第1の区画室104aを通して全熱交換素子10の複数の第1の直線状流路(図示せず)内に図1に示す全熱交換素子用シート1の膜4の表面41に接触して流通し、さらに第4の区画室104d、第4の開口部106dを通して矢印に示す排気110dとして室外に排出される。同時に、第1のファン107aを駆動することにより、室外から矢印に示す外気(還気よりも低温低湿)110aは第2の開口部106b、第2の区画室104bを通して全熱交換素子10の第2の直線状流路(図示せず)内に多孔質部材2の表面21に接触して流通し、さらに第3の区画室104c,第3の開口部106cを通して矢印に示す吸気110bとして室内に導入される。   That is, by driving the second fan 107b, the return air 110c indicated by an arrow from the room flows through the first opening 106a and the first compartment 104a into the plurality of first linear flows of the total heat exchange element 10. It flows in a path (not shown) in contact with the surface 41 of the membrane 4 of the sheet for total heat exchange element 1 shown in FIG. 1, and furthermore, is indicated by an arrow through a fourth compartment 104d and a fourth opening 106d. It is exhausted outside as an exhaust 110d. At the same time, by driving the first fan 107a, the outside air (lower temperature and lower humidity than the return air) 110a indicated by an arrow from the outside is passed through the second opening 106b and the second compartment 104b to the third heat exchange element 10a. 2, flows in contact with the surface 21 of the porous member 2 in a linear flow path (not shown), and flows through the third compartment 104 c and the third opening 106 c as air intake 110 b indicated by an arrow into the room. be introduced.

このような全熱交換素子10において、還気110cは第1の直線状流路(図示せず)に導入されて、図1に示す全熱交換素子用シート1の膜3の表面31に接触して流通され、外気110aは全熱交換素子用シート1を挟んで第1の直線状流路と交差する第2の直線状流路(図示せず)に導入されて、図1に示す全熱交換素子用シート1の多孔質部材2の表面21に接触して流通される。このとき、外気110aが還気110cに比べて低温低湿であるため、全熱交換素子10において還気110cに含まれる水蒸気及び熱は全熱交換素子用シート1を通して外気110a側に移動される。   In such a total heat exchange element 10, the return air 110c is introduced into a first linear flow path (not shown) and comes into contact with the surface 31 of the membrane 3 of the sheet 1 for a total heat exchange element shown in FIG. The outside air 110a is introduced into a second linear flow path (not shown) intersecting the first linear flow path with the total heat exchange element sheet 1 interposed therebetween, and the whole air shown in FIG. It is circulated in contact with the surface 21 of the porous member 2 of the heat exchange element sheet 1. At this time, since the outside air 110a has a lower temperature and a lower humidity than the return air 110c, the steam and heat contained in the return air 110c in the total heat exchange element 10 are moved to the outside air 110a through the total heat exchange element sheet 1.

従って、全熱交換器100に組み込まれた全熱交換素子10は水蒸気透過速度Vsと分離率αの両方が高い全熱交換用素子1を備えるため、外気と還気との間で全熱を効率的に交換することができる。   Accordingly, since the total heat exchange element 10 incorporated in the total heat exchanger 100 includes the total heat exchange element 1 having both a high water vapor transmission rate Vs and a high separation rate α, the total heat is exchanged between the outside air and the return air. It can be exchanged efficiently.

なお、流路部材13の断面波形は、断面三角波形に限らず、断面矩形波形、断面台形波形であってもよい。断面波形は、その山及び谷の形状が略同一、又は同一であることが好ましい。   The cross-sectional waveform of the flow path member 13 is not limited to a triangular cross-sectional waveform, but may be a rectangular cross-sectional waveform or a trapezoidal cross-sectional waveform. It is preferable that the cross-sectional waveforms have substantially the same or the same shape of peaks and valleys.

以下、実施例を詳細に説明する。
(実施例1)
最初に平均直径50μmのパルプからなる厚さ200μmのシート状の多孔質部材を作製した。当該多孔質部材の一方の面は、孔径が10〜50μmの略三角形の開孔を有していた。シート状の多孔質部材をその一方の面が外側に位置するように直径が20cmの回転可能なドラム表面に巻回して固定した。ドラムにノズルの先端を対向して配置した。ノズルは、当該ドラムに巻回した多孔質部材の幅方向に往復動作する。ドラムを600rpmの速度で回転させながら、ノズルを多孔質部材の幅方向に5cm/分の速度で往復動作し、その間にノズルから高分子繊維である平均直径500nm、平均長さ0.5mmのセルロースナノファイバを含む水系分散液を多孔質部材の一方の面に向けて吹き付け、乾燥させて多孔質部材の一方の面にセルロースナノファイバを存在させた。ドラムを同速度で再度、回転させながら、ノズルを多孔質部材の幅方向に5cm/分の速度で往復動作し、その間にノズルから平均直径4nm、平均長さ1μmの擬ベーマイトナノファイバを含む水系分散液を多孔質部材のセルロースナノファイバが存在する一方の面に向けて吹付けた。その後、乾燥することにより多孔質部材のセルロースナノファイバが存在する一方の面に厚さ10μmの膜を形成して全熱交換素子用シートを製造した。
(比較例1)
実施例1と同様なシート状の多孔質部材の一方の面に、セルロースナノファイバが存在させず、擬ベーマイトナノファイバの膜を直接形成した以外、実施例1と同様な方法で全熱交換素子用シートを製造した。
(比較例2)
多孔質部材の一方の面に存在させる高分子繊維として平均繊維径が10nm、平均繊維長が2μmのセルロースナノファイバを用いた以外、実施例1と同様な方法で全熱交換素子用シートを製造した。
(比較例3)
多孔質部材の一方の面に存在させる高分子繊維として平均繊維径が20μm、平均繊維長が1cmのセルロースナノファイバを用いた以外、実施例1と同様な方法で全熱交換素子用シートを製造した。
Hereinafter, embodiments will be described in detail.
(Example 1)
First, a 200-μm-thick sheet-like porous member made of pulp having an average diameter of 50 μm was prepared. One surface of the porous member had a substantially triangular opening having a hole diameter of 10 to 50 μm. The sheet-like porous member was wound and fixed on a rotatable drum surface having a diameter of 20 cm so that one surface thereof was located outside. The tip of the nozzle was arranged to face the drum. The nozzle reciprocates in the width direction of the porous member wound around the drum. While rotating the drum at a speed of 600 rpm, the nozzle reciprocates at a speed of 5 cm / min in the width direction of the porous member, and during this time, a cellulose fiber having an average diameter of 500 nm and an average length of 0.5 mm is output from the nozzle. The aqueous dispersion containing the nanofibers was sprayed toward one surface of the porous member and dried to allow the cellulose nanofibers to be present on one surface of the porous member. While rotating the drum again at the same speed, the nozzle reciprocates in the width direction of the porous member at a speed of 5 cm / min, during which an aqueous system containing pseudo-boehmite nanofibers having an average diameter of 4 nm and an average length of 1 μm from the nozzle. The dispersion was sprayed toward one surface of the porous member on which the cellulose nanofibers were present. Thereafter, by drying, a film having a thickness of 10 μm was formed on one surface of the porous member on which the cellulose nanofibers were present, to produce a sheet for a total heat exchange element.
(Comparative Example 1)
A total heat exchange element was manufactured in the same manner as in Example 1, except that the cellulose nanofiber was not present on one surface of the sheet-like porous member as in Example 1, and a film of pseudo-boehmite nanofiber was formed directly. Sheet was manufactured.
(Comparative Example 2)
A sheet for a total heat exchange element was manufactured in the same manner as in Example 1, except that cellulose nanofiber having an average fiber diameter of 10 nm and an average fiber length of 2 μm was used as the polymer fiber to be present on one surface of the porous member. did.
(Comparative Example 3)
A sheet for a total heat exchange element was manufactured in the same manner as in Example 1, except that a cellulose nanofiber having an average fiber diameter of 20 μm and an average fiber length of 1 cm was used as a polymer fiber to be present on one surface of the porous member. did.

得られた実施例1及び比較例1〜3の全熱交換素子用シートの水蒸気透過速度Vs及び水蒸気分離率αを測定した。   The water vapor transmission rate Vs and the water vapor separation rate α of the obtained sheets for a total heat exchange element of Example 1 and Comparative Examples 1 to 3 were measured.

最初に、全熱交換素子用シートの膜表面に断面三角波形の流路部材を接して配置し、当該膜と流路部材の各波とで囲まれた三角柱をなす複数の第1の直線状流路を形成した。つづいて、全熱交換素子用シートの多孔質部材表面に断面三角波形の流路部材を接して配置し、当該多孔質部材と流路部材の各波とで囲まれた三角柱をなす複数の第2の直線状流路を形成することにより評価用全熱交換セルを組立てた。この全熱交換セルの第1、第2の直線状流路は、互いに対向するとともに、平行になっている。また、第1、第2の直線状流路のピッチ、高さは既存の全熱変換素子に準じる形状とした。   First, a flow path member having a triangular waveform in section is disposed in contact with the membrane surface of the sheet for a total heat exchange element, and a plurality of first linear shapes forming a triangular prism surrounded by the membrane and each wave of the flow path member. A channel was formed. Subsequently, a flow path member having a triangular waveform in cross section is disposed in contact with the surface of the porous member of the sheet for total heat exchange element, and a plurality of first triangular prisms surrounded by the respective waves of the porous member and the flow path member are formed. An evaluation total heat exchange cell was assembled by forming two straight flow paths. The first and second straight flow paths of the total heat exchange cell face each other and are parallel to each other. Further, the pitch and height of the first and second linear flow paths were formed in a shape conforming to the existing total heat conversion element.

前記評価用全熱交換セルの水蒸気透過速度Vs及び水蒸気分離率αを以下の方法により測定した。   The water vapor transmission rate Vs and the water vapor separation rate α of the total heat exchange cell for evaluation were measured by the following methods.

1)水蒸気透過速度Vsの測定方法
全熱交換セルを恒温恒湿槽内に設置し、その第1の直線状流路の一端に高湿側ダクトを接続した。第1の直線状流路の高湿側ダクトの接続端と反対側に位置する第2の直線状流路の一端に低湿側ダクトを接続した。高湿側ダクトにはファンを介装し、低湿側ダクトには熱交換器が介装した。
1) Measurement method of water vapor transmission rate Vs The total heat exchange cell was installed in a thermo-hygrostat, and a high-humidity side duct was connected to one end of the first linear flow path. The low humidity side duct was connected to one end of the second linear flow path located on the side opposite to the connection end of the high humidity side duct of the first linear flow path. A fan was interposed in the high humidity side duct, and a heat exchanger was interposed in the low humidity side duct.

ファンの駆動により、高湿空気を第1の直線状流路に高湿ダクトを通して供給した。一方、恒温恒湿槽の外部から露点−110℃の窒素を第2の直線状流路に低湿側ダクトを通して供給した。当該窒素が低湿側ダクトを流通する間に、熱交換器で熱交換されて等温にし、乾燥窒素とすることにより、当該乾燥窒素を第2の直線状流路に供給した。すなわち、高湿空気と乾燥窒素は対向流として全熱交換セルの第1、第2の直線状流路にそれぞれ供給した。このとき、第1、第2の直線状流路での通過風速は全熱交換素子の評価時と同一になるようにした。   By driving the fan, high-humidity air was supplied to the first straight channel through the high-humidity duct. On the other hand, nitrogen having a dew point of -110 ° C was supplied from the outside of the thermo-hygrostat to the second straight channel through the low humidity side duct. While the nitrogen was flowing through the low-humidity side duct, heat was exchanged in a heat exchanger to make it isothermal and dry nitrogen was supplied to the second straight flow path. That is, the humid air and the dry nitrogen were supplied to the first and second linear flow paths of the total heat exchange cell, respectively, as opposed flows. At this time, the wind velocities passing through the first and second straight flow paths were set to be the same as those at the time of evaluation of the total heat exchange element.

低湿側ダクトの出口において、排気空気の温度、湿度、酸素濃度を測定し、水蒸気透過速度を算出した。   At the outlet of the low-humidity duct, the temperature, humidity, and oxygen concentration of the exhaust air were measured, and the water vapor transmission rate was calculated.

2)水蒸気の分離率α
本来、JIS規格に準じて二酸化炭素の透過量を把握する必要があるが、二酸化炭素と酸素では窒素中のガス拡散係数がほぼ同じであることから、本測定では低湿側ダクトの出口からの酸素の透過(濃度)をCO2の透過の代わりとし、水蒸気の分離率を算出した。
2) Separation rate of water vapor α
Originally, it is necessary to grasp the permeation amount of carbon dioxide according to the JIS standard. However, since carbon dioxide and oxygen have almost the same gas diffusion coefficient in nitrogen, in this measurement oxygen from the outlet of the low humidity side duct was measured. The permeation (concentration) of CO 2 was used as a substitute for CO 2 permeation, and the water vapor separation rate was calculated.

セルのピッチ、流路高さは、既存の全熱交素子に準じる形状とし、通過風速が全熱交素子の評価時と同一になるようにした。高湿空気と低湿空気は対向流で供給した。   The pitch of the cells and the height of the flow path were made to conform to those of the existing total heat exchange element, and the passing wind velocity was the same as that at the time of evaluation of the total heat exchange element. High humidity air and low humidity air were supplied in countercurrent.

また、実施例1及び比較例1〜3の全熱交換素子用シートそのものについても、水蒸気透過速度Vs-subを測定した。   Further, the water vapor transmission rate Vs-sub was also measured for the sheets for all heat exchange elements of Example 1 and Comparative Examples 1 to 3 themselves.

これらの結果を下記表1に示す。   The results are shown in Table 1 below.

Figure 2020038022
Figure 2020038022

前記表1から明らかなように、実施例1の全熱交換素子用シートを組み込んだ評価用全熱交換セルは、水蒸気透過速度Vsが90g/h/m/kPa以上と高い状態を維持しながら、分離率αも高い値を示すことがわかる。 As is clear from Table 1, the evaluation total heat exchange cell incorporating the total heat exchange element sheet of Example 1 maintains a high water vapor transmission rate Vs of 90 g / h / m 2 / kPa or higher. However, it can be seen that the separation rate α also shows a high value.

これに対し、多孔質部材の一方の面に有機繊維を存在させない比較例1の全熱交換素子用シートを組み込んだ評価用全熱交換セル、及び多孔質部材の一方の面に存在させる有機繊維として平均繊維径が5μmを超える太い繊維を用いた比較例3の全熱交換素子用シートを組み込んだ評価用全熱交換セル、は水蒸気透過速度Vsが低下しないものの、ベーマイト繊維を含む膜にピンホール、亀裂が発生して連続した膜にならないため、水蒸気の分離率αが低くなることがわかる。   On the other hand, a total heat exchange cell for evaluation incorporating the sheet for a total heat exchange element of Comparative Example 1 in which no organic fibers are present on one surface of the porous member, and an organic fiber present on one surface of the porous member The total heat exchange cell for evaluation incorporating the sheet for a total heat exchange element of Comparative Example 3 using a thick fiber having an average fiber diameter exceeding 5 μm as an example, although the water vapor transmission rate Vs does not decrease, but the pin is attached to the membrane containing the boehmite fiber. It can be seen that since a continuous film is not formed due to generation of holes and cracks, the water vapor separation rate α is low.

また、多孔質部材の一方の面に存在させる有機繊維として平均繊維径が100nm未満、平均繊維長が0.35mm未満の細く短い繊維を用いた比較例2の全熱交換素子用シートを組み込んだ評価用全熱交換セルは、多孔質部材の一方の面の開孔が短い繊維で埋められるため、水蒸気透過速度が急激に低下する。   Further, the sheet for a total heat exchange element of Comparative Example 2 in which a thin and short fiber having an average fiber diameter of less than 100 nm and an average fiber length of less than 0.35 mm was used as the organic fiber to be present on one surface of the porous member was incorporated. In the total heat exchange cell for evaluation, the pores on one surface of the porous member are filled with short fibers, so that the water vapor transmission rate sharply decreases.

従って、実施例1の全熱交換素子用シートは比較例1〜3の全熱交換素子用シートに比べて高い全熱の交換効率を有することがわかる。   Accordingly, it can be seen that the sheet for a total heat exchange element of Example 1 has a higher total heat exchange efficiency than the sheets for a total heat exchange element of Comparative Examples 1 to 3.

なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施し得るものであり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

1…全熱交換素子用シート、2…多孔質部材、2a…有機繊維、2b…開孔、3…繊維領域、3a…繊維、4…膜、10…全熱交換素子、51…第1の直線状流路、52…第2の直線状流路、100…全熱交換器、110a…外気、110b…吸気、110c…還気、110d…排気。   DESCRIPTION OF SYMBOLS 1 ... Sheet for total heat exchange elements, 2 ... Porous member, 2a ... Organic fiber, 2b ... Opening, 3 ... Fiber area, 3a ... Fiber, 4 ... Membrane, 10 ... Total heat exchange element, 51 ... First Linear flow path, 52: second linear flow path, 100: total heat exchanger, 110a: outside air, 110b: intake air, 110c: return air, 110d: exhaust gas.

Claims (7)

有機繊維を含み、一方の面に孔径が10μm以上1mm以下の開孔を有する多孔質部材と、前記多孔質部材の一方の面に設けられた無機繊維を含む膜とを備える全熱交換素子用シートであって、
平均繊維径が100nm以上5μm以下で、平均繊維長が0.35mm以上5mm以下の繊維が、前記多孔質部材と前記膜の界面に存在する全熱交換素子用シート。
For a total heat exchange element, comprising a porous member containing organic fibers and having an opening having a pore size of 10 μm or more and 1 mm or less on one surface, and a membrane containing inorganic fibers provided on one surface of the porous member. A sheet,
A sheet for a total heat exchange element, wherein fibers having an average fiber diameter of 100 nm or more and 5 μm or less and an average fiber length of 0.35 mm or more and 5 mm or less are present at the interface between the porous member and the membrane.
前記多孔質部材の前記有機繊維は、平均繊維径が1μm以上100μm以下である請求項1に記載の全熱交換素子用シート。   2. The sheet for a total heat exchange element according to claim 1, wherein the organic fibers of the porous member have an average fiber diameter of 1 μm or more and 100 μm or less. 前記繊維は、高分子繊維である請求項1又は2に記載の全熱交換素子用シート。   The sheet for a total heat exchange element according to claim 1, wherein the fiber is a polymer fiber. 前記膜の前記無機繊維は、ベーマイト又は擬ベーマイトを含む請求項1〜3いずれか1項に記載の全熱交換素子用シート。   The sheet for a total heat exchange element according to any one of claims 1 to 3, wherein the inorganic fibers of the membrane include boehmite or pseudo-boehmite. 請求項1〜4いずれか1項に記載の全熱交換素子用シートを備えた全熱交換素子。   A total heat exchange element comprising the sheet for a total heat exchange element according to claim 1. 請求項5に記載の全熱交換素子が組み込まれた全熱交換器。   A total heat exchanger incorporating the total heat exchange element according to claim 5. 有機繊維を含み、一方の面に孔径が10μm以上1mm以下の開孔を有する多孔質部材と、前記多孔質部材の一方の面に設けられた無機繊維を含む膜とを備える水蒸気分離体であって、
平均繊維径が100nm以上5μm以下で、平均繊維長が0.35mm以上5mm以下の繊維は、前記多孔質部材と前記膜の界面に存在する水蒸気分離体。
A water vapor separator comprising an organic fiber, a porous member having an opening having a pore size of 10 μm or more and 1 mm or less on one surface, and a membrane containing inorganic fibers provided on one surface of the porous member. hand,
A fiber having an average fiber diameter of 100 nm or more and 5 μm or less and an average fiber length of 0.35 mm or more and 5 mm or less is a water vapor separator existing at the interface between the porous member and the membrane.
JP2018164745A 2018-09-03 2018-09-03 Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body Pending JP2020038022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164745A JP2020038022A (en) 2018-09-03 2018-09-03 Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164745A JP2020038022A (en) 2018-09-03 2018-09-03 Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body

Publications (1)

Publication Number Publication Date
JP2020038022A true JP2020038022A (en) 2020-03-12

Family

ID=69737775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164745A Pending JP2020038022A (en) 2018-09-03 2018-09-03 Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body

Country Status (1)

Country Link
JP (1) JP2020038022A (en)

Similar Documents

Publication Publication Date Title
US9255744B2 (en) Coated membranes for enthalpy exchange and other applications
ES2924560T3 (en) heat and moisture exchanger
KR100621716B1 (en) Total heat exchanging element
JP3159566U (en) Indirect vaporization cooling system
US20140262125A1 (en) Energy exchange assembly with microporous membrane
CA2798928A1 (en) Separating membrane and heat exchanger using same
JP2011237157A (en) Total heat exchange element of heat exchanger
JP2021512274A (en) Systems, parts, and methods for air, heat, and humidity exchangers
JP2020038023A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body
JP2014018722A (en) Filter element for dehumidification
JP2009150632A (en) Structure and shape of indirect vaporization type cooler
JP2020038024A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body
US20220387927A1 (en) Air conditioning systems based on membranes
JP2020038022A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body
JP6937258B2 (en) Total heat exchange element sheet, total heat exchange element, and total heat exchanger
CN111094858A (en) Sheet for total heat exchange element, total heat exchanger, and water vapor separator
JP6961520B2 (en) Total heat exchange element sheet, total heat exchange element, and total heat exchanger
JP6987681B2 (en) Total heat exchanger and total heat exchanger
KR20100119583A (en) Heat exchange element and air conditioner or heating/cooling device using the same
JP2020037066A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and water vapor separator
US10184674B2 (en) Vapor separator and dehumidifier using the same
JP2005262827A (en) Moisture absorbing and releasing material
JPS58124196A (en) Total heat-exchanging element
JP6899739B2 (en) Gas separator and gas separator
JP4622660B2 (en) Adsorption element