JP2019060582A - Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device - Google Patents

Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device Download PDF

Info

Publication number
JP2019060582A
JP2019060582A JP2017187813A JP2017187813A JP2019060582A JP 2019060582 A JP2019060582 A JP 2019060582A JP 2017187813 A JP2017187813 A JP 2017187813A JP 2017187813 A JP2017187813 A JP 2017187813A JP 2019060582 A JP2019060582 A JP 2019060582A
Authority
JP
Japan
Prior art keywords
heat exchange
total heat
partition member
exchange element
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017187813A
Other languages
Japanese (ja)
Inventor
将秀 福本
Masahide Fukumoto
将秀 福本
洋祐 浜田
Yosuke Hamada
洋祐 浜田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017187813A priority Critical patent/JP2019060582A/en
Publication of JP2019060582A publication Critical patent/JP2019060582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

To provide a total heat exchange element having a low pressure loss while maintaining high total heat exchange efficiency, and a total heat exchange type ventilation device using the total heat exchange element.SOLUTION: The present invention provides a partition member having hydrophilic fibers, where, the fibers of the partition member are arranged in different directions so that their alignment directions cross each other.SELECTED DRAWING: Figure 5

Description

本発明は、伝熱性と透湿性を有する伝熱板を用いた全熱交換素子用仕切部材、これを用いた全熱交換素子、およびその全熱交換素子を用いた全熱交換形換気装置に関するものである。   The present invention relates to a partition member for total heat exchange element using a heat transfer plate having heat conductivity and moisture permeability, a total heat exchange element using the same, and a total heat exchange ventilator using the total heat exchange element It is a thing.

従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気の間で熱交換を行う全熱交換形換気装置が知られている。   Heretofore, as a device capable of ventilating without impairing the effects of cooling and heating, a total heat exchange type ventilator that performs heat exchange between air supply and exhaust during ventilation is known.

全熱交換素子は熱交換形換気機器の内部で給気と排気の熱交換を行うものであり、全熱交換素子の熱交換効率が良いほど排気から給気へ多くの熱を回収することができるので、これまで全熱交換素子の熱交換効率向上のために多くのアイディアが提案されてきた。   The total heat exchange element performs heat exchange between the air supply and the exhaust inside the heat exchange type ventilation equipment, and as the heat exchange efficiency of the total heat exchange element is better, more heat can be recovered from the exhaust to the air supply As it can, many ideas have been proposed to improve the heat exchange efficiency of all heat exchange elements.

一般的には全熱交換素子の容積を大きくすれば熱交換効率は向上する。しかし日本、中国、欧州などの地域では住宅内部に地下室、機械室等の熱交換形換気機器を設置する充分なスペースがないため、機器のサイズそのものをコンパクトにすることが求められている。従って全熱交換素子の容積をいかに小さく保ちながら熱交換効率を向上するかということが課題になっている。   Generally, the heat exchange efficiency is improved by increasing the volume of the total heat exchange element. However, in areas such as Japan, China, and Europe, there is not enough space for installing a heat exchange type ventilation device such as a basement room or a machine room inside a house, so it is required to make the size of the device itself compact. Therefore, the problem is how to improve the heat exchange efficiency while keeping the volume of all the heat exchange elements small.

従来のこの種の全熱交換素子としては、全熱交換素子内部の伝熱板を波形にしたものが知られている(例えば、特許文献1参照)。   As a conventional total heat exchange element of this type, there is known one in which a heat transfer plate inside the total heat exchange element is corrugated (see, for example, Patent Document 1).

以下、その全熱交換素子について図11を参照しながら説明する。図11は従来の全熱交換素子101の外観を示す斜視図である。   Hereinafter, the total heat exchange element will be described with reference to FIG. FIG. 11 is a perspective view showing the appearance of a conventional total heat exchange element 101. As shown in FIG.

図11に示すように、全熱交換素子101は親水性のセルロース繊維からなる全熱交換素子用シート102と波形の間隔保持材103を積層させて排気風路104と給気風路105を形成している。全熱交換素子用シート102の表面は、波形の凹凸を有しており、全熱交換素子用シート102の表面の波形の凹凸の配置方向と、積層される間隔保持材103の波方向の配置方向とが平行となるように重ねてコルゲート板を構成し、このコルゲート板を複数積層するようにして構成され、隣接するコルゲート板の間隔保持材103の波形の配置方向が、それぞれ交差する向きで積層した形状である。   As shown in FIG. 11, the total heat exchange element 101 is formed by laminating a sheet 102 for total heat exchange element made of hydrophilic cellulose fiber and a spacing member 103 with a waveform to form an exhaust air passage 104 and an air supply air passage 105. ing. The surface of the total heat exchange element sheet 102 has corrugated irregularities, and the arrangement direction of the corrugated unevenness of the surface of the total heat exchange element sheet 102 and the wave direction arrangement of the spacing member 103 to be laminated The corrugated plates are stacked so that the direction is parallel to each other, and a plurality of corrugated plates are stacked, and the arrangement directions of the corrugating members 103 of adjacent corrugated plates intersect each other It is a laminated shape.

全熱交換素子用シート102が波形であるために平らである場合よりも表面積が大きくなり、また乱流成分が増加するために熱伝達率が大きくなり、これらの相乗効果として全熱交換素子用シート102が平らである場合よりも同じ容積で熱交換効率を高くすることができる。   The surface area of the total heat exchange element sheet 102 is larger than that of a flat sheet because of the corrugation, and the heat transfer coefficient is increased because the turbulent flow component is increased. The heat exchange efficiency can be higher with the same volume than when the sheet 102 is flat.

特開平5−223486公報JP-A-5-223486

従来例にも記載されているように、全熱交換素子用シートは親水性のセルロース繊維から構成されており、給気と排気で熱交換する際、全熱交換素子用シートが吸湿するとセルロース繊維が膨張して伸び、逆に放湿(乾燥)するとセルロース繊維が収縮して縮み、全熱交換素子用シートの寸法が変化する。一般的に、全熱交換素子に用いられるセルロース繊維からなる全熱交換素子用シートは抄紙法で製造されるため、セルロース繊維の方向が生産する方向に沿うように配置される。セルロース繊維が吸湿したときに伸びる方向は、セルロースの繊維方向に対して略垂直方向となるため、セルロース繊維の方向が生産する方向に従って一方向に並ぶことにより、セルロース繊維が伸びる方向も生産する方向と略垂直な方向に向けて揃う。この現象によって、全熱交換素子内部に流れる気流に対して、略垂直方向に全熱交換素子用シートに形成される波形の凹凸を備えることにより、全熱交換素子用シートの表面積が平らである場合よりも大きくなり、また凹凸により風が乱れるため、全熱交換素子用シート近傍の風速が増加し、温度境界層を薄く形成でき、熱伝達率が大きくなる。これらの相乗効果により、全熱交換素子内部に流れる気流に対して、略垂直方向に全熱交換素子用シートに形成される波形の凹凸を備えることで熱交換効率を高くすることができる。   As described in the conventional example, the sheet for total heat exchange element is composed of hydrophilic cellulose fibers, and when heat exchange is performed by air supply and exhaust, the sheet for total heat exchange element absorbs moisture when it is absorbed. Swells and stretches, and conversely, when moisture is released (dried), the cellulose fiber shrinks and shrinks, and the size of the total heat exchange element sheet changes. Generally, since the sheet for total heat exchange elements which consists of cellulose fibers used for all the heat exchange elements is manufactured by the papermaking method, it is arranged so that the direction of a cellulose fiber follows a production direction. The direction in which the cellulose fibers grow is also produced by being aligned in one direction according to the direction in which the cellulose fibers are produced, since the direction in which the cellulose fibers absorb moisture is approximately perpendicular to the fiber direction of cellulose. Align in a direction substantially perpendicular to the Due to this phenomenon, the surface area of the sheet for all heat exchange elements is flat by providing the corrugated unevenness formed on the sheet for all heat exchange elements in a substantially perpendicular direction to the air flow flowing inside the total heat exchange element Because the wind is disturbed due to the unevenness, the wind speed in the vicinity of the total heat exchange element sheet is increased, the temperature boundary layer can be formed thin, and the heat transfer coefficient is increased. Due to these synergistic effects, the heat exchange efficiency can be increased by providing the corrugated irregularities formed on the sheet for all heat exchange elements in the substantially perpendicular direction with respect to the air flow flowing inside the all heat exchange elements.

その一方で、波形の凹凸を備える熱交素子内部に流れる気流が、凸部から凹部に流れるときに急拡大することによって、逆流領域が生じ、全熱交換素子の圧力損失を増大させるという課題があった。さらに、圧力損失を低減する方法として、凹凸を抑制する方法があるがこの手法では、全熱交換素子の伝熱面積を稼ぐことができず、熱交換効率が低下するという課題があった。   On the other hand, when the air flow flowing inside the heat exchange element having the corrugated unevenness is rapidly expanded when flowing from the convex portion to the concave portion, a reverse flow region is generated to increase the pressure loss of all the heat exchange elements. there were. Furthermore, as a method of reducing pressure loss, there is a method of suppressing unevenness, but with this method, there is a problem that the heat transfer area of all the heat exchange elements can not be obtained and the heat exchange efficiency is lowered.

そこで本発明は、上記課題を改善し、高い熱交換効率を維持しつつ、全熱交換素子用シートに形成される凹凸に対して、気流が急拡大することによって生じる逆流領域による圧力損失を抑制できる全熱交換素子および前記全熱交換素子を用いた全熱交換形換気装置を提供することを目的とする。   Therefore, the present invention improves the above-mentioned problems, and while maintaining high heat exchange efficiency, suppresses pressure loss due to a reverse flow region caused by rapid expansion of air flow with respect to asperities formed on a sheet for all heat exchange elements. It is an object of the present invention to provide a total heat exchange type ventilation system using the total heat exchange element and the total heat exchange element.

そして、この目的を達成するために、本発明は、親水性の繊維を備えた全熱交換素子用仕切部材であって、仕切部材の繊維の配向方向が交差するよう異なる方向に設けられていることを特徴とするものであり、これにより所期の目的を達成するものである。   And in order to achieve this object, the present invention is a partition member for all heat exchange elements provided with hydrophilic fibers, and provided in different directions so that the orientation directions of the fibers of the partition member intersect. To achieve the intended purpose.

本発明は、親水性の繊維を備えた全熱交換素子用仕切部材であって、仕切部材の繊維の配向方向が交差するよう異なる方向に設けられていることを特徴とするものであり、この構成によって、吸湿したときに表面積を拡大できるため高い全熱交換効率を確保できる。さらに、繊維が吸湿して伸びたときに形成される凹凸が複数の方向を持つため、全熱交換素子内部には夫々の凹凸に沿うような気流が発生する。この凹凸により風が乱れるため、全熱交換素子用シート近傍の風速が増加し、温度境界層を薄く形成でき、熱伝達率を高めることが可能となる。   The present invention is a partition member for total heat exchange element provided with hydrophilic fibers, characterized in that it is provided in different directions so that the orientation directions of the fibers of the partition member intersect. Depending on the configuration, the surface area can be expanded when moisture is absorbed, and high overall heat exchange efficiency can be ensured. Furthermore, since the irregularities formed when the fiber absorbs moisture and extends have a plurality of directions, an air flow along the respective irregularities is generated inside the entire heat exchange element. Since the wind is disturbed by the unevenness, the wind velocity in the vicinity of the total heat exchange element sheet is increased, the temperature boundary layer can be formed thin, and the heat transfer coefficient can be enhanced.

さらに、仕切部材の繊維の配向方向が交差するよう異なる方向に設けられているため、繊維が吸湿して伸びたときに形成される凹凸が交差するように形成される。この構成によって、凹凸を乗り越える空気の流れの一部が、複数の交差する凹凸の表面に沿って移動するため、凹凸を乗り越える際に風路の急拡大によって生じる気流の乱れ(逆流)を抑制できるため、圧力損失を低減し、効率よく仕切部材に対して送風することができる。   Furthermore, since the fibers are provided in different directions so that the orientation directions of the fibers of the partition member intersect, the irregularities formed when the fibers absorb moisture and extend are formed to intersect. With this configuration, a part of the air flow over the asperities moves along the surface of the plurality of intersecting asperities, thereby suppressing air flow disturbance (backflow) caused by rapid expansion of the air path when overcoming the asperities. Therefore, the pressure loss can be reduced, and the partition member can be efficiently blown.

したがって、本発明の仕切部材を用いることで、圧力損失を抑制できる全熱交換素子および前記全熱交換素子を用いた全熱交換形換気装置を得ることができるものである。   Therefore, by using the partition member of the present invention, it is possible to obtain a total heat exchange element capable of suppressing a pressure loss and a total heat exchange ventilator using the total heat exchange element.

本発明の実施の形態1にかかる全熱交換形換気装置の設置例を示す概要図Schematic diagram showing an installation example of the total heat exchange type ventilation device according to the first embodiment of the present invention 同全熱交換形換気装置の構造を示す図Diagram showing the structure of the total heat exchange type ventilation system 同全熱交換形換気装置の全熱交換素子を示す斜視図The perspective view which shows the total heat exchange element of the same total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子を示す分解斜視図An exploded perspective view showing the total heat exchange element of the same total heat exchange ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材の繊維方向を示す概略平面図The schematic plan view which shows the fiber direction of the partition member for total heat exchange elements of the same total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用仕切部材を示す概略斜視図Schematic perspective view showing a partition member for total heat exchange element of the same total heat exchange type ventilation device 同全熱交換形換気装置の全熱交換素子用仕切部材の表面を通過する風の流れを示す拡大平面図An enlarged plan view showing the flow of wind passing through the surface of the total heat exchange element partition member of the same total heat exchange ventilator (a)同全熱交換形換気装置の全熱交換素子の全熱交換用仕切部材の表面を通過する風の流れを示す概略断面図、(b)従来の全熱交換素子の全熱交換用仕切部材の表面を通過する風の流れを示す概略断面図(A) A schematic sectional view showing the flow of wind passing through the surface of the total heat exchange partition member of the total heat exchange element of the same total heat exchange ventilator, (b) for the total heat exchange of the conventional total heat exchange element Schematic sectional view showing the flow of wind passing through the surface of the partition member 同全熱交換形換気装置の全熱交換素子用仕切部材の繊維方向を示す概略平面図The schematic plan view which shows the fiber direction of the partition member for total heat exchange elements of the same total heat exchange type ventilator 同全熱交換形換気装置の全熱交換素子用の一風路を示す概略断面図Schematic sectional view showing an air passage for total heat exchange element of the same total heat exchange ventilator 従来の全熱交換素子を示す概略断面図Schematic sectional view showing a conventional total heat exchange element

本発明の請求項1記載の全熱交換素子は、親水性の繊維を備えた仕切部材であって、仕切部材の繊維の配向方向が交差するよう異なる方向に備えるという構成を有する。   The total heat exchange element according to claim 1 of the present invention is a partition member provided with hydrophilic fibers, and has a configuration in which the fibers are provided in different directions so as to cross each other.

これにより、仕切部材が吸湿したときに繊維間に水分が保持されることで、繊維の配向方向に対して直交する向きに広がり、仕切部材の表面積を拡大し、高い全熱交換効率を確保できる。さらに、仕切部材が吸湿して伸びたときに、繊維の配向方向が交差するように異なる方向に形成されていることで、凹凸が交差するように形成される。全熱交換素子内部には、凹凸に沿うような気流が発生する。交差する凹凸により風が乱れるため、仕切部材近傍の風速が増加し、温度境界層を薄くでき、熱伝達率を高めることが可能となる。加えて、凹凸を乗り越える空気の流れの一部が、複数の交差する凹凸をつなぐ稜線に沿って移動するため、凹凸を乗り越える際に風路の急拡大によって生じる気流の乱れ(逆流)を抑制できるため、圧力損失を低減できるという効果を奏する。   As a result, when the partition member absorbs moisture, the moisture is held between the fibers, so that it spreads in the direction orthogonal to the orientation direction of the fibers, and the surface area of the partition member can be expanded to ensure high total heat exchange efficiency. . Furthermore, when the partition member absorbs moisture and extends, the unevenness direction is formed to cross because the fibers are formed in different directions so that the orientation directions of the fibers cross. An air flow along the unevenness is generated inside the total heat exchange element. Since the wind is disturbed by the intersecting unevenness, the wind speed in the vicinity of the partition member is increased, the temperature boundary layer can be thinned, and the heat transfer coefficient can be enhanced. In addition, since part of the air flow over the asperities moves along the ridge line connecting the plurality of intersecting asperities, it is possible to suppress air flow disturbance (backflow) caused by rapid expansion of the air path when overcoming asperities. Therefore, the pressure loss can be reduced.

また、仕切部材の繊維の配向方向の交差が複数設けられている構成としてもよい。これにより、仕切材が吸湿して伸びたときに、配向方向の交差である連続的に折れ曲がったような楔形の凹凸が仕切部材全体に形成される。そのため、風路全体の凹凸を乗り越える際に風路の急拡大によって生じる気流の流れ(逆流)を抑制できるため、風路全体の圧力損失をより低減できるという効果を奏する。   Moreover, it is good also as a structure provided with multiple crossing of the orientation direction of the fiber of a partition member. As a result, when the partition material absorbs moisture and extends, a wedge-shaped unevenness which is continuously bent which is the intersection of the orientation direction is formed on the entire partition member. Therefore, since the flow (backflow) of the air flow which arises by sudden expansion of a wind path can be suppressed when overcoming the unevenness of the whole wind path, the effect that the pressure loss of the whole wind path can be reduced is produced.

また、仕切部材の繊維の配向方向が20度以上160度以下の角度で交差するよう異なる方向を備える構成としてもよい。これにより、気流が流れる方向に対し、交差する凹凸の角度が20度以上160度以下の角度によって、仕切部材の凸部に沿う風が増加するため、急拡大によって生じる気流の流れ(逆流)を効果的に抑制することができ、風路全体の圧力損失をより効果的に低減できるという効果を奏する。   Further, different directions may be provided such that the orientation direction of the fibers of the partition member intersects at an angle of 20 degrees or more and 160 degrees or less. As a result, since the wind along the convex portion of the partition member is increased by the angle of the intersecting unevenness being 20 degrees or more and 160 degrees or less with respect to the flowing direction of the air flow, the air flow (backflow) generated by rapid expansion It is possible to effectively suppress the pressure loss of the entire air passage and to reduce the pressure loss more effectively.

また、保持リブを介して一対の仕切部材が風路を設けるように配置され、風路が積層するように複数の仕切部材及び複数の保持リブによって全熱交換素子が構成されており、仕切部材が吸湿によって膨張したときの波高は、風路の積層方向における高さの5%以上50%以下であることを備える構成としてもよい。これにより、風路の積層方向の高さを維持しつつ、表面積を拡大できるため、全熱交換素子の風路における圧力損失を抑制しつつ、高い熱伝達性能の仕切部材を提供できるという効果を奏する。   Further, the pair of partition members are arranged to provide an air passage via the holding ribs, and the plurality of partition members and the plurality of holding ribs constitute a total heat exchange element so that the air passages are stacked. The wave height when expanded due to moisture absorption may be 5% to 50% of the height in the stacking direction of the air passage. As a result, the surface area can be expanded while maintaining the height in the stacking direction of the air passage, so that it is possible to provide a partition member of high heat transfer performance while suppressing the pressure loss in the air passage of all heat exchange elements. Play.

また、全熱交換素子に上記特徴の仕切部材を用いた構成としてもよい。この構成により、圧力損失が低く高い熱交換効率をもつ前記全熱交換素子を得ることができる。   Further, the partition member having the above-mentioned feature may be used as the total heat exchange element. With this configuration, it is possible to obtain the total heat exchange element having low pressure loss and high heat exchange efficiency.

また、全熱交換形換気装置に、上記特徴の全熱交換素子を用いた構成としてもよい。この構成により、圧力損失が低く高い熱交換効率をもつ全熱交換素子を用いることができるため、ファンの動力を削減し、高いエネルギー回収率の全熱交換形換気装置を得ることができる。   Further, the total heat exchange type ventilation device may be configured to use the total heat exchange element of the above-mentioned feature. With this configuration, it is possible to use a total heat exchange element having a low pressure loss and high heat exchange efficiency, thereby reducing the power of the fan and obtaining a total heat exchange ventilator with high energy recovery.

以下、添付図面を参照して、本発明の実施の形態につき説明し、本発明の理解に供する。なお、以下の実施の形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。また、全図面を通して、同一の部位については同一の符号を付して説明を省略している。さらに、本発明に直接には関係しない各部の詳細については重複を避けるために、図面ごとの説明は省略している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention. Moreover, the same reference numerals are given to the same parts throughout the drawings, and the description is omitted. Further, the details of each part not directly related to the present invention will not be described in each drawing in order to avoid duplication.

以下、本発明の一実施形態を説明する。   Hereinafter, an embodiment of the present invention will be described.

(実施の形態1)
図1において、家1の屋内に全熱交換形換気装置2が設置されている。
Embodiment 1
In FIG. 1, a total heat exchange ventilator 2 is installed indoors in a house 1.

例として日本の冬季を挙げると、屋内の空気(以下、屋内空気13という)を、黒色矢印のごとく、全熱交換形換気装置2を介して屋外に放出する。   For example, indoor winter (hereinafter referred to as indoor air 13) is released to the outside through a total heat exchange ventilator 2 as indicated by a black arrow, for example, in winter in Japan.

また、屋外の空気(以下、屋外空気14という)は、白色矢印のごとく、全熱交換形換気装置2を介して室内にとり入れる。   Also, outdoor air (hereinafter referred to as outdoor air 14) is introduced into the room through the total heat exchange ventilator 2 as indicated by the white arrows.

そして、このことにより換気を行うとともに、この換気時に、放出する屋内空気13の熱を室内に取り入れる屋外空気14へと伝達し、不用な熱の放出を抑制しているのである。   And while ventilating by this, at the time of this ventilation, the heat of the indoor air 13 to be released is transmitted to the outdoor air 14 which takes in indoors, and the discharge of unnecessary heat is suppressed.

全熱交換形換気装置2は図2に示すように、本体ケース3内に全熱交換素子4を配置し、排気ファン5を駆動することで、屋内空気13を内気口6から吸い込み、全熱交換素子4、排気ファン5を経由し、排気口7から屋外へと排出する。   As shown in FIG. 2, the total heat exchange type ventilation device 2 arranges the total heat exchange element 4 in the main body case 3 and drives the exhaust fan 5 to suck the indoor air 13 from the inner air port 6, thereby total thermal energy. The air is discharged to the outside from the exhaust port 7 via the exchange element 4 and the exhaust fan 5.

また、給気ファン8を駆動することで、屋外空気14を外気口9から吸い込み、全熱交換素子4、給気ファン8を経由し、給気口10から屋内へと取り入れる構成となっている。   Further, by driving the air supply fan 8, the outdoor air 14 is sucked from the outside air port 9 and taken in from the air supply port 10 indoors via the total heat exchange element 4 and the air supply fan 8. .

また、全熱交換素子4は、図3、図4に示すように、所定の間隔をあけて複数の間隔保持リブ11を備えた枠体に全熱交換素子用仕切部材12を一体に貼り合わせたものを積層する構成となっている。すなわち、間隔保持リブ11により保持された間隔をあけて全熱交換素子用仕切部材12が積層される。間隔をあけて積層された全熱交換素子用仕切部材12の間隔に屋内空気13と屋外空気14を一層ごと交互に流す。屋内空気13と屋外空気14とを全熱交換素子用仕切部材12を挟んで流すことにより、熱交換および水分の交換を行わせる構造となっている。   Further, as shown in FIG. 3 and FIG. 4, the total heat exchange element partition member 12 is integrally bonded to a frame provided with a plurality of space holding ribs 11 at predetermined intervals, as shown in FIGS. 3 and 4. It is the composition which stacks the thing. That is, the partition members 12 for all heat exchange elements are stacked at intervals held by the spacer 11. Indoor air 13 and outdoor air 14 are alternately flowed through the space between the total heat exchange element partition members 12 stacked at intervals. Heat exchange and water exchange are performed by flowing the indoor air 13 and the outdoor air 14 with the total heat exchange element partition member 12 interposed therebetween.

冬季の場合、屋内空気13は暖房や人の呼気などから湿気を含んだ状態であり、屋外空気14は乾燥した状態となっている。全熱交換素子用仕切部材12の両面を屋内空気13と屋外空気14がそれぞれ流れることで、全熱交換素子用仕切部材12を介した熱伝達により、屋内空気13の熱が屋外空気14に伝えられる。また、全熱交換素子用仕切部材12を介した湿気伝達により、屋内空気13の水分が屋外空気14に伝えられる。   In winter, the indoor air 13 is in a state containing moisture from heating, human exhalation, etc., and the outdoor air 14 is in a dry state. The indoor air 13 and the outdoor air 14 flow on both sides of the total heat exchange element partition member 12 so that the heat of the indoor air 13 is transmitted to the outdoor air 14 by the heat transfer via the total heat exchange element partition member 12 Be Further, the moisture of the indoor air 13 is transferred to the outdoor air 14 by the moisture transmission through the total heat exchange element partition member 12.

本実施の形態では、図5に示すように、全熱交換素子用仕切部材12は、親水性の繊維であるセルロース繊維15を備えており、全熱交換素子用仕切部材12のセルロース繊維15の配向方向が交差するよう異なる方向に設けられている構成を有する。   In the present embodiment, as shown in FIG. 5, the total heat exchange element partition member 12 includes the cellulose fiber 15 which is a hydrophilic fiber, and the cellulose fiber 15 of the total heat exchange element partition member 12 is It has a configuration in which alignment directions are provided in different directions so as to cross each other.

一般的に、全熱交換素子4に用いられるセルロース繊維15からなる全熱交換素子用仕切部材12は抄紙法で製造される。この製造方法では、水溶液中に懸濁させたセルロース繊維15から脱水する工程で、ベルトコンベヤ状の網上へ懸濁されたセルロース溶液を展開させ、ベルトコンベヤを進めながら、重力の作用やプレス工程、加熱工程を経てシート状に形成される。このとき、セルロース繊維15を網へ展開させながら高速でベルトコンベヤを移動させるため、セルロース繊維15の配向方向はベルトコンベヤの進行方向に沿うように配置され、乾燥させたときにはセルロース繊維15の配向方向が一方向となっている。ここで、セルロース繊維の配向方向が交差するように複数備えるために、例えば下記のような工程が挙げられる。   Generally, the partition member 12 for total heat exchange elements which consists of the cellulose fiber 15 used for the total heat exchange element 4 is manufactured by the papermaking method. In this manufacturing method, in the process of dewatering from the cellulose fiber 15 suspended in the aqueous solution, the suspended cellulose solution is spread on a belt conveyor net, and the action of gravity and the pressing process are performed while advancing the belt conveyor. The sheet is formed through a heating process. At this time, in order to move the belt conveyor at a high speed while developing the cellulose fibers 15 into the net, the orientation direction of the cellulose fibers 15 is disposed along the traveling direction of the belt conveyor, and when dried, the orientation direction of the cellulose fibers 15 Is one way. Here, for example, the following steps may be mentioned in order to provide a plurality of cellulose fibers so that the orientation directions of the cellulose fibers intersect.

例えば、和紙の抄紙工程のように、水溶液中に懸濁させたセルロース繊維15を脱水する工程において、網上へ水溶液を展開させる際に、セルロース繊維15の生成方向と略垂直な方向に網を移動させることで、繊維方向を2方向備えることができる。   For example, in the process of dewatering the cellulose fibers 15 suspended in the aqueous solution as in the paper making process of Japanese paper, when developing the aqueous solution onto the netting, the netting is performed in a direction substantially perpendicular to the generation direction of the cellulose fibers 15 By moving, the fiber direction can be provided in two directions.

また、例えばあらかじめ懸濁させるセルロース繊維15の繊維片の長辺長さを短くすることによって、水溶液中のセルロース繊維15の分散性を向上させ、脱水後のセルロース繊維15の繊維方向を分散させ、複数の繊維方向を持たせることができる。   Further, for example, by shortening the long side length of the fiber piece of the cellulose fiber 15 to be suspended in advance, the dispersibility of the cellulose fiber 15 in the aqueous solution is improved, and the fiber direction of the cellulose fiber 15 after dehydration is dispersed. Multiple fiber directions can be provided.

さらに、抄紙に用いられる上記水溶液を用いた湿式法ではなく、セルロースを一度溶媒に溶解し、再生したレーヨンと呼ばれるセルロースからなる繊維を用い、全熱交換素子用仕切部材12として、乾式の生産法によってセルロース繊維15からなる不織布としてもよい。乾式の生産方法としては、ニードルパンチ法やケミカルボンド法等既知の工法が挙げられ、これらの生産方式は、湿式の抄紙法に比べ生産中に繊維が移動しにくいため、繊維の目方向が複数の方向を持つことが知られている。   Furthermore, it is not a wet process using the above aqueous solution used for papermaking, but a dry production process as a total heat exchange element partition member 12 using a fiber called cellulose that is obtained by dissolving cellulose once in a solvent and regenerating it. It is good also as a nonwoven fabric which consists of cellulose fiber 15 by this. As a dry production method, known methods such as a needle punch method and a chemical bond method may be mentioned, and in these production methods, fibers are less likely to move during production compared to a wet papermaking method, so the fiber direction is more than one It is known to have a direction.

この構成により、全熱交換素子用仕切部材12が吸湿したとき、図6に示すように、セルロース繊維15が交差するように異なる配向方向に、楔形のような凸部20と凹部21からなる凹凸を備えることができる。そのため、図7に示すように、全熱交換素子用仕切部材12上で気流方向に向かって流れる空気流16は凸部20に沿うように曲げられながら凸部20を越えて、凹部21方向に向かう気流が生じる。そのため、図8(a)に示すように、全熱交換素子用仕切部材12が楔形の凹凸を備えるときに流れる空気流16は、図8(b)に示すように従来の凹凸形状を備える空気流16に対して、凸部20から凹部21へと流れる空気流16は凹凸が緩やかになり急拡大によって生じる逆流領域17が発生しないため、圧力損失を抑制できる。さらに、楔形のような凹凸を備えることから、一方向に凹凸がある場合と比べると気流の偏りを抑制することができる。さらに、空気流16は楔形の凹凸に沿うように流れ、この楔形の凹凸により風が乱れるため、全熱交換素子用仕切部材12近傍の風速が増加し、温度境界層を薄く形成でき、熱伝達率を高めることが可能となる。さらに、全熱交換素子用仕切部材12は楔形の凹凸を備えているため表面積を拡大でき、熱交換効率を向上することができる。   With this configuration, when the total heat exchange element partition member 12 absorbs moisture, as shown in FIG. 6, asperities consisting of ridges 20 and depressions 21 like ridges in different orientation directions so that the cellulose fibers 15 intersect. Can be provided. Therefore, as shown in FIG. 7, the air flow 16 flowing in the air flow direction on the total heat exchange element partition member 12 is bent along the convex portion 20 and passes over the convex portion 20 in the concave portion 21 direction. An air flow is generated. Therefore, as shown in FIG. 8 (a), the air flow 16 which flows when the total heat exchange element partition member 12 has a wedge-shaped unevenness is an air having a conventional uneven shape as shown in FIG. 8 (b). Since the air flow 16 flowing from the convex portion 20 to the concave portion 21 with respect to the flow 16 has a gentle unevenness and the reverse flow region 17 generated due to the rapid expansion does not occur, the pressure loss can be suppressed. Furthermore, since the unevenness such as a wedge shape is provided, it is possible to suppress the deviation of the air flow as compared with the case where the unevenness is present in one direction. Furthermore, since the air flow 16 flows along the ridge-shaped unevenness and the wind is disturbed by the ridge-shaped unevenness, the wind speed in the vicinity of the total heat exchange element partition member 12 is increased, and the temperature boundary layer can be formed thin. It is possible to increase the rate. Furthermore, since the partition member 12 for all heat exchange elements is provided with a wedge-shaped unevenness, the surface area can be expanded, and the heat exchange efficiency can be improved.

したがって、圧力損失を抑制しながら、表面積を拡大でき、熱交換効率を向上することができる。さらに楔形の凹凸を備えることで、三次元的な波形をもつ構造をとるため、二次元的な波形(従来全熱交換素子の凹凸)をもつ構造と比較すると、全熱交換素子用仕切部材12の剛性を高めることができ、給気風路と排気風路の圧力差によって生じる全熱交換素子用仕切部材12のたわみを抑制することができ、風路閉塞による圧力損失が抑制できる。その結果、圧力損失を抑制しつつ、高い熱伝達性能の全熱交換素子用仕切部材12を得ることができる。   Therefore, while suppressing the pressure loss, the surface area can be expanded, and the heat exchange efficiency can be improved. Furthermore, by providing the three-dimensional waveform by providing the wedge-shaped unevenness, the partition member 12 for all heat exchange elements as compared with the structure having a two-dimensional waveform (concave and convex of the conventional total heat exchange element). It is possible to increase the rigidity of the air flow path and to suppress the deflection of the total heat exchange element partition member 12 caused by the pressure difference between the air supply path and the exhaust air path, and to suppress the pressure loss due to the air path obstruction. As a result, it is possible to obtain the total heat exchange element partition member 12 with high heat transfer performance while suppressing the pressure loss.

また、図9に示すように、全熱交換素子用仕切部材12の繊維の配向方向が交差するように設ける構成としても良い。このとき、全熱交換素子用仕切部材12の延在方向に沿って、連続するように繊維の配向方向が交差している。   Moreover, as shown in FIG. 9, it is good also as a structure provided so that the orientation direction of the fiber of the partition member 12 for all heat exchange elements may cross | intersect. At this time, the fiber orientations intersect so as to be continuous along the extending direction of the total heat exchange element partition member 12.

この構成により、全熱交換素子用仕切部材12の繊維が吸湿して伸びたときに、繊維の配向方向が連続的に交差しているため、折れ曲がった凹凸が全熱交換素子用仕切部材12に形成される。そのため、全熱交換素子用仕切部材12どうしの間隔板を保持するリブ間の風路すべてに折れ曲がった凹凸を備えた全熱交換素子用仕切部材12を形成することができる。その結果、全熱交換素子用仕切部材12上に均一に折れ曲がった凹凸があるため、全熱交換素子4内部に流れる気流の偏りをなくすことができるため、効率よく熱を交換することができる。さらに、前述のように、急拡大によって生じる逆流領域17が発生しないため、圧力損失を抑制しつつ、高い熱伝達性能の全熱交換素子用仕切部材12を得ることができる。   With this configuration, when the fibers of the total heat exchange element partition member 12 absorb moisture and extend, the fibers are continuously oriented in the direction of orientation, so that the bent unevenness is formed in the total heat exchange element partition member 12 It is formed. Therefore, the partition member 12 for all heat exchange elements provided with the unevenness | corrugation which bent in all the air paths between the ribs holding the spacing plate of all the partition members 12 for heat exchange elements can be formed. As a result, since there is unevenness which is uniformly bent on the total heat exchange element partition member 12, it is possible to eliminate the bias of the air flow flowing inside the total heat exchange element 4, and therefore, it is possible to exchange heat efficiently. Furthermore, as described above, since the reverse flow region 17 caused by the rapid expansion does not occur, the total heat exchange element partition member 12 with high heat transfer performance can be obtained while suppressing the pressure loss.

連続的にセルロース繊維15の繊維方向を変化させる工法としては、例えば湿式抄紙による次の例が挙げられる。セルロース繊維15の水溶液を網上へ展開する工程において、網を一定間隔ごとに生成方向と異なる方向に移動させることで、生成方向と異なる方向にセルロース繊維15の配向方向を変えることが可能である。この工程により、セルロース繊維15の配向方向は生成方向に対して連続的に折れ曲がったような構成となる。ここで網を一定間隔ごとに異方向に移動させる方法として、網を振動させる方法や、高水圧ジェット流によって加える方法等が挙げられる。   Examples of the method of continuously changing the fiber direction of the cellulose fiber 15 include the following examples of wet papermaking. In the process of developing the aqueous solution of cellulose fiber 15 onto the net, it is possible to change the orientation direction of cellulose fiber 15 in a direction different from the production direction by moving the net in a direction different from the production direction at regular intervals. . By this process, the orientation direction of the cellulose fiber 15 is configured to be continuously bent with respect to the generation direction. Here, as a method of moving the net in different directions at regular intervals, there is a method of vibrating the net, a method of adding the net by a high water pressure jet flow, and the like.

また、全熱交換素子用仕切部材12の繊維の異なる配向方向が二つ以上あり、これらの異なる配向方向が20度以上160度以下の角度を成すように交差して設けられた構成としても良い。   In addition, two or more different orientation directions of the fibers of the total heat exchange element partitioning member 12 may be provided so as to intersect such different orientation directions to form an angle of 20 degrees or more and 160 degrees or less. .

この構成により、気流が流れる方向に対し、凹凸が緩やかになるため、急拡大によって生じる逆流領域を効果的に抑制することができ、圧力損失を抑制しつつ、高い熱伝達性能の全熱交換素子用仕切部材12を得ることができる。配向方向の交差角度が20度より下回ると、繊維の異なる配向方向が二つ以上あったとしても、繊維の配向方向が交差して形成される凹凸は、単一の方向を持つ凹凸に近い特性となる。また、配向方向の交差角度が160度を超えると、同じく複数方向に向かった凹凸が合成され、単一の方向を持つ凹凸に近い特性となる。そのため、セルロース繊維15の繊維方向が20度以上160度以下の角度となる場合、逆流領域をより効果的に抑制することができ、圧力損失を抑制しつつ、高い熱伝達性能を発揮すること可能である。   With this configuration, the unevenness becomes gentle in the flow direction of the air flow, so that the reverse flow area caused by the rapid expansion can be effectively suppressed, and the total heat exchange element with high heat transfer performance while suppressing the pressure loss. The partition member 12 can be obtained. When the crossing angle in the orientation direction is less than 20 degrees, even if there are two or more different orientation directions of the fibers, the concavities and convexities formed when the orientation directions of the fibers intersect are characteristics similar to concavities and convexities having a single direction. It becomes. In addition, when the crossing angle in the alignment direction exceeds 160 degrees, the concavities and convexities heading in a plurality of directions are similarly synthesized, and the characteristic is similar to the concavo-convex having a single direction. Therefore, when the fiber direction of the cellulose fiber 15 becomes an angle of 20 degrees or more and 160 degrees or less, the back flow area can be suppressed more effectively, and high heat transfer performance can be exhibited while suppressing pressure loss. It is.

また、図10に示すように、全熱交換素子用仕切部材12が形成する楔形の凹凸の基準面からの距離である波高18は、給気風路や排気風路の積層方向における風路高さ19の5%以上50%以下となる構成としても良い。   Further, as shown in FIG. 10, the wave height 18 which is the distance from the reference surface of the ridge-shaped unevenness formed by the total heat exchange element partition member 12 is the air passage height in the lamination direction of the air supply air passage and the exhaust air passage. It may be configured to be 5% or more and 50% or less of 19.

この構成により、風路高さ19を確保しつつ、表面積を拡大できるため、全熱交換素子4の風路における圧力損失を抑制しつつ、高い熱伝達性能の全熱交換素子用仕切部材12を得ることができる。風路高さ19に対し、波高18が5%を下回ると、風路を通過する気体が壁面となる全熱交換素子用仕切部材12の凹凸の影響を受けにくく、熱交換効率の向上効果が得られにくい。また、風路高さ19に対し、波高18が50%を上回ると、通風方向からみた風路断面が凹凸によりふさがり、全熱交換素子4の圧力損失が増大する。   With this configuration, the surface area can be expanded while securing the air passage height 19, so that the pressure loss in the air passage of the total heat exchange element 4 is suppressed, and the partition member 12 for the total heat exchange element with high heat transfer performance is used. You can get it. When the wave height 18 is less than 5% with respect to the air passage height 19, the gas passing through the air passage is hardly affected by the unevenness of the total heat exchange element partition member 12 which becomes the wall surface, and the heat exchange efficiency is improved. Hard to get. In addition, when the wave height 18 exceeds 50% with respect to the air passage height 19, the air passage cross section seen from the ventilation direction is closed due to the unevenness, and the pressure loss of the total heat exchange element 4 increases.

また、全熱交換素子4に前記構成の全熱交換素子用仕切部材12を用いた構成としてもよい。この構成により、圧力損失が低く高い熱交換効率をもつ全熱交換素子4を得ることができる。   Further, the total heat exchange element partition member 12 having the above-described configuration may be used as the total heat exchange element 4. With this configuration, it is possible to obtain the total heat exchange element 4 having a low pressure loss and high heat exchange efficiency.

また、全熱交換形換気装置2に、前記構成の全熱交換素子4を用いた構成としてもよい。この構成により、圧力損失が低く高い熱交換効率をもつ全熱交換素子4を用いることができるため、ファンの動力を削減し、高いエネルギー回収率の全熱交換形換気装置2を得ることができる。   Further, the total heat exchange type ventilation device 2 may be configured to use the total heat exchange element 4 of the above configuration. With this configuration, it is possible to use the total heat exchange element 4 having a low pressure loss and high heat exchange efficiency, so it is possible to reduce the power of the fan and obtain the total heat exchange ventilator 2 with a high energy recovery rate. .

なお、全熱交換素子用仕切部材12の材料は、高い熱伝達率や湿気伝達率を確保するため薄い材料であることが望ましく、厚み10μm以上150μm以下であることが望ましい。厚みが10μmを下回ると、全熱交換素子用仕切部材12としての強度が不足し、全熱交換素子4を通風する気体の圧力差によって全熱交換素子4の風路が狭窄し、全熱交換素子4の圧力損失が増大する。また、厚みが150μmを上回ると、全熱交換素子用仕切部材12として必要な透湿性能が低下し、熱交換効率が低下してしまう。   The material of the total heat exchange element partition member 12 is desirably a thin material in order to ensure a high heat transfer rate and moisture transfer rate, and desirably has a thickness of 10 μm to 150 μm. If the thickness is less than 10 μm, the strength as the total heat exchange element partition member 12 is insufficient, and the air path of the total heat exchange element 4 is narrowed due to the pressure difference of the gas that ventilates the total heat exchange element 4; The pressure loss of the element 4 is increased. Also, if the thickness exceeds 150 μm, the moisture permeation performance required as the total heat exchange element partition member 12 is lowered, and the heat exchange efficiency is lowered.

なお、全熱交換素子用仕切部材12の材料は、吸湿によって伸長する材質であればよく、例えば紙やナイロン、レーヨン等の材料が挙げられる。   The material of the total heat exchange element partition member 12 may be any material as long as it expands by moisture absorption, and examples thereof include materials such as paper, nylon, and rayon.

なお、全熱交換素子用仕切部材12は、前述のように、抄紙法によって製造するとよい。そうすることで、セルロースを乾燥させるときに強く収縮する性質を持ち緻密な層を形成でき、高いガスバリア性を得ることができる。さらに、抄紙法は生産性の高い製法であるため、低コストで生産できる。   The total heat exchange element partition member 12 may be manufactured by a paper making method as described above. By doing so, it has the property of strongly shrinking when drying cellulose, and a dense layer can be formed, and high gas barrier properties can be obtained. Furthermore, since the papermaking method is a highly productive method, it can be produced at low cost.

なお、全熱交換素子用仕切部材12の材料は、セルロース繊維からなる不織布層であって平均孔径が0.005μm以上0.5μm以下であっても良い。そうすることで、高いガスバリア性を示すことができる。ガスバリア性は例えばガーレー値(JIS‐P8117)のような透気度で評価することができ、例えば3000秒/100cc以上あれば必要な換気量を確保することができる。   The material of the total heat exchange element partition member 12 may be a non-woven fabric layer made of cellulose fibers, and the average pore diameter may be 0.005 μm or more and 0.5 μm or less. By doing so, high gas barrier properties can be exhibited. The gas barrier property can be evaluated by, for example, an air permeability such as Gurley value (JIS-P8117). For example, if it is 3000 seconds / 100 cc or more, a necessary ventilation amount can be secured.

なお、全熱交換素子用仕切部材12の材料は、セルロース繊維からなる不織布層に吸湿性の高い物質、例えばリチウム塩類等を含浸させるとよい。そうすることで、高い湿気伝達性を得ることができる。   The material of the total heat exchange element partition member 12 is preferably made by impregnating a nonwoven fabric layer made of cellulose fiber with a highly hygroscopic substance such as lithium salts. By doing so, high moisture transmission can be obtained.

なお、本実施の形態では、六角形形状の対向流の全熱交換素子4について説明したが、全熱交換素子4を四角形形状として、排気風路と給気風路とが直交する形状や斜めに交差する形状でも同様の効果を得ることができる。   In the present embodiment, the total heat exchange element 4 of the counterflow having a hexagonal shape has been described, but with the total heat exchange element 4 being a square shape, the exhaust air passage and the supply air passage are orthogonal to each other or diagonally Similar effects can be obtained with the intersecting shapes.

なお、全熱交換素子4に備える間隔リブ11は間隔が保持できる形状であればよく、本実施の形態に示した角柱型のほか、コルゲート形状の波板等を用いることができる。全熱交換素子用仕切部材12の伸縮による形状変形を抑制するために、間隔リブ11は吸湿性が低く、剛性の高い材質が好ましい。例えば、間隔リブ11の材質としてプラスチックや金属が挙げられる。間隔リブ11をプラスチックで形成する場合は、全熱交換素子用仕切部材12を金型内に挿入し、樹脂によるインサート射出成型による一体成形で形成すると生産性を向上することができ、好適である。   In addition, the space | interval rib 11 with which all the heat exchange elements 4 are equipped should just be a shape which can maintain space | interval, and can use a corrugated plate etc. besides a square pillar type shown in this Embodiment. In order to suppress shape deformation due to expansion and contraction of the total heat exchange element partition member 12, the space rib 11 is preferably made of a material having low hygroscopicity and high rigidity. For example, the material of the space rib 11 may be plastic or metal. When the space rib 11 is formed of plastic, inserting the total heat exchange element partition member 12 into a mold and forming it by integral molding by insert injection molding using resin can improve productivity, which is preferable. .

以上のように本実施形態にかかる全熱交換素子用仕切部材は、高い熱交換効率を維持しつつ圧力損失を抑制することができるものであるので、全熱交換素子、全熱交換形換気装置等に用いる全熱交換素子用仕切部材として有用である。   As described above, since the partition member for total heat exchange element according to the present embodiment can suppress pressure loss while maintaining high heat exchange efficiency, the total heat exchange element, the total heat exchange type ventilator It is useful as a partition member for total heat exchange elements used for etc.

1 家
2 全熱交換形換気装置
3 本体ケース
4 全熱交換素子
5 排気ファン
6 内気口
7 排気口
8 給気ファン
9 外気口
10 給気口
11 間隔保持リブ
12 全熱交換素子用仕切部材
13 屋内空気
14 屋外空気
15 セルロース繊維
16 空気流
17 逆流領域
18 波高
19 風路高さ
20 凸部
21 凹部
DESCRIPTION OF SYMBOLS 1 house 2 total heat exchange type ventilation device 3 main body case 4 total heat exchange element 5 exhaust fan 6 inside air opening 7 exhaust opening 8 air supply fan 9 outside air opening 10 air intake opening 11 interval maintaining rib 12 partition member for total heat exchange element 13 Indoor air 14 Outdoor air 15 Cellulose fiber 16 Air flow 17 Backflow area 18 Wave height 19 Airway height 20 Convex part 21 Concave part

Claims (6)

親水性の繊維を備えた仕切部材であって、前記仕切部材の前記繊維の配向方向が交差するに設けられていることを特徴とする全熱交換素子用仕切部材。 A partition member comprising hydrophilic fibers, wherein the orientation directions of the fibers of the partition member intersect with each other. 前記仕切部材の前記繊維の配向方向の前記交差が複数設けられていることを特徴とする請求項1に記載の全熱交換素子用仕切部材。 The partition member for total heat exchange elements according to claim 1, wherein a plurality of the intersections in the orientation direction of the fibers of the partition member are provided. 前記仕切部材の前記繊維の配向方向が20度以上160度以下の角度で交差するように設けられていることを特徴とする請求項1または2に記載の全熱交換素子用仕切部材。 The partition member for total heat exchange elements according to claim 1 or 2, wherein the orientation direction of the fibers of the partition member is provided so as to intersect at an angle of 20 degrees or more and 160 degrees or less. 保持リブを介して一対の前記仕切部材が風路を設けるように配置され、前記風路が積層するように複数の前記仕切部材及び複数の前記保持リブによって全熱交換素子が構成されており、前記仕切部材が吸湿によって膨張したときの波高は、前記風路の積層方向における高さの5%以上50%以下であることを特徴とする請求項1から3のいずれか一項に記載の全熱交換素子用仕切部材を用いた全熱交換素子。 A pair of the partition members are disposed to provide an air passage via a holding rib, and a plurality of the partition members and the plurality of holding ribs constitute a total heat exchange element so that the air passages are stacked. The wave height when the partition member is expanded due to moisture absorption is 5% or more and 50% or less of the height in the stacking direction of the air path, All the characteristics according to any one of claims 1 to 3 Total heat exchange element using a heat exchange element partition member. 請求項1から3のいずれか一項に記載の全熱交換素子用仕切部材を用いた全熱交換素子。 The total heat exchange element using the partition member for total heat exchange elements as described in any one of Claim 1 to 3. 請求項4及び5に記載の全熱交換素子を用いた全熱交換形換気装置。 A total heat exchange ventilator using the total heat exchange element according to claim 4 or 5.
JP2017187813A 2017-09-28 2017-09-28 Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device Pending JP2019060582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187813A JP2019060582A (en) 2017-09-28 2017-09-28 Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187813A JP2019060582A (en) 2017-09-28 2017-09-28 Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device

Publications (1)

Publication Number Publication Date
JP2019060582A true JP2019060582A (en) 2019-04-18

Family

ID=66176559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187813A Pending JP2019060582A (en) 2017-09-28 2017-09-28 Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device

Country Status (1)

Country Link
JP (1) JP2019060582A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021039064A1 (en) * 2019-08-28 2021-03-04 パナソニックIpマネジメント株式会社 Heat exchange element and heat exchange ventilation device using same
CN113739308A (en) * 2017-12-15 2021-12-03 斯德龙有限两合公司 Ventilation device and method for maintaining a ventilation device and associated insertion unit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113739308A (en) * 2017-12-15 2021-12-03 斯德龙有限两合公司 Ventilation device and method for maintaining a ventilation device and associated insertion unit
CN113739308B (en) * 2017-12-15 2023-02-28 斯德龙有限两合公司 Ventilation device and method for maintaining a ventilation device and associated insertion unit
WO2021039064A1 (en) * 2019-08-28 2021-03-04 パナソニックIpマネジメント株式会社 Heat exchange element and heat exchange ventilation device using same

Similar Documents

Publication Publication Date Title
JP3159566U (en) Indirect vaporization cooling system
CN103217044B (en) Heat exchanger element and production method thereof
US20100032145A1 (en) Heat conduction unit with improved laminar
CN105765309A (en) Methods and systems for turbulent, corrosion resistant heat exchangers
US20180320990A1 (en) Enthalpy Exchanger Element And Method For The Production
JP2015509178A (en) Counter-current energy recovery ventilator (ERV) core
KR20140137433A (en) Heat-exchange element and air conditioner
US10151497B2 (en) Method of producing a micro-core heat exchanger for a compact indirect evaporative cooler
JP2019060582A (en) Partition member for total heat exchange element, total heat exchange element using partition member for total heat exchange element, and total heat exchange type ventilation device
EP3225816A1 (en) Synthetic media pads for an evaporative cooler and method for evaporative cooling
WO2017090232A1 (en) Partition member for total heat exchange elements, total heat exchange element, and total heat exchange ventilation device
JP2009150632A5 (en)
JP2015178199A (en) Partition member for whole heat exchange element, whole heat exchange element using the material, and whole heat exchange ventilator
JP2015169401A (en) heat exchange element and heat exchanger
CN209325984U (en) A kind of wet curtain
CN210664099U (en) Heat exchange plate of total heat exchange core
KR200403611Y1 (en) A heat exchange used Korean paper
JP2020051655A (en) Heat exchange element and heat exchange type ventilation device using the same
JP3115391U (en) Fixed wet dehumidification and energy recovery device
JP6078609B1 (en) Indirect vaporization air conditioner and indirect vaporization air conditioning method
JP7389514B1 (en) heat exchange element
JP2020051704A (en) Method for manufacturing heat exchange element, and heat exchange element
JPS6172949A (en) Humidifier
JP2013257107A (en) Heat exchanging element, and method of manufacturing the same
JP7126617B2 (en) Heat exchange element and heat exchange ventilator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20190121