JP2018004134A - Total heat exchange element and total heat exchange-type ventilation device - Google Patents
Total heat exchange element and total heat exchange-type ventilation device Download PDFInfo
- Publication number
- JP2018004134A JP2018004134A JP2016129570A JP2016129570A JP2018004134A JP 2018004134 A JP2018004134 A JP 2018004134A JP 2016129570 A JP2016129570 A JP 2016129570A JP 2016129570 A JP2016129570 A JP 2016129570A JP 2018004134 A JP2018004134 A JP 2018004134A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchange
- moisture
- total heat
- polymer compound
- moisture permeable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
本発明は、伝熱性と透湿性を有する素材を全熱交換素子に用いて、顕熱及び潜熱を同時に回収する静止透過式の全熱交換形換気装置に関するものである。 The present invention relates to a static permeation type total heat exchange type ventilator that simultaneously recovers sensible heat and latent heat by using a material having heat conductivity and moisture permeability as a total heat exchange element.
従来、冷房と暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気との間で熱交換を行う全熱交換形換気装置が知られている。全熱交換形換気装置は、温度と同時に湿度の交換を行うためのコルゲート形状の全熱交換素子が設けられている。 2. Description of the Related Art Conventionally, a total heat exchange type ventilator that exchanges heat between supply air and exhaust during ventilation is known as a device that can ventilate without impairing the effects of cooling and heating. The total heat exchange type ventilator is provided with a corrugated total heat exchange element for exchanging humidity simultaneously with temperature.
全熱交換素子として、例えば、特許文献1のような技術が開示されている。 As the total heat exchange element, for example, a technique as disclosed in Patent Document 1 is disclosed.
一般に、上記従来例のような全熱交換形換気装置は、室内の環境を一定に保つために、室外空気の温度及び湿度を室内の温度及び湿度に近づけた後に室外空気を室内に供給する。冬季などは、室内の湿度が例えば30%と低い場合において、室外の湿度が室外と室内の温度を同一とした場合に例えば40%であるとき、本来は室外の空気をそのまま室内に供給して室内の湿度を上げることが好ましい。 Generally, the total heat exchange type ventilator as in the above-described conventional example supplies outdoor air after the temperature and humidity of the outdoor air are brought close to the room temperature and humidity in order to keep the indoor environment constant. In the winter, when the indoor humidity is as low as 30%, for example, when the outdoor humidity is 40% when the outdoor and indoor temperatures are the same, the outdoor air is originally supplied to the room as it is. It is preferable to increase the humidity in the room.
しかし、一般的に水分は湿度が高い方から低い方へ移動するので、室外の湿度が室内より高いと、水分は室外の空気から室内の空気に移動する。そのため、湿度が下がった状態の室外空気が室内に供給されることとなり、室内の湿度が上がりにくく、結果として、乾燥した室内に室外の空気の水分を効率よく供給することができない。 However, since moisture generally moves from higher to lower humidity, when outdoor humidity is higher than indoors, moisture moves from outdoor air to indoor air. Therefore, the outdoor air in a state where the humidity is lowered is supplied to the room, the indoor humidity is hardly increased, and as a result, the moisture of the outdoor air cannot be efficiently supplied to the dry room.
そこで、本発明は、室内の湿度が低い場合など一定条件下において、室外の空気から室内の空気に水分を移動させずに室外の空気を室内に取り込むことができる全熱交換素子及び全熱交換形換気装置を提供する。 Therefore, the present invention provides a total heat exchange element and a total heat exchange that can take outdoor air into the room without moving moisture from the outdoor air to the indoor air under certain conditions such as when the indoor humidity is low. Provide a ventilator.
本発明における全熱交換素子は、透湿性を有する仕切板とコルゲート形状の間隔保持部材とを備える全熱交換素子であって、仕切板は、親水性官能基を備えた第一高分子化合物を有する第一透湿膜と、第一高分子化合物よりも極性の低い親水性官能基を備えた第二高分子化合物を有する第二透湿膜とを備え、複数の仕切板は、第一透湿膜同士及び第二透湿膜同士が向かい合うように仕切板と間隔保持部材とを交互に積層されたものであり、第一透湿膜が向かい合う間に第一流路を、第二透湿膜が向かい合う間に第二流路を構成したものである。 The total heat exchange element in the present invention is a total heat exchange element including a partition plate having moisture permeability and a corrugated spacing member, and the partition plate includes a first polymer compound having a hydrophilic functional group. And a second moisture permeable membrane having a second polymer compound having a hydrophilic functional group having a polarity lower than that of the first polymer compound. The partition plates and the spacing members are alternately laminated so that the wet membranes and the second moisture permeable membranes face each other, and the first flow path is formed between the first moisture permeable membranes and the second moisture permeable membranes. The second flow path is configured while the two face each other.
また、本発明における全熱交換形換気装置は、室外の空気を室内へ取り込み、室内の空気を室外へ排出する全熱交換形換気装置であって、上記の全熱交換素子を備え、第一流路は、室内の空気を通風させる排気流路であり、第二流路は、室外の空気を通風させる給気流路である構成である。 The total heat exchange type ventilator according to the present invention is a total heat exchange type ventilator that takes in outdoor air into the room and discharges the indoor air to the outside. The path is an exhaust flow path for ventilating indoor air, and the second flow path is an air supply path for ventilating outdoor air.
上記構成により、全熱交換素子の仕切板の第一透湿膜に用いられる第一高分子化合物より極性の低い親水性官能基を備えた第二高分子化合物を仕切板の第二透湿膜に用いることにより、極性の低い親水性官能基を備えた第二高分子化合物を用いた第二透湿膜からは第一透湿膜より空気中の水分が透湿されにくくなるため、室内の湿度が低い場合など一定条件下において、第二流路に流れる空気から第一流路を流れる空気への水分移動を抑制して全熱交換素子に空気を流すことができる。すなわち、第一流路に室内の空気を流し、第二流路に室外の空気を流すことにより、室外の空気から室内の空気への水分移動を抑制して室外の空気を室内に取り込むことができる。結果として、乾燥した室内に室外の空気の水分を効率よく供給して湿度を上げることができる全熱交換素子及び全熱交換形換気装置を提供することができる。 With the above configuration, the second moisture permeable membrane of the partition plate is made of the second polymer compound having a hydrophilic functional group having a polarity lower than that of the first polymer compound used for the first moisture permeable membrane of the partition plate of the total heat exchange element. By using for the second moisture permeable membrane using the second polymer compound having a hydrophilic functional group having a low polarity, moisture in the air is less likely to be permeable to moisture than the first moisture permeable membrane. Under certain conditions, such as when the humidity is low, it is possible to suppress the movement of moisture from the air flowing through the second flow path to the air flowing through the first flow path and to flow air through the total heat exchange element. That is, by flowing indoor air through the first flow path and flowing outdoor air through the second flow path, the outdoor air can be taken into the room while suppressing moisture movement from the outdoor air to the indoor air. . As a result, it is possible to provide a total heat exchange element and a total heat exchange type ventilator that can efficiently supply moisture of outdoor air into a dry room to increase humidity.
本発明の実施形態について、図面を参照して説明する。 Embodiments of the present invention will be described with reference to the drawings.
図1に示すように、家1において、室外の空気を室内へ取り込み、室内の空気を室外へ排出する全熱交換素子4を有する全熱交換形換気装置2である。室内からの空気は、黒色矢印のように、全熱交換形換気装置2を介して屋外に放出される。また、室外の空気は、白色矢印のように、全熱交換形換気装置2を介して室内に取り入れられる。全熱交換形換気装置2は、空気循環を行うとともに、室内外の温度及び湿度を交換し、室内の環境を一定に保つ。 As shown in FIG. 1, in a house 1, a total heat exchange type ventilator 2 having a total heat exchange element 4 that takes outdoor air into the room and discharges indoor air to the outside. The air from the room is discharged to the outside through the total heat exchange type ventilator 2 as indicated by black arrows. The outdoor air is taken into the room through the total heat exchange type ventilator 2 as indicated by white arrows. The total heat exchange ventilator 2 circulates air and exchanges indoor and outdoor temperatures and humidity to keep the indoor environment constant.
全熱交換形換気装置2は、室内外の空気の温度及び湿度の交換を行う全熱交換素子4を有する。図2に示すように、全熱交換形換気装置2は、本体ケース3に全熱交換素子4を配置し、室内空気ファン5を駆動することで、室内空気を室内吸込口6から吸い込み、全熱交換素子4、室内空気ファン5を経由し、室外排出口7から室外へ排出する。 The total heat exchange type ventilator 2 has a total heat exchange element 4 for exchanging the temperature and humidity of indoor and outdoor air. As shown in FIG. 2, the total heat exchange type ventilator 2 has a total heat exchange element 4 disposed in the main body case 3 and drives the indoor air fan 5, thereby sucking indoor air from the indoor intake port 6, The heat is discharged from the outdoor discharge port 7 to the outside through the heat exchange element 4 and the indoor air fan 5.
また、室外空気ファン8を駆動することで、室外空気を室外吸込口9から吸い込み、全熱交換素子4、室外空気ファン8を経由し、室内給気口10から屋内へと取り入れる構成となっている。 In addition, by driving the outdoor air fan 8, outdoor air is sucked from the outdoor suction port 9 and taken into the indoor air supply port 10 through the total heat exchange element 4 and the outdoor air fan 8. Yes.
全熱交換素子4は、図3に示すように、仕切板41と間隔保持部材42とを備える。 As shown in FIG. 3, the total heat exchange element 4 includes a partition plate 41 and a spacing member 42.
方形の仕切板41とコルゲート形状の間隔保持部材42とを接着することにより、熱交換ブロック44a、44bを形成する。熱交換ブロック44aと熱交換ブロック44bとを交互に積層することにより、仕切板41と間隔保持部材42との間には、気流が通過する第一流路43aと第二流路43bとが形成される。このとき、第一流路43a及び第二流路43bは、流路の向きが90度ずつ交互に直交するように、熱交換ブロック44a、44bを積層する。全熱交換素子4では、仕切板41を介して、2種の気流の熱交換が行われる。 The square partition plate 41 and the corrugated spacing member 42 are bonded to form the heat exchange blocks 44a and 44b. By alternately laminating the heat exchange block 44a and the heat exchange block 44b, a first flow path 43a and a second flow path 43b through which airflow passes are formed between the partition plate 41 and the spacing member 42. The At this time, in the first flow path 43a and the second flow path 43b, the heat exchange blocks 44a and 44b are stacked so that the flow paths are alternately orthogonal by 90 degrees. In the total heat exchange element 4, heat exchange of two types of airflow is performed via the partition plate 41.
仕切板41は、図4に示すように、第一透湿膜411及び第二透湿膜412を有する。 As shown in FIG. 4, the partition plate 41 includes a first moisture permeable film 411 and a second moisture permeable film 412.
第一透湿膜411及び第二透湿膜412は、多孔質シートに高分子化合物を含有させたものである。多孔質シートには貫通孔としての細孔が多数存在しており、細孔の内部には第一高分子化合物または第二高分子化合物が充填され、多孔質シートの両面にも高分子化合物が塗布されることで第一透湿膜411または第二透湿膜412が形成される。このようにして形成された第一透湿膜411及び第二透湿膜412を張り合わせ、仕切板41とすることで、仕切板41の両面で、吸湿性能が異なる構成となっている。すなわち、第一透湿膜411は極性の高い親水性官能基を備えた第一高分子化合物を備え、第二透湿膜412は第一高分子化合物よりも極性の低い親水性官能基を備えた第二高分子化合物を備える。親水性官能基の極性の高いほど空気中の水分と親水性官能基が結合しやすくなり吸湿性能が高くなる。従って、仕切板41の第一透湿膜411は吸湿性能が高く、第二透湿膜412は第一透湿膜411より吸湿性能が低い。 The first moisture permeable membrane 411 and the second moisture permeable membrane 412 are a porous sheet containing a polymer compound. The porous sheet has a large number of pores as through holes, the inside of the pores is filled with the first polymer compound or the second polymer compound, and the polymer compound is also present on both sides of the porous sheet. By being applied, the first moisture permeable film 411 or the second moisture permeable film 412 is formed. The first moisture permeable film 411 and the second moisture permeable film 412 formed in this manner are bonded to form the partition plate 41, so that the moisture absorption performance is different on both surfaces of the partition plate 41. That is, the first moisture permeable membrane 411 includes a first polymer compound having a hydrophilic functional group having a high polarity, and the second moisture permeable membrane 412 includes a hydrophilic functional group having a polarity lower than that of the first polymer compound. A second polymer compound. The higher the polarity of the hydrophilic functional group, the easier it is for the moisture in the air and the hydrophilic functional group to bind to each other, resulting in higher moisture absorption performance. Accordingly, the first moisture permeable membrane 411 of the partition plate 41 has a high moisture absorption performance, and the second moisture permeable membrane 412 has a moisture absorption performance lower than that of the first moisture permeable membrane 411.
なお、全熱交換素子4の仕切板41として、ガスバリア性も重要な性質であり、第一透湿膜411と、第二透湿膜412とのいずれか少なくとも1つがガスバリア性を備えるものとする。 In addition, as the partition plate 41 of the total heat exchange element 4, the gas barrier property is also an important property, and at least one of the first moisture permeable film 411 and the second moisture permeable film 412 has the gas barrier property. .
間隔保持部材42は、図5(a)、(b)に示すように、コルゲート形状の間隔保持部材第一透湿膜421または間隔保持部材第二透湿膜422を備える。間隔保持部材第一透湿膜421及び間隔保持部材第二透湿膜422の構成は、上記仕切板41における第一透湿膜411及び第二透湿膜412と同様である。 As shown in FIGS. 5A and 5B, the interval holding member 42 includes a corrugated interval holding member first moisture permeable membrane 421 or an interval holding member second moisture permeable membrane 422. The configurations of the first moisture permeable membrane 421 and the second moisture permeable membrane 422 are the same as the first moisture permeable membrane 411 and the second moisture permeable membrane 412 in the partition plate 41.
間隔保持部材第一透湿膜421または間隔保持部材第二透湿膜422は、向かい合う仕切板41の面に用いられる透湿膜と同じ透湿膜を有する。すなわち、図5(a)に示されるように第一流路43aに配置される間隔保持部材42であれば、極性の高い官能基を備えた第一高分子化合物を担持した間隔保持部材第一透湿膜421が配置される。また、図5(b)に示されるように第二流路43bに配置される間隔保持部材42であれば、第一高分子化合物よりも極性の低い官能基を備えた第二高分子化合物を担持した間隔保持部材第二透湿膜422が配置される構成となっている。この構成により、間隔保持部材42の表面にも空気中の水分が吸収されるため、空気中の水分を吸収する面積が増える。間隔保持部材42の表面に吸収された水分は、仕切板41と間隔保持部材42とを接着した部分を介して仕切板41に移動する。これにより間隔保持部材42から空気中の水分を吸収しない場合と比較して水分をより効率的に交換することができる。 The interval holding member first moisture permeable membrane 421 or the interval holding member second moisture permeable membrane 422 has the same moisture permeable membrane as the moisture permeable membrane used on the surface of the partition plate 41 facing each other. That is, as shown in FIG. 5 (a), if the spacing member 42 is disposed in the first flow path 43a, the spacing member first transparent carrying a first polymer compound having a highly polar functional group is used. A wet film 421 is disposed. Moreover, if it is the space | interval holding member 42 arrange | positioned at the 2nd flow path 43b as FIG.5 (b) shows, the 2nd polymer compound provided with the functional group whose polarity is lower than a 1st polymer compound will be used. The supported spacing member second moisture permeable membrane 422 is arranged. With this configuration, moisture in the air is also absorbed on the surface of the spacing member 42, so the area for absorbing moisture in the air increases. Moisture absorbed by the surface of the spacing member 42 moves to the partition plate 41 through a portion where the partition plate 41 and the spacing member 42 are bonded. Thereby, compared with the case where the water | moisture content in air is not absorbed from the space | interval holding member 42, a water | moisture content can be replaced | exchanged more efficiently.
本実施の形態においては、仕切板41及び間隔保持部材42に用いられる多孔質シートとして、例えばポリテトラフルオロエチレンを用いる。第一透湿膜411、421には、(3‐アクリルアミドプロピル)トリメチルアンモニウムクロリドを極性の高い第一高分子化合物として担持させる。第二透湿膜412、422には、アリルアミンを極性の低い第二高分子化合物として担持させる。 In the present embodiment, for example, polytetrafluoroethylene is used as the porous sheet used for the partition plate 41 and the spacing member 42. The first moisture permeable membranes 411 and 421 carry (3-acrylamidopropyl) trimethylammonium chloride as a first polymer compound having a high polarity. On the second moisture permeable membranes 412, 422, allylamine is supported as a second polymer compound having low polarity.
熱交換ブロック44aは、図5(a)に示すように、仕切板41の第一高分子化合物を担持する第一透湿膜411側の面に、間隔保持部材第一透湿膜421を備えた間隔保持部材42を接着したものである。熱交換ブロック44bは、図5(b)に示すように、仕切板41の第二高分子化合物を担持する第二透湿膜412側の面に、同じく間隔保持部材第二透湿膜422を備えた間隔保持部材42を接着したものである。 As shown in FIG. 5A, the heat exchange block 44 a includes a spacing member first moisture permeable membrane 421 on the surface of the partition plate 41 on the first moisture permeable membrane 411 side that supports the first polymer compound. The interval holding member 42 is bonded. As shown in FIG. 5 (b), the heat exchange block 44 b has a spacing member second moisture permeable membrane 422 on the surface of the partition plate 41 on the second moisture permeable membrane 412 side carrying the second polymer compound. The interval holding member 42 provided is bonded.
全熱交換素子4は、この熱交換ブロック44a、44bを、図3に示すように、交互に積層することで構成される。すなわち、仕切板41の第一透湿膜411同士及び第二透湿膜412同士が向かい合うように間隔保持部材42を介して積層される。 The total heat exchange element 4 is configured by alternately stacking the heat exchange blocks 44a and 44b as shown in FIG. That is, the first moisture permeable membranes 411 and the second moisture permeable membranes 412 of the partition plate 41 are laminated via the spacing member 42 so as to face each other.
積層した熱交換ブロック44a、44bの間に形成される第一流路43aは、第一透湿膜411同士が向かい合う通風路であり、第二流路43bは、第二透湿膜412同士が向かい合う通風路であるものとする。 The first flow path 43a formed between the stacked heat exchange blocks 44a and 44b is a ventilation path where the first moisture permeable films 411 face each other, and the second flow path 43b faces the second moisture permeable films 412. It shall be a ventilation path.
本実施の形態の全熱交換素子4及び全熱交換形換気装置2の動作について、説明する。 Operations of the total heat exchange element 4 and the total heat exchange type ventilator 2 of the present embodiment will be described.
本実施の形態における全熱交換素子4は、第一流路43aと第二流路43bとで吸湿性能が異なる透湿膜を仕切板41の一方の面と他方の面に各々担持することで、仕切板41の一方の面と他方の面で透湿を開始する湿度が異なる。 The total heat exchange element 4 in the present embodiment carries moisture permeable membranes having different moisture absorption performances in the first flow path 43a and the second flow path 43b respectively on one surface and the other surface of the partition plate 41, The humidity at which moisture transmission starts is different between one surface of the partition plate 41 and the other surface.
通常であれば、湿度が高い空気から低い空気へと仕切板41を介して水分移動が行われる。本実施の形態における仕切板41の第一透湿膜411は例えば湿度が20%で透湿が開始され、第二透湿膜412は、第一透湿膜411よりも高い湿度、例えば湿度が60%前後の際に透湿が開始されるため、第一流路43aを通過する空気よりも第二流路43bを通過する空気の方が湿度が高い場合であっても、一定条件下においては第二流路43b側からの水分移動を抑制することができる。すなわち、第二流路43bを通過する空気は、湿度を維持したまま、全熱交換素子4を通過することができる。 Normally, moisture is transferred from the high humidity air to the low air via the partition plate 41. In the present embodiment, the first moisture permeable membrane 411 of the partition plate 41 starts moisture permeability at a humidity of 20%, for example, and the second moisture permeable membrane 412 has a higher humidity than the first moisture permeable membrane 411, for example, humidity. Moisture permeability starts at around 60%, so even if the air passing through the second flow path 43b is higher in humidity than the air passing through the first flow path 43a, under certain conditions Moisture movement from the second flow path 43b side can be suppressed. That is, the air passing through the second flow path 43b can pass through the total heat exchange element 4 while maintaining the humidity.
例えば、全熱交換形換気装置2において、第一流路43aを流れる室内空気の湿度が30%の場合において、第二流路43bを流れる室外空気の湿度が20%以下であれば、通常通り室内空気から室外空気へ第一透湿膜411および第二透湿膜412を介して水分移動が行われる。 For example, in the total heat exchange ventilator 2, when the humidity of the indoor air flowing through the first flow path 43a is 30% and the humidity of the outdoor air flowing through the second flow path 43b is 20% or less, Moisture is transferred from the air to the outdoor air through the first moisture permeable membrane 411 and the second moisture permeable membrane 412.
しかし、一定条件下、すなわち、室外空気の湿度が40%前後の場合には、湿度が60%に達していないため第二透湿膜412において透湿は開始されず、室外空気は湿度を維持したまま、全熱交換素子4を通過する。すなわち、室内空気より室外空気の湿度が高いにもかかわらず、室外空気から室内空気への水分移動が抑制される。 However, under certain conditions, that is, when the humidity of the outdoor air is around 40%, the humidity does not reach 60%, so moisture permeability does not start in the second moisture permeable membrane 412, and the outdoor air maintains the humidity. As it is, it passes through the total heat exchange element 4. That is, although the outdoor air has a higher humidity than the room air, moisture movement from the outdoor air to the room air is suppressed.
室外湿度の湿度が70%以上の高湿状態であれば、通常通り第二透湿膜412は透湿を開始し、室外空気から室内空気へ第二透湿膜412から第一透湿膜411へと水分移動が行われる。 If the humidity of the outdoor humidity is 70% or higher, the second moisture permeable membrane 412 starts moisture permeability as usual, and the second moisture permeable membrane 412 to the first moisture permeable membrane 411 are transferred from the outdoor air to the indoor air. Moisture transfer is performed.
なお、透湿膜から透湿が開始される湿度は、透湿膜に担持する高分子化合物の種類、すなわち高分子化合物の親水性官能基の極性の強さによって異なる。 The humidity at which moisture permeation starts from the moisture permeable membrane varies depending on the type of the polymer compound supported on the moisture permeable membrane, that is, the strength of the polarity of the hydrophilic functional group of the polymer compound.
また、本実施の形態における全熱交換形換気装置2において、第一流路43aは、室内吸込口6から吸い込んだ室内空気を室外排出口7から室外へ排出する排気流路であり、第二流路43bは、室外吸込口9から吸い込んだ室外空気を室内給気口10から室内へ取りいれる給気流路である。室外の空気は、所定の相対湿度に達していない場合は、全熱交換素子4において水分移動は行われない。 Moreover, in the total heat exchange type ventilator 2 in this Embodiment, the 1st flow path 43a is an exhaust flow path which discharges the indoor air inhaled from the indoor suction inlet 6 to the outdoor from the outdoor discharge opening 7, The passage 43b is an air supply passage through which outdoor air sucked from the outdoor air inlet 9 is taken into the room from the indoor air inlet 10. When the outdoor air does not reach a predetermined relative humidity, moisture transfer is not performed in the total heat exchange element 4.
例えば、冬季など室内の湿度が例えば30%と低い場合において、室外の空気が20%以下や70%以上であるときは、全熱交換素子4を介して室内の空気と室外の空気とで全熱交換が行われる。室外の空気が40%前後であるときは、第二面41bにおいて水分移動は抑制され、室外の空気をそのまま室内に供給することができる。 For example, when the indoor humidity is as low as 30%, for example, in winter, when the outdoor air is 20% or less or 70% or more, the indoor air and the outdoor air are all transmitted via the total heat exchange element 4. Heat exchange takes place. When the outdoor air is around 40%, moisture movement is suppressed on the second surface 41b, and the outdoor air can be supplied into the room as it is.
このように、室内の空気が低い場合など一定条件下において、第二流路43bを流れる空気から第一流路43aを流れる空気への水分移動を抑制して、全熱交換素子に空気を流すことができる。すなわち、全熱交換形換気装置において、室外の空気の水分を室内の空気へ移動するのを抑制し、室外の空気を室内に取り込むことができる。そのため、乾燥した室内に室外の空気の水分を効率よく供給して湿度を上げることができる。 In this way, under certain conditions such as when the indoor air is low, the moisture movement from the air flowing through the second flow path 43b to the air flowing through the first flow path 43a is suppressed, and the air flows through the total heat exchange element. Can do. That is, in the total heat exchange ventilator, the outdoor air can be prevented from moving to the indoor air, and the outdoor air can be taken into the room. Therefore, the humidity of the outdoor air can be efficiently supplied to the dry room to increase the humidity.
なお、仕切板41及び間隔保持部材42に用いられる材料は、本実施の形態に限られるものではなく、多孔質シートは、透湿性と伝熱性を兼ね備えたものであり、
ポリテトラフルオロエチレンやエチレン‐テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン‐六フッ化プロピレン共重合体などのフッ素系基材などが挙げられる。
The material used for the partition plate 41 and the spacing member 42 is not limited to the present embodiment, and the porous sheet has both moisture permeability and heat conductivity.
Examples thereof include fluorine-based substrates such as polytetrafluoroethylene, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, and polytetrafluoroethylene-hexafluoropropylene copolymer.
なお、多孔質シートの細孔の径の平均は例えば0.01〜100μm、より好ましくは0.5〜5μmであって、厚さは例えば0.1〜200μm、より好ましくは1〜60μmのものである。細孔径が0.01μmを下回ると、高分子化合物が多孔質シートの細孔内に充填しにくくなり、多孔質シート内部に微細な空間が生じて水の移動抵抗となるため、仕切板41として透湿性能が低下する恐れがある。細孔の径が100μmを上回ると、多孔質シート内部に充填した高分子化合物が、水の吸脱着によってその体積を変化させた場合に、多孔質シートから抜け落ちてしまいガスバリア性が低下する可能性がある。さらに多孔質シートの厚みが0.1μmを下回ると多孔質シートの強度が低くなりすぎて仕切板41とした場合に強度が不足してしまう恐れがある。多孔質シートの厚みが200μmを上回ると、水が多孔質シート内部を通過する移動距離が長くなり、水の移動抵抗が増加するため、仕切板41とした場合に透湿性能が不足してしまう恐れがある。 The average pore diameter of the porous sheet is, for example, 0.01-100 μm, more preferably 0.5-5 μm, and the thickness is, for example, 0.1-200 μm, more preferably 1-60 μm. It is. When the pore diameter is less than 0.01 μm, it becomes difficult for the polymer compound to be filled in the pores of the porous sheet, and a fine space is formed inside the porous sheet, resulting in water movement resistance. There is a risk that the moisture permeability will be reduced. If the pore diameter exceeds 100 μm, the polymer compound filled inside the porous sheet may fall out of the porous sheet when the volume is changed by adsorption / desorption of water, and the gas barrier property may decrease. There is. Furthermore, when the thickness of the porous sheet is less than 0.1 μm, the strength of the porous sheet becomes too low, and the strength may be insufficient when the partition plate 41 is used. If the thickness of the porous sheet exceeds 200 μm, the moving distance through which water passes through the inside of the porous sheet becomes long and the movement resistance of the water increases. Therefore, when the partition plate 41 is used, the moisture permeability is insufficient. There is a fear.
なお、本発明の多孔質シートは、例えば空隙率が5〜95%、より好ましくは50〜95%のものである。空隙率が5%を下回ると、空隙の割合が小さくなりすぎて、仕切板41とした場合に透湿性能が不足してしまう恐れがある。また、空隙率が95%を上回ると、空隙の割合が大きくなりすぎて仕切板41とした場合に強度が不足してしまう恐れがある。 The porous sheet of the present invention has a porosity of, for example, 5 to 95%, more preferably 50 to 95%. When the porosity is less than 5%, the ratio of the voids becomes too small, and when the partition plate 41 is used, the moisture permeability may be insufficient. On the other hand, if the porosity exceeds 95%, the ratio of the voids becomes too large, and the partition plate 41 may have insufficient strength.
なお、多孔質シートが薄い場合や光の透過性の高い素材を用いた場合、光重合開始剤を用いることで熱重合開始剤の場合に必要となる加熱乾燥炉が不要となるため、より少ないエネルギーで生産することが可能となり好適である。 In addition, when the porous sheet is thin or when a material with high light transmittance is used, the use of a photopolymerization initiator eliminates the need for a heating and drying furnace in the case of a thermal polymerization initiator, so there are fewer It is possible to produce with energy, which is preferable.
なお、本発明の多孔質シートの材質は耐水性を備えていれば特に制限は無く、無機材料ではガラス、アルミナまたはシリカなどのセラミックスなどが挙げられる。また、有機材料では、ポリエチレンやポリプロピレン、ポリウレタン、ポリテトラフルオロエチレン、セルロースアセテート、ニトロセルロース、麻、ポリエステル、ポリケトン、ポリアミド、エチレン‐テトラフルオロエチレン共重合体、ポリテトラフルオロエチレン‐パーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン‐六フッ化プロピレン共重合体などが挙げられる。形状はフィルム状のものや、不織布、織布など前記条件を満たすものであれば特に制限は無く、単一材料からなるものでも複合材料からなるものでも良い。特に親水性の多孔質シートであるガラス、アルミナ、シリカ、ポリウレタン、セルロースアセテート、ニトロセルロース、麻、ポリアミドなどが好ましい。 The material of the porous sheet of the present invention is not particularly limited as long as it has water resistance, and examples of inorganic materials include glass, ceramics such as alumina or silica, and the like. Organic materials include polyethylene, polypropylene, polyurethane, polytetrafluoroethylene, cellulose acetate, nitrocellulose, hemp, polyester, polyketone, polyamide, ethylene-tetrafluoroethylene copolymer, and polytetrafluoroethylene-perfluoroalkyl vinyl ether. Examples thereof include a polymer and a polytetrafluoroethylene-hexafluoropropylene copolymer. The shape is not particularly limited as long as it satisfies the above conditions, such as a film shape, a nonwoven fabric, a woven fabric, and the shape may be a single material or a composite material. In particular, hydrophilic porous sheets such as glass, alumina, silica, polyurethane, cellulose acetate, nitrocellulose, hemp, and polyamide are preferable.
なお、本発明の細孔は直線的なものより、曲線部を備えているもしくは分岐しているか途中で孔径に変化を生じているなどの複雑な形状がより好ましい。これは、特に細孔が直線的な形状の場合、水の吸脱着によって親水性高分子化合物3がその体積を変化させることで、多孔質シートから抜け落ちてしまいガスバリア性が低下する可能性が他の形状に比べ高いためである。 It should be noted that the pores of the present invention are more preferably a complex shape such as having a curved portion or being branched or having a change in the pore diameter in the middle, rather than being linear. This is because, in particular, when the pores have a linear shape, the hydrophilic polymer compound 3 changes its volume due to adsorption / desorption of water, so that it may fall out of the porous sheet and the gas barrier property may decrease. This is because it is higher than the shape.
なお、本稿の実施の形態では多孔質シートの両面に第一高分子化合物または第二高分子化合物が塗布されているが、片面に塗布される場合でも効果は同じである。 In the embodiment of the present paper, the first polymer compound or the second polymer compound is applied to both surfaces of the porous sheet, but the effect is the same even when applied to one surface.
また、第一透湿膜411、421に用いられる極性の高い第一高分子化合物としては、例えば(3‐アクリルアミドプロピル)トリメチルアンモニウムクロリド、[3‐(メタクリロイルアミノ)プロピル]トリメチルアンモニウムクロリド3、(ビニルベンジル)トリメチルアンモニウムクロリド、[2‐(メタクリロイルオキシ)エチル]トリメチルアンモニウムクロリド、トリメチルビニルアンモニウムブロミド、ジアリルジメチルアンモニウムクロリドなどの第四級アンモニウムやその誘導体が挙げられる。 Examples of the first polymer compound having high polarity used for the first moisture permeable membranes 411 and 421 include (3-acrylamidopropyl) trimethylammonium chloride, [3- (methacryloylamino) propyl] trimethylammonium chloride 3, ( And quaternary ammonium such as vinylbenzyl) trimethylammonium chloride, [2- (methacryloyloxy) ethyl] trimethylammonium chloride, trimethylvinylammonium bromide, diallyldimethylammonium chloride and derivatives thereof.
また、第二透湿膜412、422に用いられる極性の低い第二高分子化合物としては、例えばアリルアミン、アクリルアミド、メタクリルアミドなどの第一級アミンや、その誘導体が挙げられる。また、アクリル酸2‐(ジメチルアミノ)エチル、メタクリル酸2‐(ジメチルアミノ)エチル、メタクリル酸2‐(ジメチルアミノ)プロピル、アクリル酸3‐(ジメチルアミノ)プロピル、N‐[3‐(ジメチルアミノ)プロピル]メタクリルアミドなどの第二級アミン、第三級アミンやその誘導体も挙げられる。 Examples of the second polymer compound having a low polarity used for the second moisture permeable membranes 412 and 422 include primary amines such as allylamine, acrylamide and methacrylamide, and derivatives thereof. Also, 2- (dimethylamino) ethyl acrylate, 2- (dimethylamino) ethyl methacrylate, 2- (dimethylamino) propyl methacrylate, 3- (dimethylamino) propyl acrylate, N- [3- (dimethylamino) ) Propyl] secondary amines such as methacrylamide, tertiary amines and derivatives thereof.
上述のように、本実施の形態における全熱交換素子4は、透湿性を有する仕切板41とコルゲート形状の間隔保持部材42とを有する全熱交換素子4であって、仕切板41は、第一高分子化合物を有する第一透湿膜411と、第一高分子化合物よりも極性の低い第二高分子化合物を有する第二透湿膜412とを備え、複数の仕切板41は、第一透湿膜411同士及び第二透湿膜412同士が向かい合うように、仕切板41とコルゲート形状の間隔保持部材42とを交互に積層し接着したものであり、第一透湿膜411が向かい合う間に第一流路43aを、第二透湿膜412が向かい合う間に第二流路43bを形成した構成である。 As described above, the total heat exchange element 4 in the present embodiment is the total heat exchange element 4 having the moisture-permeable partition plate 41 and the corrugated spacing member 42, The first moisture permeable membrane 411 having one polymer compound and the second moisture permeable membrane 412 having a second polymer compound having a polarity lower than that of the first polymer compound, The partition plates 41 and the corrugated spacers 42 are alternately laminated and bonded so that the moisture permeable membranes 411 and the second moisture permeable membrane 412 face each other, while the first moisture permeable membrane 411 faces each other. The first flow path 43a is formed in the second flow path 43b while the second moisture permeable membrane 412 faces each other.
これにより、全熱交換素子4の仕切板41の第一透湿膜411に用いられる第一高分子化合物より極性の低い第二高分子化合物を仕切板41の第二透湿膜412に用いることで、極性の低い第二高分子化合物を用いた第二透湿膜412からは第一透湿膜411より水分が吸収されにくくなるため、室内の湿度が低い場合など一定条件下において、第二流路43bに流れる空気から第一流路43aを流れる空気への水分移動を抑制して全熱交換素子4に空気を流すことができる。 Accordingly, the second polymer compound having a lower polarity than the first polymer compound used for the first moisture permeable membrane 411 of the partition plate 41 of the total heat exchange element 4 is used for the second moisture permeable membrane 412 of the partition plate 41. In the second moisture permeable membrane 412 using the second polymer compound having a low polarity, moisture is less likely to be absorbed than the first moisture permeable membrane 411. Moisture movement from the air flowing through the flow path 43b to the air flowing through the first flow path 43a can be suppressed, and the air can flow through the total heat exchange element 4.
また、第一高分子化合物は、強塩基性の物質であり、第二高分子化合物は、弱塩基性の物質であることが好ましい。 The first polymer compound is preferably a strongly basic substance, and the second polymer compound is preferably a weakly basic substance.
また、間隔保持部材42は、間隔保持部材42を介して向かい合う透湿膜に用いられる吸湿剤と同じ吸湿剤を有することが好ましい。 Moreover, it is preferable that the space | interval holding member 42 has the same hygroscopic agent as the hygroscopic agent used for the moisture-permeable film which faces through the space | interval holding member 42.
また、全熱交換形換気装置2は、室外の空気を室内へ取り込み、室内の空気を室外へ排出する全熱交換形換気装置2であって、上記のいずれかに記載の全熱交換素子4を備え、第一流路43aは、室内の空気を通風させる排気流路であり、第二流路43bは、室外の空気を通風させる給気流路である。これにより、第一面41a側の流路に室内の空気を流し、第二面41b側の流路に室外の空気を流すことにより、室外の空気から室内の空気への水分移動を抑制して室外の空気を室内に取り込むことができる。結果として、乾燥した室内に室外の空気の水分を効率よく供給して湿度を上げることができる。 The total heat exchange type ventilator 2 is a total heat exchange type ventilator 2 that takes outdoor air into the room and discharges the indoor air to the outside, and the total heat exchange element 4 according to any one of the above. The first flow path 43a is an exhaust flow path for ventilating indoor air, and the second flow path 43b is an air supply flow path for ventilating outdoor air. Thereby, indoor air is flowed through the flow path on the first surface 41a side, and outdoor air is flowed through the flow path on the second surface 41b side, thereby suppressing moisture movement from the outdoor air to the indoor air. Outdoor air can be taken into the room. As a result, the humidity of the outdoor air can be efficiently supplied to the dry room to increase the humidity.
以上のように本発明にかかる全熱交換素子及び全熱交換形換気装置は、一定条件下において、室外の空気から室内の空気への水分移動を抑制して室外の空気を室内に取り込むことができ、乾燥した室内に室外の空気の水分を効率よく供給して湿度を上げることを可能とするものであるので、全熱交換素子及び全熱交換形換気装置等として有用である。 As described above, the total heat exchange element and the total heat exchange type ventilator according to the present invention can take outdoor air into the room while suppressing moisture movement from the outdoor air to the indoor air under certain conditions. It is possible to increase the humidity by efficiently supplying the moisture of outdoor air into a dry room, and is useful as a total heat exchange element, a total heat exchange type ventilator, and the like.
1 家
2 全熱交換形換気装置
3 本体ケース
4 全熱交換素子
5 室内空気ファン
6 室内吸込口
7 室外排出口
8 室外空気ファン
9 室外吸込口
10 室内給気口
41 仕切板
41a 第一面
41b 第二面
411 第一透湿膜
412 第二透湿膜
42 間隔保持部材
421 間隔保持部材第一透湿膜
422 間隔保持部材第二透湿膜
43a 第一流路
43b 第二流路
44a 熱交換ブロック
44b 熱交換ブロック
DESCRIPTION OF SYMBOLS 1 House 2 Total heat exchange type ventilator 3 Main body case 4 Total heat exchange element 5 Indoor air fan 6 Indoor air inlet 7 Outdoor air outlet 8 Outdoor air fan 9 Outdoor air inlet 10 Indoor air inlet 41 Partition plate 41a First surface 41b Second surface 411 First moisture permeable membrane 412 Second moisture permeable membrane 42 Interval holding member 421 Interval holding member first moisture permeable membrane 422 Interval holding member second moisture permeable membrane 43a First channel 43b Second channel 44a Heat exchange block 44b Heat exchange block
Claims (4)
前記仕切板は、親水性官能基を備えた第一高分子化合物を有する第一透湿膜と、前記第一高分子化合物よりも極性の低い親水性官能基を備えた第二高分子化合物を有する第二透湿膜とを備え、 複数の前記仕切板は、前記第一透湿膜同士及び前記第二透湿膜同士が向かい合うように前記仕切板と前記間隔保持部材とを交互に積層されたものであり、前記第一透湿膜が向かい合う間に第一流路を、前記第二透湿膜が向かい合う間に第二流路を構成した全熱交換素子。 A total heat exchange element comprising a partition plate having moisture permeability and a corrugated spacing member,
The partition plate includes a first moisture permeable membrane having a first polymer compound having a hydrophilic functional group, and a second polymer compound having a hydrophilic functional group having a polarity lower than that of the first polymer compound. A plurality of partition plates, wherein the partition plates and the spacing members are alternately laminated so that the first moisture permeable membranes and the second moisture permeable membranes face each other. A total heat exchange element comprising a first channel while the first moisture permeable membrane faces and a second channel while the second moisture permeable membrane faces.
前記第二高分子化合物は、弱塩基性の物質である請求項1に記載の全熱交換素子。 The first polymer compound is a strongly basic substance,
The total heat exchange element according to claim 1, wherein the second polymer compound is a weakly basic substance.
前記請求項1ないし3のいずれかに記載の全熱交換素子を備え、
前記第一流路は、室内の空気を通風させる排気流路であり、前記第二流路は、室外の空気を通風させる給気流路である全熱交換形換気装置。 It is a total heat exchange type ventilator that takes in outdoor air into the room and discharges indoor air to the outside,
The total heat exchange element according to any one of claims 1 to 3,
The total heat exchange type ventilator, wherein the first flow path is an exhaust flow path for ventilating indoor air, and the second flow path is an air supply flow path for ventilating outdoor air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016129570A JP2018004134A (en) | 2016-06-30 | 2016-06-30 | Total heat exchange element and total heat exchange-type ventilation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016129570A JP2018004134A (en) | 2016-06-30 | 2016-06-30 | Total heat exchange element and total heat exchange-type ventilation device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018004134A true JP2018004134A (en) | 2018-01-11 |
Family
ID=60948851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016129570A Pending JP2018004134A (en) | 2016-06-30 | 2016-06-30 | Total heat exchange element and total heat exchange-type ventilation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018004134A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020183841A (en) * | 2019-05-09 | 2020-11-12 | ダイキン工業株式会社 | Total heat exchange element |
WO2020226048A1 (en) * | 2019-05-09 | 2020-11-12 | ダイキン工業株式会社 | Method for using sheet-shaped member |
CN115435430A (en) * | 2022-09-30 | 2022-12-06 | 青岛海尔空调器有限总公司 | Whole heat exchange core, new fan |
-
2016
- 2016-06-30 JP JP2016129570A patent/JP2018004134A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020183841A (en) * | 2019-05-09 | 2020-11-12 | ダイキン工業株式会社 | Total heat exchange element |
WO2020226048A1 (en) * | 2019-05-09 | 2020-11-12 | ダイキン工業株式会社 | Method for using sheet-shaped member |
WO2020226047A1 (en) * | 2019-05-09 | 2020-11-12 | ダイキン工業株式会社 | Total heat exchange element |
JPWO2020226048A1 (en) * | 2019-05-09 | 2021-10-28 | ダイキン工業株式会社 | How to use the sheet-shaped member |
CN115435430A (en) * | 2022-09-30 | 2022-12-06 | 青岛海尔空调器有限总公司 | Whole heat exchange core, new fan |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5506441B2 (en) | Total heat exchange element and total heat exchanger | |
US20140262125A1 (en) | Energy exchange assembly with microporous membrane | |
US10317095B2 (en) | Counter-flow energy recovery ventilator (ERV) core | |
KR100621716B1 (en) | Total heat exchanging element | |
WO1984001817A1 (en) | Heat exchanger | |
JP2008089199A (en) | Total enthalpy heat exchanger | |
JP2018004134A (en) | Total heat exchange element and total heat exchange-type ventilation device | |
JP2018004133A (en) | Total heat exchange element and total heat exchange-type ventilation device | |
JP2015169401A (en) | heat exchange element and heat exchanger | |
JP2017058118A (en) | Paper for total heat exchange element, total heat exchange element and process of manufacture of paper for total heat exchange element | |
JP2020051655A (en) | Heat exchange element and heat exchange type ventilation device using the same | |
JP6822517B2 (en) | Total heat exchange element | |
JP6570345B2 (en) | Air conditioning system | |
JPH09280765A (en) | Heat-exchange element | |
JP2012030192A (en) | Dehumidifier | |
JP2023105326A (en) | Heat exchange element and heat exchange type ventilating device using the same | |
JP2005288216A (en) | Latent heat exchange membrane | |
JP6262445B2 (en) | Total heat exchanger using water vapor permselective membrane | |
KR100837023B1 (en) | Total heat exchanging element and total heat exchanger | |
JP2017015369A (en) | Heat exchanging element and humidity adjuster element | |
US11644248B2 (en) | Total heat exchange element and total heat exchanger | |
WO2020226048A1 (en) | Method for using sheet-shaped member | |
JP6167325B2 (en) | Partition member for total heat exchange element, total heat exchange element and heat exchange type ventilator using the same | |
JP2022083366A (en) | Total heat exchange type ventilation unit with less contamination | |
JP2019158319A (en) | Total enthalpy heat exchange element and total enthalpy heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20190118 |