WO2015012398A1 - Device provided with moisture-absorbing/releasing membrane, water vapor separator provided with device having moisture-absorbing/releasing membrane, and heat exchanger - Google Patents

Device provided with moisture-absorbing/releasing membrane, water vapor separator provided with device having moisture-absorbing/releasing membrane, and heat exchanger Download PDF

Info

Publication number
WO2015012398A1
WO2015012398A1 PCT/JP2014/069739 JP2014069739W WO2015012398A1 WO 2015012398 A1 WO2015012398 A1 WO 2015012398A1 JP 2014069739 W JP2014069739 W JP 2014069739W WO 2015012398 A1 WO2015012398 A1 WO 2015012398A1
Authority
WO
WIPO (PCT)
Prior art keywords
moisture
releasing
carrier
moisture absorbing
film
Prior art date
Application number
PCT/JP2014/069739
Other languages
French (fr)
Japanese (ja)
Inventor
裕 渡邊
明彦 堀部
Original Assignee
国立大学法人岡山大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岡山大学 filed Critical 国立大学法人岡山大学
Priority to JP2015528361A priority Critical patent/JP6352915B2/en
Publication of WO2015012398A1 publication Critical patent/WO2015012398A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0014Recuperative heat exchangers the heat being recuperated from waste air or from vapors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a technology for performing heat exchange, and mainly relates to a device having a hygroscopic membrane for performing both sensible heat and latent heat exchange, and a steam separator having a device having the hygroscopic membrane. And a heat exchanger.
  • the living space As part of high-efficiency use of energy, the living space has been made highly airtight. Therefore, it is required to keep indoor spaces such as residences, offices, commercial facilities, gymnasiums, event venues, factories, and automobiles in a sanitary air environment while achieving high airtightness.
  • indoor spaces such as residences, offices, commercial facilities, gymnasiums, event venues, factories, and automobiles
  • high airtightness if the ventilation of the living environment is sparse due to high airtightness, sick house syndrome due to air quality deterioration may be induced. For this reason, continuous ventilation for 24 hours is desirable under conditions where a person is present indoors or in a vehicle.
  • air from the room is circulated and exhausted through one of the two flow passages in contact with each other through a heat exchange structure having a water-permeable thin film such as Japanese paper.
  • a ventilator that circulates air from the outside and introduces it into the room in the other flow passage is commercially available as a total heat exchanger.
  • this ventilation device heat exchange and moisture transfer are performed between indoor air and outdoor air via Japanese paper or the like provided in the structure.
  • indoor air is hot and high humidity
  • outside air is low and low humidity.
  • the ventilator By exchanging heat with the ventilator, the air from the room is warmed by the air from the room, and the water vapor contained in the room moves to the air outside the room through the Japanese paper, which also moves the moisture. . Accordingly, the outside air is heated and humidified by the air from the room and is introduced into the room.
  • Patent Document 1 a moisture absorbent is supported on the surface of a plate material and the like, and is brought into contact with air having a high relative humidity to adsorb water vapor.
  • a desiccant ventilation system has been proposed in which water vapor is transferred to air to be humidified by bringing a plate material carrying an agent into contact therewith.
  • a film including a carrier, an opening formed in the carrier, and an absorption / release agent formed in the opening to absorb and release moisture.
  • a device comprising a hygroscopic film having a portion is provided.
  • the film part has airtightness.
  • the device provided with the moisture absorbing / releasing film is preferably configured to have airtightness.
  • FIG.1 (a) is a perspective view of the device provided with the moisture absorption / release film
  • FIG.1 (b) is the sectional drawing.
  • FIG. 2A is a perspective view of a device including a hygroscopic film using a mesh material as a carrier according to Example 2, and
  • FIG. 2B is a partially enlarged view thereof.
  • FIG. 3 is an explanatory diagram of a shell and tube heat exchanger according to Embodiment 3 of the present invention.
  • 4A and 4B are explanatory views of a device having a mesh-like hygroscopic film used in a shell-and-tube heat exchanger, where FIG. 4A is an overall explanatory view, and FIG.
  • FIG. 4B is an enlarged view of the film portion.
  • (C) is explanatory drawing of a movement of a water
  • (d) is explanatory drawing of the state of the moisture absorption / release agent and binder in an opening part.
  • FIG. 5 is an explanatory diagram of a plate fin type total heat exchanger according to a fourth embodiment of the present invention.
  • FIG. 6 is a schematic diagram of humidity and temperature changes in outdoor air and indoor air that pass through a plate fin-type total heat exchanger according to Embodiment 4 of the present invention.
  • FIG. 7 (a) is a perspective view of a device provided with a hygroscopic film according to Example 5 of the present invention
  • FIG. 7 (b) is a partial cross-sectional view thereof
  • FIG. 7 (c) is for fixing the device. It is sectional drawing of a rivet.
  • FIG. 8 is a cross-sectional view of a heat exchanger according to Embodiment 6 of the present invention.
  • FIG. 9 is a partially transparent perspective view of the heat exchanger according to the ninth embodiment of the present invention.
  • FIG. 10A is a partially transparent view of the heat exchanger according to the ninth embodiment of the present invention viewed from the front side
  • FIG. 10B is a plan view of the front side
  • FIG. FIG. 10 (d) is a right side view thereof.
  • FIG. 11 is a graph showing the moisture absorption rate relative to the relative humidity in an example of the moisture absorbing / releasing agent.
  • FIG. 11 is a graph showing the moisture absorption rate relative to the relative humidity in an example of the moisture absorbing / releasing agent.
  • FIG. 12 is a graph showing the correlation between the average particle diameter of the moisture-absorbing / releasing agent and the moisture permeability.
  • FIG. 13 is an explanatory diagram of a comparative test result of moisture permeability and air permeability of the moisture permeable agent sheet.
  • a device having a moisture absorbing / releasing film a carrier, a plurality of openings formed in the carrier, and an absorption / release that absorbs and releases moisture provided in the openings.
  • a moisture-absorbing / releasing structure having a film portion containing a wetting agent is formed.
  • the hygroscopic structure itself does not necessarily have to be completely airtight. However, substantial airtightness may be required for the moisture absorbing / releasing structure, such as when the moisture absorbing / releasing structure is applied to a heat exchanger.
  • the carrier and the film part are substantially airtight or satisfy the required airtightness.
  • One having airtightness can be selected.
  • the moisture absorbing / releasing agent contained in the film part can absorb moisture under high humidity and release moisture under low humidity, any one may be used depending on the application. Can do.
  • the sorbent or moisture-absorbing polymer described in JP-A-2009-74098 is used as the moisture-absorbing / releasing moisture-absorbing agent. It is not limited.
  • 1) Water vapor is absorbed as moisture by a moisture absorbent on the surface of the membrane portion on the side in contact with the high humidity gas, and 2) Dissipates moisture from the moisture absorbent as water vapor on the surface of the membrane part in contact with the low humidity gas. Anything can be used.
  • a water vapor permeable film is formed by mixing fine particles of a moisture absorbing / releasing agent with an adhesive liquid binder, and carrying the mixture on a carrier and drying it.
  • Japanese Patent Application Laid-Open No. 2013-107070 describes “absorption and desorption agent”, Japanese Patent Application Laid-Open No. 2001-11320. No. “Hygroscopic polymer”, “Porous hygroscopic polymer”, “Organic polymer sorbent”, and “Porous hygroscopic polymer” in JP-A-2000-17101. Yes. Regardless of their names, these substances can be used for forming a water vapor selective permeable membrane as long as they absorb moisture under high humidity and release moisture under low humidity. In this specification, these substances are described as “moisture absorbing / releasing agents”.
  • the sorbent described in Japanese Patent Application Laid-Open No. 2009-74098 has a performance suitable as a moisture absorbing / releasing agent.
  • a graph showing the moisture absorption rate (% weight) with respect to the relative humidity of this sorbent is shown in FIG.
  • the sorbent described in JP-A-2009-74098 absorbs water vapor in air having a high relative humidity. At this time, heat of moisture absorption is generated. In addition, moisture is released as water vapor in the air having a low relative humidity, and the surrounding heat is taken away at this time. This operation does not depend on temperature but depends only on relative humidity. However, since the relative humidity changes with the temperature change of the air, this operation is apparently affected by the temperature.
  • the sorbent described in Japanese Patent Application Laid-Open No. 2009-74098 has a moisture absorption rate when the relative humidity is higher than other moisture absorbents, that is, silica gel A, silica gel B and active carbon. Very expensive. When the relative humidity is lowered, the moisture absorption rate is also lowered, so that moisture that has been absorbed by then is released. Further, as shown in FIG. 11, the difference between the moisture absorption rate when the relative humidity is high and the moisture absorption rate when the relative humidity is low is large. Therefore, it absorbs a large amount of moisture from a high-humidity gas, and releases a large amount of moisture to a low-humidity gas. Suitable for membrane.
  • FIG. 12 is an explanatory diagram showing the results of measuring the moisture permeability and air permeability of a commercially available moisture permeable waterproof sheet on the basis of the moisture permeability and permeability of the sorbent in a tabular form.
  • the moisture permeability of the moisture permeable waterproof sheet manufactured by Company A is 0.5
  • the permeability of Company B is transparent.
  • the moisture permeability of the moisture and waterproof sheet is 0.8.
  • the moisture permeable waterproof sheet manufactured by Company A and the moisture permeable waterproof sheet manufactured by Company B are less likely to move water vapor than the sheet coated with the sorbent.
  • the air permeability of the moisture permeable waterproof sheet manufactured by Company A is 6 and the air permeability of the moisture permeable waterproof sheet manufactured by Company B is 15, where the air permeability of the sheet coated with the sorbent is 1. Therefore, the moisture permeable waterproof sheet manufactured by Company A and the moisture permeable waterproof sheet manufactured by Company B are both more breathable than the sheet coated with the sorbent.
  • Both moisture-permeable and waterproof sheets are more likely to mix air containing unpleasant components between gases that perform selective permeation of water vapor and heat exchange than sheets coated with a sorbent. Indicated. From the above, for water vapor separation and heat exchange, it is possible to select a water vapor separation membrane or a heat exchange membrane as appropriate, but the sorbent described in JP2009-74098A is particularly suitable. Is shown.
  • Water vapor can be moved between these gases by bringing the gases into contact with each other through the device having the hygroscopic film according to the embodiment of the present invention.
  • heat exchange can also be performed through this device.
  • the device provided with the hygroscopic film is a total heat exchanger for exchanging sensible heat and latent heat, for example, a total heat exchanger for exchanging heat and transferring moisture between indoor air and outdoor air.
  • Suitable for The present invention is not limited to air but can be generally used for water vapor movement and heat exchange between gases.
  • the air from the room and the air from the outside are circulated through the first flow path and the second flow path formed through the moisture absorbing / releasing structure, respectively. Between, the moisture is transferred through the water vapor selective permeable membrane. Further, heat transfer is performed between the air from the room and the air from the outside through the moisture absorbing / releasing structure. Therefore, it is possible to introduce the air from the outside into the room after adjusting its temperature and humidity to match the air from the room.
  • indoor air has a high concentration of carbon dioxide due to human respiration, and contains harmful and unpleasant components such as ammonia and odorous components generated from humans and indoor materials.
  • harmful and unpleasant components such as ammonia and odorous components generated from humans and indoor materials.
  • the moisture absorbing / releasing structure has airtightness as described above, it is possible to prevent such undesirable gas components contained in the indoor air from moving to the outdoor air. Accordingly, the fresh air from the outside is adjusted so that the temperature and humidity thereof are close to the room air, and an undesirable gas component contained in the room air is not mixed into the room fresh air. It becomes possible to introduce to.
  • ventilation can be performed while preventing an increase in indoor air conditioning load and suppressing energy loss by performing heat (sensible heat) exchange and water vapor (latent heat) exchange.
  • heat sensible heat
  • water vapor latent heat
  • the moisture absorbing / releasing structure is not completely airtight. Don't be.
  • the moisture-absorbing / releasing structure may not need to be completely airtight.
  • air leakage occurs if the hygroscopic structure itself is not completely airtight.
  • the amount of leakage is less than the allowable amount, even if the hygroscopic structure is not completely airtight, the hygroscopic structure can be used for the total heat exchanger.
  • the allowable amount in this case can be arbitrarily determined.
  • the amount of leakage that does not cause odor in the outside air that is introduced into the room must be allowed for the amount of air leakage. Can be a value.
  • a binder can be mixed with a material constituting the membrane part that transmits water vapor, preferably a water vapor selective permeable material.
  • a material constituting the membrane part that transmits water vapor preferably a water vapor selective permeable material.
  • the film part is formed at the opening of the carrier only with a material that transmits water vapor, the formed film part is brittle and cracked even if the film part is porous or the film part itself is airtight. There is a possibility that airtightness may be insufficient due to a tendency to occur.
  • a sufficient airtightness can be obtained by forming a film portion by disposing a mixture of a material that transmits water vapor and a binder in the opening of the carrier and drying the mixture.
  • a binder is mixed as an adhesive with the granular moisture absorbent, and the mixture is placed in the opening and then dried.
  • the moisture absorbing / releasing agent is strongly bonded to the binder to such an extent that no cracks or the like occur in the formed film portion.
  • the film portion may be formed by disposing a material that transmits water vapor only in the opening, but it may be configured so as to cover not only the opening but also the support. Since the sensible heat exchange is mainly performed in the carrier part of the moisture absorbing / releasing structure, a material that transmits water vapor may be arranged in the carrier part if this sensible heat exchange is allowed. is there. In this case, the moisture can move from one side of the moisture absorbing / releasing structure to the other side by moving the moisture through the membrane formed on the carrier to the membrane formed in the opening. Become. Further, a film made of a material that transmits water vapor formed on the support can firmly fix the film formed on the opening of the support. In particular, when the moisture absorbing / releasing agent is bonded to the surface of the carrier with a binder, the moisture absorbing / releasing agent in the opening can be more firmly fixed.
  • the opening formed in the carrier is sized so as not to cause cracks or cracks, and the area of the opening is relatively small.
  • the equivalent hydraulic diameter is 5 mm or less, and preferably the equivalent hydraulic diameter is 2 mm, even if cracks or cracks do not occur or cracks or cracks occur on the surface of the film, cracks or cracks that penetrate the film To prevent the occurrence of airtightness.
  • the equivalent hydraulic diameter can be set to, for example, 7 mm or less and 10 mm or less to further increase the area of the opening.
  • the shape of the opening is a shape that prevents the occurrence of cracks and cracks due to stress concentration, but by reducing the area of the opening as described above, it is possible to prevent the occurrence of cracks and cracks.
  • the opening may be a hexagon or a rectangle.
  • the stress concentration in the corner portion can be prevented by rounding the corner portion of the hexagon or the rectangle.
  • a plate material or a tube material was used as the carrier, a number of openings were provided, and the hydraulic equivalent diameter of each opening was 2 mm or less.
  • Each opening was coated with a moisture-absorbing / releasing agent that absorbs water vapor and an adhesive binder, preferably a mixture of fine fibers such as cellulose, and then dried to form a water vapor selective permeable membrane.
  • a moisture absorbing / releasing agent for example, a sorbent described in JP 2009-74098A by Nippon Exlan Industry Co., Ltd. can be used.
  • the moisture absorbing / releasing agent is fixed to the opening in the form of a film through an adhesive binder.
  • the crack is small and does not penetrate the entire film part, so that airtightness is maintained.
  • the opening is enlarged, cracks and the like are likely to occur.
  • the opening is made larger. It is also possible.
  • the hygroscopic agent film formed on the film part formed at the opening of the hygroscopic structure and exposed to the air surface absorbs water vapor from air with high relative humidity and binds in the form of water molecules.
  • a moisture absorber Take in water as a moisture absorber.
  • heat of condensation is generated.
  • Water molecules taken into the moisture absorbent as a liquid phase move in the moisture absorbent, and from the exposed surface of the moisture absorbent that contacts the air side having a low relative humidity, into the air as water vapor. Dissipated.
  • water undergoes a phase transition from the liquid phase to the gas phase it takes heat of vaporization from the surroundings.
  • the vapor phase water vapor in the air with high relative humidity flowing through one flow passage moves as liquid phase water in the adsorbent, and further, the relative humidity through the other flow passage is low. It moves in the air as vapor in the vapor phase.
  • the membrane itself since the membrane itself is relatively thin, the heat of condensation generated when water transitions from the gas phase to the liquid phase on one side of the membrane is required during the phase transition from the liquid phase to the gas phase on the opposite side of the membrane. It is consumed as a heat source for vaporization heat. Therefore, the generated heat of condensation can be utilized for the heat of vaporization, and the heat energy is not wasted.
  • the plate material, tube material, mesh material, etc. that form the water vapor selective permeable membrane having such characteristics need only have a strength that can reinforce the water vapor selective permeable membrane formed in the opening. And design flexibility is high. Therefore, it is possible to easily manufacture a total heat exchanger such as a shell and tube type or a plate fin type by selecting an appropriate material as the plate material.
  • a total heat exchanger such as a shell and tube type or a plate fin type by selecting an appropriate material as the plate material.
  • the total area (opening ratio) of the opening is large, but the shape of the water vapor selectively permeable membrane formed in the opening is prevented in order to prevent the generation of through holes.
  • Size is limited. Therefore, the opening does not have to have a certain shape or size. It may be preferable that the size and shape of the opening of the carrier are not uniform.
  • the water vapor permeability of the water vapor selective permeable membrane is determined by the average particle diameter of the moisture absorbing / releasing agent.
  • FIG. 13 is a graph showing the relative change in moisture permeability when the average particle size of the moisture absorbent / release agent is changed.
  • the vertical axis represents moisture permeability
  • the horizontal axis represents the average particle size (unit: 0.01 [ ⁇ m]).
  • the moisture permeability value “1” corresponds to 17 [g / m 2 hr].
  • the air permeability due to the particle size was almost negligible up to a differential pressure of 5 [kPa].
  • FIG. 13 shows the correlation between moisture permeability and average particle diameter at a differential pressure of 5 [kPa].
  • the average particle diameter of the moisture absorbent / release agent is preferably 0.1 to 0.45 [ ⁇ m], more preferably 0.15 to 0.3 [ ⁇ m].
  • FIG. 1A shows a perspective view of a hygroscopic structure 10 according to Embodiment 1 of the present invention
  • FIG. 1B shows a cross-sectional view thereof.
  • the moisture absorbing / releasing structure 10 uses a plate 11 as a carrier, and a polymer moisture absorbing / releasing moisture as a moisture absorbing / releasing agent having a water vapor selective permeability in the opening 12 of the plate 11.
  • a film portion 13 containing the agent 14 is formed.
  • This membrane part 13 becomes a water vapor selective permeable membrane.
  • the plate material 11 is made of aluminum, copper, plastic or the like, and the thickness is preferably 1 mm or less and preferably 0.2 to 0.3 mm.
  • the polymer adsorbent for example, a hygroscopic polymer described in JP-A-2009-74098 can be used.
  • the plate material 11 has a planar shape, but the plate material 11 may have a tube shape or a curved surface shape.
  • the opening ratio is preferably 50%, particularly 70% or more.
  • the opening 12 has a different shape and size, and the opening ratio is 70%.
  • the hydraulic diameter was 5 mm or less.
  • a film portion is formed on the opening 12 of the plate 11 serving as a carrier and the surface of the surrounding plate. 13 is formed.
  • high-temperature and high-humidity air was brought into contact with the upper surface side of the hygroscopic structure 10
  • low-temperature and low-humidity air was brought into contact with the lower surface side of the hygroscopic structure 10.
  • the membrane portion 13 is a water vapor selective permeable membrane formed by mixing a polymer moisture absorbent / release agent 14 to be used and a binder that forms the membrane portion together with the polymer moisture absorber / release agent 14.
  • FIG. 1 shows a state after the film part 13 is dried. The binder is interposed between the polymer moisture absorbent 14 and adheres thereto.
  • the thermal conductivity in the film part 13 is determined by the thermal conductivity of the polymer moisture absorbent 14 and the binder.
  • the average thermal conductivity can be improved by selecting a material having high thermal conductivity after satisfying conditions such as required strength and adhesion with the film part 13.
  • the mixture of the polymer moisture-absorbing / releasing agent 14 and the adhesive binder is disposed on the surface of the plate and the opening 12, the mixture is dried to open the opening of the plate 11 as the carrier.
  • a film part was formed on the substrate.
  • the film part 13 can also be formed by placing this mixture only in the opening part 12 and drying it.
  • vapor phase water vapor contained in the high-temperature, high-humidity air on the upper surface side of the moisture-absorbing / releasing structure 10 is absorbed by the polymer moisture-absorbing / desorbing agent 14 inside the film portion 13 in the opening 12. It absorbs moisture and releases heat of condensation to form a liquid phase. Thereafter, the water molecules in the liquid phase move in the film part 13 to the lower surface side of the film part 13 according to the moisture concentration, and are exposed to the low temperature and low humidity air on the lower surface side of the film part 13. Thereafter, the liquid phase water is vaporized by taking the heat of vaporization from the surroundings and becomes vapor in the vapor phase and moves into the low-temperature and low-humidity air.
  • the air to which the water vapor moves is at a low temperature, but heat is supplied to the film part 13 from the high-temperature air on the upper surface side of the hygroscopic structure 10 by heat conduction, and the upper surface of the film part 13 Condensation heat generated on the side also moves to the lower surface side of the film part 13 by heat conduction. Accordingly, these serve as a supply source of the heat of vaporization, and the liquid water molecules can take the heat of vaporization and vaporize.
  • a moisture absorbing / releasing structure having the same structure as the moisture absorbing / releasing structure 10 with an aperture ratio of 50% and an equivalent hydraulic diameter of 3.5 mm and 2 mm, respectively, is manufactured and heat exchange is performed as described above. As a result, it was confirmed that sensible heat exchange and latent heat exchange were performed in any of the moisture absorbing / releasing structures, no cracks or cracks were generated, and no gas mixing occurred.
  • any moisture absorbing / releasing structure was obtained. It was also confirmed that sensible heat exchange and latent heat exchange were performed, and that no cracks or cracks occurred and no gas mixing occurred. It has been confirmed that by setting the equivalent hydraulic diameter to 5 mm or less, more preferably 2 mm or less, it is possible to prevent gas mixture due to generation of cracks and cracks and to perform total heat exchange.
  • size of a film part should just be a magnitude
  • the aperture ratio is preferably 50% or more, particularly 70% or more so that latent heat exchange can be sufficiently performed. However, if the latent heat exchange is necessary and sufficient, the aperture ratio can be 50% or less.
  • the thickness of the carrier 11 and the film part 13 is thick enough to obtain the strength required for the film part 13 and the carrier, and thin enough to sufficiently exchange sensible heat and latent heat.
  • the thickness of the carrier is 0.5 to 1 mm, but in the moisture absorbing / releasing structure in which the thickness of the film portion is 1 mm or more for the purpose of supporting the polymer moisture absorbing / releasing agent at a high density, The strength required for the film part 13 could be obtained, and sufficient heat exchange could be performed.
  • the material of the carrier is preferably formed of a material higher than the rigidity of the film part.
  • Example 1 it was confirmed that the total heat exchange was performed using the planar moisture absorbing / releasing structure 10 using the plate 11 as the carrier.
  • plate material can use the arbitrary materials which have sufficient heat conductivity and heat
  • FIG. 2A shows a perspective view of the moisture absorbing / releasing structure 20 according to Example 2 of the present invention
  • FIG. 2B shows a partially enlarged view thereof.
  • the moisture absorbing / releasing structure 20 uses a mesh material 21 as a carrier, and the opening 22 of the mesh material 21 includes a polymer moisture absorbing / releasing agent 24 having water vapor selectivity.
  • a film portion 23 is formed.
  • the material of the mesh material 21 general-purpose materials such as aluminum, copper, stainless steel, and iron can be used.
  • the thickness of the mesh material is preferably 1 mm or less.
  • the polymer adsorbent a hygroscopic polymer described in JP2009-74098A was used.
  • the binder an adhesive binder that has been conventionally used for carrying a mixture with a polymer moisture absorbent is used.
  • the moisture absorption / release structure has an opening ratio of 85% and an equivalent hydraulic diameter of about 3 mm.
  • the film portion 23 is formed in the opening 22 of the mesh material 21 that is the carrier. Yes.
  • Example 2 as in Example 1, high-temperature / high-humidity air is brought into contact with the upper surface side of the hygroscopic structure 20, and low-temperature / low-humidity air is applied to the lower surface side of the hygroscopic structure 20. Made contact.
  • the thermal conductivity through the hygroscopic structure 20 is affected by the thermal conductivity of the mesh material 21, the thermal conductivity of the film part 23, and the film thickness.
  • the area of the mesh material 21 itself in Example 2 is smaller than the area of the plate material 11 in Example 1. Therefore, in principle, the thermal conductivity in the moisture absorbing / releasing structure 20 is more influenced by the thermal conductivity in the film portion 23 than in the first embodiment.
  • the polymer moisture absorbent 24 used and a binder suitable for forming a film part together with the polymer moisture absorbent 24 (the film part 23 includes a binder, a polymer moisture absorbent and a
  • the thermal conductivity in the film portion 23 is determined by the respective thermal conductivity of the film portion 23).
  • the mesh material 21 it is possible to improve the thermal conductivity by selecting a material having a high thermal conductivity after satisfying conditions such as required strength and adhesiveness with the film part 23.
  • vapor in the vapor phase contained in the high relative humidity air on the upper surface side of the moisture absorbing / releasing structure 20 is transferred to the polymer moisture absorbing / releasing agent 24 inside the film portion 23 in the opening 22. It absorbs moisture and releases heat of condensation to form a liquid phase. Thereafter, the water molecules in the liquid phase move in the film part 23 to the lower surface side of the film part 23 according to the moisture concentration, and are exposed to the low relative humidity air on the lower surface side of the film part 23. Thereafter, the liquid-phase water is vaporized by taking the heat of vaporization from the surroundings and becomes vapor-phase water vapor and moves into the air having a low relative humidity.
  • a hygroscopic structure having the same structure as the hygroscopic structure 20 with an aperture ratio of 85% and equivalent hydraulic diameters of 2 mm and 1 mm, respectively, is manufactured and heat exchange is performed as described above. As a result, it was confirmed that sensible heat exchange and latent heat exchange were performed in any of the moisture absorbing / releasing structures, no cracks or cracks were generated, and no gas mixing occurred.
  • any moisture-absorbing / releasing structure was obtained. It was also confirmed that sensible heat exchange and latent heat exchange were performed, and that no cracks or cracks occurred and no gas mixing occurred.
  • the size of the film portion may be any size that prevents the occurrence of cracks and cracks in the film portion. Since the ease of occurrence of cracks and cracks depends on the strength and flexibility of the carrier, the size of the film part or the equivalent hydraulic diameter can be adjusted depending on the material of the carrier.
  • the aperture ratio is preferably 50% or more, particularly 70% or more so that latent heat exchange can be sufficiently performed. However, if the latent heat exchange is necessary and sufficient, the aperture ratio can be 50% or less.
  • the thickness of the carrier 20 and the film part 23 is thick enough to obtain the strength required for the film part 23 and the carrier, and thin enough to sufficiently exchange sensible heat and latent heat. Is preferred.
  • the thickness of the carrier and the film part is 1 mm.
  • the strength required for the film part 23 can be obtained and sufficient. Heat exchange was possible. As described above, in Example 2, it was confirmed that the total heat exchange was performed using the moisture absorbing / releasing structure 20 using the mesh material 21 as the carrier. As the mesh material, any material having sufficient heat conductivity to enable heat exchange and strength necessary for supporting the film portion 23 can be used.
  • the polymer moisture-absorbing / releasing agent and the binder were mixed, and this mixture was applied to the opening and then dried to form a film part.
  • a polymer moisture absorbing / releasing agent so that a viscosity suitable for application to the opening can be obtained, and the required strength and cracks and cracks are less likely to occur in the film formed after drying.
  • the film part can be formed by appropriately selecting and mixing one or more of cellulose fibers (for example, fine cellulose fibers and vegetable fibers) and glass fibers.
  • the thickness of the film part was almost the same as the thickness of the carrier, and the thickness of the plate material in Example 1 and the thickness of the mesh material in Example 2. However, if the strength of the film part can be maintained, the thickness of the film part may be adjusted as appropriate to make it thicker than the thickness of the carrier, or may be made thinner.
  • an adhesive resin or the like can be used as long as it can form an airtight film containing a polymeric moisture absorbent.
  • the binder is required to have a property that does not inhibit the contact of water vapor in the air with the polymer moisture absorbent in the contact surface with the air after drying.
  • the mixture which mixed the polymeric moisture absorption / release agent, the binder, etc. was apply
  • the polymer moisture absorbing / releasing agent carried in the opening is firmly fixed to the base material (plate material, tube material, mesh material, etc.) by the binder and fine cellulose fibers, so that the film part is cracked during the drying process. Hateful. Moreover, even if a crack occurred on the surface of the film part, the crack was very shallow and did not penetrate the film part. Therefore, since the flow of air from one side of the air to the other side is not permitted, it is possible to carry the polymer moisture absorbing / releasing agent in an air tight state. As a result, the water vapor absorbed by the polymer moisture absorbent from the air side with high relative humidity passes through the inside of the polymer moisture absorbent as the liquid phase, The phenomenon of being diffused into the air as water vapor becomes possible.
  • a heat exchanger using the above moisture absorbing / releasing structure will be described.
  • a heat exchanger will not be specifically limited if it is the structure which performs total heat exchange between the gases which contact
  • total heat exchange was performed by employing the above-described moisture absorbing / releasing structure in a shell and tube heat exchanger.
  • Example 3 In the embodiment shown in FIG. 3, an air supply duct for supplying outdoor air to the room and an exhaust duct for discharging indoor air to the outside are formed independently, and the air supply duct and the exhaust duct are formed in a shell and tube type.
  • the total heat exchanger was connected to the shell side (tube outer side) and the tube side (tube inner side).
  • the air supply duct and the exhaust duct may be connected to the tube side and the shell side of the shell-and-tube type total heat exchanger, respectively.
  • the flow direction of the air on the shell side and the flow direction of the air flowing on the tube side are so-called counter flow types in which these directions are opposite to each other. I did it.
  • a parallel flow type can be used, but a counter flow type is preferable in order to improve sensible heat exchange efficiency and latent heat exchange efficiency.
  • the heat exchange tube in the shell-and-tube heat exchanger having such a flow path configuration was manufactured by forming the plate-like moisture absorbing / releasing structure in Example 1 into a tube shape as shown in FIG. Air from the outside flows through the air supply duct on the shell side, and air from the room flows through the exhaust duct on the tube side. Between the air from the outside and the air from the room, sensible heat exchange is performed according to the relative temperature difference through the tube carrier and the polymer moisture-absorbing / releasing agent film, and the polymer adsorption / release on the tube surface is performed. Through the wet film, latent heat exchange is performed according to the relative humidity difference, and moisture moves.
  • the polymer moisture-absorbing / releasing agent film supported on the tube surface is a thin film having a thickness of 1 mm or less, so that heat transfer due to temperature difference easily occurs.
  • the carrier and the film portion have airtightness, and thus cannot move between the tube side and the shell side.
  • FIG. 3 shows a shell-and-tube type total heat exchanger 50 according to the third embodiment of the present invention.
  • the total heat exchanger 50 includes a left header cover 53L, a shell 54, and a right header cover 53R, and the left header cover 53L is airtightly provided to the shell via the left header 57L. ing.
  • the right header cover 53R is airtightly provided to the shell via the right header 57R.
  • a plurality of tubes 51 are fixed to the left header 57L and the right header 57R in a tight state without air leakage.
  • a rectifying plate 52 for adjusting the air flow path is provided in the shell.
  • the tube 51 used was a tube-shaped hygroscopic structure 10 using a mesh material as a carrier shown in Example 2.
  • the shell 54 is provided with an inflow port 55a and a discharge port 55b.
  • a duct 41 for taking in air from the outside is introduced into the inflow port 55a, and heat-exchanged air is introduced into the room (indicated as A in the figure) at the outlet 55b.
  • Ducts 42 are connected to each other.
  • the left header cover 53L is provided with an inflow port 56a
  • the right header cover 53R is provided with a discharge port 56b.
  • a duct 31 for taking in air from the room is connected to the inflow port 56a
  • a duct 32 for discharging the air after heat exchange to the outside is connected to the discharge port 56b.
  • a ventilation fan, an air filter, etc. (not shown) can also be provided in each duct.
  • the air from the room flows into the space formed by the left header cover 53L and the left header 57L of the total heat exchanger 50 from the duct 31 through the inlet 56a. Thereafter, the air from the room flows into the space formed by the right header 57R and the right header cover 53R after exchanging heat with the air from the outside flowing through the inside of each tube 51 and flowing through the shell 54. Discharged. Thereafter, the air from the room is discharged from the discharge port 56b to the outside through the discharge duct 32.
  • air from the outside flows from the duct 41 through the inflow port 55a into a space formed between the shell 54 and the right header 57R and the left header 57L provided airtight at both ends thereof. Thereafter, the air from the outside exchanges heat with the air from the room flowing through the tubes 51 in this space of the shell 54 and then is introduced into the room through the duct 42 from the discharge port 55b. Thus, in the shell 54, heat exchange is performed between the air from the room flowing inside the tube and the air from the room flowing outside the tube.
  • each tube 51 is formed from a moisture absorbing / releasing structure that has a tube shape.
  • water vapor is transferred between the air flowing inside and outside the tube through a film portion formed of a polymer moisture absorbent and binder and supported on the mesh surface. Therefore, latent heat exchange is performed, and the air moves from the air on the high humidity side to the air on the low humidity side. Further, sensible heat exchange is also performed through the entire tube including the mesh surface and the membrane portion. Therefore, since total heat exchange is continuously performed between the air from the room and the air from the room, it is possible to supply humidity-conditioned and temperature-controlled outside air to the room.
  • FIG. 4A is a diagram showing a tube 51 using a mesh material as a carrier used in the shell-and-tube heat exchanger shown in FIG. 3 and a film part 51a formed in the opening.
  • 4 (b) is an enlarged view thereof.
  • the polymer moisture absorbent 51c is bonded and supported on the opening 51b of each tube 51 by a binder 51d.
  • membrane part 51a is formed in the opening part 51b of the mesh material 51e.
  • FIG. 4 only a part of the film part 51 a is shown, but actually, the film part 51 a is formed over the entire cylindrical side surface of the tube 51.
  • the vapor phase water vapor H 2 O (V) in the air on one side of the film part 51a contacts the film part 51a.
  • the water vapor absorbed by the polymer moisture-absorbing / releasing material 51c becomes liquid-phase water H 2 O (L) and moves in the film part 51a.
  • the water vapor becomes H 2 O (V) and moves to the air on the other side of the film part 51a. Since the film thickness of the film part 51a is set to 1 mm or less, high heat exchange property was obtained.
  • Example 1 shows that, as shown in Example 1, no mixing of ammonia, carbon dioxide, gaseous unpleasant substances, etc. was observed. This is because, as shown in FIG. 4 (d), the polymer moisture-absorbing / releasing agent 51c is tightly filled and supported in the mesh opening 51b together with the binder 51d as an adhesive.
  • FIG. 4D shows an enlarged view of the polymer moisture absorbent 51c.
  • vapor in the gas phase is absorbed by a hygroscopic resin such as a polymeric moisture absorbent having hygroscopicity on the high humidity side, and is taken into the resin as liquid phase water.
  • the taken-in water moves to the low humidity side in the resin and evaporates as vapor in the vapor phase into the air on the low humidity side.
  • Example 4 the moisture-absorbing / releasing structure 10 shown in Example 1 shown in FIG. 5 is formed into a shape having a step by forming a cross-sectional L shape and an inverted L shape and connecting them alternately.
  • the plate fin heat exchanger 6 formed by the sheet-like moisture absorbing / releasing structure 80, the end plate 61, and the side plates 62, 63, 64 formed as described above generates heat between air from the room and air from the room. Exchange and moisture transfer were performed.
  • the side plates 62, 63, 64 are provided with gaps 71, 72, 73 and 74.
  • the moisture absorbing / releasing structure 80 is formed by bending the moisture absorbing / releasing structure 10 shown in Example 1 into a U-shape, and these U-shaped moisture absorbing / releasing structures as shown in FIG. It is also possible to form the body 10 by adhering it via the connecting plate 81 on the side surface.
  • the air from the outside is introduced into the odd-numbered stages of the moisture absorbing / releasing structure 80 through the gap 71 as indicated by an arrow, flows through the stages, and is introduced into the room through the gap 72.
  • the ninth stage is shown as S9.
  • the air from the room is introduced into the even-numbered stages of the moisture absorbing / releasing structure 80 through the gap 73 as indicated by an arrow, flows through the stages, and is exhausted to the outside through the gap 74.
  • the second stage is shown as S2 as an example of even stages.
  • FIG. 6 shows a wet air diagram for explaining heat exchange between indoor air and outdoor air in the shell-and-tube total heat exchanger according to the present invention.
  • both air passing through the total heat exchanger are indicated by point A in outside air (point A) and room air (point B) (high (Temperature, high humidity) and point B (low temperature, low humidity) move inside the rectangle surrounded by (low temperature, low humidity) to reach each outlet state (exit C point of passing outside air, outlet D point of passing indoor air) .
  • FIG. 7A shows a perspective view of a plate-like hygroscopic structure 90 which is a device provided with the hygroscopic film according to Example 5, and a partial cross-sectional view thereof is shown in FIG. Shown in Further, FIG. 7C shows a cross-sectional view of a rivet that is a fixing member of the moisture absorbing / releasing structure 90.
  • the moisture absorbing / releasing structure 90 includes a thin plate-like moisture absorbing / releasing portion 91, a plate-like first carrier 92 and a second carrier each having a plurality of openings 94 formed therein.
  • the body 93 is sandwiched and fixed.
  • the fixing means is not particularly limited, in this embodiment, the thin plate-like moisture absorbing / releasing portion 91, the first carrier 92 and the second carrier 93 are shown in FIG. It is fixed to be
  • the rivet portion 95 is coupled to the moisture absorbing / releasing portion 91, the penetrating portion 96 penetrating the first carrier 92 and the second carrier 93, and coupled to the penetrating portion 96.
  • the first head portion 97 that protrudes from the first carrier 92 and the second head portion 98 that is coupled to the penetrating portion and protrudes from the second carrier 93 are configured.
  • the first head portion 97 and the second head portion 98 each have a larger diameter than the penetrating portion 96, and the moisture absorption / release portion 91 and the like are sandwiched and fixed by these head portions 97 and 98.
  • the openings 94 of the first carrier 92 and the second carrier 93 are arranged in such a manner that at least part of the two openings 94 overlap each other with the moisture absorbing / releasing portion 91 sandwiched therebetween. Has been. Therefore, it is possible to perform the movement of moisture and the total heat exchange through the exposed portion of the moisture absorption / release portion 91 in the opening 94.
  • the moisture absorbing / releasing portion 91 is exposed on one carrier, but is not exposed because it is covered with the other carrier. It becomes a state. In this portion, even if moisture is absorbed on the exposed side of the absorption / release portion, the other side of the absorption / release portion is not exposed, so that it is difficult to release the absorbed moisture. Accordingly, in this embodiment, the two openings 94 of the first carrier and the second carrier overlap with each other with the moisture absorption / release part 91 interposed therebetween, and the moisture absorption / release part is the first carrier, The openings of the respective carriers were formed so as to be exposed in both the second carriers.
  • the moisture absorbing / releasing portion 91 is formed by supporting a polymer moisture absorbing / releasing agent on a sheet-like supporting member formed of paper or glass fiber.
  • the moisture absorbing / releasing portion 91 is formed by supporting the polymer moisture absorbing / releasing agent and the binder on the paper by immersing the paper in a mixture of the polymer moisture absorbing / releasing agent and the liquid binder and drying it. did.
  • paper having a thickness of about 0.05 [mm] was used as the supporting member.
  • the material of the supporting member can support a polymer moisture absorbent and has water permeability. If there is no particular limitation.
  • the moisture absorbing / releasing part formed in this way has sufficient strength, it can be used as it is as a moisture absorbing / releasing structure.
  • paper is used as the supporting member, and there is a risk that the strength is insufficient to use it as a moisture absorbing / releasing structure as it is. Therefore, in order to increase the strength of the moisture absorbing / releasing structure, the moisture absorbing / releasing portion 91 is sandwiched and fixed between the first carrier 92 having an opening and the second carrier 93 having an opening.
  • Each of the first carrier 92 and the second carrier 93 serves as a reinforcing member for the moisture absorbing / releasing portion.
  • the first and second carriers were both made of aluminum having a thickness of 0.1 [mm] and a plurality of openings 94 formed therein. It is also possible to use copper or plastic instead of aluminum.
  • the moisture absorbing / releasing structure 90 may be deformable by using a flexible material. Accordingly, the moisture absorbing / releasing portion 91 formed by supporting the binder and the moisture absorbing / releasing agent on paper is sandwiched between the first carrier 92 and the second carrier 93, so that the strength is improved. In addition, the moisture absorbing / releasing portion 91 is exposed in the opening 94 formed in these reinforcing members. Therefore, like the film part 13 in Example 1, total heat exchange can be performed through the moisture absorption / release part 91 exposed at the opening 94.
  • the rivet portion 95 is used as a fixing means for the thin moisture absorbing / releasing portion 91, the first carrier 92, and the second carrier 93 in the moisture absorbing / releasing structure 90. It is not limited to rivets, and fixing means other than rivets, such as an adhesive, can also be used. Further, as described above, since the thickness of the moisture absorbing / releasing portion 91 is 0.05 [mm], and the first carrier 92 and the second carrier 93 are each 0.1 [mm], the moisture absorbing / releasing structure 90 The thickness of this is 0.25 [mm]. As shown in FIG.
  • the rivet portion 95 protrudes from the surface of the moisture absorbing / releasing structure 90.
  • the protruding height of the rivet portion 95 can be arbitrarily changed as desired, and is not particularly limited, but may be, for example, about 1 [mm] to 5 [mm]. In this example, the rivet portion 95 protrudes 3 [mm] from the surface of the moisture absorbing / releasing structure.
  • the aperture ratio is preferably 50%, particularly 70% or more.
  • Other conditions such as the shape and size of the opening 94 can be the same as the shape and size in the first embodiment.
  • the openings 94 may all have the same shape, but at least some of them may be different.
  • the aperture ratio was 70% and the equivalent hydraulic diameter was 5 mm or less. Further, it was confirmed that the hygroscopic structure 90 also performs total heat exchange in the same manner as the hygroscopic structure 10 of Example 1.
  • a plate having an opening 94 is used as the first carrier 92 and the second carrier 93, but the moisture absorbing / releasing portion 91 can be sandwiched between members having other shapes.
  • the reinforcing member may have a wire mesh or mesh shape.
  • a mesh material as shown in FIG. 2A in Example 2 can be used as the first carrier 92 and the second carrier 93.
  • the aperture ratio of the moisture absorption / release structure using a mesh material can be made the same as the aperture ratio shown in Example 2 using a mesh material.
  • Example 5 the moisture absorbing / releasing portion 91 is sandwiched between the first carrier 92 and the second carrier 93, but sufficient adhesion between the first carrier 92 and the moisture absorbing / releasing portion 91 can be obtained. If strength can be obtained, the moisture absorbing / releasing structure 90 is formed with a simple configuration in which the moisture absorbing / releasing portion 91 is fixed to the first carrier 92 by joining or bonding without using the second carrier 93. May be. By making it the structure which does not use the 2nd support body 93, the manufacturing cost of the moisture absorption / release structure 90 can be held down, and it becomes economically advantageous. Also in this case, the moisture absorbing / releasing portion 91 can be fixed to the first carrier 92 with the rivet portion 95 as a fixing member.
  • Example 6 In Example 6, a plurality of moisture absorbing / releasing structures 90 formed in Example 5 were arranged in a stacked manner, thereby forming a plurality of gaps between the moisture absorbing / releasing structures 90 using the rivet portion 95 as a spacer. By circulating two kinds of gases through the gap, total heat exchange can be performed between the gases in contact with each other through the moisture absorbing / releasing structure 90. A cross-sectional view of the heat exchanger 100 formed in this way is shown in FIG. In this embodiment, a plurality of moisture absorbing / releasing structures 90 are arranged in the casing 103 having airtightness so that the rivet portions 95 do not overlap each other.
  • the exhaust gas from the automobile and the outside air were circulated counter-currently through the first gap portion 101 and the second gap portion 102 formed between the hygroscopic structures 90, and heat exchange was performed.
  • the general round head rivet was used in the example of FIG. 7, you may employ
  • the thickness of the moisture absorbing / releasing portion 91 is 0.05 [mm]
  • the first carrier 92 and the second carrier 93 are each 0.1 [mm]
  • the moisture absorbing / releasing structure is as follows.
  • the thickness of the body 90 was 0.25 [mm].
  • the height at which the rivet portion 95 protrudes from the moisture absorbing / releasing structure 90 can be arbitrarily changed as desired, and is not particularly limited, but may be, for example, about 1 [mm] to 5 [mm].
  • the rivet protruded 3 [mm] from the surface of the moisture absorbing / releasing structure.
  • the hygroscopic structures 90 are stacked so that the rivet portions protruding 3 [mm] from the hygroscopic structures 90 do not coincide with each other, and the distance between the hygroscopic structures 90 is 3 [mm]. ]become.
  • two types of moisture-absorbing / releasing structures are prepared with the rivet portions being shifted from each other.
  • the moisture absorbing / releasing structures 90 can be arranged in a state where the rivets are displaced as shown in FIG. Moreover, you may make it shift the arrangement
  • the moisture absorbing / releasing structure 90 configured in this manner, the moisture absorbing / releasing structure 90 similarly configured is rotated 180 degrees and disposed.
  • the other side and one side of the upper hygroscopic structure 90 are respectively overlapped with one side and the other side of the lower hygroscopic structure 90, as shown in FIG. Arrangement where rivets do not overlap is possible.
  • the first head portion 97 and the second head portion 98 are hemispherical.
  • a flat head rivet is preferably used.
  • the stability when the hygroscopic structures 90 are stacked is improved.
  • the distance between the moisture absorbing / releasing structures 90 is 6 [mm].
  • the size of the gap can be appropriately selected according to the application.
  • the heat exchanger 100 in Example 6 is relatively small in size, it is suitable for applications that require a reduction in size, and is particularly suitable for a heat exchanger of an automobile. Therefore, moisture was exchanged between the exhaust gas of the automobile and the outside air by the heat exchanger 100 according to Example 6 using the moisture absorbing / releasing structure 90 as a water vapor separation membrane.
  • the exhaust gas of automobiles is highly humid and rich in carbon dioxide and nitrogen.
  • the exhaust gas is circulated through the first gap portion 101 of the heat exchanger 100 shown in FIG. Outside air was circulated through the gap 102. Thereby, the moisture in the exhaust gas was moved to the outside air, and the humidity of the exhaust gas was lowered.
  • the temperature of the exhaust gas is 200 ° C. or higher, and in some cases reaches 1000 ° C. Therefore, the exhaust gas is cooled to the usable temperature of the hygroscopic structure 100 in advance, here about 100 ° C. It was distributed to the moisture-releasing structure.
  • the absolute humidity of the exhaust gas is 200 g / m 3 or more when it flows into the hygroscopic structure 100, but it becomes 100 g / m 3 or less when it flows out of the hygroscopic structure 100. It was confirmed that moisture was transferred from the exhaust gas to the outside air.
  • the moisture absorbing / releasing structure 90 can be made flexible by forming the moisture absorbing / releasing portion 91, the first carrier 92 and the second carrier 93 flexibly.
  • the moisture absorbing / releasing structure 90 shown in FIG. 7A can be the cylindrical structure shown in FIG. In this case, the possible range of the curvature of the cylindrical hygroscopic structure 90 depends on the flexibility of the hygroscopic structure 90.
  • the hygroscopic structure 90 can be relatively downsized as compared with the case where the hygroscopic structure 90 has low flexibility.
  • the first carrier 92 and the second carrier 93 sandwich the moisture absorbing / releasing portion 91. However, sufficient adhesion between the first carrier 92 and the moisture absorbing / releasing portion 91 can be obtained.
  • the moisture absorbing / releasing structure 90 can be formed with a simple configuration in which the moisture absorbing / releasing portion 91 is bonded or bonded to the first carrier 92 without using the second carrier 93. Good. By making it the structure which does not use the 2nd support body 93, the manufacturing cost of the moisture absorption / release structure 90 can be held down, and it becomes economically advantageous.
  • the first carrier 92 is formed in a cylindrical shape, and the moisture absorbing / releasing portion 91 shown in FIG. It can also be arranged in a shape.
  • the exposed outer surface side of the cylinder is protected by the first carrier so that the moisture absorbing / releasing portion 91 is not damaged by contact with other objects.
  • the arrangement of the second carrier 93 can be omitted.
  • the moisture absorbing / releasing portion 91 is formed in a flat plate shape, and the moisture absorbing / releasing portion 91 is rounded and arranged in the first carrier 92. Is possible.
  • the moisture absorbing / releasing portion 91 flexible, a restoring force that allows the rolled moisture absorbing / releasing portion 91 to return to a flat plate shape is obtained. Due to this restoring force, the moisture absorbing / releasing portion 91 is in close contact with the first carrier 92, and the moisture absorbing / releasing portion 91 can be fixed to the reinforcing member 92 by friction between them.
  • Example 8 In Example 8, in the heat exchanger 6 shown in FIG. 5 of Example 4 using the flat moisture absorbing / releasing structure 90 shown in FIGS. 7A and 7B of Example 5.
  • FIG. A moisture absorbing / releasing structure having the same shape as the moisture absorbing / releasing structure 80 was formed.
  • a hygroscopic structure similar to the multistage hygroscopic structure 80 shown in FIG. 5 was manufactured by repeatedly bending a single flat hygroscopic structure 90. Thereby, the moisture absorption / release structure 80 was able to be manufactured easily.
  • the characteristics of the moisture absorbing / releasing structure, such as the aperture ratio, were the same as in Example 4.
  • the opening 94 is not formed in the bent portion, thereby preventing the moisture absorbing / releasing portion 91 exposed to the opening at the bent portion from being broken and impairing the airtightness.
  • the moisture absorbing / releasing structure 90 shown in Example 5 is bent into an L shape, and the L absorbing / releasing structure 10 is overlapped in an L shape and an inverted L shape.
  • a hygroscopic structure similar to the multistage hygroscopic structure 80 shown in FIG. 5 can also be manufactured. When the hygroscopic structure produced in this way was used as the hygroscopic structure 80 in the heat exchanger 6 shown in FIG. 5, total heat exchange could be performed in the same manner as in Example 4.
  • Example 9 In Example 9, for example, a heat exchanger casing in which a moisture absorption / release structure as shown in FIG. 1 or FIG. 7 is set is created in advance, and the moisture absorption / release structure is set in the created casing. Thus, a heat exchanger was obtained. Therefore, in this embodiment, it is possible to manufacture the water vapor exchanger easily and inexpensively by simply setting the moisture absorbing / releasing structure to a case that has been created in advance.
  • FIG. 9 shows a partially transparent perspective view of the heat exchanger according to the ninth embodiment of the present invention in a state where the moisture absorbing / releasing structure 113 is disposed in the housing 110. In this figure, for the sake of explanation, the wall surface of the housing 110 is transparent so that the inside can be seen through.
  • the casing 110 is provided with baffle plates 111A, 111B, and 111C that serve as rectifying plates for the heat exchanger.
  • the housing 110 is provided with a front intake port 112FS and a front right exhaust port 112FD. Although not visible in the drawing, a rear left intake port and a rear right exhaust port are provided on the rear surface of the housing.
  • the plurality of moisture absorbing / releasing structures 113 are supported in the casing 10 as shown in the figure by support portions 121A and 121B provided in the casing 110. These support portions 121A and 121B will be described later with reference to FIGS. 10 (a) to 10 (d).
  • the housing 110 is formed with a part thereof opened, and the moisture absorbing / releasing structure 113 is inserted into the housing 110. Thereafter, the open portion of the housing 110 is hermetically closed with a wall surface, thereby completing the heat exchanger. Specifically, the housing 110 does not form the left wall surface, and thus is formed with the left side surface being an open surface.
  • the hygroscopic structure 113 is inserted from the left side as shown by S in FIG. 9 and supported by the support portions 121A and 121B. A gap is formed between the supported moisture absorbing / releasing structures 113. In FIG. 9, the first-stage gap is indicated by X, and the eighth-stage gap is indicated by Y.
  • baffle plate 111A divides the front surface of the housing 110 into a left region where the front intake port 112FS is provided and a right region where the front exhaust port 112FD is provided.
  • the baffle plate 111B is disposed in this left region so as to close the odd-numbered gaps of the hygroscopic structure 113.
  • the baffle plate 11C is disposed so as to close the even-numbered gaps of the hygroscopic structure 113 in the right region.
  • baffle plates 111A, B, and C are arranged point-symmetrically with respect to the center of the casing on the back side of the casing 110.
  • a left region and a right region are also formed on the back side of the housing 110, and these regions are separated by the baffle plate 111A.
  • heat exchange can be performed between the two gases. In this example, total heat exchange was performed between indoor air and outdoor air.
  • the even-numbered step of the gap in the right region on the back side of the housing 110 is not blocked by the baffle plate. Accordingly, the indoor air that has flowed in flows into the right region on the back surface of the casing 110 through the even-numbered gaps, and is discharged to the outside of the casing 110 through a back exhaust port (not shown) as indicated by Iout in the figure.
  • air from the outside flows into the housing 110 from the back side of the housing 110 through the back left air inlet (not shown) as indicated by Oin in the drawing.
  • the inflowing air enters the left region on the back side of the housing 110, but does not flow into the right region delimited by the baffle plate.
  • the baffle plates arranged symmetrically as described above, the air from the outside flows into the even-numbered stages in the gaps in the left side area in the back side. Inflow.
  • odd-numbered steps in the left region on the front side of the housing 110 are closed with a baffle plate.
  • the odd-numbered steps in the gap in the right region on the front side of the housing 110 are not blocked by the baffle plate. Therefore, the air from the outside flows to the left region on the front surface of the housing 110 through the odd-numbered steps of the gap, and is discharged to the outside of the housing 110 through the front exhaust port 112FD as indicated by Oout in the drawing.
  • FIG. 10A is a partially transparent view seen from the front side of the heat exchanger formed of the casing 110 and the moisture absorbing / releasing structure 113
  • FIG. 10B is a plan view thereof.
  • a front view is shown in FIG. 10 (b)
  • a front view thereof is shown in FIG. 10 (d).
  • the wall surface on the front side of the housing 110 is assumed to be transparent.
  • the gap formed between the moisture absorbing / releasing structures 113 is blocked by the baffle plate 111B in the left region, and the baffle plate 111C is even in the right region. The steps are blocked.
  • FIG. 10B air from the room flows into the housing 110 through the front air inlet 112FS, while air from the outside is discharged to the outside of the housing 110 through the front air outlet 112FD. Is done.
  • a support part 121A is provided on the left and right side surfaces of the housing 110, and a support part 121B is provided on the front side.
  • a support part 121B is also provided on the back side of the housing 110, and the hygroscopic structure 113 is supported by the support parts 121A and 121B.
  • These support portions 121A and 121B have a slide rail shape as shown in FIG. 10 (c), and the U-shaped gap portions formed in the respective support portions of these slide rail shapes absorb and release moisture.
  • the structure 113 is inserted and supported in a sliding manner.
  • FIG. 10C shows a state in which the left side wall is bonded, and an example in which a support portion 121A is also provided on the left side wall.
  • the left side wall is not provided with the support part 121A, the support part 121B provided on the front side and the back side, and the support part 121A provided on the right side wall.
  • the hygroscopic structure 113 may be supported in three directions.
  • the housing 110 is formed without the left wall surface as in this embodiment, and the left side surface is formed after the hygroscopic structure 113 is inserted.
  • the method for forming the housing 110 is not particularly limited, and may be formed by a known method.
  • the housing 110 is formed by a three-dimensional printer. Accordingly, the casing 110 having a complicated shape including the support portions 121A and 121B, the baffle plates 111A to 111C, and the like can be easily formed from the resin or the like.
  • the moisture-absorbing / releasing structure has, for example, a plate material, a tube material, a mesh material or the like as a carrier, and has a film portion containing a polymer moisture-absorbing / absorbing agent firmly in its opening, And it becomes possible to make it airtight.
  • a film portion containing a polymer moisture-absorbing / absorbing agent firmly in its opening, And it becomes possible to make it airtight.
  • the moisture absorbing / releasing structure has airtightness, other gas components can be prevented from moving through the moisture absorbing / releasing structure. Therefore, for example, by exchanging heat between indoor air and outdoor air using this moisture absorbing / releasing structure, ammonia, carbon dioxide, odor components, etc. contained in the indoor air are undesirable. It is possible to prevent gaseous components from being mixed into fresh air and to exchange water vapor and sensible heat with high efficiency. Furthermore, a high heat exchange characteristic can be expected by using a thin material having good thermal conductivity as a support for the moisture absorbing / releasing structure.
  • a shell-and-tube type and plate fin type total heat exchanger that passes the air conditioning load) to the outside air with high efficiency is provided.
  • the moisture absorption and regeneration processes performed by the moisture absorbent can be generated simultaneously and in the same part (front and back of the moisture absorbent film). It can be omitted.
  • total heat exchange is performed through the moisture absorbing / releasing structure.
  • the gas from one gas to the other is passed through the moisture absorbing / releasing structure.
  • Moisture transfer can be performed.
  • the aperture ratio or the like is an example, and the value of the aperture ratio or the like may be changed depending on the application.
  • the aperture ratio is preferably 50% or more.
  • the aperture ratio may be 50% or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Drying Of Gases (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

  [Problem] To provide a technique for high-efficiency exchange of water vapor and heat (ventilation) without any incidence of air admixing in a highly sealed/heat-insulated residence, office, factory, etc., liable to cause adverse effects on health, as in sick house syndrome, etc. [Solution] Heat is exchanged using a device (10) provided with a moisture-absorbing/releasing membrane in which is formed a membrane portion (13) that includes a water-vapor permselective moisture absorbing/releasing agent (14) in the openings (12) of a plate member (11) used as a carrier. Using this structure, heat exchange is performed allowing the movement of moisture between air from inside and air from outside even while toxic substances such as carbon dioxide or ammonia are blocked.

Description

吸放湿性膜を備えたデバイス及び吸放湿性膜を備えたデバイスを備えた水蒸気分離器及び熱交換器Device with hygroscopic membrane and water vapor separator and heat exchanger with device with hygroscopic membrane
 本発明は、熱交換を行う技術に関し、主に顕熱及び潜熱の双方の熱交換を行うための吸放湿性膜を備えたデバイス及びこの吸放湿性膜を備えたデバイスを備えた水蒸気分離器及び熱交換器に関する。 The present invention relates to a technology for performing heat exchange, and mainly relates to a device having a hygroscopic membrane for performing both sensible heat and latent heat exchange, and a steam separator having a device having the hygroscopic membrane. And a heat exchanger.
 近年、地球温暖化や化石燃料の価格高騰、原子力発電所の事故に起因する停電等が問題になってきており、その対策として、エネルギーの高効率使用や省エネルギー活動等が進められている。
 その一方で、民生分野(家庭、業務)の空調設備は導入件数ならびに使用頻度が増加しつつあり、エネルギー使用量は拡大しつつあるため、その削減に向けた空調機器・システムの効率改善は喫緊の課題である。
In recent years, global warming, rising prices of fossil fuels, blackouts caused by accidents at nuclear power plants, and the like have become problems, and high-efficiency use of energy and energy-saving activities are being promoted as countermeasures.
On the other hand, the number of installations and frequency of use of air-conditioning equipment in the consumer sector (household and business) is increasing, and the amount of energy used is expanding. Therefore, improvement in the efficiency of air-conditioning equipment and systems for the reduction is urgent. It is a problem.
 例えば、エアコンによる室内除湿空調では、空気を露点以下に冷却除湿して水蒸気を分離した後に、低温となった空気を再度加熱して相対湿度調整を実施するなど効率の悪い調湿が行われている。 For example, in indoor dehumidification air conditioning with an air conditioner, after the air is cooled and dehumidified below the dew point and the water vapor is separated, the low-temperature air is heated again and the relative humidity is adjusted, for example. Yes.
 エネルギーの高効率使用の一環として、居住空間の高気密化がなされている。そのため、住居、事務所、商業施設、体育館、イベント会場、工場、自動車などの室内空間を、高気密化を達成しつつ衛生的な空気環境に保つことが求められている。しかし、高気密化を行うことで、居住環境の換気が疎かになると空気質悪化に起因するシックハウス症候群が誘発されるおそれがある。このため、室内あるいは車内に人間が居る条件においては、24時間連続の換気が望ましい。 As part of high-efficiency use of energy, the living space has been made highly airtight. Therefore, it is required to keep indoor spaces such as residences, offices, commercial facilities, gymnasiums, event venues, factories, and automobiles in a sanitary air environment while achieving high airtightness. However, if the ventilation of the living environment is sparse due to high airtightness, sick house syndrome due to air quality deterioration may be induced. For this reason, continuous ventilation for 24 hours is desirable under conditions where a person is present indoors or in a vehicle.
 しかしながら、換気を強化すると、空気質の悪化は防ぐことができるものの、換気を行うことによる室内空調負荷、とりわけ除湿や加湿などの潜熱負荷の増大を招いてしまう。従って、省エネルギーという目的に反して空調に要するエネルギーが大きくなるという弊害が生じている。 However, if ventilation is strengthened, deterioration of air quality can be prevented, but indoor air conditioning load due to ventilation is increased, and in particular, latent heat load such as dehumidification and humidification is increased. Therefore, there is an adverse effect that the energy required for air conditioning increases against the purpose of energy saving.
 上記弊害を解消するために、和紙などの水分透過性を有する薄膜を備えた熱交換用構造体を介して接する2つの流通路のうち一方の流通路に室内からの空気を流通させて排気し、他方の流通路には室外からの空気を流通させて室内に導入するという換気装置が全熱交換器として市販されている。 In order to eliminate the above adverse effects, air from the room is circulated and exhausted through one of the two flow passages in contact with each other through a heat exchange structure having a water-permeable thin film such as Japanese paper. In addition, a ventilator that circulates air from the outside and introduces it into the room in the other flow passage is commercially available as a total heat exchanger.
 この換気装置では、室内からの空気と室外からの空気との間で、上記構造体に備えられた和紙等を介して熱交換及び水分の移動が行われる。例えば冬期においては室内の空気は高温かつ高湿度となっており、外気は低温かつ低湿度となっている。換気装置で熱交換を行うことで、室内からの空気により室外からの空気が暖められ、更に、室内からの空気に含まれる水蒸気が和紙を通じて室外側の空気に移動し、水分の移動もなされる。従って、外気は室内からの空気により加温及び加湿されて室内へと導入される。
 夏期においては、この逆に、室内からの低温低湿度空気と室外からの高温高湿度空気との間で熱交換及び水分移動が行われ、室外からの空気は相対的に低温低湿となったうえで室内へと導入される。
In this ventilation device, heat exchange and moisture transfer are performed between indoor air and outdoor air via Japanese paper or the like provided in the structure. For example, in winter, indoor air is hot and high humidity, and outside air is low and low humidity. By exchanging heat with the ventilator, the air from the room is warmed by the air from the room, and the water vapor contained in the room moves to the air outside the room through the Japanese paper, which also moves the moisture. . Accordingly, the outside air is heated and humidified by the air from the room and is introduced into the room.
In summer, conversely, heat exchange and moisture transfer are performed between the low-temperature and low-humidity air from the room and the high-temperature and high-humidity air from the outside, and the air from the outside becomes relatively low-temperature and low-humidity. Will be introduced into the room.
 しかしながら、このような従来技術で用いられる熱交換用構造体においては、水蒸気を透過する膜である和紙等は気密性を有するものではなく、二酸化炭素やアンモニアガスは和紙等を通過してしまう。その結果、この構造体を用いた熱交換器では、室外からのフレッシュな空気に、室内からの空気から移動した二酸化炭素やアンモニアガス等の汚染成分が混合してしまうという難点がある。熱交換器における混合問題、つまりコンタミの発生を防止するために、和紙等の厚さや枚数を増すことも可能ではあるが、この場合、顕熱交換性能と潜熱交換(水蒸気交換)性能が低下すると言う難点も生じる。 However, in such a heat exchange structure used in the prior art, Japanese paper or the like, which is a film that transmits water vapor, does not have airtightness, and carbon dioxide or ammonia gas passes through the Japanese paper or the like. As a result, in the heat exchanger using this structure, there is a problem that contaminated components such as carbon dioxide and ammonia gas moved from the indoor air are mixed with fresh air from the outside. In order to prevent mixing problems in the heat exchanger, that is, contamination, it is possible to increase the thickness and number of Japanese paper, but in this case, if the sensible heat exchange performance and latent heat exchange (water vapor exchange) performance are reduced There are also difficulties.
また、熱交換を行うことは必須ではないが、一方の気体から他方の気体へと水分を移動させることが望まれることもある。
 例えば、自動車からの酸素が希薄化されている排気ガスを再度エンジンに再供給することで、排気中のNOを減少させる技術が知られている。この技術においては、酸素濃度を低く保ったままで排気ガスの湿度を低くすることが強く望まれている。従って、排気ガスと外気との間で、排気ガスの水蒸気を外気に移動させ、かつ、外気に含まれる酸素は排気ガスに移動させないことが望ましい。
 従って、一定以上の気密性を保ちながら水蒸気を選択的に透過させるための吸放湿性膜を備えたデバイスも望まれている。
Moreover, although it is not essential to perform heat exchange, it may be desired to move moisture from one gas to the other.
For example, a technique is known in which NO x in exhaust gas is reduced by re-supplying exhaust gas in which oxygen from an automobile is diluted to the engine again. In this technique, it is strongly desired to reduce the humidity of the exhaust gas while keeping the oxygen concentration low. Therefore, it is desirable to move the water vapor of the exhaust gas to the outside air between the exhaust gas and the outside air, and not to move the oxygen contained in the outside air to the exhaust gas.
Therefore, a device including a moisture absorbing / releasing film for selectively allowing water vapor to permeate while maintaining a certain level of airtightness is also desired.
 これらの問題点を解決するために、例えば下記特許文献1には、吸湿剤を板材などの表面に担持させて相対湿度の高い空気に接触させ水蒸気を吸着し、その後相対湿度の低い空気と吸湿剤を担持した板材を接触させることで加湿対象の空気へ水蒸気を移動させるデシカント換気システムが提案されている。 In order to solve these problems, for example, in Patent Document 1 below, a moisture absorbent is supported on the surface of a plate material and the like, and is brought into contact with air having a high relative humidity to adsorb water vapor. A desiccant ventilation system has been proposed in which water vapor is transferred to air to be humidified by bringing a plate material carrying an agent into contact therewith.
特許第4341924号公報Japanese Patent No. 4341924
 上記特許文献1記載のデシカント換気システムでは、相対湿度の高い空気が流れる流通路側にて吸湿剤が水蒸気を吸湿した後、この吸湿剤を低相対湿度の空気が流れる流通路へ移動させるための駆動装置が必要となる。
 また、駆動装置を設ける必要があることから、デシカント換気システムの装置構成が複雑化し、また、コストの上昇や装置構成の大型化等が生じてしまうという課題を有している。
In the desiccant ventilation system described in Patent Document 1, after the hygroscopic agent absorbs water vapor on the flow passage side through which the air with high relative humidity flows, the drive for moving the hygroscopic agent to the flow passage through which the air with low relative humidity flows. A device is required.
Moreover, since it is necessary to provide a drive device, the device configuration of the desiccant ventilation system is complicated, and there is a problem that the cost increases, the device configuration becomes large, and the like.
 従って、水分の移動を可能としながら気体成分の移動を防ぐとともに気密性を向上した、吸放湿性膜を備えたデバイスが求められており、また、このデバイスを用いて熱交換を行うことが求められている。更に、これらのデバイスを用いて水蒸気の分離を行う水蒸気分離器や、顕熱交換及び/又は潜熱交換を行うことが可能である熱交換器が求められている。 Therefore, there is a need for a device having a moisture absorbing / releasing film that prevents the movement of gas components while improving the airtightness while allowing the movement of moisture, and also requires heat exchange using this device. It has been. Furthermore, there is a need for a water vapor separator that separates water vapor using these devices, and a heat exchanger that can perform sensible heat exchange and / or latent heat exchange.
 上記課題を解決するために、本発明の一実施形態においては、担持体、前記担持体に形成された開口部、及び、前記開口部に形成され、水分を吸放出する吸放出剤を含む膜部を有する吸放湿性膜を備えたデバイスが提供される。
 好ましくは、前記膜部は、気密性を有する。
 また、前記吸放湿性膜を備えたデバイスは、好ましくは、気密性を有するように構成される。
In order to solve the above-described problem, in one embodiment of the present invention, a film including a carrier, an opening formed in the carrier, and an absorption / release agent formed in the opening to absorb and release moisture. A device comprising a hygroscopic film having a portion is provided.
Preferably, the film part has airtightness.
The device provided with the moisture absorbing / releasing film is preferably configured to have airtightness.
図1(a)は、実施例1に係る、担持体として板材を用いた吸放湿性膜を備えたデバイスの斜視図であり、図1(b)は、その断面図である。Fig.1 (a) is a perspective view of the device provided with the moisture absorption / release film | membrane which used the board | plate material as a support body based on Example 1, FIG.1 (b) is the sectional drawing. 図2(a)は、実施例2に係る、担持体としてメッシュ材を用いた吸放湿性膜を備えたデバイスの斜視図であり、図2(b)は、その一部拡大図である。FIG. 2A is a perspective view of a device including a hygroscopic film using a mesh material as a carrier according to Example 2, and FIG. 2B is a partially enlarged view thereof. 図3は、本発明の実施例3に係るシェルアンドチューブ型熱交換器の説明図である。FIG. 3 is an explanatory diagram of a shell and tube heat exchanger according to Embodiment 3 of the present invention. 図4は、シェルアンドチューブ型熱交換器に用いられる、メッシュ状とされた吸放湿性膜を備えたデバイスの説明図であり、(a)は全体説明図、(b)は膜部の拡大図、(c)は水分の移動の説明図、(d)は開口部における吸放湿剤とバインダーとの状態の説明図である。4A and 4B are explanatory views of a device having a mesh-like hygroscopic film used in a shell-and-tube heat exchanger, where FIG. 4A is an overall explanatory view, and FIG. 4B is an enlarged view of the film portion. (C) is explanatory drawing of a movement of a water | moisture content, (d) is explanatory drawing of the state of the moisture absorption / release agent and binder in an opening part. 図5は、本発明の実施例4に係るプレートフィン型全熱交換器の説明図である。FIG. 5 is an explanatory diagram of a plate fin type total heat exchanger according to a fourth embodiment of the present invention. 図6は、本発明の実施例4に係るプレートフィン型全熱交換器を通過する夏季の外気ならびに室内気の湿度・温度変化の概要図である。FIG. 6 is a schematic diagram of humidity and temperature changes in outdoor air and indoor air that pass through a plate fin-type total heat exchanger according to Embodiment 4 of the present invention. 図7(a)は、本発明の実施例5に係る吸放湿性膜を備えたデバイスの斜視図、図7(b)はその一部断面図、図7(c)は、デバイスを固定するリベットの断面図である。FIG. 7 (a) is a perspective view of a device provided with a hygroscopic film according to Example 5 of the present invention, FIG. 7 (b) is a partial cross-sectional view thereof, and FIG. 7 (c) is for fixing the device. It is sectional drawing of a rivet. 図8は、本発明の実施例6に係る熱交換器の断面図である。FIG. 8 is a cross-sectional view of a heat exchanger according to Embodiment 6 of the present invention. 図9は、本発明の実施例9に係る熱交換器の一部透過斜視図である。FIG. 9 is a partially transparent perspective view of the heat exchanger according to the ninth embodiment of the present invention. 図10(a)は、本発明の実施例9に係る熱交換器を前面側から見た一部透過図、図10(b)はその前面側の平面図、図10(c)はその横断面図、図10(d)はその右側面図である。FIG. 10A is a partially transparent view of the heat exchanger according to the ninth embodiment of the present invention viewed from the front side, FIG. 10B is a plan view of the front side, and FIG. FIG. 10 (d) is a right side view thereof. 図11は、吸放湿剤の一例における相対湿度に対する吸湿率を表すグラフである。FIG. 11 is a graph showing the moisture absorption rate relative to the relative humidity in an example of the moisture absorbing / releasing agent. 図12は、吸放湿剤の平均粒径と透湿度との相関を表すグラフである。FIG. 12 is a graph showing the correlation between the average particle diameter of the moisture-absorbing / releasing agent and the moisture permeability. 図13は、透湿剤シートの透湿度と通気度の比較試験結果の説明図である。FIG. 13 is an explanatory diagram of a comparative test result of moisture permeability and air permeability of the moisture permeable agent sheet.
 以下、本発明の実施の形態について図面を参照しながら詳述する。
 本発明の一実施形態では、吸放湿性膜を備えたデバイスとして、担持体と、担持体に形成された複数の開口部と、この開口部に設けられた、水分を吸放湿する吸放湿剤を含む膜部とを備えた吸放湿性構造体を形成している。吸放湿性構造体自体は必ずしも完全な気密性を有するものとする必要はない。しかし、吸放湿性構造体を熱交換器に適用する場合等のように、吸放湿性構造体に対して実質的な気密性が必要とされる場合がある。また、吸放湿性構造体自体を完全に気密とする必要はないものの、ある程度以上の気密性が必要となる場合もある。
 従って、吸放湿性構造体に対してどの程度の気密性が要求されるかに応じて、担持体と膜部とについて、実質的に気密なもの、または要求される気密性を満足する程度の気密性を有するものを選択することができる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
In one embodiment of the present invention, as a device having a moisture absorbing / releasing film, a carrier, a plurality of openings formed in the carrier, and an absorption / release that absorbs and releases moisture provided in the openings. A moisture-absorbing / releasing structure having a film portion containing a wetting agent is formed. The hygroscopic structure itself does not necessarily have to be completely airtight. However, substantial airtightness may be required for the moisture absorbing / releasing structure, such as when the moisture absorbing / releasing structure is applied to a heat exchanger. Moreover, although it is not necessary for the hygroscopic structure itself to be completely airtight, a certain degree of airtightness may be required.
Therefore, depending on how much airtightness is required for the moisture absorbing / releasing structure, the carrier and the film part are substantially airtight or satisfy the required airtightness. One having airtightness can be selected.
 なお、膜部に含まれる吸放湿剤は、高湿度下で水分を吸収し、かつ低湿度下で水分を放出することが可能なものであれば、用途に応じて任意のものを用いることができる。 In addition, as long as the moisture absorbing / releasing agent contained in the film part can absorb moisture under high humidity and release moisture under low humidity, any one may be used depending on the application. Can do.
 以下の実施形態では、吸湿性及び放湿性を有する吸放湿剤として特開2009-74098号に記載される収着剤あるいは吸放湿性重合体を用いているが、吸放湿剤はこれに限られるものではない。例えば、全熱交換器等の、膜部の一方側の面から他方側の面への膜部を通じた水分移動が必要となる用途においては、吸放湿剤は、
 1)高湿度の気体に接する側の膜部表面で吸放湿剤により水蒸気を水分として吸収し、かつ、
 2)低湿度の気体に接する側の膜部表面で吸放湿剤から水分を水蒸気として放散する、
 ことができるものであればよい。通常は、吸放湿剤の微粒子を接着性の液状バインダーに混合し、この混合物を担体に担持して乾燥させることで、水蒸気透過性膜を形成する。
In the following embodiments, the sorbent or moisture-absorbing polymer described in JP-A-2009-74098 is used as the moisture-absorbing / releasing moisture-absorbing agent. It is not limited. For example, in applications where moisture transfer through the membrane part from one side of the membrane part to the other side, such as a total heat exchanger, is necessary,
1) Water vapor is absorbed as moisture by a moisture absorbent on the surface of the membrane portion on the side in contact with the high humidity gas, and
2) Dissipates moisture from the moisture absorbent as water vapor on the surface of the membrane part in contact with the low humidity gas.
Anything can be used. Usually, a water vapor permeable film is formed by mixing fine particles of a moisture absorbing / releasing agent with an adhesive liquid binder, and carrying the mixture on a carrier and drying it.
 高湿度下で水分を吸収し、かつ低湿度下で水分を放出する物質には種々の名称が付されており、例えば、特開2013-107070では「吸脱湿剤」、特開2001-11320号では「吸放湿性重合体」、「多孔質吸放湿性重合体」、「有機高分子系収着剤」、特開2000-17101号では「多孔質吸放湿性重合体」と称されている。
 これらの物質は、その名称にかかわらず、高湿度下で水分を吸収し、かつ低湿度下で水分を放出するものであれば水蒸気選択透過性膜の形成に用いることができる。本明細書では、これらの物質を「吸放湿剤」として記載する。
Various names are given to substances that absorb moisture under high humidity and release moisture under low humidity. For example, Japanese Patent Application Laid-Open No. 2013-107070 describes “absorption and desorption agent”, Japanese Patent Application Laid-Open No. 2001-11320. No. “Hygroscopic polymer”, “Porous hygroscopic polymer”, “Organic polymer sorbent”, and “Porous hygroscopic polymer” in JP-A-2000-17101. Yes.
Regardless of their names, these substances can be used for forming a water vapor selective permeable membrane as long as they absorb moisture under high humidity and release moisture under low humidity. In this specification, these substances are described as “moisture absorbing / releasing agents”.
 例えば特開2009-74098号公報に記載された収着剤は、吸放湿剤として好適な性能を有する。この収着剤の相対湿度に対する吸湿率(%重量)を表すグラフを図11に示す。
 図11に示されるように、特開2009-74098号公報に記載された収着剤は、相対湿度の高い空気中で水蒸気を吸湿する。この際に吸湿熱が発生する。また、相対湿度の低い空気中で、水分を水蒸気として放出し、この際に周囲の熱を奪う。なお、この動作は、温度には依存せずに相対湿度のみに依存する。但し、空気の温度変化に伴って相対湿度も変化するので、見かけ上は、この動作は温度の影響を受けることになる。
 図示されるように、特開2009-74098号公報に記載された収着剤は、他の吸湿剤、即ちシリカゲルA、シリカゲルB及びアクティブカーボンに比較して、相対湿度が高いときにおける吸湿率が非常に高い。
 そして、相対湿度が低くなると、吸湿率も低くなるので、それまでに吸湿されていた水分が放出される。また、図11に示されるように、相対湿度が高いときにおける吸湿率と、相対湿度が低いときにおける吸湿率との差が大きい。従って、高湿度の気体からは多量に水分を吸湿し、かつ、低湿度の気体へと水分を多量に放出すると共に吸湿された水分子は収着剤の内部を移動できるので、水蒸気選択透過性膜に適している。
For example, the sorbent described in Japanese Patent Application Laid-Open No. 2009-74098 has a performance suitable as a moisture absorbing / releasing agent. A graph showing the moisture absorption rate (% weight) with respect to the relative humidity of this sorbent is shown in FIG.
As shown in FIG. 11, the sorbent described in JP-A-2009-74098 absorbs water vapor in air having a high relative humidity. At this time, heat of moisture absorption is generated. In addition, moisture is released as water vapor in the air having a low relative humidity, and the surrounding heat is taken away at this time. This operation does not depend on temperature but depends only on relative humidity. However, since the relative humidity changes with the temperature change of the air, this operation is apparently affected by the temperature.
As shown in the figure, the sorbent described in Japanese Patent Application Laid-Open No. 2009-74098 has a moisture absorption rate when the relative humidity is higher than other moisture absorbents, that is, silica gel A, silica gel B and active carbon. Very expensive.
When the relative humidity is lowered, the moisture absorption rate is also lowered, so that moisture that has been absorbed by then is released. Further, as shown in FIG. 11, the difference between the moisture absorption rate when the relative humidity is high and the moisture absorption rate when the relative humidity is low is large. Therefore, it absorbs a large amount of moisture from a high-humidity gas, and releases a large amount of moisture to a low-humidity gas. Suitable for membrane.
 また、この収着剤は、透湿度が高い一方で、通気度が低く、水蒸気選択透過性膜として優れた性質を有する。
図12に、収着剤における透湿度及び通気度を基準として、市販されている透湿防水性シートにおける透湿度通気度とを測定した結果を表形式で表した説明図を示す。
 この図に示されるように、収着剤を塗布したシート(エマルション0.1[μm])における透湿度を1として、A社製透湿防水シートの透湿度は0.5、B社製透湿防水性シートの透湿度は0.8である。従って、A社製透湿防水性シート、B社製透湿防水性シートは、共に、収着剤を塗布したシートよりも水蒸気が移動しにくいことが示される。通気度に関しては、収着剤を塗布したシートにおける通気度を1として、A社製透湿防水シートの通気度は6、B社製透湿防水性シートの通気度は15である。
 従って、A社製透湿防水性シート、B社製透湿防水性シートは、共に、収着剤を塗布したシートよりも通気性が高く、従って、A社製透湿防水性シート、B社製透湿防水性シートは、共に、収着剤を塗布したシートよりも、水蒸気選択透過や熱交換を行う気体同士の間で不快成分等を含んだ空気が互いに混入しやすくなっていることが示される。以上のことから、水蒸気分離や熱交換は、適宜水蒸気分離膜や熱交換膜を選択することが可能であるが、特に、特開2009-74098号公報に記載された収着剤が好適であることが示される。
In addition, this sorbent has high moisture permeability and low air permeability, and has excellent properties as a water vapor selective permeable membrane.
FIG. 12 is an explanatory diagram showing the results of measuring the moisture permeability and air permeability of a commercially available moisture permeable waterproof sheet on the basis of the moisture permeability and permeability of the sorbent in a tabular form.
As shown in this figure, the moisture permeability of the moisture permeable waterproof sheet manufactured by Company A is 0.5, and the permeability of Company B is transparent. The moisture permeability of the moisture and waterproof sheet is 0.8. Therefore, it is shown that the moisture permeable waterproof sheet manufactured by Company A and the moisture permeable waterproof sheet manufactured by Company B are less likely to move water vapor than the sheet coated with the sorbent. Regarding the air permeability, the air permeability of the moisture permeable waterproof sheet manufactured by Company A is 6 and the air permeability of the moisture permeable waterproof sheet manufactured by Company B is 15, where the air permeability of the sheet coated with the sorbent is 1.
Therefore, the moisture permeable waterproof sheet manufactured by Company A and the moisture permeable waterproof sheet manufactured by Company B are both more breathable than the sheet coated with the sorbent. Both moisture-permeable and waterproof sheets are more likely to mix air containing unpleasant components between gases that perform selective permeation of water vapor and heat exchange than sheets coated with a sorbent. Indicated. From the above, for water vapor separation and heat exchange, it is possible to select a water vapor separation membrane or a heat exchange membrane as appropriate, but the sorbent described in JP2009-74098A is particularly suitable. Is shown.
 本発明の実施形態に係る吸放湿性膜を備えたデバイスを介して気体同士を接触させることで、これらの気体の間で水蒸気を移動させることができる。この際、このデバイスを介して熱交換を行うこともできる。特に、この吸放湿性膜を備えたデバイスは、顕熱及び潜熱を交換する全熱交換器、例えば室内からの空気と室外からの空気との間で熱交換及び水分移動を行う全熱交換器に適している。
 なお、本発明は、空気同士に限られず、気体同士での水蒸気移動や熱交換に一般的に使用することが可能である。室内からの空気と室外からの空気とをこの吸放湿性構造体を介して形成された第1の流通路と第2の流通路にそれぞれ流通させることで、室内からの空気と室外からの空気との間で、水蒸気選択透過性膜を通じて水分移動がなされる。また、吸放湿性構造体を介して室内からの空気と室外からの空気との間で熱移動が行われる。従って、室外からの空気を、その温度及び湿度を室内からの空気に適合するよう調整したうえで室内に導入することが可能となる。
Water vapor can be moved between these gases by bringing the gases into contact with each other through the device having the hygroscopic film according to the embodiment of the present invention. At this time, heat exchange can also be performed through this device. In particular, the device provided with the hygroscopic film is a total heat exchanger for exchanging sensible heat and latent heat, for example, a total heat exchanger for exchanging heat and transferring moisture between indoor air and outdoor air. Suitable for
The present invention is not limited to air but can be generally used for water vapor movement and heat exchange between gases. The air from the room and the air from the outside are circulated through the first flow path and the second flow path formed through the moisture absorbing / releasing structure, respectively. Between, the moisture is transferred through the water vapor selective permeable membrane. Further, heat transfer is performed between the air from the room and the air from the outside through the moisture absorbing / releasing structure. Therefore, it is possible to introduce the air from the outside into the room after adjusting its temperature and humidity to match the air from the room.
 特に、室内からの空気は、人間の呼吸に起因して二酸化炭素の濃度が高く、また、人間及び室内の物質から発生するアンモニアや臭気成分等、人体にとって有害な成分や不快成分が含まれる場合もある。しかし、上記のように吸放湿性構造体は気密性を有するので、室内からの空気に含まれるこのような望ましくない気体成分が室外からの空気に移動することが防がれる。従って、室外からの新鮮な空気を、その温度及び湿度を室内の空気に近くなるよう調整し、かつ室内からの空気に含まれる望ましくない気体成分を室内からの新鮮な空気に混入させることなく室内へと導入することが可能となる。 In particular, indoor air has a high concentration of carbon dioxide due to human respiration, and contains harmful and unpleasant components such as ammonia and odorous components generated from humans and indoor materials. There is also. However, since the moisture absorbing / releasing structure has airtightness as described above, it is possible to prevent such undesirable gas components contained in the indoor air from moving to the outdoor air. Accordingly, the fresh air from the outside is adjusted so that the temperature and humidity thereof are close to the room air, and an undesirable gas component contained in the room air is not mixed into the room fresh air. It becomes possible to introduce to.
 このように、熱(顕熱)交換と水蒸気(潜熱)交換を行うことで室内空調負荷の増大を防いでエネルギー損失を抑制しながら換気を行うことができる。
 また、このような吸放湿性構造体においては、気密性を維持することが重要となる場合がある。この場合、担持体自体は気密性を有する必要があることに加えて、担持体上に形成された膜部を気密なものとし、その気密性を維持する必要がある。
Thus, ventilation can be performed while preventing an increase in indoor air conditioning load and suppressing energy loss by performing heat (sensible heat) exchange and water vapor (latent heat) exchange.
Further, in such a moisture absorbing / releasing structure, it may be important to maintain airtightness. In this case, in addition to the carrier itself needing to have airtightness, the film portion formed on the carrier must be airtight and the airtightness must be maintained.
 なお、吸放湿性構造体の膜部を貫通するクラックが生じた場合、あるいは吸放湿性構造体の担持体が完全には気密なものではない場合、吸放湿性構造体は完全に気密にはならない。しかし、用途によっては、吸放湿性構造体に完全な気密性が必要ではない場合もある。
 例えば、全熱交換器に吸放湿性構造体を用いる場合、吸放湿性構造体自体の気密性が完全ではないと空気の漏洩が生じてしまう。しかし、その漏洩量が許容量以下であれば、吸放湿性構造体が完全に気密でない吸放湿性構造体であっても全熱交換器に用いることができる。この場合の許容量は任意に定めることができる。室内からの臭気成分を含む空気と室内に導入される新鮮な外気との間で全熱交換を行う場合は、室内に導入される外気に臭気が生じない漏洩量を、空気の漏洩量の許容値とすることができる。
In addition, when a crack that penetrates the film portion of the moisture absorbing / releasing structure occurs or when the carrier of the moisture absorbing / releasing structure is not completely airtight, the moisture absorbing / releasing structure is not completely airtight. Don't be. However, depending on the application, the moisture-absorbing / releasing structure may not need to be completely airtight.
For example, when a hygroscopic structure is used for the total heat exchanger, air leakage occurs if the hygroscopic structure itself is not completely airtight. However, if the amount of leakage is less than the allowable amount, even if the hygroscopic structure is not completely airtight, the hygroscopic structure can be used for the total heat exchanger. The allowable amount in this case can be arbitrarily determined. When total heat exchange is performed between air containing odor components from the room and fresh outside air introduced into the room, the amount of leakage that does not cause odor in the outside air that is introduced into the room must be allowed for the amount of air leakage. Can be a value.
 膜部自体の気密性を確保するために、水蒸気を透過する膜部を構成する材料、好ましくは水蒸気選択透過性材料にバインダーを混合することもできる。例えば水蒸気を透過する材料だけで担持体の開口部に膜部を形成した場合、膜部が多孔性であり、又は、膜部自体が気密であっても、形成される膜部が脆くクラックが発生しやすい等の理由で気密性が不十分になるおそれが生じる場合もある。この場合、水蒸気を透過する材料とバインダーとの混合物を担持体の開口部に配置して乾燥させることで膜部を形成して充分な気密性を得ることもできる。 In order to ensure the airtightness of the membrane part itself, a binder can be mixed with a material constituting the membrane part that transmits water vapor, preferably a water vapor selective permeable material. For example, when the film part is formed at the opening of the carrier only with a material that transmits water vapor, the formed film part is brittle and cracked even if the film part is porous or the film part itself is airtight. There is a possibility that airtightness may be insufficient due to a tendency to occur. In this case, a sufficient airtightness can be obtained by forming a film portion by disposing a mixture of a material that transmits water vapor and a binder in the opening of the carrier and drying the mixture.
 また、水蒸気を透過する材料として粒状の吸放湿剤を用いて膜部を形成する場合、粒状の吸放湿剤に接着剤としてバインダーを混合し、この混合物を開口部に配置した後に乾燥等を行うことで気密性を有する膜部を形成することもできる。
 この場合、バインダーに対しては、吸放湿剤同士を、形成される膜部にクラック等が生じない程度に強く結合することが求められる。更に、吸放湿剤を通じた水分の移動を許容するものであることが求められる。バインダーが水分を透過せず、かつ、吸放湿剤をバインダーが完全に被覆した場合には、吸放湿剤を通じた水分移動が不可能になるからである。
 吸放湿剤内では水分は液相で移動することから、バインダーは、液相の水に対して透過性を有するものであることが好ましい。
In addition, when forming a film portion using a granular moisture absorbent as a material that transmits water vapor, a binder is mixed as an adhesive with the granular moisture absorbent, and the mixture is placed in the opening and then dried. By performing the above, it is possible to form a film portion having airtightness.
In this case, it is required that the moisture absorbing / releasing agent is strongly bonded to the binder to such an extent that no cracks or the like occur in the formed film portion. Furthermore, it is required to allow the movement of moisture through the moisture absorbing / releasing agent. This is because when the binder does not transmit moisture and the binder completely covers the moisture absorbing / releasing agent, moisture cannot be transferred through the moisture absorbing / releasing agent.
Since moisture moves in a liquid phase in the moisture absorbent / release agent, the binder is preferably permeable to water in the liquid phase.
 更に、水蒸気を透過する材料を開口部のみに配置して膜部を形成するものとしても良いが、開口部だけでなく担持体上をも膜状に覆うように配置する構成としても良い。吸放湿性構造体の担持体部分においては主に顕熱交換が行われるので、この顕熱交換を許容されるのであれば、水蒸気を透過する材料を担持体部分に配置しても良いからである。
 この場合、担持体上に形成された膜を通じて、開口部に形成された膜部にまで水分が移動することで、水分が吸放湿性構造体の一方側から他方側に移動することが可能となる。更に、担持体上に形成された水蒸気を透過する材料による膜が、担持体の開口部に形成された膜部を強固に固定することも可能である。特に、担持体表面に吸放湿剤をバインダーで接着する構成とした場合には、開口部の吸放湿剤をより堅固に固定することも可能である。
Further, the film portion may be formed by disposing a material that transmits water vapor only in the opening, but it may be configured so as to cover not only the opening but also the support. Since the sensible heat exchange is mainly performed in the carrier part of the moisture absorbing / releasing structure, a material that transmits water vapor may be arranged in the carrier part if this sensible heat exchange is allowed. is there.
In this case, the moisture can move from one side of the moisture absorbing / releasing structure to the other side by moving the moisture through the membrane formed on the carrier to the membrane formed in the opening. Become. Further, a film made of a material that transmits water vapor formed on the support can firmly fix the film formed on the opening of the support. In particular, when the moisture absorbing / releasing agent is bonded to the surface of the carrier with a binder, the moisture absorbing / releasing agent in the opening can be more firmly fixed.
 一方、膜自体が気密性を有しても、膜にひび割れやクラック等が発生して気密性が維持できなくなるおそれもある。このようなひび割れが発生すると、吸放湿性構造体により分離されている気体同士がひび割れを通過して混合してしまう。例えば、室内からの空気と室外からの空気を、水蒸気選択透過性構造体を介して全熱交換する場合、水蒸気選択透過性膜に生じたクラックを通じて、室内からの空気に含まれる二酸化炭素や不快物質等を含む気体成分が室外からの新鮮な空気に混入してしまう。また、ある程度の空気の漏洩が許容される用途においても、漏洩の原因となるクラック等の発生をできるだけ抑えることが望ましい。 On the other hand, even if the film itself is airtight, there is a possibility that the film may be cracked, cracked, etc., and the airtightness cannot be maintained. When such a crack occurs, the gases separated by the moisture absorbing / releasing structure pass through the crack and mix. For example, when total heat exchange is performed between indoor air and outdoor air via a water vapor selective permeable structure, carbon dioxide contained in the indoor air or uncomfortable through cracks in the water vapor selective permeable membrane. Gas components including substances are mixed in fresh air from the outside. Even in applications where a certain amount of air leakage is allowed, it is desirable to suppress as much as possible the occurrence of cracks and the like that cause leakage.
 このようなクラックの主な発生原因としては、膜部の強度や膜部に係る応力が挙げられる。特に、膜部の面積が大きくなると、膜部に係る応力も大きくなり、膜を貫通するクラックやひび割れが生じやすくなる。
 従って、本実施形態では、担持体に形成される開口部を、クラックやひび割れが生じない大きさとし、開口部の面積を比較的小さくしている。例えば、等価水力直径を5mm以下、好ましくは等価水力直径を2mmとすることで、クラックやひび割れが生じないか、あるいは膜の表面にクラックやひび割れが生じたとしても、膜を貫通するクラックやひび割れが生じないようにし、気密性を保つようにしている。なお、完全な気密性が必要ではない場合には、等価水力直径を例えば7mm以下、10mm以下として、開口部の面積をより大きくすることもできる。
The main causes of such cracks include the strength of the film part and the stress associated with the film part. In particular, when the area of the film portion increases, the stress on the film portion also increases, and cracks and cracks penetrating the film are likely to occur.
Therefore, in this embodiment, the opening formed in the carrier is sized so as not to cause cracks or cracks, and the area of the opening is relatively small. For example, if the equivalent hydraulic diameter is 5 mm or less, and preferably the equivalent hydraulic diameter is 2 mm, even if cracks or cracks do not occur or cracks or cracks occur on the surface of the film, cracks or cracks that penetrate the film To prevent the occurrence of airtightness. In addition, when perfect airtightness is not required, the equivalent hydraulic diameter can be set to, for example, 7 mm or less and 10 mm or less to further increase the area of the opening.
 また、開口部の形状も、応力の集中によるクラックやひび割れの発生を防ぐ形状とすることが望ましいが、上記のように開口部の面積を小さくすることで、クラックやひび割れの発生を防ぐことができるのであれば、開口部を六角形や四角形としても良い。好ましくは、六角形や四角形の角の部分を丸めることで、角の部分における応力の集中を防ぐことができる。また、開口部を円形とすることで、応力の集中を避けるようにしてもよい。 In addition, it is desirable that the shape of the opening is a shape that prevents the occurrence of cracks and cracks due to stress concentration, but by reducing the area of the opening as described above, it is possible to prevent the occurrence of cracks and cracks. If possible, the opening may be a hexagon or a rectangle. Preferably, the stress concentration in the corner portion can be prevented by rounding the corner portion of the hexagon or the rectangle. Moreover, you may make it avoid stress concentration by making an opening part circular.
 以下の実施例では、特段の記載がない限りは、担持体として板材やチューブ材を用い、多数の開口部を設けると共に、各開口部の水力等価直径を2mm以下とした。各開口部には、水蒸気を吸湿する吸放湿剤と接着性を有するバインダー、好ましくはセルロースなどの微細繊維を混合した混合物を塗布し、その後乾燥させることで、水蒸気選択透過性膜を形成した。なお、吸放湿剤としては、例えば日本エクスラン工業株式会社による特開2009-74098号公報に記載される収着剤を用いることができる。 In the following examples, unless otherwise specified, a plate material or a tube material was used as the carrier, a number of openings were provided, and the hydraulic equivalent diameter of each opening was 2 mm or less. Each opening was coated with a moisture-absorbing / releasing agent that absorbs water vapor and an adhesive binder, preferably a mixture of fine fibers such as cellulose, and then dried to form a water vapor selective permeable membrane. . As the moisture absorbing / releasing agent, for example, a sorbent described in JP 2009-74098A by Nippon Exlan Industry Co., Ltd. can be used.
 その結果、開口部には吸放湿剤が接着性を有するバインダーを介して膜状に固定された状態となる。この状態であれば、乾燥後に膜部に微細なひび割れが生じても、そのひび割れは小さく、膜部の全体を貫通することが無いので、気密性が維持される。なお、上述のように、開口部を大きくすると、クラック等が発生しやすくなるが、これら発生したクラック等による空気の漏洩量が許容量以下となる範囲内であれば、開口部をより大きくすることも可能である。 As a result, the moisture absorbing / releasing agent is fixed to the opening in the form of a film through an adhesive binder. In this state, even if a fine crack is generated in the film part after drying, the crack is small and does not penetrate the entire film part, so that airtightness is maintained. As described above, if the opening is enlarged, cracks and the like are likely to occur. However, if the amount of air leakage due to the generated cracks is within the allowable range, the opening is made larger. It is also possible.
 一方、吸放湿性構造体の開口部に形成された膜部に形成されて空気面に露出する吸放湿剤の膜は相対湿度の高い空気中から水蒸気を吸湿し、水分子の状態で結合水として吸放湿剤中に取り込む。この際、水は気相から液相へと相転移するので凝縮熱が発生する。吸放湿剤中に液相となって取り込まれた水分子は吸放湿剤の中を移動し、相対湿度の低い空気側に接する吸放湿剤の露出面から、空気中へと水蒸気として放散される。この際、水は液相から気相へと相転移するので、周囲から気化熱を奪う。 On the other hand, the hygroscopic agent film formed on the film part formed at the opening of the hygroscopic structure and exposed to the air surface absorbs water vapor from air with high relative humidity and binds in the form of water molecules. Take in water as a moisture absorber. At this time, since water undergoes a phase transition from the gas phase to the liquid phase, heat of condensation is generated. Water molecules taken into the moisture absorbent as a liquid phase move in the moisture absorbent, and from the exposed surface of the moisture absorbent that contacts the air side having a low relative humidity, into the air as water vapor. Dissipated. At this time, since water undergoes a phase transition from the liquid phase to the gas phase, it takes heat of vaporization from the surroundings.
 このように、一方の流通路を流通する、相対湿度の高い空気内の気相の水蒸気は、吸着剤内を液相の水として移動し、更に、他方の流通路を流通する相対湿度の低い空気内に気相の水蒸気として移動する。また、膜自体は比較的薄いので、膜の一方側で水が気相から液相に相転移する際に発生した凝縮熱は、膜の反対側における液相から気相への相転移時に必要となる気化熱の熱源として消費される。従って、発生した凝縮熱を気化熱に活用することができ、熱エネルギーが無駄になることもない。 Thus, the vapor phase water vapor in the air with high relative humidity flowing through one flow passage moves as liquid phase water in the adsorbent, and further, the relative humidity through the other flow passage is low. It moves in the air as vapor in the vapor phase. Also, since the membrane itself is relatively thin, the heat of condensation generated when water transitions from the gas phase to the liquid phase on one side of the membrane is required during the phase transition from the liquid phase to the gas phase on the opposite side of the membrane. It is consumed as a heat source for vaporization heat. Therefore, the generated heat of condensation can be utilized for the heat of vaporization, and the heat energy is not wasted.
 この様に、相対湿度の高い空気に含まれる水蒸気は、見かけ上は、相対湿度の低い空気側に直接移動するようにみえる。また、水蒸気選択透過性膜を介して流れる流体の間で温度差がある場合は、水蒸気選択透過性膜及び担持体を通じて高温側から低温側へと熱が移動可能である。 In this way, the water vapor contained in the air with high relative humidity appears to move directly to the air side with low relative humidity. When there is a temperature difference between fluids flowing through the water vapor selective permeable membrane, heat can be transferred from the high temperature side to the low temperature side through the water vapor selective permeable membrane and the support.
 従って、熱及び水蒸気は、吸放湿性構造体を介して移動するが、炭酸ガスやアンモニアガス等の気体成分は、吸放湿性構造体を殆ど通過しないので、室内からの空気に含まれるこれらの汚染成分によって室外からの新鮮な空気が汚染されてコンタミが発生することを防ぐことができる。 Therefore, heat and water vapor move through the moisture absorbing / releasing structure, but gas components such as carbon dioxide and ammonia gas hardly pass through the moisture absorbing / releasing structure. It is possible to prevent contamination from occurring due to contamination of fresh air from outside by the contaminated components.
 また、このような特性を有する水蒸気選択透過性膜を形成する板材、チューブ材、メッシュ材などは、その開口部に形成される水蒸気選択透過性膜を補強できる程度の強度があればよく、強度や形状の設計自由度が高い。従って、これら板材等として適切な材料を選択して、シェルアンドチューブ型やプレートフィン型等の全熱交換器を容易に製造することができる。
 なお、水蒸気の移動を促進する意味で、開口部の総面積(開口率)は大きいことが望ましいものの、その開口部に形成される水蒸気選択透過性膜の強度や貫通孔発生を防ぐために、形状、サイズが制限される。従って、開口部は一定の形状やサイズである必要は無い。担持体の開口部の寸法、形状が均一ではないものとすることが好ましい場合もある。
 また、水蒸気選択透過性膜の透湿度は、吸放湿剤の平均粒径によって定まる。
In addition, the plate material, tube material, mesh material, etc. that form the water vapor selective permeable membrane having such characteristics need only have a strength that can reinforce the water vapor selective permeable membrane formed in the opening. And design flexibility is high. Therefore, it is possible to easily manufacture a total heat exchanger such as a shell and tube type or a plate fin type by selecting an appropriate material as the plate material.
In order to promote the movement of water vapor, it is desirable that the total area (opening ratio) of the opening is large, but the shape of the water vapor selectively permeable membrane formed in the opening is prevented in order to prevent the generation of through holes. , Size is limited. Therefore, the opening does not have to have a certain shape or size. It may be preferable that the size and shape of the opening of the carrier are not uniform.
Moreover, the water vapor permeability of the water vapor selective permeable membrane is determined by the average particle diameter of the moisture absorbing / releasing agent.
 吸放湿剤の平均粒径を変化させたときの透湿度の相対変化を表すグラフを図13に示す。なお、この図において縦軸は透湿度、横軸は平均粒径(単位:0.01[μm])を表す。また、この図で透湿度の値「1」は、17[g/m2hr]に相当する。粒径による通気度は差圧5[kPa]まで、ほぼ無視可能であった。図13では、差圧5[kPa]における透湿度と平均粒径との相関を表している。
 この図に示されるように、平均粒径が小さいと吸放湿剤同士の距離が小さくなるので透湿度も小さくなる。平均粒径がある程度大きくなると透湿度は急激に上昇して平均粒径が約0.2[μm]で透湿度は最大値約2.75となる。
 吸放湿剤の平均粒径が0.15~0.3[μm]で透湿度は2.5以上となり、平均粒径が0.1~0.45[μm]で透湿度は2以上になることから、吸放湿剤の平均粒径は、好ましくは0.1~0.45[μm]、より好ましくは0.15~0.3[μm]である。
FIG. 13 is a graph showing the relative change in moisture permeability when the average particle size of the moisture absorbent / release agent is changed. In this figure, the vertical axis represents moisture permeability, and the horizontal axis represents the average particle size (unit: 0.01 [μm]). Further, in this figure, the moisture permeability value “1” corresponds to 17 [g / m 2 hr]. The air permeability due to the particle size was almost negligible up to a differential pressure of 5 [kPa]. FIG. 13 shows the correlation between moisture permeability and average particle diameter at a differential pressure of 5 [kPa].
As shown in this figure, when the average particle size is small, the distance between the moisture-absorbing / releasing agents is small, so the moisture permeability is also small. When the average particle size is increased to some extent, the moisture permeability rapidly increases, and the average particle size becomes about 0.2 [μm] and the moisture permeability reaches a maximum value of about 2.75.
Moisture absorbing / releasing agent has an average particle size of 0.15 to 0.3 [μm] and moisture permeability of 2.5 or more, average particle size of 0.1 to 0.45 [μm] and moisture permeability of 2 or more Therefore, the average particle diameter of the moisture absorbent / release agent is preferably 0.1 to 0.45 [μm], more preferably 0.15 to 0.3 [μm].
 [実施例1]
 図1(a)に、本発明の実施例1に係る吸放湿性構造体10の斜視図を示し、また、その断面図を図1(b)に示す。
 これらの図に示されるように、吸放湿性構造体10は、担持体として板材11を用いており、板材11の開口部12に水蒸気選択透過性を有する吸放湿剤として高分子吸放湿剤14を含んだ膜部13が形成されている。この膜部13が水蒸気選択透過性膜となる。板材11の材質はアルミあるいは銅、プラスチックなどが用いられ、その厚みは1mm以下で0.2~0.3mmが好ましい。高分子吸着剤としては、例えば特開2009-74098号に記載される吸放湿性重合体を用いることができる。
[Example 1]
FIG. 1A shows a perspective view of a hygroscopic structure 10 according to Embodiment 1 of the present invention, and FIG. 1B shows a cross-sectional view thereof.
As shown in these figures, the moisture absorbing / releasing structure 10 uses a plate 11 as a carrier, and a polymer moisture absorbing / releasing moisture as a moisture absorbing / releasing agent having a water vapor selective permeability in the opening 12 of the plate 11. A film portion 13 containing the agent 14 is formed. This membrane part 13 becomes a water vapor selective permeable membrane. The plate material 11 is made of aluminum, copper, plastic or the like, and the thickness is preferably 1 mm or less and preferably 0.2 to 0.3 mm. As the polymer adsorbent, for example, a hygroscopic polymer described in JP-A-2009-74098 can be used.
 また、バインダーとして、接着性樹脂を用いた。なお、この実施例1では板材11を平面状としたが、板材11をチューブ状あるいは曲面状とすることも可能である。また、この吸放湿性構造体において開口率は50%、特に70%以上とすることが好ましく、この実施例1では開口部12の形状、サイズをそれぞれ異なるものとして、開口率を70%、等価水力直径は5mm以下とした。 Also, an adhesive resin was used as a binder. In the first embodiment, the plate material 11 has a planar shape, but the plate material 11 may have a tube shape or a curved surface shape. Further, in this moisture-absorbing / releasing structure, the opening ratio is preferably 50%, particularly 70% or more. In Example 1, the opening 12 has a different shape and size, and the opening ratio is 70%. The hydraulic diameter was 5 mm or less.
 図1(a)、(b)に示すように、本発明の実施例1に係る吸放湿性構造体10においては、担持体である板材11の開口部12及びその周囲の板材表面に膜部13が形成されている。この実施例では、吸放湿性構造体10の上面側に高温・高湿度の空気を接触させ、吸放湿性構造体10の下面側に低温・低湿度の空気を接触させた。その結果、高温・高湿度の空気における熱と水蒸気は、吸放湿性構造体10の下面側の低温・低湿度の空気へとそれぞれ伝達されることが確認できた。その際の水蒸気透過率は、開口部を含む板材の有効面積に対して、20g/m・hであった。 As shown in FIGS. 1A and 1B, in the moisture absorbing / releasing structure 10 according to the first embodiment of the present invention, a film portion is formed on the opening 12 of the plate 11 serving as a carrier and the surface of the surrounding plate. 13 is formed. In this example, high-temperature and high-humidity air was brought into contact with the upper surface side of the hygroscopic structure 10, and low-temperature and low-humidity air was brought into contact with the lower surface side of the hygroscopic structure 10. As a result, it was confirmed that the heat and water vapor in the high-temperature / high-humidity air were respectively transmitted to the low-temperature / low-humidity air on the lower surface side of the hygroscopic structure 10. The water vapor transmission rate at that time was 20 g / m 2 · h with respect to the effective area of the plate material including the opening.
 顕熱交換について説明すると、熱は、板材11と開口部12に形成された膜部13とを通じて伝導により移動する。従って、吸放湿性構造体10を通じた平均熱伝導率は、板材11の熱伝導率と板厚及び膜部13の熱伝導率及び膜厚に影響される。膜部13は、使用する高分子吸放湿剤14及びこの高分子吸放湿剤14と共に膜部を形成するバインダーとの混合により形成された水蒸気選択性透過膜である。図1は、膜部13の乾燥後の状態を示しており、バインダーは、高分子吸放湿剤14間に介在してこれらを接着している。従って、高分子吸放湿剤14とバインダーの熱伝導率により、膜部13における熱伝導率が定まる。板材11に関しては、必要な強度及び膜部13との接着性等の条件を満たした上で熱伝導率の高い材料を選択することで、平均熱伝導率の向上をはかることができる。 Explaining the sensible heat exchange, heat is transferred by conduction through the plate member 11 and the film part 13 formed in the opening 12. Therefore, the average thermal conductivity through the hygroscopic structure 10 is affected by the thermal conductivity and thickness of the plate material 11 and the thermal conductivity and thickness of the film portion 13. The membrane portion 13 is a water vapor selective permeable membrane formed by mixing a polymer moisture absorbent / release agent 14 to be used and a binder that forms the membrane portion together with the polymer moisture absorber / release agent 14. FIG. 1 shows a state after the film part 13 is dried. The binder is interposed between the polymer moisture absorbent 14 and adheres thereto. Therefore, the thermal conductivity in the film part 13 is determined by the thermal conductivity of the polymer moisture absorbent 14 and the binder. Regarding the plate material 11, the average thermal conductivity can be improved by selecting a material having high thermal conductivity after satisfying conditions such as required strength and adhesion with the film part 13.
 なお、この実施例では、高分子吸放湿剤14と接着性バインダーとの混合物を板材表面及び開口部12内に配した後に、この混合物を乾燥させることにより担持体である板材11の開口部に膜部を形成した。しかし、この混合物を開口部12内にのみ配置して乾燥することにより膜部13を形成することもできる。更に、この混合物に植物性繊維及びガラス繊維の少なくとも一方を含ませても良い。 In this embodiment, after the mixture of the polymer moisture-absorbing / releasing agent 14 and the adhesive binder is disposed on the surface of the plate and the opening 12, the mixture is dried to open the opening of the plate 11 as the carrier. A film part was formed on the substrate. However, the film part 13 can also be formed by placing this mixture only in the opening part 12 and drying it. Furthermore, you may include at least one of a vegetable fiber and glass fiber in this mixture.
 一方、潜熱交換については、吸放湿性構造体10の上面側の高温・高湿の空気内に含まれる気相の水蒸気は、開口部12内の膜部13内部の高分子吸放湿剤14に吸湿され、凝縮熱を放出して液相となる。その後、液相となった水分子は、膜部13内を水分濃度に従って膜部13の下面側へと移動し、膜部13下面側の低温・低湿の空気に晒される。その後、液相の水は、周囲から気化熱を奪って気化し、気相の水蒸気となって低温・低湿の空気内に移動する。 On the other hand, for latent heat exchange, vapor phase water vapor contained in the high-temperature, high-humidity air on the upper surface side of the moisture-absorbing / releasing structure 10 is absorbed by the polymer moisture-absorbing / desorbing agent 14 inside the film portion 13 in the opening 12. It absorbs moisture and releases heat of condensation to form a liquid phase. Thereafter, the water molecules in the liquid phase move in the film part 13 to the lower surface side of the film part 13 according to the moisture concentration, and are exposed to the low temperature and low humidity air on the lower surface side of the film part 13. Thereafter, the liquid phase water is vaporized by taking the heat of vaporization from the surroundings and becomes vapor in the vapor phase and moves into the low-temperature and low-humidity air.
 この際、水蒸気の移動先となる空気は低温であるが、膜部13には、吸放湿性構造体10の上面側の高温空気から熱伝導により熱が供給され、かつ、膜部13の上面側で発生した凝縮熱も熱伝導により膜部13の下面側へと移動する。従って、これらが気化熱の供給源となって液相の水分子が気化熱を奪って気化することが可能となる。 At this time, the air to which the water vapor moves is at a low temperature, but heat is supplied to the film part 13 from the high-temperature air on the upper surface side of the hygroscopic structure 10 by heat conduction, and the upper surface of the film part 13 Condensation heat generated on the side also moves to the lower surface side of the film part 13 by heat conduction. Accordingly, these serve as a supply source of the heat of vaporization, and the liquid water molecules can take the heat of vaporization and vaporize.
 また、この吸放湿性構造体においては膜部13にクラックやひび割れの発生は認められなかった。熱交換を連続して5時間行っても、吸放湿性構造体10の上面側及び下面側の空気やその他空気に含まれる気体成分が、膜部13を通じて互いに混入するという現象は認められなかった。 Further, in this moisture absorbing / releasing structure, no cracks or cracks were observed in the film part 13. Even when the heat exchange was continuously performed for 5 hours, the phenomenon that the air components on the upper surface side and the lower surface side of the moisture absorbing / releasing structure 10 and other gas components contained in the air mixed with each other through the film part 13 was not recognized. .
 更に、アンモニア等の水溶性の気体成分についても、膜部13を通じての混入は認められなかった。これは、膜部13においては水分子が高分子吸放湿剤に吸放湿され、一方でアンモニアは高分子吸放湿剤に吸放湿されないため、膜部13を透過しないからである。従って、この吸放湿性構造体においては、気体成分が水溶性であっても、水分と共に気体成分が混入することが防がれている。 Furthermore, mixing of water-soluble gas components such as ammonia through the membrane part 13 was not recognized. This is because in the film part 13, water molecules are absorbed and released by the polymer moisture absorbent, while ammonia is not absorbed and released by the polymer moisture absorbent and does not permeate the film part 13. Therefore, in this moisture absorbing / releasing structure, even when the gas component is water-soluble, it is prevented that the gas component is mixed with moisture.
 更にまた、上記吸放湿性構造体10と同様の構造で、開口率を50%とし、等価水力直径をそれぞれ3.5mm、2mmとした吸放湿性構造体を製造して上述のように熱交換を行った結果、いずれの吸放湿性構造体においても顕熱交換及び潜熱交換が行われ、かつクラックやひび割れの発生もなく、気体の混合も生じないことが確認された。 Furthermore, a moisture absorbing / releasing structure having the same structure as the moisture absorbing / releasing structure 10 with an aperture ratio of 50% and an equivalent hydraulic diameter of 3.5 mm and 2 mm, respectively, is manufactured and heat exchange is performed as described above. As a result, it was confirmed that sensible heat exchange and latent heat exchange were performed in any of the moisture absorbing / releasing structures, no cracks or cracks were generated, and no gas mixing occurred.
 一方、等価水力直径を5mmとしたうえで、開口率を60%、70%、とした吸放湿性構造体を製造して上述のように熱交換を行った結果、いずれの吸放湿性構造体においても顕熱交換及び潜熱交換が行われ、かつクラックやひび割れの発生もなく、気体の混合も生じないことが確認された。
 好ましくは等価水力直径を5mm以下、より好ましくは2mm以下とすることで、クラックやひび割れの発生による気体の混入を防ぎ、かつ、全熱交換を行うことが可能であることが確認された。
On the other hand, as a result of manufacturing a moisture absorbing / releasing structure having an equivalent hydraulic diameter of 5 mm and an opening ratio of 60% and 70% and performing heat exchange as described above, any moisture absorbing / releasing structure was obtained. It was also confirmed that sensible heat exchange and latent heat exchange were performed, and that no cracks or cracks occurred and no gas mixing occurred.
It has been confirmed that by setting the equivalent hydraulic diameter to 5 mm or less, more preferably 2 mm or less, it is possible to prevent gas mixture due to generation of cracks and cracks and to perform total heat exchange.
 膜部の大きさは、膜部におけるクラックやひび割れの発生を防ぐ大きさであれば良い。クラックやひび割れの発生しやすさは、担持体の強度及びフレキシビリティに依存するので、担持体の材質によって膜部の大きさあるいは等価水力直径を調整することも可能である。
 なお、潜熱交換を充分に行うことができるように開口率を50%以上、特に70%以上とすることが好ましい。しかし、潜熱交換が必要充分に行われるのであれば、開口率を50%以下とすることも可能である。
The magnitude | size of a film part should just be a magnitude | size which prevents generation | occurrence | production of the crack and crack in a film part. Since the ease of occurrence of cracks and cracks depends on the strength and flexibility of the carrier, the size of the film part or the equivalent hydraulic diameter can be adjusted depending on the material of the carrier.
Note that the aperture ratio is preferably 50% or more, particularly 70% or more so that latent heat exchange can be sufficiently performed. However, if the latent heat exchange is necessary and sufficient, the aperture ratio can be 50% or less.
 更に、担持体11及び膜部13の厚みは、膜部13及び担持体に必要な強度が得られる程度に厚く、かつ、顕熱交換及び潜熱交換が十分になされる程度に薄いものであることが好ましい。この実施例では担持体の厚みを0.5~1mmとしたが、高分子吸放湿剤を高密度に担持する目的で、膜部の厚みを1mm以上とした吸放湿性構造体においても、膜部13に必要な強度を得ることができ、かつ、充分な熱交換を行うことができた。好ましくは、膜部13を固定及び支持してクラック等の発生を防ぐために、担持体の材質は、膜部の剛性よりも高い材質で形成することが好ましい。 Furthermore, the thickness of the carrier 11 and the film part 13 is thick enough to obtain the strength required for the film part 13 and the carrier, and thin enough to sufficiently exchange sensible heat and latent heat. Is preferred. In this example, the thickness of the carrier is 0.5 to 1 mm, but in the moisture absorbing / releasing structure in which the thickness of the film portion is 1 mm or more for the purpose of supporting the polymer moisture absorbing / releasing agent at a high density, The strength required for the film part 13 could be obtained, and sufficient heat exchange could be performed. Preferably, in order to fix and support the film part 13 and prevent the occurrence of cracks and the like, the material of the carrier is preferably formed of a material higher than the rigidity of the film part.
 以上のように、実施例1では、担持体として板材11を用いた平面型の吸放湿性構造体10を用いて全熱交換が行われることが確認できた。なお、板材は、熱交換が可能となるに充分な伝熱性及び膜部13を担持するに必要な強度を有する任意の材質を用いることができる。 As described above, in Example 1, it was confirmed that the total heat exchange was performed using the planar moisture absorbing / releasing structure 10 using the plate 11 as the carrier. In addition, the board | plate material can use the arbitrary materials which have sufficient heat conductivity and heat | fever required to carry | support the film | membrane part 13 so that heat exchange is possible.
 [実施例2]
 図2(a)に、本発明の実施例2に係る吸放湿性構造体20の斜視図を示し、また、その一部拡大図を図2(b)に示す。
[Example 2]
FIG. 2A shows a perspective view of the moisture absorbing / releasing structure 20 according to Example 2 of the present invention, and FIG. 2B shows a partially enlarged view thereof.
 これらの図に示されるように、吸放湿性構造体20は、担持体としてメッシュ材21を用いており、メッシュ材21の開口部22に水蒸気選択性を有する高分子吸放湿剤24を含んだ膜部23が形成されている。メッシュ材21の材質は、アルミ、銅、ステンレス、鉄などの汎用材が使用可能である。メッシュ材の厚みは1mm以下が好ましい。高分子吸着剤としては、特開2009-74098号に記載される吸放湿性重合体を用いた。また、バインダーとしては、従来から一般的に高分子吸放湿剤との混合担持に用いられている接着性バインダーを用いた。
 また、この吸放湿性構造体における開口率は85%であり、等価水力直径は約3mmである。
As shown in these drawings, the moisture absorbing / releasing structure 20 uses a mesh material 21 as a carrier, and the opening 22 of the mesh material 21 includes a polymer moisture absorbing / releasing agent 24 having water vapor selectivity. A film portion 23 is formed. As the material of the mesh material 21, general-purpose materials such as aluminum, copper, stainless steel, and iron can be used. The thickness of the mesh material is preferably 1 mm or less. As the polymer adsorbent, a hygroscopic polymer described in JP2009-74098A was used. Further, as the binder, an adhesive binder that has been conventionally used for carrying a mixture with a polymer moisture absorbent is used.
The moisture absorption / release structure has an opening ratio of 85% and an equivalent hydraulic diameter of about 3 mm.
 図2(a)、(b)に示すように、本発明の実施例2に係る吸放湿性構造体20においては、担持体であるメッシュ材21の開口部22に膜部23が形成されている。この実施例2では、実施例1と同様に、吸放湿性構造体20の上面側に高温・高湿度の空気を接触させ、吸放湿性構造体20の下面側に低温・低湿度の空気を接触させた。その結果、高温・高湿度の空気における熱と水蒸気は、吸放湿性構造体20の下面側の低温・低湿度の空気へとそれぞれ伝達されることが確認できた。 As shown in FIGS. 2A and 2B, in the moisture absorbing / releasing structure 20 according to the second embodiment of the present invention, the film portion 23 is formed in the opening 22 of the mesh material 21 that is the carrier. Yes. In Example 2, as in Example 1, high-temperature / high-humidity air is brought into contact with the upper surface side of the hygroscopic structure 20, and low-temperature / low-humidity air is applied to the lower surface side of the hygroscopic structure 20. Made contact. As a result, it was confirmed that the heat and water vapor in the high-temperature / high-humidity air were respectively transmitted to the low-temperature / low-humidity air on the lower surface side of the hygroscopic structure 20.
 顕熱交換について説明すると、熱は、メッシュ材21と開口部22に形成された膜部23とを通じて伝導により移動する。従って、吸放湿性構造体20を通じた熱伝導率は、メッシュ材21の熱伝導率と膜部23の熱伝導率及び膜厚に影響される。ただし、この実施例2におけるメッシュ材21自体の面積は、実施例1における板材11の面積よりも小さい。従って、原則的には、吸放湿性構造体20における熱伝導率は、実施例1に比較して、膜部23における熱伝導率の影響が大きくなる。 Explaining the sensible heat exchange, heat is transferred by conduction through the mesh material 21 and the film part 23 formed in the opening 22. Therefore, the thermal conductivity through the hygroscopic structure 20 is affected by the thermal conductivity of the mesh material 21, the thermal conductivity of the film part 23, and the film thickness. However, the area of the mesh material 21 itself in Example 2 is smaller than the area of the plate material 11 in Example 1. Therefore, in principle, the thermal conductivity in the moisture absorbing / releasing structure 20 is more influenced by the thermal conductivity in the film portion 23 than in the first embodiment.
 膜部23に関しては、使用する高分子吸放湿剤24及びこの高分子吸放湿剤24と共に膜部を形成するために適したバインダー(膜部23は、バインダーと高分子吸放湿剤との混合により形成されている)のそれぞれの熱伝導率により、膜部23における熱伝導率が定まる。メッシュ材21に関しては、必要な強度及び膜部23との接着性等の条件を満たした上で熱伝導率の高い材料を選択することで、熱伝導率の向上をはかることができる。 Regarding the film part 23, the polymer moisture absorbent 24 used and a binder suitable for forming a film part together with the polymer moisture absorbent 24 (the film part 23 includes a binder, a polymer moisture absorbent and a The thermal conductivity in the film portion 23 is determined by the respective thermal conductivity of the film portion 23). Regarding the mesh material 21, it is possible to improve the thermal conductivity by selecting a material having a high thermal conductivity after satisfying conditions such as required strength and adhesiveness with the film part 23.
 一方、潜熱交換については、吸放湿性構造体20の上面側の高相対湿度の空気内に含まれる気相の水蒸気は、開口部22内の膜部23内部の高分子吸放湿剤24に吸湿され、凝縮熱を放出して液相となる。その後、液相となった水分子は、膜部23内を水分濃度に従って膜部23の下面側へと移動し、膜部23下面側の低相対湿度の空気に晒される。その後、液相の水は、周囲から気化熱を奪って気化し、気相の水蒸気となって低相対湿度の空気内に移動する。 On the other hand, for latent heat exchange, vapor in the vapor phase contained in the high relative humidity air on the upper surface side of the moisture absorbing / releasing structure 20 is transferred to the polymer moisture absorbing / releasing agent 24 inside the film portion 23 in the opening 22. It absorbs moisture and releases heat of condensation to form a liquid phase. Thereafter, the water molecules in the liquid phase move in the film part 23 to the lower surface side of the film part 23 according to the moisture concentration, and are exposed to the low relative humidity air on the lower surface side of the film part 23. Thereafter, the liquid-phase water is vaporized by taking the heat of vaporization from the surroundings and becomes vapor-phase water vapor and moves into the air having a low relative humidity.
 この際、膜部23には、吸放湿性構造体20の上面側で発生した凝縮熱が熱伝導により膜部23の下面側へと移動する。従って、これが気化熱の供給源となって液相の水分子が気化熱を奪って気化することが可能となる。 At this time, the condensation heat generated on the upper surface side of the moisture absorbing / releasing structure 20 moves to the lower surface side of the film portion 23 in the film portion 23 by heat conduction. Therefore, this becomes a supply source of the heat of vaporization, and the water molecules in the liquid phase can take the heat of vaporization and vaporize.
 また、この吸放湿性構造体においては、膜部23にクラックやひび割れの発生は認められなかった。熱交換を5時間程度行っても、吸放湿性構造体20の上面側及び下面側の空気やその他空気に含まれる気体成分が、膜部23を通じて互いに混入するという現象は認められなかった。 Further, in this moisture absorbing / releasing structure, no cracks or cracks were observed in the film part 23. Even when the heat exchange is performed for about 5 hours, the phenomenon that the air components on the upper surface side and the lower surface side of the moisture absorbing / releasing structure 20 and other gas components contained in the air are mixed with each other through the film part 23 was not recognized.
 更に、アンモニア等の水溶性の気体成分についても、膜部23を通じての混入は認められなかった。これは、膜部23においては水分子が高分子吸放湿剤に吸放湿され、一方でアンモニアは高分子吸放湿剤に吸放湿されないため、膜部23を透過しないからである。従って、この吸放湿性構造体においては、気体成分が水溶性であっても、水分と共に気体成分が混入することが防がれている。 Furthermore, mixing of water-soluble gas components such as ammonia through the membrane part 23 was not recognized. This is because in the film part 23, water molecules are absorbed and released by the polymer moisture absorbent, while ammonia is not absorbed and released by the polymer moisture absorbent and does not pass through the film part 23. Therefore, in this moisture absorbing / releasing structure, even when the gas component is water-soluble, it is prevented that the gas component is mixed with moisture.
 更にまた、上記吸放湿性構造体20と同様の構造で、開口率を85%とし、等価水力直径をそれぞれ2mm、1mmとした吸放湿性構造体を製造して上述のように熱交換を行った結果、いずれの吸放湿性構造体においても顕熱交換及び潜熱交換が行われ、かつクラックやひび割れの発生もなく、気体の混合も生じないことが確認された。 Furthermore, a hygroscopic structure having the same structure as the hygroscopic structure 20 with an aperture ratio of 85% and equivalent hydraulic diameters of 2 mm and 1 mm, respectively, is manufactured and heat exchange is performed as described above. As a result, it was confirmed that sensible heat exchange and latent heat exchange were performed in any of the moisture absorbing / releasing structures, no cracks or cracks were generated, and no gas mixing occurred.
 一方、等価水力直径を3mmとしたうえで、開口率を70%、80%、とした吸放湿性構造体を製造して上述のように熱交換を行った結果、いずれの吸放湿性構造体においても顕熱交換及び潜熱交換が行われ、かつクラックやひび割れの発生もなく、気体の混合も生じないことが確認された。 On the other hand, as a result of producing a moisture-absorbing / releasing structure having an equivalent hydraulic diameter of 3 mm and an aperture ratio of 70% and 80% and performing heat exchange as described above, any moisture-absorbing / releasing structure was obtained. It was also confirmed that sensible heat exchange and latent heat exchange were performed, and that no cracks or cracks occurred and no gas mixing occurred.
 従って、好ましくは等価水力直径を3mm以下、より好ましくは2mm以下とすることで、クラックやひび割れの発生による気体の混入を防ぎ、かつ、全熱交換を行うことが可能であることが判明した。 Therefore, it has been found that by setting the equivalent hydraulic diameter to 3 mm or less, more preferably 2 mm or less, it is possible to prevent gas mixture due to generation of cracks and cracks and to perform total heat exchange.
 膜部の大きさは、膜部におけるクラックやひび割れの発生を防ぐ大きさであれば良い。クラックやひび割れの発生しやすさは、担持体の強度及びフレキシビリティに依存するので、担持体の材質によって膜部の大きさあるいは等価水力直径を調整することも可能である。 The size of the film portion may be any size that prevents the occurrence of cracks and cracks in the film portion. Since the ease of occurrence of cracks and cracks depends on the strength and flexibility of the carrier, the size of the film part or the equivalent hydraulic diameter can be adjusted depending on the material of the carrier.
 なお、潜熱交換を充分に行うことができるように開口率を50%以上、特に70%以上とすることが好ましい。しかし、潜熱交換が必要充分に行われるのであれば、開口率を50%以下とすることも可能である。 Note that the aperture ratio is preferably 50% or more, particularly 70% or more so that latent heat exchange can be sufficiently performed. However, if the latent heat exchange is necessary and sufficient, the aperture ratio can be 50% or less.
 更に、担持体20及び膜部23の厚みは、膜部23及び担持体に必要な強度が得られる程度に厚く、かつ、顕熱交換及び潜熱交換が十分になされる程度に薄いものであることが好ましい。この実施例では担持体及び膜部の厚みを1mmとしたが、膜部の厚みを1mm以下とした吸放湿性構造体においても、膜部23に必要な強度を得ることができ、かつ、充分な熱交換を行うことができた。以上のように、実施例2では、担持体としてメッシュ材21を用いた吸放湿性構造体20を用いて全熱交換が行われることが確認できた。なお、メッシュ材は、熱交換が可能となるに充分な伝熱性及び膜部23を担持するに必要な強度を有する任意の材質を用いることができる。 Furthermore, the thickness of the carrier 20 and the film part 23 is thick enough to obtain the strength required for the film part 23 and the carrier, and thin enough to sufficiently exchange sensible heat and latent heat. Is preferred. In this embodiment, the thickness of the carrier and the film part is 1 mm. However, even in the moisture absorbing / releasing structure having a film part thickness of 1 mm or less, the strength required for the film part 23 can be obtained and sufficient. Heat exchange was possible. As described above, in Example 2, it was confirmed that the total heat exchange was performed using the moisture absorbing / releasing structure 20 using the mesh material 21 as the carrier. As the mesh material, any material having sufficient heat conductivity to enable heat exchange and strength necessary for supporting the film portion 23 can be used.
 実施例1、2のいずれにおいても、高分子吸放湿剤とバインダーとを混合し、この混合物を開口部に塗布した後に乾燥させることで膜部を形成した。この手法に限らず、開口部に塗布するに適した粘度が得られ、かつ、乾燥後に形成される膜部に必要な強度及びクラックやひび割れが発生しにくくなるように、高分子吸放湿剤に対して、セルロース繊維(例えば微細セルロース繊維や植物性繊維)及びガラス繊維等から1つ以上を適宜選択して混合することで、膜部を形成することができる。 In any of Examples 1 and 2, the polymer moisture-absorbing / releasing agent and the binder were mixed, and this mixture was applied to the opening and then dried to form a film part. Not only this method, but also a polymer moisture absorbing / releasing agent so that a viscosity suitable for application to the opening can be obtained, and the required strength and cracks and cracks are less likely to occur in the film formed after drying. On the other hand, the film part can be formed by appropriately selecting and mixing one or more of cellulose fibers (for example, fine cellulose fibers and vegetable fibers) and glass fibers.
 膜部の厚みは、担持体の厚みとほぼ同程度であり、実施例1では板材の厚み、実施例2ではメッシュ材の厚みと同程度とした。しかし、膜部の強度を保てるのであれば、膜部の厚みを適宜調整して担持体の厚みよりも厚くしても良く、また、薄くしても良い。 The thickness of the film part was almost the same as the thickness of the carrier, and the thickness of the plate material in Example 1 and the thickness of the mesh material in Example 2. However, if the strength of the film part can be maintained, the thickness of the film part may be adjusted as appropriate to make it thicker than the thickness of the carrier, or may be made thinner.
 バインダーとしては、高分子吸放湿剤を含んだ気密性を有する膜を形成することができるものであれば、接着性樹脂等を用いることができる。ただし、バインダーは、乾燥後に高分子吸放湿剤の空気との接触面において、空気中の水蒸気の高分子吸放湿剤への接触を阻害しない特性を有することが要求される。また、実施例1、2では、高分子吸放湿剤とバインダー等を混合した混合物を開口部に塗布したが、混合物の粘度に応じて、塗布に代えて浸漬等を行うこともできる。 As the binder, an adhesive resin or the like can be used as long as it can form an airtight film containing a polymeric moisture absorbent. However, the binder is required to have a property that does not inhibit the contact of water vapor in the air with the polymer moisture absorbent in the contact surface with the air after drying. Moreover, in Examples 1 and 2, although the mixture which mixed the polymeric moisture absorption / release agent, the binder, etc. was apply | coated to the opening part, it can replace with application | coating instead of application | coating according to the viscosity of a mixture.
 開口部に担持されている高分子吸放湿剤は、バインダーと微細セルロース繊維により母材(板材、チューブ材、メッシュ材など)に堅固に固定されるので、乾燥工程で膜部にひび割れが生じにくい。また、膜部の表面にひび割れが発生しても、そのひび割れはごく浅く、膜部を貫通することはなかった。従って、一方側の空気から他方側への空気の流通を許さないことから、高分子吸放湿剤を空気タイトな状態で担持することが可能となっている。その結果、相対湿度の高い空気側から高分子吸放湿剤に吸湿された水蒸気は、液相として高分子吸放湿剤の内部を通過し、相対湿度の低い空気側にて、気相の水蒸気として空気中へ放散される現象が可能となる。 The polymer moisture absorbing / releasing agent carried in the opening is firmly fixed to the base material (plate material, tube material, mesh material, etc.) by the binder and fine cellulose fibers, so that the film part is cracked during the drying process. Hateful. Moreover, even if a crack occurred on the surface of the film part, the crack was very shallow and did not penetrate the film part. Therefore, since the flow of air from one side of the air to the other side is not permitted, it is possible to carry the polymer moisture absorbing / releasing agent in an air tight state. As a result, the water vapor absorbed by the polymer moisture absorbent from the air side with high relative humidity passes through the inside of the polymer moisture absorbent as the liquid phase, The phenomenon of being diffused into the air as water vapor becomes possible.
 次に、上述の吸放湿性構造体を用いた熱交換器を説明する。熱交換器は、この吸放湿性構造体を介して接する気体同士で全熱交換を行う構成であれば特に限定はない。以下の実施例では、シェルアンドチューブ型熱交換器において上述の吸放湿性構造体を採用して全熱交換を行った。 Next, a heat exchanger using the above moisture absorbing / releasing structure will be described. A heat exchanger will not be specifically limited if it is the structure which performs total heat exchange between the gases which contact | connect through this moisture absorption / release structure. In the following Examples, total heat exchange was performed by employing the above-described moisture absorbing / releasing structure in a shell and tube heat exchanger.
 [実施例3]
 図3に示す実施例では、室外の空気を室内へ供給する給気ダクトと室内の空気を室外へ排出する排気ダクトとを独立的に形成し、給気ダクトと排気ダクトとをシェルアンドチューブ型の全熱交換器のシェル側(チューブ外側)とチューブ側(チューブ内側)に対してそれぞれ接続した。なお、この構成とは逆に、給気ダクトと排気ダクトとをシェルアンドチューブ型の全熱交換器のチューブ側とシェル側とに対してそれぞれ接続する構成とすることも可能である。
[Example 3]
In the embodiment shown in FIG. 3, an air supply duct for supplying outdoor air to the room and an exhaust duct for discharging indoor air to the outside are formed independently, and the air supply duct and the exhaust duct are formed in a shell and tube type. The total heat exchanger was connected to the shell side (tube outer side) and the tube side (tube inner side). In contrast to this configuration, the air supply duct and the exhaust duct may be connected to the tube side and the shell side of the shell-and-tube type total heat exchanger, respectively.
 また、顕熱交換効率及び潜熱交換効率を向上するために、シェル側における空気の流通方向とチューブ側を流れる空気の流通方向とは、これらの向きが逆向きになる、いわゆる対向流式となるようにした。
 原理的には、並向流式とすることも可能であるが、顕熱交換効率及び潜熱交換効率を向上する上では対向流式とすることが好ましい。
Moreover, in order to improve the sensible heat exchange efficiency and the latent heat exchange efficiency, the flow direction of the air on the shell side and the flow direction of the air flowing on the tube side are so-called counter flow types in which these directions are opposite to each other. I did it.
In principle, a parallel flow type can be used, but a counter flow type is preferable in order to improve sensible heat exchange efficiency and latent heat exchange efficiency.
 この様な流路構成のシェルアンドチューブ型熱交換器における熱交換チューブを、図4に示すように実施例1における板状の吸放湿性構造体をチューブ状に形成することで製造した。シェル側には、給気ダクトを通じて室外からの空気が流通され、チューブ側には、排気ダクトを通じて室内からの空気が流通される。室外からの空気と室内からの空気との間では、チューブの担持体及び高分子吸放湿剤膜を通じて相対温度差に応じて顕熱交換がなされ、チューブ表面に担持されている高分子吸放湿剤膜を介して相対湿度差に応じて潜熱交換がなされて水分が移動する。 The heat exchange tube in the shell-and-tube heat exchanger having such a flow path configuration was manufactured by forming the plate-like moisture absorbing / releasing structure in Example 1 into a tube shape as shown in FIG. Air from the outside flows through the air supply duct on the shell side, and air from the room flows through the exhaust duct on the tube side. Between the air from the outside and the air from the room, sensible heat exchange is performed according to the relative temperature difference through the tube carrier and the polymer moisture-absorbing / releasing agent film, and the polymer adsorption / release on the tube surface is performed. Through the wet film, latent heat exchange is performed according to the relative humidity difference, and moisture moves.
 実施例1に示されるように、チューブ表面に担持されている高分子吸放湿剤膜は膜厚さが1mm以下の薄膜であるから、温度差に起因する熱移動は容易に発生する。一方、空気及び空気に混入している気体、例えばアンモニアや二酸化炭素、臭気成分等に関しては、担持体及び膜部は気密性を有するので、チューブ側とシェル側との間で移動できない。 As shown in Example 1, the polymer moisture-absorbing / releasing agent film supported on the tube surface is a thin film having a thickness of 1 mm or less, so that heat transfer due to temperature difference easily occurs. On the other hand, with respect to air and gases mixed in the air, such as ammonia, carbon dioxide, odor components, and the like, the carrier and the film portion have airtightness, and thus cannot move between the tube side and the shell side.
 しかしながら、水蒸気は高相対湿度側の空気から高分子吸放湿剤に取り込まれ、高分子吸放湿剤中を水の形態で移動する。この熱交換器において、湿度の高い側の空気から相対的に湿度の低い側の空気へと水分が移動し、空気中へ水蒸気として放出されることが確かめられた。 However, water vapor is taken into the polymer moisture absorbent from the air on the high relative humidity side, and moves in the form of water in the polymer moisture absorbent. In this heat exchanger, it has been confirmed that moisture moves from air on the high humidity side to air on the relatively low humidity side and is released into the air as water vapor.
 その結果、シェルアンドチューブ型の全熱交換器内で、温度差、相対湿度差に起因して、シェル側の空気とチューブ側の空気との間で、熱および水蒸気の移動が達成されている。 As a result, heat and water vapor are transferred between the shell-side air and the tube-side air due to temperature differences and relative humidity differences in the shell-and-tube total heat exchanger. .
 本発明の実施例3に係るシェルアンドチューブ型の全熱交換器50を図3に示す。
 この図に示されるように、全熱交換器50は、左側ヘッダカバー53L、シェル54及び右側ヘッダカバー53Rを有し、左側ヘッダカバー53Lは左側ヘッダ57Lを介してシェルに対して気密に設けられている。また、右側ヘッダカバー53Rは、右側ヘッダ57Rを介してシェルに対して気密に設けられている。
 左側ヘッダ57L及び右側ヘッダ57Rには、空気漏えいの無いタイトな状態でチューブ51が複数本固定されている。また、シェル内には、空気流路を調整するための整流板52が設けられている。
FIG. 3 shows a shell-and-tube type total heat exchanger 50 according to the third embodiment of the present invention.
As shown in this figure, the total heat exchanger 50 includes a left header cover 53L, a shell 54, and a right header cover 53R, and the left header cover 53L is airtightly provided to the shell via the left header 57L. ing. The right header cover 53R is airtightly provided to the shell via the right header 57R.
A plurality of tubes 51 are fixed to the left header 57L and the right header 57R in a tight state without air leakage. Further, a rectifying plate 52 for adjusting the air flow path is provided in the shell.
 この実施例では、チューブ51は、実施例2に示される、担持体としてメッシュ材を用いた吸放湿性構造体10をチューブ状としたものを用いた。
 シェル54には、流入口55a及び排出口55bが設けられている。流入口55aには、室外(図中にBで示す)からの空気を取り入れるためのダクト41が、流出口55bには、熱交換を終えた空気を室内(図中にAで示す)に導入するためのダクト42が、それぞれ接続されている。
In this example, the tube 51 used was a tube-shaped hygroscopic structure 10 using a mesh material as a carrier shown in Example 2.
The shell 54 is provided with an inflow port 55a and a discharge port 55b. A duct 41 for taking in air from the outside (indicated by B in the figure) is introduced into the inflow port 55a, and heat-exchanged air is introduced into the room (indicated as A in the figure) at the outlet 55b. Ducts 42 are connected to each other.
 また、左側ヘッダカバー53Lには流入口56aが、右側ヘッダカバー53Rには排出口56bが設けられている。流入口56aには、室内からの空気を取り入れるためのダクト31が、排出口56bには、熱交換を終えた空気を室外に排気するためのダクト32が、それぞれ接続されている。
 なお、各ダクトに通気ファン及び空気フィルター等(図示せず)を設けることもできる。
The left header cover 53L is provided with an inflow port 56a, and the right header cover 53R is provided with a discharge port 56b. A duct 31 for taking in air from the room is connected to the inflow port 56a, and a duct 32 for discharging the air after heat exchange to the outside is connected to the discharge port 56b.
In addition, a ventilation fan, an air filter, etc. (not shown) can also be provided in each duct.
 この全熱交換器50において、室内からの空気は、ダクト31から流入口56aを通じて、全熱交換器50の左側ヘッダカバー53Lとヘッダ左側57Lとにより形成される空間に流入する。その後、室内からの空気は、各チューブ51の内部を流通してシェル54内を流通する室外からの空気と熱交換を行った後に、右側ヘッダ57Rと右側ヘッダカバー53Rとにより形成される空間に排出される。その後、室内からの空気は、排出口56bから排出ダクト32を通じて室外へと排出される。 In the total heat exchanger 50, air from the room flows into the space formed by the left header cover 53L and the left header 57L of the total heat exchanger 50 from the duct 31 through the inlet 56a. Thereafter, the air from the room flows into the space formed by the right header 57R and the right header cover 53R after exchanging heat with the air from the outside flowing through the inside of each tube 51 and flowing through the shell 54. Discharged. Thereafter, the air from the room is discharged from the discharge port 56b to the outside through the discharge duct 32.
 一方、室外からの空気は、ダクト41から流入口55aを通じて、シェル54とその両端に気密に設けられた右側ヘッダ57R、左側ヘッダ57Lとの間に形成される空間に流入する。その後、室外からの空気は、シェル54のこの空間内で、各チューブ51内を流れる室内からの空気と熱交換を行った後に、排出口55bからダクト42を通じて室内へと導入される。
 このように、シェル54内では、チューブ内を流れる室内からの空気と、チューブ外を流れる室外からの空気との間で熱交換が行われる。
On the other hand, air from the outside flows from the duct 41 through the inflow port 55a into a space formed between the shell 54 and the right header 57R and the left header 57L provided airtight at both ends thereof. Thereafter, the air from the outside exchanges heat with the air from the room flowing through the tubes 51 in this space of the shell 54 and then is introduced into the room through the duct 42 from the discharge port 55b.
Thus, in the shell 54, heat exchange is performed between the air from the room flowing inside the tube and the air from the room flowing outside the tube.
 この実施例3では、各チューブ51は、チューブ状とされた吸放湿性構造体から形成されている。また、そのメッシュ面に担持されている、高分子吸放湿剤とバインダー等により形成される膜部を介して、チューブの内外を流通する空気の間で水蒸気の移動が行われる。従って、潜熱交換が行われて、湿度の高い側の空気から湿度の低い側の空気に移動する。また、メッシュ面及び膜部を含むチューブ全体を通じて顕熱交換もなされる。従って、室内からの空気と、室外からの空気との間で連続して全熱交換が行われるので、調湿、調温された外気を室内に供給することが可能である。 In this Example 3, each tube 51 is formed from a moisture absorbing / releasing structure that has a tube shape. In addition, water vapor is transferred between the air flowing inside and outside the tube through a film portion formed of a polymer moisture absorbent and binder and supported on the mesh surface. Therefore, latent heat exchange is performed, and the air moves from the air on the high humidity side to the air on the low humidity side. Further, sensible heat exchange is also performed through the entire tube including the mesh surface and the membrane portion. Therefore, since total heat exchange is continuously performed between the air from the room and the air from the room, it is possible to supply humidity-conditioned and temperature-controlled outside air to the room.
 次に、図4を用いて、実施例3に示した本発明によるシェルアンドチューブ型全熱交換器の詳細構成について説明する。
 図4(a)は、図3に示されるシェルアンドチューブ型熱交換器で用いられる、メッシュ材を担持体とするチューブ51及びその開口部に形成された膜部51aを示す図であり、図4(b)はその拡大図である。図4(b)に示されるように、各チューブ51の開口部51bには、高分子吸放湿剤51c同士がバインダー51dにより接着されて担持されている。これにより、メッシュ材51eの開口部51b内に膜部51aが形成される。
Next, the detailed configuration of the shell and tube type total heat exchanger according to the present invention shown in Embodiment 3 will be described with reference to FIG.
4A is a diagram showing a tube 51 using a mesh material as a carrier used in the shell-and-tube heat exchanger shown in FIG. 3 and a film part 51a formed in the opening. 4 (b) is an enlarged view thereof. As shown in FIG. 4 (b), the polymer moisture absorbent 51c is bonded and supported on the opening 51b of each tube 51 by a binder 51d. Thereby, the film | membrane part 51a is formed in the opening part 51b of the mesh material 51e.
 なお、図4では膜部51aの一部のみを示したが、実際にはチューブ51の円筒形側面の全面にわたって膜部51aが形成されている。
 図4(c)に矢線で示されるように、膜部51aの一方側の空気における気相の水蒸気HO(V)は膜部51aに接触する。その後、高分子吸放湿材51cに吸湿された水蒸気は、液相の水HO(L)となって膜部51a内を移動し、更に、矢線で示されるように、再度気相の水蒸気HO(V)となって膜部51aの他方側の空気に移動する。
 この膜部51aの膜の厚さを1mm以下としているので、高い熱交換性が得られた。また、見掛け上で、高い水蒸気透過性が確保されている。更に、実施例1と同様に、アンモニアや二酸化炭素、気体の不快物質等の混入は認められなかった。これは、図4(d)に示されるように、高分子吸放湿剤51cを接着剤としてのバインダー51dと共にメッシュの開口部51bに緊密に充填担持させているからである。なお、説明のために、図4(d)では高分子吸放湿剤51cを拡大して示している。
In FIG. 4, only a part of the film part 51 a is shown, but actually, the film part 51 a is formed over the entire cylindrical side surface of the tube 51.
As indicated by an arrow in FIG. 4C, the vapor phase water vapor H 2 O (V) in the air on one side of the film part 51a contacts the film part 51a. Thereafter, the water vapor absorbed by the polymer moisture-absorbing / releasing material 51c becomes liquid-phase water H 2 O (L) and moves in the film part 51a. The water vapor becomes H 2 O (V) and moves to the air on the other side of the film part 51a.
Since the film thickness of the film part 51a is set to 1 mm or less, high heat exchange property was obtained. In addition, apparently high water vapor permeability is ensured. Furthermore, as in Example 1, no mixing of ammonia, carbon dioxide, gaseous unpleasant substances, etc. was observed. This is because, as shown in FIG. 4 (d), the polymer moisture-absorbing / releasing agent 51c is tightly filled and supported in the mesh opening 51b together with the binder 51d as an adhesive. For the sake of explanation, FIG. 4D shows an enlarged view of the polymer moisture absorbent 51c.
 従って、気相の水蒸気は高湿度側で吸湿性を有する高分子吸放湿剤などの吸湿性樹脂に吸湿され、樹脂内に液相の水として取り込まれる。取り込まれた水は樹脂内を低湿度側へ移動し、低湿度側の空気中へ気相の水蒸気となって蒸散する。 Therefore, vapor in the gas phase is absorbed by a hygroscopic resin such as a polymeric moisture absorbent having hygroscopicity on the high humidity side, and is taken into the resin as liquid phase water. The taken-in water moves to the low humidity side in the resin and evaporates as vapor in the vapor phase into the air on the low humidity side.
 このような水蒸気の移動メカニズムを有する薄膜であることから、見掛け上は水蒸気のみが通過し、他の気体は通過できない膜となるため、従来の和紙を用いた膜に比してコンタミの発生は大幅に抑制された上、良好な熱交換性を有する。 Since it is a thin film having such a water vapor movement mechanism, it appears that only water vapor passes and other gases cannot pass through, so the occurrence of contamination is less than that of films using conventional Japanese paper. In addition to being greatly suppressed, it has good heat exchange properties.
 [実施例4]
 実施例4においては、図5に示される、実施例1に示した吸放湿性構造体10を断面Lの字形と逆Lの字型に成形して交互に連結して段をなす形状となるよう成形したシート状の吸放湿性構造体80、端板61、側板62、63、64により形成されるプレートフィン型熱交換器6によって、室内からの空気と室外からの空気との間で熱交換及び水分移動を行った。また、側板62、63、64には、間隙部71、72、73及び74が設けられている。
 なお、吸放湿性構造体80は、実施例1に示した吸放湿性構造体10をコの字型に曲げて成形し、図5に示されるようにこれらコの字型の吸放湿性構造体10を側面部の連結板81を介して接着することで形成することも可能である。
[Example 4]
In Example 4, the moisture-absorbing / releasing structure 10 shown in Example 1 shown in FIG. 5 is formed into a shape having a step by forming a cross-sectional L shape and an inverted L shape and connecting them alternately. The plate fin heat exchanger 6 formed by the sheet-like moisture absorbing / releasing structure 80, the end plate 61, and the side plates 62, 63, 64 formed as described above generates heat between air from the room and air from the room. Exchange and moisture transfer were performed. The side plates 62, 63, 64 are provided with gaps 71, 72, 73 and 74.
The moisture absorbing / releasing structure 80 is formed by bending the moisture absorbing / releasing structure 10 shown in Example 1 into a U-shape, and these U-shaped moisture absorbing / releasing structures as shown in FIG. It is also possible to form the body 10 by adhering it via the connecting plate 81 on the side surface.
 室外からの空気は、間隙部71を通じて矢線で示されるように吸放湿性構造体80の奇数段に導入されて段内を流通し、間隙部72を通じて室内へと導入される。図中においては、奇数段の例として、9段目がS9として示されている。
 一方、室内からの空気は、間隙部73を通じて矢線で示されるように吸放湿性構造体80の偶数段に導入されて段内を流通し、間隙部74を通じて室外へと排気される。図中においては、偶数段の例として、2段目がS2として示されている。このように、図5のプレートフィン型熱交換器6の奇数段と偶数段とは吸放湿性構造体80により分離されて対向流型の流路が形成されている。その結果、奇数段内と偶数段内を流通する空気との間で、実施例1、2で説明したように吸放湿性構造体80を通じて全熱交換が行われる。
The air from the outside is introduced into the odd-numbered stages of the moisture absorbing / releasing structure 80 through the gap 71 as indicated by an arrow, flows through the stages, and is introduced into the room through the gap 72. In the figure, as an example of odd-numbered stages, the ninth stage is shown as S9.
On the other hand, the air from the room is introduced into the even-numbered stages of the moisture absorbing / releasing structure 80 through the gap 73 as indicated by an arrow, flows through the stages, and is exhausted to the outside through the gap 74. In the drawing, the second stage is shown as S2 as an example of even stages. As described above, the odd-numbered stages and the even-numbered stages of the plate fin type heat exchanger 6 of FIG. 5 are separated by the moisture absorbing / releasing structure 80 to form a counter flow type flow path. As a result, total heat exchange is performed between the odd-numbered stages and the air flowing through the even-numbered stages through the hygroscopic structure 80 as described in the first and second embodiments.
 図6に、本発明によるシェルアンドチューブ型全熱交換器における、室内からの空気と室外からの空気との間における熱交換を説明するための湿り空気線図を示す。
 例えば夏季運転の場合、図6の湿り空気線図に示すように、全熱交換器内を通過する両空気は、外気(A点)と室内気(B点)でのA点が示す(高温度、高湿度)とB点が示す(低温度、低湿度)によって囲まれる矩形内部を移動して、夫々の出口状態(通過外気の出口C点、通過室内空気の出口D点)に到達する。基本的に通過する外気と室内気の流量は同一であるから、A点とC点のエンタルピー差と、B点とD点のエンタルピー差は等しく、それらの値に対するA点とB点のエンタルピー差の比率が全熱交換率となる。
FIG. 6 shows a wet air diagram for explaining heat exchange between indoor air and outdoor air in the shell-and-tube total heat exchanger according to the present invention.
For example, in the case of summer operation, as shown in the wet air diagram of FIG. 6, both air passing through the total heat exchanger are indicated by point A in outside air (point A) and room air (point B) (high (Temperature, high humidity) and point B (low temperature, low humidity) move inside the rectangle surrounded by (low temperature, low humidity) to reach each outlet state (exit C point of passing outside air, outlet D point of passing indoor air) . Since the flow rate of outside air and room air that pass through is basically the same, the enthalpy difference between points A and C and the enthalpy difference between points B and D are equal, and the enthalpy difference between points A and B relative to these values. Is the total heat exchange rate.
 [実施例5]
 図7(a)は、実施例5に係る吸放湿性膜を備えたデバイスである、平板状の吸放湿性構造体90の斜視図を示し、その一部の断面図を図7(b)に示す。また、この吸放湿性構造体90の固定部材であるリベットの断面図を図7(c)に示す。
 図7(a)に示されるように、吸放湿性構造体90は、薄板状の吸放湿部91を、それぞれ開口部94が複数形成されたプレート状の第1担持体92と第2担持体93で挟んで固定している。固定手段は特に限定されないが、この実施例では、固定部材としてのリベット部95でこれら薄板状の吸放湿部91、第1担持体92及び第2担持体93を図7(b)に示されるように固定している。
[Example 5]
FIG. 7A shows a perspective view of a plate-like hygroscopic structure 90 which is a device provided with the hygroscopic film according to Example 5, and a partial cross-sectional view thereof is shown in FIG. Shown in Further, FIG. 7C shows a cross-sectional view of a rivet that is a fixing member of the moisture absorbing / releasing structure 90.
As shown in FIG. 7A, the moisture absorbing / releasing structure 90 includes a thin plate-like moisture absorbing / releasing portion 91, a plate-like first carrier 92 and a second carrier each having a plurality of openings 94 formed therein. The body 93 is sandwiched and fixed. Although the fixing means is not particularly limited, in this embodiment, the thin plate-like moisture absorbing / releasing portion 91, the first carrier 92 and the second carrier 93 are shown in FIG. It is fixed to be
 図7(c)に示されるように、このリベット部95は、吸放湿部91、第1担持体92及び第2担持体93を貫通する貫通部96、この貫通部96に結合するとともに第1担持体92から突出する第1ヘッド部97、及びこの貫通部に結合するとともに第2担持体93から突出する第2ヘッド部98により構成される。第1ヘッド部97、第2ヘッド部98はそれぞれ貫通部96よりも大径となっており、吸放湿部91等は、これらのヘッド部97、98により挟まれて固定される。 As shown in FIG. 7 (c), the rivet portion 95 is coupled to the moisture absorbing / releasing portion 91, the penetrating portion 96 penetrating the first carrier 92 and the second carrier 93, and coupled to the penetrating portion 96. The first head portion 97 that protrudes from the first carrier 92 and the second head portion 98 that is coupled to the penetrating portion and protrudes from the second carrier 93 are configured. The first head portion 97 and the second head portion 98 each have a larger diameter than the penetrating portion 96, and the moisture absorption / release portion 91 and the like are sandwiched and fixed by these head portions 97 and 98.
 第1担持体92と第2担持体93との各開口部94は、吸放湿部91を挟んだ状態で、2つの開口部94同士が少なくとも一部が重なって開口部を形成するよう配置されている。
 従って、開口部94における吸放湿部91の露出部分を通じて水分の移動や全熱交換を行うことが可能である。このようにして吸放湿性構造体90の開口部に露出した吸放湿部91が、吸放湿性構造体90の開口部に形成された、吸放湿剤を含む膜部となる。なお、第1担持体の開口部94と第2担持体開口部94とが一致しない場合、吸放湿部91は一方の担持体では露出されるが、他方の担持体で覆われて露出しない状態となる。この部分においては、吸放出部の露出された側で水分を吸湿しても、吸放出部の他方側は露出されていないので、吸湿された水分の放出が困難となる。従って、この実施例では、吸放湿部91を挟んだ状態で、第1担持体及び第2担持体の2つの開口部94同士が重なり、この部分において吸放湿部が第1担持体、第2担持体どちらにおいても露出するように、それぞれの担持体の開口部を形成した。
The openings 94 of the first carrier 92 and the second carrier 93 are arranged in such a manner that at least part of the two openings 94 overlap each other with the moisture absorbing / releasing portion 91 sandwiched therebetween. Has been.
Therefore, it is possible to perform the movement of moisture and the total heat exchange through the exposed portion of the moisture absorption / release portion 91 in the opening 94. The moisture absorbing / releasing portion 91 exposed at the opening of the moisture absorbing / releasing structure 90 in this way becomes a film portion containing the moisture absorbing / releasing agent formed at the opening of the moisture absorbing / releasing structure 90. When the opening 94 of the first carrier and the second carrier 94 do not coincide with each other, the moisture absorbing / releasing portion 91 is exposed on one carrier, but is not exposed because it is covered with the other carrier. It becomes a state. In this portion, even if moisture is absorbed on the exposed side of the absorption / release portion, the other side of the absorption / release portion is not exposed, so that it is difficult to release the absorbed moisture. Accordingly, in this embodiment, the two openings 94 of the first carrier and the second carrier overlap with each other with the moisture absorption / release part 91 interposed therebetween, and the moisture absorption / release part is the first carrier, The openings of the respective carriers were formed so as to be exposed in both the second carriers.
 吸放湿部91は、紙又はガラス繊維等により形成されるシート状の担持部材に高分子吸放湿剤を担持させて形成される。この例では、高分子吸放湿剤と液状のバインダーとの混合物に紙を浸して乾燥することで、高分子吸放湿剤及びバインダーを紙に担持させることで、吸放湿部91を形成した。なお、この例では担持部材として厚さ0.05[mm]程度の紙を用いたが、担持部材の材質は、高分子吸放湿剤を担持させることができ、かつ、透水性を有するものであれば特に限定はない。また、高分子吸放湿剤及びバインダーは、実施例1と同じ材質のものを用いた。
 このように形成された吸放湿部が十分な強度を有するものであれば、そのまま吸放湿性構造体として使用することができる。この実施例では、担持部材として紙を用いており、そのまま吸放湿性構造体として用いるには強度が不足するおそれがある。したがって、吸放湿性構造体の強度を増すために、吸放湿部91を、開口部を有する第1担持体92と開口部を有する第2担持体93で挟んで固定した。これら第1担持体92、第2担持体93は、それぞれが吸放湿部の補強部材となる。
The moisture absorbing / releasing portion 91 is formed by supporting a polymer moisture absorbing / releasing agent on a sheet-like supporting member formed of paper or glass fiber. In this example, the moisture absorbing / releasing portion 91 is formed by supporting the polymer moisture absorbing / releasing agent and the binder on the paper by immersing the paper in a mixture of the polymer moisture absorbing / releasing agent and the liquid binder and drying it. did. In this example, paper having a thickness of about 0.05 [mm] was used as the supporting member. However, the material of the supporting member can support a polymer moisture absorbent and has water permeability. If there is no particular limitation. Moreover, the thing of the same material as Example 1 was used for the polymer moisture absorption / release agent and the binder.
If the moisture absorbing / releasing part formed in this way has sufficient strength, it can be used as it is as a moisture absorbing / releasing structure. In this embodiment, paper is used as the supporting member, and there is a risk that the strength is insufficient to use it as a moisture absorbing / releasing structure as it is. Therefore, in order to increase the strength of the moisture absorbing / releasing structure, the moisture absorbing / releasing portion 91 is sandwiched and fixed between the first carrier 92 having an opening and the second carrier 93 having an opening. Each of the first carrier 92 and the second carrier 93 serves as a reinforcing member for the moisture absorbing / releasing portion.
 実施例5においては、これら第1、第2担持体は、いずれも厚さ0.1[mm]で、開口部94が複数形成されたアルミニウムにより形成した。アルミニウムに代えて銅やプラスチック等を用いることも可能である。また、可撓性を有する素材を用いることで、吸放湿性構造体90の変形を可能としてもよい。
 従って、紙にバインダー及び吸放湿剤を担持させて形成された吸放湿部91は、第1担持体92及び第2担持体93に挟まれることで強度が向上する。なおかつ、これら補強部材に形成された開口部94において吸放湿部91が露出する。従って、実施例1における膜部13と同様に、開口部94で露出した吸放湿部91を通じて全熱交換を行うことができる。
In Example 5, the first and second carriers were both made of aluminum having a thickness of 0.1 [mm] and a plurality of openings 94 formed therein. It is also possible to use copper or plastic instead of aluminum. Further, the moisture absorbing / releasing structure 90 may be deformable by using a flexible material.
Accordingly, the moisture absorbing / releasing portion 91 formed by supporting the binder and the moisture absorbing / releasing agent on paper is sandwiched between the first carrier 92 and the second carrier 93, so that the strength is improved. In addition, the moisture absorbing / releasing portion 91 is exposed in the opening 94 formed in these reinforcing members. Therefore, like the film part 13 in Example 1, total heat exchange can be performed through the moisture absorption / release part 91 exposed at the opening 94.
 なお、吸放湿性構造体90における薄板状の吸放湿部91、第1担持体92及び第2担持体93の固定手段として、この実施例ではリベット部95を用いたが、固定手段は特にリベットに限定されるものではなく、リベット以外の固定手段、例えば接着剤等を用いることも可能である。また、上述のように、吸放湿部91の厚さは0.05[mm]、第1担持体92、第2担持体93はそれぞれ0.1[mm]なので、吸放湿性構造体90の厚さは0.25[mm]である。
 吸放湿性構造体90の一部断面図である図7(b)に示されるように、リベット部95は吸放湿性構造体90の表面から突出する。リベット部95の突出する高さは所望により任意に変更でき、特に限定はないが、例えば1[mm]~5[mm]程度とすることができる。この例ではリベット部95は吸放湿性構造体表面から3[mm]突出するものとした。
In this embodiment, the rivet portion 95 is used as a fixing means for the thin moisture absorbing / releasing portion 91, the first carrier 92, and the second carrier 93 in the moisture absorbing / releasing structure 90. It is not limited to rivets, and fixing means other than rivets, such as an adhesive, can also be used. Further, as described above, since the thickness of the moisture absorbing / releasing portion 91 is 0.05 [mm], and the first carrier 92 and the second carrier 93 are each 0.1 [mm], the moisture absorbing / releasing structure 90 The thickness of this is 0.25 [mm].
As shown in FIG. 7B, which is a partial cross-sectional view of the moisture absorbing / releasing structure 90, the rivet portion 95 protrudes from the surface of the moisture absorbing / releasing structure 90. The protruding height of the rivet portion 95 can be arbitrarily changed as desired, and is not particularly limited, but may be, for example, about 1 [mm] to 5 [mm]. In this example, the rivet portion 95 protrudes 3 [mm] from the surface of the moisture absorbing / releasing structure.
 この吸放湿性構造体90においても、実施例1と同様に、開口率は50%、特に70%以上とすることが好ましい。開口部94の形状、サイズ等のその他の条件も、実施例1における形状やサイズと同様とできるが、この実施例では、図7(a)に示されるように、第1担持体92と第2担持体93との開口部を一致させる必要があることから、開口部はいずれも同じ形状で、略円形とした。これにより、各補強部材の製造が容易で、かつ、開口部を一致させることも簡単になる。
 なお、開口部94はすべて同じ形状としても良いが、少なくとも一部が異なるものとしても良い。この実施例では、開口率を70%、等価水力直径は5mm以下とした。また、この吸放湿性構造体90においても、実施例1の吸放湿性構造体10と同様に全熱交換を行うことが確かめられた。
In this hygroscopic structure 90 as well, as in Example 1, the aperture ratio is preferably 50%, particularly 70% or more. Other conditions such as the shape and size of the opening 94 can be the same as the shape and size in the first embodiment. In this embodiment, as shown in FIG. Since it is necessary to make the opening part with the 2 support body 93 correspond, all the opening parts were made into the same shape and substantially circular. Thereby, manufacture of each reinforcement member is easy and it becomes easy to make an opening part correspond.
The openings 94 may all have the same shape, but at least some of them may be different. In this example, the aperture ratio was 70% and the equivalent hydraulic diameter was 5 mm or less. Further, it was confirmed that the hygroscopic structure 90 also performs total heat exchange in the same manner as the hygroscopic structure 10 of Example 1.
 この実施例では、第1担持体92及び第2担持体93として、開口部94を有するプレートを用いたが、その他の形状を有する部材で吸放湿部91を挟むことも可能である。例えば補強部材の形状を金網やメッシュ状としても良い。この場合、実施例2で図2(a)に示したようなメッシュ材を第1担持体92、第2担持体93として用いることができる。また、メッシュ材を用いた吸放湿性構造体の開口率は、メッシュ材を用いた実施例2に示した開口率と同様とすることができる。 In this embodiment, a plate having an opening 94 is used as the first carrier 92 and the second carrier 93, but the moisture absorbing / releasing portion 91 can be sandwiched between members having other shapes. For example, the reinforcing member may have a wire mesh or mesh shape. In this case, a mesh material as shown in FIG. 2A in Example 2 can be used as the first carrier 92 and the second carrier 93. Moreover, the aperture ratio of the moisture absorption / release structure using a mesh material can be made the same as the aperture ratio shown in Example 2 using a mesh material.
 また、実施例5では、第1担持体92と第2担持体93とによって吸放湿部91を挟む構成としたが、第1担持体92と吸放湿部91との充分な接着性や強度が得られるのであれば、第2担持体93は用いずに、第1担持体92に吸放湿部91を接合あるいは接着により固定するという簡易な構成で吸放湿性構造体90を形成してもよい。第2担持体93を用いない構成とすることで、吸放湿性構造体90の製造コストを抑えることができ、経済的にも有利となる。この場合も、固定部材としてのリベット部95で第1担持体92に吸放湿部91を固定することができる。 Further, in Example 5, the moisture absorbing / releasing portion 91 is sandwiched between the first carrier 92 and the second carrier 93, but sufficient adhesion between the first carrier 92 and the moisture absorbing / releasing portion 91 can be obtained. If strength can be obtained, the moisture absorbing / releasing structure 90 is formed with a simple configuration in which the moisture absorbing / releasing portion 91 is fixed to the first carrier 92 by joining or bonding without using the second carrier 93. May be. By making it the structure which does not use the 2nd support body 93, the manufacturing cost of the moisture absorption / release structure 90 can be held down, and it becomes economically advantageous. Also in this case, the moisture absorbing / releasing portion 91 can be fixed to the first carrier 92 with the rivet portion 95 as a fixing member.
 [実施例6]
 実施例6では、実施例5で形成した吸放湿性構造体90を複数枚重ねて配置することで、リベット部95をスペーサとして吸放湿性構造体90間に複数の間隙を形成した。この間隙部を介して2種類の気体を流通させることで、吸放湿性構造体90を介して接触する気体間で全熱交換を行うことができる。このように形成された熱交換器100の断面図を図8に示す。
 この実施例では、気密性を有する筐体103内に、そのリベット部95同士が重なることがないように吸放湿性構造体90を複数枚配置した。そして、吸放湿性構造体90間に形成された第1間隙部101、第2間隙部102にそれぞれ自動車からの排気ガスと外気とを向流式に流通させて熱交換を行った。なお、図7の例では一般的な丸頭リベットを用いたが、吸放湿性構造体を重ねたときの安定性を向上するために平頭リベットを採用してもよい。また、実施例5と同様に、吸放湿部91の厚さは0.05[mm]、第1担持体92、第2担持体93はそれぞれ0.1[mm]とし、吸放湿性構造体90の厚さは0.25[mm]とした。
[Example 6]
In Example 6, a plurality of moisture absorbing / releasing structures 90 formed in Example 5 were arranged in a stacked manner, thereby forming a plurality of gaps between the moisture absorbing / releasing structures 90 using the rivet portion 95 as a spacer. By circulating two kinds of gases through the gap, total heat exchange can be performed between the gases in contact with each other through the moisture absorbing / releasing structure 90. A cross-sectional view of the heat exchanger 100 formed in this way is shown in FIG.
In this embodiment, a plurality of moisture absorbing / releasing structures 90 are arranged in the casing 103 having airtightness so that the rivet portions 95 do not overlap each other. Then, the exhaust gas from the automobile and the outside air were circulated counter-currently through the first gap portion 101 and the second gap portion 102 formed between the hygroscopic structures 90, and heat exchange was performed. In addition, although the general round head rivet was used in the example of FIG. 7, you may employ | adopt a flat head rivet in order to improve stability when a hygroscopic structure is piled up. Similarly to Example 5, the thickness of the moisture absorbing / releasing portion 91 is 0.05 [mm], the first carrier 92 and the second carrier 93 are each 0.1 [mm], and the moisture absorbing / releasing structure is as follows. The thickness of the body 90 was 0.25 [mm].
 吸放湿性構造体90からリベット部95が突出する高さは所望により任意に変更でき、特に限定はないが、例えば1[mm]~5[mm]程度とすることができる。実施例5と同様に、リベットは吸放湿性構造体表面から3[mm]突出するものとした。
 図8の例では、吸放湿性構造体90から3[mm]突出するリベット部分が一致しないように吸放湿性構造体90を重ねており、吸放湿性構造体90同士の間隔は3[mm]になる。この場合、好適には、それぞれリベット部をずらして配置されている二種類の吸放湿性構造体を用意する。これら二種類の吸放湿構造体90を交互に重ねることで、図8のように、リベット同士がずれた状態で、吸放湿構造体90を配置することができる。
 また、吸放湿性構造体90の一方辺と、これに対向する他方の辺と、においてリベットの配置位置をずらすようにしてもよい。このように構成された吸放湿構造体90の上に、同様に構成された吸放湿性構造体90を180度回転させて配置する。これにより、下方の吸放湿性構造体90の一方の辺及び他方の辺には、上方の吸放湿性構造体90の他方側の辺及び一方の辺がそれぞれ重なり、図8に示されるようにリベット同士が重ならない配置が可能となる。
The height at which the rivet portion 95 protrudes from the moisture absorbing / releasing structure 90 can be arbitrarily changed as desired, and is not particularly limited, but may be, for example, about 1 [mm] to 5 [mm]. As in Example 5, the rivet protruded 3 [mm] from the surface of the moisture absorbing / releasing structure.
In the example of FIG. 8, the hygroscopic structures 90 are stacked so that the rivet portions protruding 3 [mm] from the hygroscopic structures 90 do not coincide with each other, and the distance between the hygroscopic structures 90 is 3 [mm]. ]become. In this case, preferably, two types of moisture-absorbing / releasing structures are prepared with the rivet portions being shifted from each other. By alternately stacking these two types of moisture absorbing / releasing structures 90, the moisture absorbing / releasing structures 90 can be arranged in a state where the rivets are displaced as shown in FIG.
Moreover, you may make it shift the arrangement | positioning position of a rivet in the one side of the hygroscopic structure 90, and the other side opposite to this. On the moisture absorbing / releasing structure 90 configured in this manner, the moisture absorbing / releasing structure 90 similarly configured is rotated 180 degrees and disposed. As a result, the other side and one side of the upper hygroscopic structure 90 are respectively overlapped with one side and the other side of the lower hygroscopic structure 90, as shown in FIG. Arrangement where rivets do not overlap is possible.
図7(a)、(b)に示されるリベット部95は、その第1ヘッド部97、第2ヘッド部98を半球状とした。しかし、リベット部を一致させて吸放湿性構造体90を重ねる場合は、好適には、平頭リベットを用いる。この場合、第1ヘッド部97、第2ヘッド部98の頭部が平面となるので、吸放湿性構造体90同士を重ねた場合の安定性が向上する。この場合、吸放湿性構造体90同士の間隔は6[mm]になる。勿論、間隙の大きさは、用途に応じて適宜選択することができる。 In the rivet portion 95 shown in FIGS. 7A and 7B, the first head portion 97 and the second head portion 98 are hemispherical. However, in the case where the moisture absorbing / releasing structure 90 is stacked with the rivet portions being matched, a flat head rivet is preferably used. In this case, since the heads of the first head portion 97 and the second head portion 98 are flat, the stability when the hygroscopic structures 90 are stacked is improved. In this case, the distance between the moisture absorbing / releasing structures 90 is 6 [mm]. Of course, the size of the gap can be appropriately selected according to the application.
 このように、実施例6における熱交換器100は比較的サイズが小さいので、小型化が要求される用途に適しており、特に自動車の熱交換器に適している。そこで、自動車の排気ガスと外気との間で、実施例6に係る熱交換器100により、吸放湿性構造体90を水蒸気分離膜として用いて水分交換を行った。
 自動車の排気ガスは、高湿であり二酸化炭素及び窒素がリッチである。現在、二酸化炭素及び窒素含有率が高く酸素含有率が低い排気ガスを再度エンジンに供給することで、排気ガス中のNOを低減する技術が知られている。この技術においては、排気ガス中の水分量をある程度除去することが望ましいことから、この実施例では、図8に示される熱交換器100の第1間隙部101に排気ガスを流通させ、第2間隙部102に外気を流通させた。これにより、排気ガス中の水分を外気に移動させて、排気ガスの湿度を低くした。
Thus, since the heat exchanger 100 in Example 6 is relatively small in size, it is suitable for applications that require a reduction in size, and is particularly suitable for a heat exchanger of an automobile. Therefore, moisture was exchanged between the exhaust gas of the automobile and the outside air by the heat exchanger 100 according to Example 6 using the moisture absorbing / releasing structure 90 as a water vapor separation membrane.
The exhaust gas of automobiles is highly humid and rich in carbon dioxide and nitrogen. Currently, by supplying again the engine carbon dioxide and nitrogen content higher oxygen content low exhaust gas, it is known a technique for reducing NO x in the exhaust gas. In this technique, since it is desirable to remove some amount of moisture in the exhaust gas, in this embodiment, the exhaust gas is circulated through the first gap portion 101 of the heat exchanger 100 shown in FIG. Outside air was circulated through the gap 102. Thereby, the moisture in the exhaust gas was moved to the outside air, and the humidity of the exhaust gas was lowered.
 なお、一般に排気ガスの温度は200℃以上で、場合によっては1000℃に達することから、排気ガスを予め吸放湿性構造体100の使用可能温度、ここでは100℃程度にまで冷却したうえで吸放湿性構造体に流通させた。その結果、排気ガスの絶対湿度は、吸放湿性構造体100に流入する時点では200g/m以上であったものが、吸放湿性構造体から流出する時点では100g/m以下となっており、排気ガスから外気へと水分が移動していることが確かめられた。 In general, the temperature of the exhaust gas is 200 ° C. or higher, and in some cases reaches 1000 ° C. Therefore, the exhaust gas is cooled to the usable temperature of the hygroscopic structure 100 in advance, here about 100 ° C. It was distributed to the moisture-releasing structure. As a result, the absolute humidity of the exhaust gas is 200 g / m 3 or more when it flows into the hygroscopic structure 100, but it becomes 100 g / m 3 or less when it flows out of the hygroscopic structure 100. It was confirmed that moisture was transferred from the exhaust gas to the outside air.
 [実施例7]
 吸放湿部91、第1担持体92及び第2担持体93をフレキシブルに形成することで、吸放湿性構造体90をフレキシブルなものとすることもできる。特に、実施例5、6では、紙の厚さは0.05[mm]、アルミニウム製の補強部材は厚さ0.1[mm]であるので、フレキシブル性を有し、また、折り曲げることも可能である。
 従って、図7(a)に示した吸放湿性構造体90を、図4に示される円筒形の構造とすることもできる。この場合、円筒形の吸放湿性構造体90の曲率のとり得る範囲は、吸放湿性構造体90のフレキシビリティに依存する。吸放湿部91、第1担持体92及び第2担持体93のフレキシビリティが小さく、結果として吸放湿性構造体90のフレキシビリティが小さい場合には、円筒形の直径を大きくする、つまり吸放湿性構造体を比較的大きくする必要がある。
[Example 7]
The moisture absorbing / releasing structure 90 can be made flexible by forming the moisture absorbing / releasing portion 91, the first carrier 92 and the second carrier 93 flexibly. In particular, in Examples 5 and 6, since the thickness of the paper is 0.05 [mm] and the aluminum reinforcing member is 0.1 [mm], it has flexibility and can be bent. Is possible.
Therefore, the moisture absorbing / releasing structure 90 shown in FIG. 7A can be the cylindrical structure shown in FIG. In this case, the possible range of the curvature of the cylindrical hygroscopic structure 90 depends on the flexibility of the hygroscopic structure 90. When the flexibility of the moisture absorbing / releasing portion 91, the first carrier 92 and the second carrier 93 is small, and as a result, the flexibility of the moisture absorbing / releasing structure 90 is small, the cylindrical diameter is increased, that is, It is necessary to make the moisture-releasing structure relatively large.
 一方、吸放湿部91、第1担持体91及び第2担持体92のフレキシビリティが大きく、結果として吸放湿性構造体90のフレキシビリティが大きい場合には、円筒形状の直径を小さくすることができる。従って、この場合には、吸放湿性構造体90のフレキシビリティが小さい場合に比較して、吸放湿性構造体90を相対的に小型化することが可能となる。
 また、実施例5では、第1担持体92と第2担持体93とにより吸放湿部91を挟む構成としたが、第1担持体92と吸放湿部91との充分な接着性や強度が得られるのであれば、第2担持体93は用いずに、第1担持体92に吸放湿部91を接合あるいは接着するという簡易な構成で吸放湿性構造体90を形成してもよい。第2担持体93を用いない構成とすることで、吸放湿性構造体90の製造コストを抑えることができ、経済的にも有利となる。
On the other hand, when the moisture absorption / release portion 91, the first carrier 91, and the second carrier 92 have high flexibility, and as a result, the moisture absorption / release structure 90 has high flexibility, the diameter of the cylindrical shape should be reduced. Can do. Therefore, in this case, the hygroscopic structure 90 can be relatively downsized as compared with the case where the hygroscopic structure 90 has low flexibility.
In Example 5, the first carrier 92 and the second carrier 93 sandwich the moisture absorbing / releasing portion 91. However, sufficient adhesion between the first carrier 92 and the moisture absorbing / releasing portion 91 can be obtained. If the strength can be obtained, the moisture absorbing / releasing structure 90 can be formed with a simple configuration in which the moisture absorbing / releasing portion 91 is bonded or bonded to the first carrier 92 without using the second carrier 93. Good. By making it the structure which does not use the 2nd support body 93, the manufacturing cost of the moisture absorption / release structure 90 can be held down, and it becomes economically advantageous.
 特に、吸放湿性構造体90を円筒形とする場合には、第1担持体92を円筒状に形成したうえで、その円筒内部に図7(a)に示される吸放湿部91を円筒状に形成して配置することもできる。この場合、円筒の露出している外面側は、他の物体等との接触により吸放湿部91が破損することがないように、第1担持体で保護される。一方で円筒の内面側は、他の物体と接触するおそれが小さいので、第2担持体93の配置を省略することも可能である。
 また、第1担持体92を円筒状に形成する一方で、吸放湿部91は平板状に形成し、この吸放湿部91を丸めたうえで第1担持体92内に配置することも可能である。この場合、吸放湿部91をフレキシブルなものとすることで、丸められた吸放湿部91が平板状に戻ろうとする復元力が得られる。この復元力により、吸放湿部91は第1担持体92に密着し、両者の間の摩擦によって吸放湿部91を補強部材92に固定することも可能である。
In particular, when the moisture absorbing / releasing structure 90 has a cylindrical shape, the first carrier 92 is formed in a cylindrical shape, and the moisture absorbing / releasing portion 91 shown in FIG. It can also be arranged in a shape. In this case, the exposed outer surface side of the cylinder is protected by the first carrier so that the moisture absorbing / releasing portion 91 is not damaged by contact with other objects. On the other hand, since the inner surface side of the cylinder is less likely to come into contact with other objects, the arrangement of the second carrier 93 can be omitted.
Further, while the first carrier 92 is formed in a cylindrical shape, the moisture absorbing / releasing portion 91 is formed in a flat plate shape, and the moisture absorbing / releasing portion 91 is rounded and arranged in the first carrier 92. Is possible. In this case, by making the moisture absorbing / releasing portion 91 flexible, a restoring force that allows the rolled moisture absorbing / releasing portion 91 to return to a flat plate shape is obtained. Due to this restoring force, the moisture absorbing / releasing portion 91 is in close contact with the first carrier 92, and the moisture absorbing / releasing portion 91 can be fixed to the reinforcing member 92 by friction between them.
 [実施例8]
 実施例8では、実施例5の図7(a)、図7(b)に示した平板状の吸放湿性構造体90を用いて、実施例4の図5に示される熱交換器6における吸放湿性構造体80と同様の形状を有する吸放湿性構造体を形成した。
 この実施例8では、一枚の平板状の吸放湿性構造体90を繰り返し折り曲げることで、図5に示される多段形状の吸放湿性構造体80と同様の吸放湿性構造体を製造した。これにより、吸放湿性構造体80を容易に製造することができた。なお、吸放湿性構造体の特性、例えば開口率等は、実施例4と同様とした。また、折り曲げ部分には開口部94を形成せず、これにより、折り曲げ部分で開口部に露出した吸放湿部91が割れて気密性が損なわれることを避けるようにした。
[Example 8]
In Example 8, in the heat exchanger 6 shown in FIG. 5 of Example 4 using the flat moisture absorbing / releasing structure 90 shown in FIGS. 7A and 7B of Example 5. FIG. A moisture absorbing / releasing structure having the same shape as the moisture absorbing / releasing structure 80 was formed.
In Example 8, a hygroscopic structure similar to the multistage hygroscopic structure 80 shown in FIG. 5 was manufactured by repeatedly bending a single flat hygroscopic structure 90. Thereby, the moisture absorption / release structure 80 was able to be manufactured easily. The characteristics of the moisture absorbing / releasing structure, such as the aperture ratio, were the same as in Example 4. In addition, the opening 94 is not formed in the bent portion, thereby preventing the moisture absorbing / releasing portion 91 exposed to the opening at the bent portion from being broken and impairing the airtightness.
 なお、実施例5に示した吸放湿性構造体90をL字型に曲げて成形し、これらL字型の吸放湿性構造体10をL字型と逆L字型に重ねることで、図5に示される多段形状の吸放湿性構造体80と同様の吸放湿性構造体を製造することもできる。
 このようにして製造した吸放湿性構造体を図5に示される熱交換器6における吸放湿性構造体80として用いたところ、実施例4と同様に全熱交換を行うことができた。
The moisture absorbing / releasing structure 90 shown in Example 5 is bent into an L shape, and the L absorbing / releasing structure 10 is overlapped in an L shape and an inverted L shape. A hygroscopic structure similar to the multistage hygroscopic structure 80 shown in FIG. 5 can also be manufactured.
When the hygroscopic structure produced in this way was used as the hygroscopic structure 80 in the heat exchanger 6 shown in FIG. 5, total heat exchange could be performed in the same manner as in Example 4.
 [実施例9]
 実施例9では、例えば図1や図7に示されるような吸放湿構造体がセットされる熱交換器の筐体を予め作成し、作成された筐体に吸放湿構造体をセットすることで、熱交換器を得た。
 従って、この実施形態では、予め作成された筐体に対して吸放湿構造体をセットするだけで容易かつ安価に水蒸気交換器を製造することができる。
 図9に、本発明の実施例9に係る熱交換器の筐体110内に吸放湿構造体113を配置した状態での一部透過斜視図を示す。この図において、説明のために、筐体110の壁面は透明にし、その内部を透過して見ることができるようにしている。
[Example 9]
In Example 9, for example, a heat exchanger casing in which a moisture absorption / release structure as shown in FIG. 1 or FIG. 7 is set is created in advance, and the moisture absorption / release structure is set in the created casing. Thus, a heat exchanger was obtained.
Therefore, in this embodiment, it is possible to manufacture the water vapor exchanger easily and inexpensively by simply setting the moisture absorbing / releasing structure to a case that has been created in advance.
FIG. 9 shows a partially transparent perspective view of the heat exchanger according to the ninth embodiment of the present invention in a state where the moisture absorbing / releasing structure 113 is disposed in the housing 110. In this figure, for the sake of explanation, the wall surface of the housing 110 is transparent so that the inside can be seen through.
 筐体110には、熱交換器の整流板となるバッフルプレート111A、111B、111Cが設けられている。また、筐体110には、前面吸気口112FSと前面右排気口112FDとが設けられている。図面では見えない位置にあるが、筐体背面には背面左吸気口と背面右排気口とが設けられている。
 複数の吸放湿構造体113は、筐体110に設けられた支持部121A、Bにより、図示されるように筐体10内に支持される。これら支持部121A、Bは、図10(a)~(d)を参照して後述する。
The casing 110 is provided with baffle plates 111A, 111B, and 111C that serve as rectifying plates for the heat exchanger. The housing 110 is provided with a front intake port 112FS and a front right exhaust port 112FD. Although not visible in the drawing, a rear left intake port and a rear right exhaust port are provided on the rear surface of the housing.
The plurality of moisture absorbing / releasing structures 113 are supported in the casing 10 as shown in the figure by support portions 121A and 121B provided in the casing 110. These support portions 121A and 121B will be described later with reference to FIGS. 10 (a) to 10 (d).
 製造時においては、筐体110を、その一部が開放された状態で形成し、吸放湿性構造体113をこの筐体110に挿入する。その後に、筐体110の開放された部分を壁面により気密に塞ぐことで、熱交換器を完成する。
 詳細には、筐体110は、その左壁面を形成せず、従って、左側面が開放面とされた状態で形成される。吸放湿性構造体113は、それぞれ、図9のSで示されるように、左側面から挿入され、支持部121A、Bにより支持される。これら支持された複数の吸放湿性構造体113同士の間には間隙部が形成される。図9において、1段目の間隙部がXで示され、8段目の間隙がYで示されている。その後に、別途形成された左壁面を、筐体110の左側面に気密に接着する。
 バッフルプレート111Aは、筐体110の前面を、前面吸気口112FSが設けられた左領域と、前面排気口112FDが設けられた右領域とに分割する。バッフルプレート111Bは、この左領域において、吸放湿性構造体113の奇数段の間隙部を塞ぐように配置されている。また、バッフルプレート11Cは、右領域において、吸放湿性構造体113の偶数段の間隙部を塞ぐように配置されている。
 図示されていないが、筐体110の背面側には、バッフルプレート111A、B及びCが筐体の中心に関して点対称に配置されている。従って、筐体110の背面側でも左領域及び右領域が形成され、これらの領域はバッフルプレート111Aにより分離される。
 この筐体110に吸放湿性構造体113が複数配置された状態で、2つの気体の間で熱交換を行うことができる。この実施例では、室内からの空気と室外からの空気との間で全熱交換を行った。
At the time of manufacture, the housing 110 is formed with a part thereof opened, and the moisture absorbing / releasing structure 113 is inserted into the housing 110. Thereafter, the open portion of the housing 110 is hermetically closed with a wall surface, thereby completing the heat exchanger.
Specifically, the housing 110 does not form the left wall surface, and thus is formed with the left side surface being an open surface. The hygroscopic structure 113 is inserted from the left side as shown by S in FIG. 9 and supported by the support portions 121A and 121B. A gap is formed between the supported moisture absorbing / releasing structures 113. In FIG. 9, the first-stage gap is indicated by X, and the eighth-stage gap is indicated by Y. Thereafter, a separately formed left wall surface is hermetically bonded to the left side surface of the housing 110.
The baffle plate 111A divides the front surface of the housing 110 into a left region where the front intake port 112FS is provided and a right region where the front exhaust port 112FD is provided. The baffle plate 111B is disposed in this left region so as to close the odd-numbered gaps of the hygroscopic structure 113. Further, the baffle plate 11C is disposed so as to close the even-numbered gaps of the hygroscopic structure 113 in the right region.
Although not shown, baffle plates 111A, B, and C are arranged point-symmetrically with respect to the center of the casing on the back side of the casing 110. Accordingly, a left region and a right region are also formed on the back side of the housing 110, and these regions are separated by the baffle plate 111A.
With a plurality of hygroscopic structures 113 arranged in the housing 110, heat exchange can be performed between the two gases. In this example, total heat exchange was performed between indoor air and outdoor air.
 熱交換時において、室内からの空気は、図9においてIinで示されるように前面左吸気口112FSを通じて筐体110内に流入される。流入した空気は、筐体110前面側の左領域に入るが、バッフルプレート111Aにより区切られた右領域には流入しない。
 また、バッフルプレート111Bによって左領域の奇数段の間隙が塞がれていることから、室内からの空気は空隙部の偶数段に流入する。一方、筐体110の背面側においては、バッフルプレート111A、B及びCが上記のように点対称に配置されていることから、筐体110の背面側の左領域の間隙部の偶数段はバッフルプレートで塞がれている。しかし、筐体110の背面側の右領域の間隙部の偶数段はバッフルプレートで塞がれてはいない。
 従って、流入した室内の空気は、偶数段の間隙部を通じて筐体110の背面の右側領域へと流れ、図中Ioutで示されるように図示しない背面排気口を通じて筐体110の外部へと排出される。
At the time of heat exchange, air from the room flows into the housing 110 through the front left intake port 112FS as indicated by Iin in FIG. The inflowed air enters the left region on the front side of the housing 110, but does not flow into the right region delimited by the baffle plate 111A.
Further, since the odd-numbered gaps in the left region are closed by the baffle plate 111B, the air from the room flows into the even-numbered gaps. On the other hand, since the baffle plates 111A, B, and C are arranged point-symmetrically as described above on the back side of the housing 110, the even number of steps in the gap in the left region on the back side of the housing 110 are baffles. It is blocked by a plate. However, the even-numbered step of the gap in the right region on the back side of the housing 110 is not blocked by the baffle plate.
Accordingly, the indoor air that has flowed in flows into the right region on the back surface of the casing 110 through the even-numbered gaps, and is discharged to the outside of the casing 110 through a back exhaust port (not shown) as indicated by Iout in the figure. The
 一方、室外からの空気は、筐体110の背面側から図中Oinで示されるように背面左吸気口(図示せず)を通じて筐体110内に流入される。流入した空気は、筐体110背面側の左領域に入るが、バッフルプレートにより区切られた右領域には流入しない。
 また、上述のように点対称に配置されたバッフルプレートによって背面側左領域の偶数段の間隙が塞がれていることから、室外からの空気は背面側左領域において、空隙部の偶数段に流入する。一方、筐体110の前面側においては、筐体110の前面側の左領域の間隙部の奇数段はバッフルプレートで塞がれている。しかし、筐体110の前面側の右領域の間隙部の奇数段はバッフルプレートで塞がれてはいない。
 従って、室外からの空気は、間隙部の奇数段を通じて筐体110の前面の左側領域へと流れ、図中Ooutで示されるように前面排気口112FDを通じて筐体110の外部へと排出される。
On the other hand, air from the outside flows into the housing 110 from the back side of the housing 110 through the back left air inlet (not shown) as indicated by Oin in the drawing. The inflowing air enters the left region on the back side of the housing 110, but does not flow into the right region delimited by the baffle plate.
In addition, since the gaps in the even-numbered steps in the left side area on the back side are closed by the baffle plates arranged symmetrically as described above, the air from the outside flows into the even-numbered stages in the gaps in the left side area in the back side. Inflow. On the other hand, on the front side of the housing 110, odd-numbered steps in the left region on the front side of the housing 110 are closed with a baffle plate. However, the odd-numbered steps in the gap in the right region on the front side of the housing 110 are not blocked by the baffle plate.
Therefore, the air from the outside flows to the left region on the front surface of the housing 110 through the odd-numbered steps of the gap, and is discharged to the outside of the housing 110 through the front exhaust port 112FD as indicated by Oout in the drawing.
 このように筐体110と吸放湿性構造体113から形成される熱交換器の前面側からみた一部透過図を図10(a)に、その平面図を図10(b)に、その横断面図を図10(b)に、また、その正面図を図10(d)に示す。
 図10(a)では、説明のために、筐体110の前面側の壁面は透明なものとしている。図10(a)に示されるように、吸放湿構造体113同士の間に形成される間隙部は、バッフルプレート111Bにより左領域の奇数段が塞がれ、バッフルプレート111Cにより右側領域の偶数段が塞がれる。また、図10(b)に示されるように、室内からの空気が前面吸気口112FSを通じて筐体110内に流入し、一方、室外からの空気は前面排気口112FDを通じて筐体110の外部に排出される。
FIG. 10A is a partially transparent view seen from the front side of the heat exchanger formed of the casing 110 and the moisture absorbing / releasing structure 113, and FIG. 10B is a plan view thereof. A front view is shown in FIG. 10 (b), and a front view thereof is shown in FIG. 10 (d).
In FIG. 10A, for the sake of explanation, the wall surface on the front side of the housing 110 is assumed to be transparent. As shown in FIG. 10 (a), the gap formed between the moisture absorbing / releasing structures 113 is blocked by the baffle plate 111B in the left region, and the baffle plate 111C is even in the right region. The steps are blocked. Further, as shown in FIG. 10B, air from the room flows into the housing 110 through the front air inlet 112FS, while air from the outside is discharged to the outside of the housing 110 through the front air outlet 112FD. Is done.
 図10(b)に示されるように、筐体110の左右側面には支持部121Aが、前面側には支持部121Bが設けられている。また、図示されていないが、筐体110の背面側にも支持部121Bが設けられており、これら支持部121A、Bにより吸放湿性構造体113が支持される。
 これら支持部121A、Bは、図10(c)に示されるようにスライドレール形状をしており、こららスライドレール形状の各支持部に形成されたコの字型の空隙部に吸放湿性構造体113がスライド式に挿入されて支持される。なお、図10(c)は、左側壁が接着された状態を示しており、左側壁にも支持部121Aが設けられた例を示している。しかし、気密性及び強度が確保できるのであれば、左側壁には支持部121Aを設けないようにして、前面側及び背面側に設けられた支持部121Bと、右側壁に設けられた支持部121Aとにより、3方向で吸放湿性構造体113を支持するものとしてもよい。
As shown in FIG. 10B, a support part 121A is provided on the left and right side surfaces of the housing 110, and a support part 121B is provided on the front side. Although not shown, a support part 121B is also provided on the back side of the housing 110, and the hygroscopic structure 113 is supported by the support parts 121A and 121B.
These support portions 121A and 121B have a slide rail shape as shown in FIG. 10 (c), and the U-shaped gap portions formed in the respective support portions of these slide rail shapes absorb and release moisture. The structure 113 is inserted and supported in a sliding manner. FIG. 10C shows a state in which the left side wall is bonded, and an example in which a support portion 121A is also provided on the left side wall. However, if airtightness and strength can be ensured, the left side wall is not provided with the support part 121A, the support part 121B provided on the front side and the back side, and the support part 121A provided on the right side wall. Thus, the hygroscopic structure 113 may be supported in three directions.
 なお、筐体110は、この実施例のように、その左壁面がない状態で形成し、吸放湿性構造体113を挿入した後に、左側面を形成することが好ましい。この際、筐体110の形成手法には特に制限はなく、周知の手法で形成して良い。好ましくは、筐体110を3次元プリンタで形成する。これにより、支持部121A、B及びバッフルプレート111A~C等を備えた複雑な形状を有する筐体110を、樹脂等により容易に形成することができる。 In addition, it is preferable that the housing 110 is formed without the left wall surface as in this embodiment, and the left side surface is formed after the hygroscopic structure 113 is inserted. At this time, the method for forming the housing 110 is not particularly limited, and may be formed by a known method. Preferably, the housing 110 is formed by a three-dimensional printer. Accordingly, the casing 110 having a complicated shape including the support portions 121A and 121B, the baffle plates 111A to 111C, and the like can be easily formed from the resin or the like.
 以上説明したように、本発明による吸放湿性構造体は、例えば板材、チューブ材、メッシュ材等を担持体として、その開口部に強固に高分子吸放湿剤を含む膜部を担持させ、かつ気密なものとすることが可能となる。その結果、この吸放湿性構造体に気体が接すると、見掛け上、水蒸気のみがこの吸放湿性構造体を通じて移動する。また、膜部及び担持体は、気密性が確保できる限りにおいて、薄くすることが好ましい。熱交換を行う上では、膜厚は薄い方が有利だからである。 As described above, the moisture-absorbing / releasing structure according to the present invention has, for example, a plate material, a tube material, a mesh material or the like as a carrier, and has a film portion containing a polymer moisture-absorbing / absorbing agent firmly in its opening, And it becomes possible to make it airtight. As a result, when gas comes into contact with the moisture absorbing / releasing structure, only water vapor apparently moves through the moisture absorbing / releasing structure. Moreover, it is preferable to make the film part and the carrier thin as long as airtightness can be ensured. This is because a thinner film is advantageous for heat exchange.
 また、吸放湿性構造体は気密性を有するので、その他の気体成分が吸放湿性構造体を通じて移動することを防ぐことができるという特性を発揮する。従って、例えば室内からの空気と室外からの空気との間でこの吸放湿性構造体を用いて熱交換を行うことで、室内の空気に含まれるアンモニアや二酸化炭素、あるいは臭気成分等の望ましくない気体成分が新鮮な空気に混入することを防ぎ、かつ、水蒸気と顕熱を高効率に交換可能である。更に、吸放湿性構造体の担持体として、薄肉で熱伝導性の良い材料を用いることで高い熱交換特性が期待できる。 Also, since the moisture absorbing / releasing structure has airtightness, other gas components can be prevented from moving through the moisture absorbing / releasing structure. Therefore, for example, by exchanging heat between indoor air and outdoor air using this moisture absorbing / releasing structure, ammonia, carbon dioxide, odor components, etc. contained in the indoor air are undesirable. It is possible to prevent gaseous components from being mixed into fresh air and to exchange water vapor and sensible heat with high efficiency. Furthermore, a high heat exchange characteristic can be expected by using a thin material having good thermal conductivity as a support for the moisture absorbing / releasing structure.
 更に、実施例3、4では、外気を室内へ導入すると共に室内気を室外へ排出する際の室内気の保有する顕熱(温熱または冷熱のための空調負荷)ならびに潜熱(加湿または除湿のための空調負荷)を高効率に導入外気へ転嫁するシェルアンドチューブ型、プレートフィン型の全熱交換器が提供される。これらの熱交換器において、吸湿剤が行う吸湿と再生の行程を同時かつ同一部分(吸湿剤膜の表裏)で発生させることが可能となり、流路切り替えのための駆動装置や複雑な配管構成を省略することが可能となる。 Furthermore, in Examples 3 and 4, the sensible heat (air conditioning load for heating or cooling) and the latent heat (for humidification or dehumidification) held by the room air when the room air is introduced into the room and the room air is discharged outside the room. A shell-and-tube type and plate fin type total heat exchanger that passes the air conditioning load) to the outside air with high efficiency is provided. In these heat exchangers, the moisture absorption and regeneration processes performed by the moisture absorbent can be generated simultaneously and in the same part (front and back of the moisture absorbent film). It can be omitted.
 なお、上述の実施例においては、吸放湿性構造体を通じて全熱交換を行っている。しかしながら、熱交換を行うことは必須ではない。例えば、相対湿度の異なる気体の間に吸放湿性構造体を介在させることで、双方の気体間に温度差がない場合であっても、吸放湿性構造体を通じて、一方の気体から他方の気体へと水分の移動を行うことができる。この際、上述の各実施例と同様に、気密性を保持するか、あるいは、許容される程度の気密性を確保したうえで、水分の移動を行うことが可能である。従って、いずれの実施例においても、吸放湿性構造体を用いて水蒸気分離や水蒸気の移動を行うことができる。 In the above-described embodiment, total heat exchange is performed through the moisture absorbing / releasing structure. However, it is not essential to perform heat exchange. For example, by interposing a moisture absorbing / releasing structure between gases having different relative humidity, even if there is no temperature difference between the two gases, the gas from one gas to the other is passed through the moisture absorbing / releasing structure. Moisture transfer can be performed. At this time, as in each of the above-described embodiments, it is possible to move moisture while maintaining airtightness or securing an allowable airtightness. Therefore, in any of the embodiments, water vapor separation and water vapor transfer can be performed using the moisture absorbing / releasing structure.
 例えば、室内と外気とに温度差がない場合であっても、各実施例に記載された吸放湿性構造体を用いることで、水分の移動を行うことができる。一例として、不快成分等を含みかつ湿度の高い室内の空気と湿度の低い新鮮な外気との間で、室内空気から水分を移動させたうえで新鮮な外気を室内にとりこむ場合が挙げられる。
 また、いずれの実施例においても、開口率等は一例を示すものであり、用途に応じて開口率等の値を変更してよい。例えば、開口率は50%以上とすることが好ましいが、吸放湿性構造体に高い強度が求められる場合には、開口率を50%以下としてもよい。
For example, even when there is no temperature difference between the room and the outside air, moisture can be transferred by using the moisture absorbing / releasing structure described in each example. As an example, there is a case where moisture is moved from room air between room air containing unpleasant components and the like and having high humidity and fresh outside air having low humidity, and then fresh outside air is taken into the room.
In any of the embodiments, the aperture ratio or the like is an example, and the value of the aperture ratio or the like may be changed depending on the application. For example, the aperture ratio is preferably 50% or more. However, when the hygroscopic structure is required to have high strength, the aperture ratio may be 50% or less.

Claims (19)

  1.  吸放湿性膜を備えたデバイスであって、
     開口部を有する担持体と、
     前記開口部に形成されて吸放湿を行う膜部を有し、
     前記膜部は、吸放湿剤を含み、吸湿により前記吸放湿剤に取り込まれた水分の前記吸放湿剤内での移動が許容される、吸放湿性膜を備えたデバイス。
    A device comprising a hygroscopic film,
    A carrier having an opening;
    It has a film part that is formed in the opening part and absorbs and releases moisture,
    The device comprising a moisture absorbing / releasing film, wherein the film part includes a moisture absorbing / releasing agent, and movement of moisture taken into the moisture absorbing / releasing agent by moisture absorption is allowed in the moisture absorbing / releasing agent.
  2.  前記吸放湿材により前記吸放湿剤に吸湿された水分が液相となって前記吸放湿剤を含む膜内での移動が許容される、請求項1に記載の吸放湿性膜を備えたデバイス。 The moisture-absorbing / releasing membrane according to claim 1, wherein moisture absorbed by the moisture-absorbing / releasing agent by the moisture-absorbing / releasing material becomes a liquid phase and is allowed to move in the film containing the moisture-releasing / releasing agent. Device provided.
  3.  前記開口部は、前記膜部におけるひび割れの発生を防ぐ大きさで複数形成されている、請求項1又は2に記載の吸放湿性膜を備えたデバイス。 3. A device comprising the hygroscopic film according to claim 1 or 2, wherein a plurality of the openings are formed to have a size that prevents cracks in the film part.
  4.  前記担持体は、前記開口部内に形成された膜部を固定及び支持するように、前記膜部よりも剛性が高い材質で形成されている、請求項1~3のいずれかに記載の放湿性膜を備えたデバイス。 The moisture-releasing property according to any one of claims 1 to 3, wherein the carrier is formed of a material having rigidity higher than that of the film part so as to fix and support the film part formed in the opening. A device with a membrane.
  5.  前記開口部は、前記担持体における開口率が50%以上で、かつ、等価水力直径が5mm以下である、請求項1~4のいずれかに記載の吸放湿性膜を備えたデバイス。 The device having the moisture absorbing / releasing film according to any one of claims 1 to 4, wherein the opening has an opening ratio of 50% or more in the carrier and an equivalent hydraulic diameter of 5 mm or less.
  6.  前記開口部の等価水力直径が2mm以下である、請求項1~5のいずれかに記載の吸放湿性膜を備えたデバイス。 6. A device comprising a hygroscopic film according to claim 1, wherein the opening has an equivalent hydraulic diameter of 2 mm or less.
  7.  前記担持体は、厚さ1mm以下の平板状あるいはチューブ状の形状である、請求項1~6のいずれかに記載の吸放湿性膜を備えたデバイス。 The device provided with the moisture absorbing / releasing film according to any one of claims 1 to 6, wherein the carrier has a flat plate shape or a tube shape with a thickness of 1 mm or less.
  8.  前記膜部は、前記吸放湿剤と接着性バインダーとの混合物を前記開口部内に配した後に、前記混合物を乾燥させることにより前記担持体の開口部に形成される、請求項1~7のいずれかに記載の吸放湿性膜を備えたデバイス。 The film portion is formed in the opening of the carrier by drying the mixture after the mixture of the moisture absorbing / releasing agent and the adhesive binder is disposed in the opening. A device comprising the hygroscopic film according to any one of the above.
  9.  前記混合物には、更に植物性繊維とガラス繊維との少なくとも一方が含まれる、請求項8に記載の吸放湿性膜を備えたデバイス。 The device having a moisture absorbing / releasing film according to claim 8, wherein the mixture further contains at least one of a vegetable fiber and a glass fiber.
  10.  前記担持体は、厚さ1mm以下でかつ縦横の細線ピッチが2mm以下の網状体である、請求項1~9のいずれかに記載の吸放湿性膜を備えたデバイス。 10. The device having a moisture absorbing / releasing film according to claim 1, wherein the carrier is a net-like body having a thickness of 1 mm or less and a vertical and horizontal fine wire pitch of 2 mm or less.
  11.  前記担持体は、導電性の金属材あるいは非導電性のプラスチック材により形成される、請求項1~10のいずれかに記載の吸放湿性膜を備えたデバイス。 The device having a moisture absorbing / releasing film according to any one of claims 1 to 10, wherein the carrier is formed of a conductive metal material or a non-conductive plastic material.
  12.  前記複数の開口部のそれぞれは、互いに異なる寸法及び形状を有する、請求項3に記載の吸放湿性膜を備えたデバイス。 The device provided with the hygroscopic film according to claim 3, wherein each of the plurality of openings has different dimensions and shapes.
  13.  吸放湿性膜を備えたデバイスの製造方法であって、
     シート状の担持部材に吸放湿剤を担持させ、前記吸放湿剤は、吸湿により前記吸放湿剤に取り込まれた水分の前記吸放湿剤内での移動が許容されるものであり、
     開口部を有する第1担持体と前記吸放湿剤が担持された担持部材とを、前記開口部において前記担持部材が露出するように重ねて固定し、これにより、前記開口部で露出した前記担持部材が吸放湿性膜となる、方法。
    A method for manufacturing a device provided with a hygroscopic film,
    A moisture absorbing / releasing agent is supported on a sheet-like supporting member, and the moisture absorbing / releasing agent allows movement of moisture taken into the moisture absorbing / releasing agent by moisture absorption within the moisture absorbing / releasing agent. ,
    The first carrier having an opening and the carrier member carrying the moisture absorbing / releasing agent are overlapped and fixed so that the carrier member is exposed in the opening, whereby the above-described exposed portion of the opening is exposed. A method in which the supporting member becomes a moisture absorbing / releasing film.
  14.  開口部を有する第2担持体と前記第1担持体との間に、前記吸放湿剤が担持された担持部材を挟んで固定し、
     前記第2担持体の開口部は、前記固定された状態において、前記第1担持体の開口部と前記第2担持体の開口部とが少なくとも一部が重なるように形成されている、請求項13に記載の方法。
    Between the second carrier having an opening and the first carrier, the carrier member carrying the moisture absorbing / releasing agent is sandwiched and fixed,
    The opening of the second carrier is formed such that, in the fixed state, the opening of the first carrier and the opening of the second carrier overlap at least partially. 14. The method according to 13.
  15.  前記担持部材、前記第1担持体及び前記第2担持体は、これらを貫通する貫通部、前記貫通部に結合するとともに前記第1担持体から突出する第1ヘッド部、及び前記貫通部に結合するとともに前記第2担持体から突出する第2ヘッド部とを備えた固定部材により固定される、方法。 The carrying member, the first carrying body, and the second carrying body are coupled to the penetrating portion penetrating them, the first head portion that is coupled to the penetrating portion and protrudes from the first carrier, and the penetrating portion. And a fixing member provided with a second head part protruding from the second carrier.
  16.  開口部が形成された担持体と、前記開口部に形成されて水分を吸放湿する吸放湿剤を含む膜部と、を有する吸放湿性膜を備えたデバイスと、
     互いに前記吸放湿性膜を備えたデバイスを介して接すると共に、それぞれ気体が流通される第1流通路及び第2流通路と、
     を有する水蒸気分離器であって、
     水蒸気分離時には、前記第1流通路を流れる気体と前記第2流通路を流れる気体との間で、一方の流通路を流れる気体の水分が、前記膜部の一方の表面で前記吸放湿剤により吸湿され、その後に前記膜部内を移動して前記膜部の他方の表面に移動して気化することで前記他方の流通路を流れる気体に移動する、水蒸気分離器。
    A device provided with a moisture absorbing / releasing film having a carrier having an opening formed therein, and a film portion including a moisture absorbing / releasing agent that absorbs and releases moisture formed in the opening;
    A first flow path and a second flow path through which a gas is circulated, and in contact with each other via a device having the moisture absorbing / releasing film;
    A steam separator comprising:
    At the time of water vapor separation, moisture in the gas flowing in one flow path between the gas flowing in the first flow path and the gas flowing in the second flow path is absorbed by the moisture absorbing / releasing agent on one surface of the membrane portion. The water vapor separator is moved to the gas flowing through the other flow path by being absorbed in the water and then moving to the other surface of the film part and vaporizing by moving to the other surface of the film part.
  17.  前記吸放湿性膜を備えたデバイスはチューブ状とされ、前記チューブ内に形成される流通路が前記第1流通路、前記チューブ外が前記第2流通路とされてシェルアンドチューブ型水蒸気交換器を構成する、請求項16に記載の水蒸気分離器。 The device having the hygroscopic membrane is tube-shaped, and the shell and tube type steam exchanger is configured such that the flow passage formed in the tube is the first flow passage and the outside of the tube is the second flow passage. The water vapor separator according to claim 16, comprising:
  18.  前記デバイスは、前記担持体と、前記吸放湿剤が担持された担持部材と、を前記デバイス表面から突出する突出部を備えた固定具で固定することで形成されたものであり、
     前記第1流通路及び前記第2流通路は、前記デバイスを重ねた際に前記突出部により前記デバイス間に形成された間隙によって形成される、請求項16に記載の水蒸気分離器。
    The device is formed by fixing the carrier and a carrier member carrying the moisture absorbing / releasing agent with a fixture having a protruding portion protruding from the device surface,
    The steam separator according to claim 16, wherein the first flow path and the second flow path are formed by a gap formed between the devices by the protrusion when the devices are stacked.
  19.  開口部が形成された担持体と、前記開口部に形成されて水分を吸放湿する吸放湿剤を含む膜部と、を有する吸放湿性膜を備えたデバイスと、
     互いに前記吸放湿性膜を備えたデバイスを介して接すると共に、それぞれ気体が流通される第1流通路及び第2流通路と、
     を有する水蒸気分離器の製造方法であって、
     複数の前記デバイスをそれぞれ離間して支持する支持部と、開放部と、を備えた筐体を形成し、
     前記支持部によって前記デバイスがそれぞれ離間した状態で支持されるように、前記デバイスを前記開放部から前記筐体内に挿入し、これにより形成される前記デバイス同士の間の間隙によって、前記第1流通路及び第2流通路が形成され、
     前記開放部をカバー部材によって塞ぐことを含み、
     水蒸気分離時には、前記流通路のうちの1つを流れる気体と前記第2の流通路を流れる気体との間で、一方の流通路を流れる気体の水分が、前記膜部の一方の表面で前記吸放湿剤により吸湿され、その後に前記膜部内を移動して前記膜部の他方の表面に移動して気化することで前記他方の流通路を流れる気体に移動する、水蒸気分離器の製造方法。
    A device provided with a moisture absorbing / releasing film having a carrier having an opening formed therein, and a film portion including a moisture absorbing / releasing agent that absorbs and releases moisture formed in the opening;
    A first flow path and a second flow path through which a gas is circulated, and in contact with each other via a device having the moisture absorbing / releasing film;
    A method for producing a steam separator having
    Forming a housing including a support portion that supports the plurality of devices separately from each other, and an open portion;
    The device is inserted into the casing from the open portion so that the devices are supported in a state of being separated from each other by the support portion, and the first flow is formed by a gap between the devices formed thereby. A path and a second flow path are formed,
    Closing the opening with a cover member;
    At the time of water vapor separation, the moisture of the gas flowing in one of the flow paths between the gas flowing in one of the flow paths and the gas flowing in the second flow path is A method for producing a water vapor separator, which is absorbed by a moisture absorbing / releasing agent and then moves to the gas flowing through the other flow path by moving through the membrane and moving to the other surface of the membrane and evaporating. .
PCT/JP2014/069739 2013-07-25 2014-07-25 Device provided with moisture-absorbing/releasing membrane, water vapor separator provided with device having moisture-absorbing/releasing membrane, and heat exchanger WO2015012398A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015528361A JP6352915B2 (en) 2013-07-25 2014-07-25 Device with hygroscopic membrane and water vapor separator and heat exchanger with device with hygroscopic membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013154984 2013-07-25
JP2013-154984 2013-07-25

Publications (1)

Publication Number Publication Date
WO2015012398A1 true WO2015012398A1 (en) 2015-01-29

Family

ID=52393430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069739 WO2015012398A1 (en) 2013-07-25 2014-07-25 Device provided with moisture-absorbing/releasing membrane, water vapor separator provided with device having moisture-absorbing/releasing membrane, and heat exchanger

Country Status (2)

Country Link
JP (1) JP6352915B2 (en)
WO (1) WO2015012398A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019036192A1 (en) * 2017-08-15 2019-02-21 Georgia Tech Research Corporation Methods for regenerating aged carbon molecular sieve membranes

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280317A (en) * 1992-04-06 1994-10-04 Toray Ind Inc Moisture absorbing material
JPH06343816A (en) * 1993-06-03 1994-12-20 Nishikawa Sangyo Kk Hygroscopic sheet
JPH0724924A (en) * 1993-07-13 1995-01-27 Mazda Motor Corp Method for molding skin member
JPH08281047A (en) * 1995-04-14 1996-10-29 Matsushita Seiko Co Ltd Hygroscopic element
JPH119991A (en) * 1997-06-23 1999-01-19 Nippon Gasket Co Ltd Heat-resistant porous sheet and its manufacture
JP2006205122A (en) * 2005-01-31 2006-08-10 Nippon Zeon Co Ltd Molded body for dehumidification and composite molded body for dehumidification
JP2006305482A (en) * 2005-04-28 2006-11-09 Mitsubishi Chemicals Corp Adsorption element
JP2007507344A (en) * 2003-10-03 2007-03-29 シベルクレフ、ヨハン Device for exchanging moisture between air streams
JP2007119969A (en) * 2005-10-31 2007-05-17 Oji Paper Co Ltd Base paper for total heat exchanger element
WO2007116567A1 (en) * 2006-03-30 2007-10-18 Mitsubishi Electric Corporation Total enthalpy heat exchanger
JP2009507630A (en) * 2005-09-13 2009-02-26 ソルヴェイ(ソシエテ アノニム) Cartridge for gas treatment
JP2009106799A (en) * 2007-10-26 2009-05-21 Mitsubishi Plastics Inc Adsorptive sheet, its production method, and adsorptive element
JP2011012894A (en) * 2009-07-02 2011-01-20 Panasonic Corp Material for total heat exchange element and heat exchange type ventilation device using the material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06343916A (en) * 1993-06-04 1994-12-20 Toshiba Corp Coating for metallic material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280317A (en) * 1992-04-06 1994-10-04 Toray Ind Inc Moisture absorbing material
JPH06343816A (en) * 1993-06-03 1994-12-20 Nishikawa Sangyo Kk Hygroscopic sheet
JPH0724924A (en) * 1993-07-13 1995-01-27 Mazda Motor Corp Method for molding skin member
JPH08281047A (en) * 1995-04-14 1996-10-29 Matsushita Seiko Co Ltd Hygroscopic element
JPH119991A (en) * 1997-06-23 1999-01-19 Nippon Gasket Co Ltd Heat-resistant porous sheet and its manufacture
JP2007507344A (en) * 2003-10-03 2007-03-29 シベルクレフ、ヨハン Device for exchanging moisture between air streams
JP2006205122A (en) * 2005-01-31 2006-08-10 Nippon Zeon Co Ltd Molded body for dehumidification and composite molded body for dehumidification
JP2006305482A (en) * 2005-04-28 2006-11-09 Mitsubishi Chemicals Corp Adsorption element
JP2009507630A (en) * 2005-09-13 2009-02-26 ソルヴェイ(ソシエテ アノニム) Cartridge for gas treatment
JP2007119969A (en) * 2005-10-31 2007-05-17 Oji Paper Co Ltd Base paper for total heat exchanger element
WO2007116567A1 (en) * 2006-03-30 2007-10-18 Mitsubishi Electric Corporation Total enthalpy heat exchanger
JP2009106799A (en) * 2007-10-26 2009-05-21 Mitsubishi Plastics Inc Adsorptive sheet, its production method, and adsorptive element
JP2011012894A (en) * 2009-07-02 2011-01-20 Panasonic Corp Material for total heat exchange element and heat exchange type ventilation device using the material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019036192A1 (en) * 2017-08-15 2019-02-21 Georgia Tech Research Corporation Methods for regenerating aged carbon molecular sieve membranes

Also Published As

Publication number Publication date
JP6352915B2 (en) 2018-07-04
JPWO2015012398A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
Woods Membrane processes for heating, ventilation, and air conditioning
US20140262125A1 (en) Energy exchange assembly with microporous membrane
JP5506441B2 (en) Total heat exchange element and total heat exchanger
CN107869812B (en) Integrated membrane solution heat pump system
US11123682B2 (en) Liquid desiccant based dehumidification and cooling system
Asasian-Kolur et al. Membrane-based enthalpy exchangers for coincident sensible and latent heat recovery
JP4341924B2 (en) Desiccant ventilation system
US9273876B2 (en) Membrane contactor for dehumidification systems
Bui et al. Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification
US11859863B2 (en) Method and system for dehumidification and atmospheric water extraction with minimal energy consumption
JP2013064549A (en) Air conditioning system
US20220178619A1 (en) Tubular membrane heat exchanger
Abdollahi et al. Heat and mass transfer modeling of an energy efficient Hybrid Membrane-Based Air Conditioning System for humid climates
JP2008043899A (en) Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method
JP5130709B2 (en) Adsorption sheet, adsorption element, method for producing the same, and uses thereof
JP6352915B2 (en) Device with hygroscopic membrane and water vapor separator and heat exchanger with device with hygroscopic membrane
JP2007245025A (en) Adsorption sheet, adsorbing element, method for manufacturing the same, and application thereof
JP2006175300A (en) Sheetlike laminated body, its manufacturing method and adsorbing element
JP2012183534A (en) Adsorbing sheet, adsorbing element, method for manufacturing the same, and use of the same
JP6262445B2 (en) Total heat exchanger using water vapor permselective membrane
JP2007245018A (en) Adsorption sheet, adsorbing element, method for manufacturing the same, and application thereof
JP2017015369A (en) Heat exchanging element and humidity adjuster element
JP4622660B2 (en) Adsorption element
US20140041830A1 (en) Heat and moisture transfer apparatus integrated into an exterior partition
US20230184495A1 (en) Tubular membrane mass exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14829333

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015528361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14829333

Country of ref document: EP

Kind code of ref document: A1