JP4341924B2 - Desiccant ventilation system - Google Patents

Desiccant ventilation system Download PDF

Info

Publication number
JP4341924B2
JP4341924B2 JP2006161181A JP2006161181A JP4341924B2 JP 4341924 B2 JP4341924 B2 JP 4341924B2 JP 2006161181 A JP2006161181 A JP 2006161181A JP 2006161181 A JP2006161181 A JP 2006161181A JP 4341924 B2 JP4341924 B2 JP 4341924B2
Authority
JP
Japan
Prior art keywords
flow path
duct
air
heat transfer
side duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006161181A
Other languages
Japanese (ja)
Other versions
JP2007271247A (en
Inventor
裕 渡邊
邦夫 三浦
敏彦 石沢
正純 神戸
徳臣 岡崎
威 高塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Nippon Air Technologies Co Ltd
Original Assignee
Shin Nippon Air Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Nippon Air Technologies Co Ltd filed Critical Shin Nippon Air Technologies Co Ltd
Priority to JP2006161181A priority Critical patent/JP4341924B2/en
Publication of JP2007271247A publication Critical patent/JP2007271247A/en
Application granted granted Critical
Publication of JP4341924B2 publication Critical patent/JP4341924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Description

本発明はエネルギーの使用を抑制して、自動車、住居、オフィス、商業施設、体育館、イベント会場、工場などの室内空間を快適で衛生的な空気状態に保つためのデシカント換気システムに関する。   The present invention relates to a desiccant ventilation system for keeping indoor spaces, such as automobiles, houses, offices, commercial facilities, gymnasiums, event venues, and factories, in a comfortable and hygienic air condition while suppressing the use of energy.

近年、地球温暖化の傾向が顕著となり、その対策として主たる温室効果ガスである二酸化炭素の排出量を削減すべく、化石燃料の高効率使用(省エネルギー活動)が進められている。   In recent years, the trend of global warming has become prominent, and high-efficiency use (energy conservation activities) of fossil fuels has been promoted to reduce the amount of carbon dioxide, the main greenhouse gas, as a countermeasure.

特に、運輸分野や民生分野(家庭、業務)の空調設備は現在も導入件数ならびに使用頻度が増加しており、エネルギー使用量(特にガソリンなどの燃料や電力使用量)は拡大している。そのため、その使用量削減に向けた空調機器・システムの効率改善は喫緊の課題である。   In particular, the number of air conditioners installed in the transport field and the consumer field (household and business) and the frequency of use are still increasing, and the amount of energy used (especially fuel such as gasoline and the amount of power used) is expanding. Therefore, improving the efficiency of air-conditioning equipment and systems for reducing the amount of usage is an urgent issue.

例えば、自動車においては、冬季にカーエアコンによる車内除湿の際、車内空気を露点以下に冷却除湿した後に再度加熱を行うなど非効率な運転が行われている。また、民生分野では空調効率改善のため、住宅やオフィスビルが高気密化された結果、家具や建材から発生する有害化学物質(VOC)に起因するシックハウス症候群などの弊害を生じるようになった。その対策として住宅やオフィスなどの換気強化が行われている。しかしながら換気強化は外気による室内空調負荷、とりわけ除湿や加湿などの潜熱負荷増大を招くため、省エネルギー換気システムが不可欠となる。   For example, in an automobile, in-vehicle dehumidification by a car air conditioner in winter, inefficient driving is performed such as cooling and dehumidifying the air in the vehicle below the dew point and then heating again. In addition, in the consumer field, as a result of air-tightening of houses and office buildings to improve air conditioning efficiency, adverse effects such as sick house syndrome caused by harmful chemical substances (VOC) generated from furniture and building materials have come to occur. As countermeasures, ventilation is strengthened in houses and offices. However, enhanced ventilation leads to an increase in indoor air conditioning load due to outside air, especially latent heat load such as dehumidification and humidification, so an energy saving ventilation system is indispensable.

自動車窓ガラスの防曇や居住室内除湿のため空調機は処理対象の空気を露点以下まで冷却し、空気中の水分を凝縮除去した後に低温化した空気を加熱する運転を行っている。従ってカーエアコンや室内空調機(以下「空調機」)での除湿負荷が低減されれば、空調機は低温度領域まで空気を冷却する負荷から開放され、自動車では燃費が改善され、室内空調機では電力消費量が改善され経済効果と省エネ効果が確保される。   The air conditioner cools the air to be treated to below the dew point, condenses and removes the moisture in the air, and then heats the air that has been cooled to prevent fogging of the automobile window glass and dehumidification in the living room. Therefore, if the dehumidifying load on the car air conditioner or indoor air conditioner (hereinafter referred to as “air conditioner”) is reduced, the air conditioner is released from the load that cools the air to a low temperature range, and the fuel efficiency is improved in the automobile. The power consumption will be improved and the economic and energy saving effects will be secured.

また、冬季や乾燥季には外気が乾燥するため、民生分野では換気に際し加湿が不可欠となる。室内加湿には超音波加湿装置などが用いられるが、電力消費の増大のみならず室内温度の低下という問題がある。これに対し、室内から室外へ排出される空気に含まれる水分を選択的に分離回収し、これを外気からの導入空気へエネルギー使用を最小限にとどめて添加できれば加湿負荷が低減され、やはり省エネルギー効果が得られる。   In addition, since the outside air dries in the winter and dry seasons, humidification is essential for ventilation in the consumer sector. An ultrasonic humidifier or the like is used for indoor humidification, but there is a problem that not only the power consumption increases but also the indoor temperature decreases. In contrast, if the moisture contained in the air exhausted from the room to the outside is selectively separated and recovered, and this can be added to the introduction air from the outside air with minimal energy use, the humidification load is reduced, which also saves energy. An effect is obtained.

例えば、下記特許文献1では、屋内空気を吸い込む除湿用吸込口と、この除湿用吸込口から吸い込んだ空気を屋内に吹き出す除湿用吹出口と、屋内の空気を吸い込む換気用吸込口と、屋内空気を屋外に排出する換気用排出口と、前記除湿用吸込口と除湿用吹出口とを結ぶ空気通路を通る空気からの吸湿を行うと共に、前記換気用吸込口と換気用排出口とを結ぶ空気通路を通る空気への放湿を行う除湿素子と、換気用吸込口と換気用排出口とを結ぶ空気通路を通る空気への放湿のため、除湿素子を通過する前のこの排気空気を加熱して乾燥させる加熱手段とを備え、屋外への排気空気を利用して屋内空気の除湿を行うようになされて、換気運転と除湿換気運転との切換えを行える除湿換気システムが提案されている。   For example, in the following Patent Document 1, a dehumidifying inlet that sucks indoor air, a dehumidifying outlet that blows air sucked from the dehumidifying inlet, a ventilation inlet that sucks indoor air, and indoor air Air is exhausted to the outside, and the air that passes through the air passage that connects the dehumidification inlet and the dehumidification outlet and absorbs moisture from the air and connects the ventilation inlet and the ventilation outlet. The exhaust air before passing through the dehumidifying element is heated in order to dehumidify the air passing through the air passage connecting the suction inlet for ventilation and the exhaust outlet for ventilation, and the dehumidifying element for dehumidifying the air passing through the passage. In addition, a dehumidification / ventilation system has been proposed that includes a heating means for drying and dehumidifies indoor air using exhaust air to the outdoors, and can switch between ventilation operation and dehumidification ventilation operation.

また、下記特許文献2では、少なくとも2つのデシカントをそれぞれ処理空気経路と再生空気経路に配置し、一方で処理空気中の水分を吸着し、他方で再生空気によって再生するようにした空調システムにおいて、前記2つのデシカントを前記処理空気経路及び再生空気経路に対して相対移動させて前記デシカント部への処理空気と再生空気の流通を切り換え可能にした空調システムが提案されている。
特開2003−294267号公報 特開平10−9633号公報
Further, in the following Patent Document 2, in an air conditioning system in which at least two desiccants are respectively disposed in the processing air path and the regeneration air path, the moisture in the processing air is adsorbed on the one hand and the other is regenerated by the regeneration air. An air conditioning system has been proposed in which the two desiccants are moved relative to the processing air path and the regeneration air path so that the flow of the processing air and the regeneration air to the desiccant portion can be switched.
JP 2003-294267 A JP-A-10-9633

上記特許文献1記載の換気システムでは、除湿素子を乾燥(再生)させるには、相対湿度の低い空気を通過させる必要があるため、通過空気を加熱するための電気や都市ガスなどの熱エネルギーが必要となり、多くのエネルギーを消費する問題があった。また、上記特許文献2記載の空調システムでは、切替弁による複雑な流路構成となり、設備が大型化する問題があった。   In the ventilation system described in Patent Document 1, in order to dry (regenerate) the dehumidifying element, it is necessary to pass air having a low relative humidity. Therefore, heat energy such as electricity or city gas for heating the passing air is used. There was a problem that it was necessary and consumed a lot of energy. Further, the air conditioning system described in Patent Document 2 has a complicated flow path configuration using a switching valve, and there is a problem in that the equipment is increased in size.

さらに、上記特許文献1、2に記載されるように、除湿材を用いる多くの換気システムでは、除湿材による水分吸着の際、除湿材の吸着熱が発生して通過空気の温度が上昇し、相対湿度が低下するので、除湿材の水分吸着効果が低下する問題があった。逆に、除湿材の再生の際、除湿材の水分脱着作用により吸熱して通過空気の温度が低下し、相対湿度が上昇するため、除湿材の水分脱着効率が低下する問題があった。   Furthermore, as described in Patent Documents 1 and 2 described above, in many ventilation systems using a dehumidifying material, when moisture is adsorbed by the dehumidifying material, the heat of adsorption of the dehumidifying material is generated and the temperature of the passing air rises, Since the relative humidity is lowered, there is a problem that the moisture adsorption effect of the dehumidifying material is lowered. On the other hand, when the dehumidifying material is regenerated, the dehumidifying material absorbs heat due to the moisture desorbing action, the temperature of the passing air decreases, and the relative humidity increases, so that the moisture desorbing efficiency of the dehumidifying material decreases.

この様な問題点を解決するため、従来のデシカントシステムでは、除湿材の除熱や加熱を行うための装置を別途設置する必要があり、そのための消費エネルギーの増大や、システムの複雑化・大型化によるコスト増大という問題があった。   In order to solve such problems, the conventional desiccant system requires a separate device for heat removal and heating of the dehumidifier, which increases energy consumption and makes the system more complex and larger. There was a problem of cost increase due to the conversion.

近年、水蒸気の透過膜を介して、一方の面を通過する空気の熱と水分を、他方の面を通過する空気に与える特性を利用した全熱交換器が市販され、省エネルギーに貢献している。しかしながら、熱交換時に、潜熱としての水分交換という特性から排気中に含まれるVOCや臭気分子、ウイルスなどの給気側への還流問題が指摘されており衛生面での課題を有する。   In recent years, total heat exchangers that utilize the characteristics of giving heat and moisture from the air passing through one surface to the air passing through the other surface via a water vapor permeable membrane are commercially available, contributing to energy saving. . However, during heat exchange, the problem of reflux to the supply side of VOC, odor molecules, viruses, etc. contained in the exhaust gas has been pointed out from the characteristic of moisture exchange as latent heat, which has a hygiene problem.

この様に、われわれは調湿・空調に多大なエネルギーを使っており、これを改善するための衛生的な除湿、加湿の手段ならびに熱交換手段が構築できれば、地球温暖化問題をはじめ、より快適で安心な居住環境を低コストで確保できることに気付く。   In this way, we use a great deal of energy for humidity conditioning and air conditioning, and if we can build hygienic dehumidification, humidification means and heat exchange means to improve this, we will be more comfortable, including global warming problems. A safe and comfortable living environment can be secured at low cost.

そこで、本発明の主たる課題は、除湿材の水分吸脱着が効率よく行えるとともに、エネルギー効率が向上でき、かつ単純な構造によりコンパクト化及び製造コスト低減化が可能となるデシカント換気システムを提供することにある。   Therefore, the main problem of the present invention is to provide a desiccant ventilation system that can efficiently absorb and desorb moisture from the dehumidifying material, improve energy efficiency, and reduce the manufacturing cost by a simple structure. It is in.

前記課題を解決するために請求項1に係る本発明として、外気の供給および室内空気の排気を併行して行うために一方側ダクトと他方側ダクトとを独立的に形成し、両端部に前記一方側ダクトと他方側ダクトとが夫々接続された所定長さのケーシング内に、通気性を有しない熱交換可能な伝熱シートによって層状に区画され、交互に第1流路と第2流路とから成る多数の層状の流路が形成されるとともに、前記第1流路と第2流路とに区画する各仕切り面のうち、流路の入口及び出口近傍部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着されない領域とされ、その他の部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着された領域とされ前記ダクトと平行する方向であって流通空気の流れ方向に長辺を有する形状からなり、かつ前記ダクトと平行する中心軸芯回りに支持された水分吸脱装置を配置し、
前記水分吸脱装置において、前記第1流路と第2流路とが各流路の空気を相互に対向して流通させるか又は平行して流通させるようにした対向流型又は平行流型の流路構成とされるとともに、前記伝熱シートの一方の面側で流通空気の除湿がなされると同時に、他方の面側で流通空気の加湿がなされ、前記伝熱シートの一方の面側に配設された除湿材の水分吸着に伴う吸着熱が前記伝熱シートを熱伝導して他方の面側の除湿材を加熱して、この除湿材の水分脱着作用を促進させる構成とされ、
所定時間毎に前記水分吸脱装置を前記中心軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路として流通させ、前記第2流路を排気流路として流通させる状態と、前記第2流路を給気流路として流通させ、前記第1流路を排気流路として流通させる状態とを交互に切り換え可能としたことを特徴とするデシカント換気システムが提供される。
In order to solve the above-mentioned problem, as the present invention according to claim 1, one side duct and the other side duct are independently formed in order to perform the supply of outside air and the exhaust of room air in parallel, A casing having a predetermined length to which the one-side duct and the other-side duct are respectively connected is divided into layers by a heat-exchangeable heat transfer sheet having no air permeability, and the first flow path and the second flow path are alternately arranged. A plurality of layered flow paths are formed, and among the partition surfaces partitioned into the first flow path and the second flow path, portions near the inlet and outlet of the flow paths are both surfaces of the heat transfer sheet. The area where the dehumidifying material is not applied, impregnated or adhered is the other area, and the other part is the area where the dehumidifying material is applied, impregnated or adhered to both sides of the heat transfer sheet, and is in the direction parallel to the duct and the circulating air It has a long side in the flow direction. And place the moisture adsorption device which is supported by the center axis around which parallel to the duct,
In the moisture adsorption / desorption device, the first flow path and the second flow path are made to flow in the flow paths facing each other or in parallel to each other. In addition to the flow path configuration, the circulating air is dehumidified on one side of the heat transfer sheet, and at the same time, the circulating air is humidified on the other side of the heat transfer sheet. Adsorption heat accompanying moisture adsorption of the disposed dehumidifying material is configured to promote the moisture desorption effect of the dehumidifying material by thermally conducting the heat transfer sheet and heating the dehumidifying material on the other surface side,
A state where the first flow path is circulated as an air supply flow path and the second flow path is circulated as an exhaust flow path by rotating the moisture adsorption / desorption device approximately 180 degrees around the central axis at predetermined time intervals. And a desiccant ventilation system characterized in that the second flow path can be circulated as an air supply flow path and the first flow path can be circulated as an exhaust flow path.

上記請求項1記載の本発明は、通気性を有しない熱交換可能な多数の伝熱シートによって交互に第1流路と第2流路とから成る多数の流路が層状に区画され、前記第1流路と第2流路とに区画する各仕切り面の少なくとも一部に除湿材が塗布、含浸又は接着されるか、前記第1流路と第2流路の少なくとも一部に除湿材が充填されることによって、一方側流路における除湿材の水分吸着に伴う吸着熱は、前記除湿材に接触する伝熱シートを介して、他方側流路の除湿材に熱伝導される。これによって、一方側流路の除湿材は冷却されて水分吸着が促進されるとともに、他方側流路の除湿材は加熱されて、乾燥(再生)が促進されるようになり、除湿材の水分吸脱着が効率よく行えるとともに、エネルギー効率を向上することができるようになる。   In the first aspect of the present invention, a large number of flow paths composed of the first flow path and the second flow path are alternately divided into layers by a large number of heat-exchangeable heat transfer sheets having no air permeability, A dehumidifying material is applied, impregnated, or adhered to at least a part of each partition surface partitioned into the first flow path and the second flow path, or a dehumidifying material is applied to at least a part of the first flow path and the second flow path. As a result, the heat of adsorption accompanying moisture adsorption of the dehumidifying material in the one-side channel is thermally conducted to the dehumidifying material in the other-side channel via the heat transfer sheet in contact with the dehumidifying material. As a result, the dehumidifying material in the one side channel is cooled to promote moisture adsorption, and the dehumidifying material in the other side channel is heated to promote drying (regeneration). Adsorption and desorption can be performed efficiently, and energy efficiency can be improved.

さらに、所定時間毎に前記水分吸脱装置を軸芯回りにほぼ180度回転させることにより流路の切り換えが行われるようになっているので、デシカント換気システムを単純な構造でコンパクト化することができるようになる。   Furthermore, since the flow path is switched by rotating the moisture adsorption / desorption device approximately 180 degrees around the axis at predetermined intervals, the desiccant ventilation system can be made compact with a simple structure. become able to.

また、水分吸脱装置の第1流路及び第2流路を形成する伝熱シートにおいて、流路の入口及び/又は出口近傍部分は除湿材が塗布、含浸又は接着されない伝熱シートで構成することにより、水分吸脱装置の入口及び/又は出口近傍部分で、伝熱シートを介して給気と排気との間で熱交換が行われる。また、その他の部分では除湿材が充填されることにより、前述の通り、一方側流路における除湿材の水分吸着に伴う吸着熱は、前記除湿材に接触する伝熱シートを介して、他方側流路の除湿材に熱伝導され、一方側流路の除湿材は冷却されて水分吸着が促進されるとともに、他方側流路の除湿材は加熱されて乾燥(再生)が促進されるようになる。これによって、デシカント換気システムのエネルギー効率が向上する。 Moreover , in the heat transfer sheet forming the first flow path and the second flow path of the moisture adsorption / desorption device, the inlet and / or the vicinity of the outlet of the flow path is constituted by a heat transfer sheet to which a dehumidifying material is not applied, impregnated or bonded. Thus, heat exchange is performed between the supply air and the exhaust gas via the heat transfer sheet in the vicinity of the inlet and / or outlet of the moisture adsorption / desorption device. Further, as described above, the other part is filled with the dehumidifying material, so that the heat of adsorption accompanying the moisture adsorption of the dehumidifying material in the one-side flow path is transferred to the other side via the heat transfer sheet in contact with the dehumidifying material. Heat is conducted to the dehumidifying material in the flow path, the dehumidifying material in the one-side flow path is cooled to promote moisture adsorption, and the dehumidifying material in the other-side flow path is heated to promote drying (regeneration). Become. This improves the energy efficiency of the desiccant ventilation system.

さらに、前記水分吸脱装置は、流通空気の流れ方向に長辺を有する形状とすることが望ましい。これによって、流通空気と除湿材との接触の機会を増やすことができ、除湿材の水分吸脱着が効率よく行えるとともに、エネルギー効率が向上できる。 Furthermore , it is desirable that the moisture adsorption / desorption device has a shape having a long side in the flow direction of the circulating air. Thereby, the opportunity of contact with circulation air and a dehumidification material can be increased, the moisture absorption / desorption of a dehumidification material can be performed efficiently, and energy efficiency can be improved.

請求項2に係る本発明として、外気の供給および室内空気の排気を併行して行うために一方側ダクトと他方側ダクトとを独立的に形成し、両端面又は両端部の側面部分に前記一方側ダクトと他方側ダクトとが夫々接続された所定長さのケーシング内に、通気性を有しない熱交換可能な伝熱シートによって層状に区画された多数の層状の流路が形成されるとともに、前記層状の流路に区画する各仕切り面のうち、流路の入口及び出口近傍部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着されない領域とされ、その他の部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着された領域とされ
前記層状の流路は、一方側ダクト同士を連通するか又は一方側ダクトと他方側ダクトとを繋ぐ交差する対角関係にある2組の流路の内、一方組の一方側ダクトと他方側ダクトとを連通する第1流路と、他方側ダクト同士を連通するか又は一方側ダクトと他方側ダクトとを繋ぐ交差する対角関係にある2組の流路の内、他方組の一方側ダクトと他方側ダクトとを連通する第2流路とが交互に形成され、前記ダクトと平行する方向であって流通空気の流れ方向に長辺を有する形状からなり、かつ前記ダクトと平行する中心軸芯回りに支持された水分吸脱装置を配置し、
前記水分吸脱装置において、前記第1流路と第2流路とが各流路の空気を相互に対向して流通させるか又は平行して流通させるようにした対向流型又は平行流型の流路構成とされるとともに、前記伝熱シートの一方の面側で流通空気の除湿がなされると同時に、他方の面側で流通空気の加湿がなされ、前記伝熱シートの一方の面側に配設された除湿材の水分吸着に伴う吸着熱が前記伝熱シートを熱伝導して他方の面側の除湿材を加熱して、この除湿材の水分脱着作用を促進させる構成とされ、
所定時間毎に前記水分吸脱装置を前記中心軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路として流通させ、前記第2流路を排気流路として流通させる状態と、前記第2流路を給気流路として流通させ、前記第1流路を排気流路として流通させる状態とを交互に切り換え可能としたことを特徴とするデシカント換気システムが提供される。
As the present invention according to claim 2, one side duct and the other side duct are independently formed in order to perform supply of outside air and exhaust of indoor air in parallel, and the one side is formed on both end surfaces or both side portions. In the casing of a predetermined length to which the side duct and the other side duct are respectively connected, a large number of layered flow paths partitioned into layers by a heat exchangeable heat transfer sheet having no air permeability are formed, Of the partition surfaces partitioned into the layered flow paths, the vicinity of the inlet and outlet of the flow path is a region where the dehumidifying material is not applied, impregnated, or bonded to both surfaces of the heat transfer sheet, and the other portions are the heat transfer. The area where the dehumidifying material is applied, impregnated or adhered to both sides of the sheet ,
The layered flow path is one of one set of one side duct and the other side of two sets of diagonal paths that connect one side ducts or connect one side duct and the other side duct. The first channel that communicates with the duct and the other channel among the two diagonal channels that communicate with each other or connect the one side duct and the other side duct. The second flow path communicating with the duct and the other side duct is alternately formed , and has a shape having a long side in a direction parallel to the duct and a flow direction of the circulating air, and a center parallel to the duct Place a moisture absorption / desorption device supported around the axis,
In the moisture adsorption / desorption device, the first flow path and the second flow path are made to flow in the flow paths facing each other or in parallel to each other. In addition to the flow path configuration, the circulating air is dehumidified on one side of the heat transfer sheet, and at the same time, the circulating air is humidified on the other side of the heat transfer sheet. Adsorption heat accompanying moisture adsorption of the disposed dehumidifying material is configured to promote the moisture desorption effect of the dehumidifying material by thermally conducting the heat transfer sheet and heating the dehumidifying material on the other surface side,
A state where the first flow path is circulated as an air supply flow path and the second flow path is circulated as an exhaust flow path by rotating the moisture adsorption / desorption device approximately 180 degrees around the central axis at predetermined time intervals. And a desiccant ventilation system characterized in that the second flow path can be circulated as an air supply flow path and the first flow path can be circulated as an exhaust flow path.

上記請求項2記載の本発明は、上記請求項1記載の発明の水分吸脱装置について、ダクトの接続構成と流路構成を具体的に示したものである。すなわち、ダクトの接続構成は、一方側ダクトと他方側ダクトが、水分吸脱装置の両端面又は両端部の側面部分に夫々接続するようにする。また、流路構成は、第1流路と第2流路とが、一方側ダクト同士又は他方側ダクト同士を平行して連通した対向流型又は平行流型とするか、一方側ダクトと他方側ダクトとを交差して連通した対向流型又は平行流型とするようにする。   The present invention described in claim 2 specifically shows the connection configuration and flow path configuration of the duct in the moisture adsorption / desorption device of the invention described in claim 1. That is, the duct connection configuration is such that the one-side duct and the other-side duct are respectively connected to both end surfaces of the moisture adsorption / desorption device or side portions of both end portions. In addition, the flow channel configuration may be a counter flow type or a parallel flow type in which the first flow channel and the second flow channel communicate with each other in parallel between the one side ducts or the other side ducts. A counterflow type or a parallel flow type that crosses and communicates with the side duct is used.

請求項3に係る本発明として、外気の供給および室内空気の排気を併行して行うために一方側ダクトと他方側ダクトとを独立的に形成し、これら一方側ダクトと他方側ダクトとが平行に配設された部位において、両ダクトに跨るとともに、両ダクトが接続された所定長さのケーシング内に、流路の入口及び出口近傍部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着されない領域とされ、その他の部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着された領域とされるとともに、通気性を有しない熱交換可能な多数の伝熱シートによって層状に区画された多数の層状の流路が形成され、該層状の流路は、一方側ダクトと他方側ダクトとを繋ぐとともに、交差する2組の対角関係の内、一方側対角の関係で一方側ダクトと他方側ダクトとが連通され、他方側対角の関係で一方側ダクトと他方側ダクトとが閉鎖された第1流路と、他方側対角の関係で一方側ダクトと他方側ダクトとが連通され、一方側対角の関係で一方側ダクトと他方側ダクトとが閉鎖された第2流路とが交互に形成され、前記ダクトと平行する方向であって流通空気の流れ方向に長辺を有する形状からなり、かつ前記ダクトと平行する中心軸芯回りに支持された水分吸脱装置を配置し、
前記水分吸脱装置において、前記第1流路と第2流路とが各流路の空気を相互に対向して流通させるか又は平行して流通させるようにした対向流型又は平行流型の流路構成とされるとともに、前記伝熱シートの一方の面側で流通空気の除湿がなされると同時に、他方の面側で流通空気の加湿がなされ、前記伝熱シートの一方の面側に配設された除湿材の水分吸着に伴う吸着熱が前記伝熱シートを熱伝導して他方の面側の除湿材を加熱して、この除湿材の水分脱着作用を促進させる構成とされ、
所定時間毎に前記水分吸脱装置を前記中心軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路として一方側ダクトから他方側ダクトへ流通させ、前記第2流路を排気流路として一方側ダクトから他方側ダクトへ流通させる状態と、前記第2流路を給気流路として一方側ダクトから他方側ダクトへ流通させ、前記第1流路を排気流路として一方側ダクトから他方側ダクトへ流通させる状態とを交互に切り換え可能とするか、所定時間毎に前記水分吸脱装置を前記中心軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路として一方側ダクトから他方側ダクトへ流通させ、前記第2流路を排気流路として他方側ダクトから一方側ダクトへ流通させる状態と、前記第2流路を給気流路として一方側ダクトから他方側ダクトへ流通させ、前記第1流路を排気流路として他方側ダクトから一方側ダクトへ流通させる状態とを交互に切り換え可能としたことを特徴とするデシカント換気システムが提供される。
As the present invention according to claim 3, in order to perform the supply of outside air and the exhaust of room air in parallel, one side duct and the other side duct are formed independently, and the one side duct and the other side duct are parallel to each other. In the part disposed in the pipe, it extends over both ducts, and a dehumidifying material is applied and impregnated on both sides of the heat transfer sheet in the vicinity of the inlet and outlet of the flow path in a casing of a predetermined length to which both ducts are connected. or is a bonded non regions, other parts dehumidifying material applied to both sides of the heat transfer sheet, is a impregnated or bonded areas Rutotomoni, layered by a number of heat transfer sheet capable of having no heat exchange ventilation A large number of layered flow paths are formed, and the layered flow path connects the one side duct and the other side duct, and of the two pairs of diagonal relationships that intersect, the one side diagonal relationship With one side duct and the other The duct is in communication, the first flow path in which the one side duct and the other side duct are closed in a relationship of the other side diagonal, and the one side duct and the other side duct in communication in the relationship of the other side diagonal; A shape in which the second flow path in which the one side duct and the other side duct are closed due to the one side diagonal relationship is alternately formed, and has a long side in a direction parallel to the duct and in the flow direction of the circulating air And a water absorption / desorption device supported around a central axis parallel to the duct,
In the moisture adsorption / desorption device, the first flow path and the second flow path are made to flow in the flow paths facing each other or in parallel to each other. In addition to the flow path configuration, the circulating air is dehumidified on one side of the heat transfer sheet, and at the same time, the circulating air is humidified on the other side of the heat transfer sheet. Adsorption heat accompanying moisture adsorption of the disposed dehumidifying material is configured to promote the moisture desorption effect of the dehumidifying material by thermally conducting the heat transfer sheet and heating the dehumidifying material on the other surface side,
By rotating the moisture adsorbing / desorbing device approximately 180 degrees around the center axis at predetermined time intervals, the first flow path is used as an air supply flow path to flow from one duct to the other duct, and the second flow path Circulates from the one side duct to the other side duct as an exhaust flow path, and circulates from the one side duct to the other side duct as the air supply flow path, while the first flow path serves as the exhaust flow path. It is possible to alternately switch the state of flowing from the side duct to the other side duct, or by rotating the moisture adsorption / desorption device approximately 180 degrees around the central axis at predetermined time intervals. A state in which the air supply channel is circulated from one duct to the other side duct, the second channel is circulated from the other side duct to the one side duct, and the second channel is used as the air supply channel. Duct or Is circulated to the other side duct, desiccant ventilation system characterized in that the switchable said first flow path alternately between a state in which circulating from the other side duct to one side duct as an exhaust passage is provided.

上記請求項3記載の本発明は、上記請求項1、2記載の発明の水分吸脱装置の具体的な実施形式を示したものであって、多数の伝熱シートによって層状に区画された多数の給気流路と排気流路とが形成され、各流路の空気を相互に対向して流通させるか又は平行して流通させるようにした、いわば対向流型又は平行流型の水分吸脱装置を備えたデシカント換気システムである。   The third aspect of the present invention shows a specific mode of implementation of the moisture adsorption / desorption device according to the first and second aspects of the present invention, and is divided into a plurality of layers divided by a large number of heat transfer sheets. Water supply / exhaust flow channels are formed, and the air in each flow channel is circulated so as to face each other or in parallel, so to speak, a counter flow type or parallel flow type moisture adsorption / desorption device Is a desiccant ventilation system.

請求項に係る本発明として、前記水分吸脱装置の層状の流路は、1又は複数枚の伝熱シートを断面コ字形が連続する波板形状に折曲げ成形し、側板及び端板を配設することにより構成したことを特徴とする請求項1〜いずれかに記載のデシカント換気システムが提供される。 As a fourth aspect of the present invention, the layered flow path of the moisture adsorption / desorption device is formed by bending one or a plurality of heat transfer sheets into a corrugated plate shape having a continuous U-shaped cross section, and forming side plates and end plates. The desiccant ventilation system according to any one of claims 1 to 3 , wherein the desiccant ventilation system is provided.

上記請求項記載の本発明は、1又は複数枚の伝熱シートを断面コの字形が連続する波板形状に折曲げ成形し、両側面に側板を、両端に端板を配設して前記水分吸脱装置を構成することによって、水分吸脱装置を単純な構造でコンパクト化することができるようになるとともに、製造コストを低減化することが可能となる。 In the present invention described in claim 4 , one or a plurality of heat transfer sheets are bent into a corrugated plate shape having a continuous U-shaped cross section, side plates are provided on both sides, and end plates are provided on both ends. By configuring the moisture adsorption / desorption device, the moisture adsorption / desorption device can be made compact with a simple structure, and the manufacturing cost can be reduced.

請求項に係る本発明として、前記第1流路と第2流路とを層状に仕切る伝熱シートとして平板又は波板が使用されるとともに、前記上下の伝熱シート間にはスペーサ又は波板が配設され、前記スペーサ又は波板表面の一部又は全面に除湿材が塗布、含浸又は接着されている請求項1〜いずれかに記載のデシカント換気システムが提供される。 As the present invention according to claim 5 , a flat plate or a corrugated plate is used as a heat transfer sheet that divides the first flow path and the second flow path into layers, and a spacer or a wave is interposed between the upper and lower heat transfer sheets. The desiccant ventilation system according to any one of claims 1 to 4 , wherein a plate is disposed, and a dehumidifying material is applied, impregnated, or adhered to a part or the entire surface of the spacer or the corrugated plate.

請求項に係る本発明として、前記伝熱シート、スペーサ又は波板は、直径0.1mm以下の微細粒子状に形成した除湿材を懸濁させた懸濁液を含浸後、乾燥固定したガラス繊維、植物繊維、動物繊維及び/又は化学繊維などの繊維状シートであることを特徴とする請求項1〜いずれかに記載のデシカント換気システムが提供される。 As the present invention according to claim 6 , the heat transfer sheet, the spacer or the corrugated sheet is impregnated with a suspension in which a dehumidifying material formed into fine particles having a diameter of 0.1 mm or less is impregnated, and then dried and fixed. The desiccant ventilation system according to any one of claims 1 to 5 , wherein the desiccant ventilation system is a fibrous sheet of fiber, plant fiber, animal fiber, and / or chemical fiber.

上記請求項記載の本発明は、前記伝熱シート、スペーサ又は波板が除湿材が含浸された繊維状シートから構成されることによって、除湿材の水分吸脱着が効率よく行えるようになるとともに、伝熱シート間の伝熱が効率よく行われるようになる。 According to the sixth aspect of the present invention, the heat transfer sheet, the spacer, or the corrugated sheet is composed of a fibrous sheet impregnated with the dehumidifying material, so that the dehumidifying material can efficiently absorb and desorb moisture. The heat transfer between the heat transfer sheets is efficiently performed.

請求項に係る本発明として、前記水分吸脱装置を非電導性材料で構成するとともに、前記水分吸脱装置の近傍に、前記水分吸脱装置にマイクロ波を照射するためのマイクロ波照射装置を備えることを特徴とする請求項1〜いずれかに記載のデシカント換気システムが提供される。 According to a seventh aspect of the present invention, a microwave irradiating device for irradiating the moisture absorbing / desorbing device with microwaves in the vicinity of the moisture absorbing / desorbing device while the moisture absorbing / desorbing device is made of a non-conductive material. A desiccant ventilation system according to any one of claims 1 to 6 is provided.

上記請求項記載の本発明では、マイクロ波照射装置でマイクロ波を照射することによって、除湿材や水分吸脱装置内に吸着した水分子を励振させて加熱し、水分吸脱装置内に蓄積された水分、化学物質、臭気分子などの物質を脱着及び排出させることができる。これによって、前記除湿材の再生が効率よく行われるとともに、水分吸脱装置内を衛生的に保つことが可能となる。 In the present invention described in claim 7 , by irradiating the microwave with the microwave irradiation device, the water molecules adsorbed in the dehumidifying material and the moisture adsorption / desorption device are excited and heated, and accumulated in the moisture adsorption / desorption device. It is possible to desorb and discharge substances such as moisture, chemical substances, and odor molecules. This makes it possible to efficiently regenerate the dehumidifying material and keep the inside of the moisture absorption / desorption device hygienic.

請求項に係る本発明として、前記水分吸脱装置において、前記第1流路及び/又は第2流路に、エンジンや燃料電池などの原動機又は発電装置、一般空調機、湯沸かし器等の既存設備から排出される高温空気或いは温排気と熱交換可能な熱交換器において加熱した空気を導く導入手段を備えたことを特徴とする請求項1〜いずれかに記載のデシカント換気システムが提供される。 As the present invention according to claim 8 , in the moisture adsorption / desorption device, the first flow path and / or the second flow path are provided with existing equipment such as a prime mover or power generation device such as an engine or a fuel cell, a general air conditioner, and a water heater. The desiccant ventilation system according to any one of claims 1 to 7 , further comprising introduction means for guiding heated air in a heat exchanger capable of exchanging heat with hot air or hot exhaust gas discharged from the air. .

上記請求項記載の本発明では、前記第1流路及び/又は第2流路に、エンジンや燃料電池などの原動機又は発電装置から排出される温排気、一般空調機で使用される冷媒の凝縮器を通過した温排気、又は湯沸かし器で発生する温排気などの高温空気との熱交換によって加熱された空気を導入するように構成したものである。これによって、除湿材の乾燥(再生)が促進され、除湿材の水分吸脱着が効率よく行えるとともに、エネルギー効率が向上できる。 In the present invention described in claim 8 , in the first flow path and / or the second flow path, hot exhaust discharged from a prime mover such as an engine or a fuel cell or a power generator, or a refrigerant used in a general air conditioner. It is configured to introduce air heated by heat exchange with high-temperature air such as hot exhaust gas that has passed through the condenser or hot exhaust gas that is generated in a water heater. Thereby, drying (regeneration) of the dehumidifying material is promoted, moisture desorption / desorption of the dehumidifying material can be performed efficiently, and energy efficiency can be improved.

請求項に係る本発明として、前記水分吸脱装置を回転させて給気流路と排気流路との切り換えを行う際、前記水分吸脱装置と、前記一方側ダクト又は他方側ダクトとの適正な接続位置を検出する検出機構を備えるとともに、その検出結果に応じて前記水分吸脱装置の回転を制御する制御手段を備える請求項1〜いずれかに記載のデシカント換気システムが提供される。 As the present invention according to claim 9, when the moisture adsorption / desorption device is rotated to switch between the air supply flow path and the exhaust flow path, the moisture adsorption / desorption apparatus and the one side duct or the other side duct are properly A desiccant ventilation system according to any one of claims 1 to 8, further comprising: a detection mechanism that detects a simple connection position, and a control unit that controls rotation of the moisture adsorption / desorption device according to a detection result thereof.

以上説明したとおり本発明によれば、除湿材の水分吸脱着が効率よく行えるようになるとともに、エネルギー効率が向上し、かつ単純な構造によりコンパクト化及び製造コスト低減化が可能となる。   As described above, according to the present invention, moisture absorption / desorption of the dehumidifying material can be performed efficiently, energy efficiency can be improved, and a simple structure can reduce the size and the manufacturing cost.

以下、本発明の実施の形態について図面を参照しながら詳述する。
〔第1形態例〕
(デシカント換気システム1の構成)
本発明の第1形態例に係るデシカント換気システム1の構成について、図1〜図3に基づいて詳述する。図1は本発明の第1形態例に係るデシカント換気システム1の平面図、図2はその給気流路Sを示す水平断面図、図3はその排気流路Eを示す水平断面図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[First embodiment]
(Configuration of Desiccant Ventilation System 1)
The structure of the desiccant ventilation system 1 which concerns on the 1st example of this invention is explained in full detail based on FIGS. 1-3. 1 is a plan view of a desiccant ventilation system 1 according to a first embodiment of the present invention, FIG. 2 is a horizontal sectional view showing an air supply passage S, and FIG. 3 is a horizontal sectional view showing an exhaust passage E thereof.

本発明の第1形態例に係るデシカント換気システム1は、図2に示されるように、外気の供給および室内空気の排気を併行して行うために一方側ダクト4、4’と他方側ダクト5、5’とを独立的に形成し、これら一方側ダクト4、4’と他方側ダクト5、5’とが平行に配設された部位において、両ダクトに跨るとともに、両ダクトが接続された所定長さのケーシング6内に、除湿材7が塗布、含浸又は接着されるか、前記第1流路と第2流路の少なくとも一部に除湿材が充填されるとともに、通気性を有しない熱交換可能な多数の伝熱シート8、8…によって層状に区画された多数の流路が形成され、該層状の流路は、同図2に示されるように、一方側ダクト4、4’と他方側ダクト5、5’とを繋ぐとともに、交差する2組の対角関係の内、一方側対角の関係で一方側ダクト4と他方側ダクト5’とが連通され、他方側対角の関係で一方側ダクト4’と他方側ダクト5とが閉鎖された第1流路(図示例では給気流路Sとして使用)と、図3に示されるように、他方側対角の関係で一方側ダクト4’と他方側ダクト5とが連通され、一方側対角の関係で一方側ダクト4と他方側ダクト5’とが閉鎖された第2流路(図示例では排気流路Eとして使用)とが交互に形成され、かつ前記ダクトと平行する中心軸9の軸芯回りに支持された、いわば対向流型の水分吸脱装置2を配置している。   As shown in FIG. 2, the desiccant ventilation system 1 according to the first embodiment of the present invention is provided with one side ducts 4, 4 ′ and the other side duct 5 in order to perform supply of outside air and exhaust of indoor air in parallel. 5 'is formed independently, and in the part where these one side ducts 4, 4' and the other side ducts 5, 5 'are arranged in parallel, both ducts are straddled and both ducts are connected. A dehumidifying material 7 is applied, impregnated or adhered into the casing 6 of a predetermined length, or at least a part of the first flow path and the second flow path is filled with the dehumidifying material and has no air permeability. A large number of flow paths partitioned into layers are formed by a large number of heat transfer sheets 8, 8... That can exchange heat, and the laminar flow paths are formed on one side ducts 4, 4 ′ as shown in FIG. And the other side ducts 5, 5 'and two sets of diagonal relations that intersect The first flow path in which the one-side duct 4 and the other-side duct 5 ′ are communicated with each other on the one-side diagonal relationship, and the one-side duct 4 ′ and the other-side duct 5 are closed on the other-side diagonal relationship. (Used as the air supply flow path S in the illustrated example) and, as shown in FIG. 3, the one side duct 4 ′ and the other side duct 5 are communicated with each other in a diagonal relationship, and the one side diagonal relationship is provided. Second flow paths (used as exhaust flow paths E in the illustrated example) in which the one side duct 4 and the other side duct 5 ′ are closed are alternately formed, and around the axis of the central axis 9 parallel to the duct In other words, a counter-flow type moisture adsorption / desorption device 2 supported by the apparatus is disposed.

そして、本発明の第1形態例に係るデシカント換気システム1は、所定時間毎に前記水分吸脱装置2を前記軸9の軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路Sとして一方側ダクト4から他方側ダクト5’へ流通させ、前記第2流路を排気流路Eとして一方側ダクト4’から他方側ダクト5へ流通させる状態と、前記第2流路を給気流路Sとして一方側ダクト4から他方側ダクト5’へ流通させ、前記第1流路を排気流路Eとして一方側ダクト4’から他方側ダクト5へ流通させる状態とを交互に切り換え可能とする。   And the desiccant ventilation system 1 which concerns on the 1st example of this invention rotates the said water | moisture-content adsorption / desorption apparatus 2 to the surroundings of the shaft center of the said axis | shaft about 180 degree | times for every predetermined time, A said 1st flow path is made. A state in which the air supply passage S is circulated from the one side duct 4 to the other side duct 5 ′, the second passage is circulated as the exhaust passage E from the one side duct 4 ′ to the other side duct 5, and the second flow The path is made to flow from the one side duct 4 to the other side duct 5 ′ as the air supply flow path S, and the state in which the first flow path is made to flow from the one side duct 4 ′ to the other side duct 5 alternately. Switchable.

なお、上記例では給気と排気とを対向させるように流通させたが、給気と排気とを平行して流通させる平行流型としてもよい。この場合には、前記第1流路を給気流路Sとして一方側ダクト4から他方側ダクト5’へ流通させ、前記第2流路を排気流路Eとして他方側ダクト5から一方側ダクト4’へ流通させる状態と、前記第2流路を給気流路Sとして一方側ダクト4から他方側ダクト5’へ流通させ、前記第1流路を排気流路Eとして他方側ダクト5から一方側ダクト4’へ流通させる状態とを交互に切り換え可能とする。   In the above example, the supply air and the exhaust are circulated so as to face each other. However, a parallel flow type in which the supply air and the exhaust are circulated in parallel may be used. In this case, the first flow path is used as the air supply flow path S to flow from the one side duct 4 to the other side duct 5 ′, and the second flow path is used as the exhaust flow path E from the other side duct 5 to the one side duct 4. And the second flow path as the supply flow path S from the one side duct 4 to the other side duct 5 ′, and the first flow path as the exhaust flow path E from the other side duct 5 to the one side The state of circulation to the duct 4 ′ can be switched alternately.

また、上記例では一方側ダクトと他方側ダクトとを連通させ、給気と排気とを交差させるように流通させたが、一方側ダクト同士4、4’又は他方側ダクト同士5、5’を連通させて平行して流通するようにしても良い。   In the above example, the one-side duct and the other-side duct are communicated with each other so that the supply air and the exhaust gas intersect with each other. However, the one-side ducts 4, 4 ′ or the other-side ducts 5, 5 ′ are connected. You may make it communicate and distribute in parallel.

前記水分吸脱装置2は、図4に示されるように、円筒形状のケーシング6内に、多数の伝熱シート8、8…によって、前記給気流路S及び排気流路Eが多数の層状に区画されて形成されており、この水分吸脱装置2を所定時間毎に前記軸9の軸芯回りにほぼ180度回転させることにより、流路の切り換えが行われ、内蔵する除湿材7の吸湿と再生とが交互になされるようになっている。なお、前記水分吸脱装置2の入口側及び出口側に、仕切板12によって給気流路Sと排気流路Eとが仕切られたヘッダー部13を設けるようにしてもよい。このようにヘッダー部13を設けることにより、各流路の流通空気の混合や漏洩が防止できるとともに、接続する各ダクト4、4’、5、5’の接続作業が容易化する。   As shown in FIG. 4, the moisture adsorption / desorption device 2 includes a plurality of heat transfer sheets 8, 8... The moisture absorption / desorption device 2 is divided and formed, and the flow path is switched by rotating the moisture adsorption / desorption device 2 about the axis of the shaft 9 at predetermined intervals, thereby absorbing moisture of the built-in dehumidifying material 7. And playback are alternated. In addition, you may make it provide the header part 13 by which the supply flow path S and the exhaust flow path E were divided by the partition plate 12 in the inlet side and outlet side of the said moisture adsorption / desorption apparatus 2. FIG. By providing the header portion 13 in this way, mixing and leakage of the circulating air in each flow path can be prevented, and the connection work of the connected ducts 4, 4 ', 5 and 5' is facilitated.

前記水分吸脱装置2は、前述の通り、多数の流路が、通気性を有しない熱交換可能な多数の伝熱シート8、8…によって層状に区画されて形成されるようになっている。ここで、水分吸脱装置の層状の流路は、図5に示されるように、1又は複数枚の伝熱シート8を断面コ字形が連続する波板形状に折曲げ成形し、両側面に側板6a、6aを、両端に端板6b、6bを配設することにより構成するようにしてもよい。このように構成した場合、水分吸脱装置2の製造が容易となり、製造コストの低減化が可能となるので好ましい。本第1形態例においては、図5に示されるように、接続するダクトと所定の流路に空気が流通できるように、端板6a、6aに所定の開口が設けられている。   As described above, the moisture adsorbing / desorbing device 2 is formed such that a large number of flow paths are divided into layers by a large number of heat transfer sheets 8, 8. . Here, as shown in FIG. 5, the layered flow path of the moisture adsorption / desorption device is formed by bending one or a plurality of heat transfer sheets 8 into a corrugated plate shape having a continuous U-shaped cross section, and on both side surfaces. You may make it comprise the side plates 6a and 6a by arrange | positioning the end plates 6b and 6b at both ends. When comprised in this way, manufacture of the moisture adsorption / desorption apparatus 2 becomes easy, and since it becomes possible to reduce manufacturing cost, it is preferable. In the first embodiment, as shown in FIG. 5, predetermined openings are provided in the end plates 6a and 6a so that air can flow through the connecting duct and the predetermined flow path.

ところで、前記一方側ダクト4、4’及び他方側ダクト5、5’と前記水分吸脱装置2とは、エアーパッキンなどの気密保持部材(図示せず)により摺動可能に気密が保持されている。   By the way, the one side ducts 4, 4 ′ and the other side ducts 5, 5 ′ and the moisture adsorption / desorption device 2 are slidably held by an airtight holding member (not shown) such as an air packing. Yes.

前記除湿材7には、従来より公知のシリカゲル、ゼオライト、高分子除湿材などを使用することができる。特に本発明では、これら各種除湿材の内、35℃等温吸着線図において、相対湿度約60%以上の湿度領域での最大吸湿量が相対湿度約30%以下の湿度領域での最大吸湿量の2倍以上のものとすることが望ましい。このような物性値を有する除湿材としては、特定量のカリウム塩型カルボシキル基を含有し、かつ架橋構造を有する有機高分子の吸放湿性重合体から構成される高分子除湿材、例えば特開2005−21840号公報に開示されるものを使用することができる。これによって、流通する空気の十分な除湿および加湿が可能になり、水分吸脱装置2を小型化することも可能となる。   As the dehumidifying material 7, conventionally known silica gel, zeolite, polymer dehumidifying material and the like can be used. In particular, in the present invention, among these various dehumidifying materials, in the 35 ° C. isothermal adsorption diagram, the maximum moisture absorption amount in the humidity region where the relative humidity is about 60% or more is the maximum moisture absorption amount in the humidity region where the relative humidity is about 30% or less. It is desirable to make it twice or more. As the dehumidifying material having such physical property values, a polymer dehumidifying material containing a specific amount of a potassium salt-type carboxyl group and composed of an organic polymer hygroscopic polymer having a crosslinked structure, for example, What is indicated by 2005-21840 gazette can be used. This makes it possible to sufficiently dehumidify and humidify the circulating air, and to reduce the size of the moisture absorption / desorption device 2.

前記伝熱シート8は、平板又は波板に形成したものを使用することができる。前記伝熱シート8は、その両面に、シリカゲル等の除湿材7が塗布、含浸又は接着されるようにする。具体的には、除湿材をバインダーと混合した後に塗布するか、ガラス繊維、植物繊維、動物繊維及び/又は化学繊維などの繊維状シートに直径0.1mm以下の微細粒子状とした除湿材を懸濁させた懸濁液を含浸後、乾燥固定するか、粉粒状にした除湿材を接着剤等により層状に接着することによって定着させることが望ましい。   As the heat transfer sheet 8, a flat plate or a corrugated plate can be used. The heat transfer sheet 8 is coated, impregnated or bonded with a dehumidifying material 7 such as silica gel on both surfaces. Specifically, the dehumidifying material is applied after being mixed with a binder, or a dehumidifying material having a diameter of 0.1 mm or less on a fibrous sheet such as glass fiber, plant fiber, animal fiber and / or chemical fiber. After impregnating the suspended suspension, it is desirable to fix by drying and fixing, or by adhering the powdered dehumidifying material in layers with an adhesive or the like.

また、前記伝熱シート8に除湿剤を塗布、含浸又は接着する構成に代えて、粉粒状にしたシリカゲル等の除湿材と、通気性を確保するために例えば中空状に形成した充填物との混合物が、前記伝熱シート8の配設位置に隣接する各流路に前記伝熱シートと接するように充填されるとともに、その出入口を前記除湿材および充填物の外形寸法より小さな開口を有する通気性の膜または網により塞がれることによって配設されるようにしてもよい。   Further, instead of a configuration in which a dehumidifying agent is applied to, impregnated or adhered to the heat transfer sheet 8, a dehumidifying material such as silica gel in a granular form, and a filler formed, for example, in a hollow shape in order to ensure air permeability The mixture is filled so that each flow path adjacent to the position where the heat transfer sheet 8 is disposed is in contact with the heat transfer sheet, and the air inlet / outlet thereof has an opening smaller than the outer dimensions of the dehumidifying material and the filling material. It may be arranged by being blocked by a conductive film or net.

このようにして伝熱シート8の両面に配設された除湿材は、一方側面に配設された除湿材によって流通空気の除湿がなされると同時に、他方側面に配設された除湿材によって流通空気の加湿がなされるようになっている。伝熱シート8の一方側面に配設された除湿材の吸湿熱(除湿材の水分吸着に伴う温度上昇)は、伝熱シート8を熱伝導して他方側面の除湿材を加熱して、この除湿材の水分脱着作用を促進させている。   In this way, the dehumidifying material disposed on both surfaces of the heat transfer sheet 8 is dehumidified by the dehumidifying material disposed on the one side surface and simultaneously with the dehumidifying material disposed on the other side surface. Air is humidified. The moisture absorption heat of the dehumidifying material disposed on one side surface of the heat transfer sheet 8 (temperature increase due to moisture adsorption of the dehumidifying material) conducts the heat transfer sheet 8 and heats the dehumidifying material on the other side surface. The moisture desorption effect of the dehumidifying material is promoted.

さらに前記伝熱シート8、8間には、図6に示されるように、スペーサ9a又は波板9bを配設することができ、前記スペーサ9a又は波板9bの表面の一部又は全面に除湿材が塗布、含浸又は接着されるようにしてもよい。このように、伝熱シート8を波板に形成するか、伝熱シート間にスペーサ9a又は波板9bを配設することにより、流通空気と除湿材との接触面積が増加して除湿効果が向上できるとともに、流通空気の整流効果や、各流路の強度を増加する効果がある。   Further, as shown in FIG. 6, a spacer 9a or a corrugated sheet 9b can be disposed between the heat transfer sheets 8 and 8, and a part or the entire surface of the spacer 9a or corrugated sheet 9b is dehumidified. The material may be applied, impregnated or adhered. In this way, by forming the heat transfer sheet 8 on the corrugated sheet or by disposing the spacer 9a or the corrugated sheet 9b between the heat transfer sheets, the contact area between the circulating air and the dehumidifying material is increased and the dehumidifying effect is obtained. In addition to being able to improve, there are effects of rectifying circulating air and increasing the strength of each flow path.

前記伝熱シート8は、前述のように一方側面に配設された除湿材の吸着熱を他方側面の除湿材に効率よく伝導させるため、鉄鋼材料や非鉄鋼材料の金属材料または非金属材料など各種工業材料のうち熱伝導性に優れたもの、好ましくは、熱伝導率170kcal/mh℃以上である材料を使用する。また、一方の流路を流通する流通空気が他方の流路に流入するのを防止するため、前記伝熱シート8は、空気を透過しない材料を使用する。   As described above, the heat transfer sheet 8 efficiently conducts the heat of adsorption of the dehumidifying material disposed on one side surface to the dehumidifying material on the other side surface, so that the metal material or non-metallic material of a steel material or non-steel material is used. Among various industrial materials, those having excellent thermal conductivity, preferably materials having a thermal conductivity of 170 kcal / mh ° C. or higher are used. Moreover, in order to prevent the flowing air flowing through one flow path from flowing into the other flow path, the heat transfer sheet 8 uses a material that does not transmit air.

さらに、前記伝熱シート8、スペーサ9a又は波板9bは、樹脂、紙、不織布又は布によって構成することもできる。このように構成することによって、水分吸脱装置2の製造が容易となり、製造コストを低減することが可能となる。   Furthermore, the heat transfer sheet 8, the spacer 9a, or the corrugated plate 9b can be made of resin, paper, non-woven fabric, or cloth. By comprising in this way, manufacture of the moisture adsorption / desorption apparatus 2 becomes easy, and it becomes possible to reduce manufacturing cost.

本発明では、前記水分吸脱装置2を非電導性材料で構成するとともに、前記水分吸脱装置2の近傍に、前記除湿材7にマイクロ波を照射するためのマイクロ波照射装置(図示せず)を配設することが望ましい。前記マイクロ波照射装置でマイクロ波を照射することによって、除湿材7や水分吸脱装置2内に吸着した水分子を励振させて加熱し、水分吸脱装置2内に蓄積された水分、化学物質、臭気分子などの物質を脱着及び排出させることができる。これによって、前記除湿材7の再生が効率よく行われるとともに、水分吸脱装置2内を衛生的に保つことが可能となる。   In the present invention, the moisture adsorption / desorption device 2 is made of a non-conductive material, and a microwave irradiation device (not shown) for irradiating the dehumidifying material 7 with microwaves in the vicinity of the moisture adsorption / desorption device 2. ) Is desirable. By irradiating microwaves with the microwave irradiation device, the water molecules adsorbed in the dehumidifying material 7 and the moisture adsorption / desorption device 2 are excited and heated, and moisture and chemical substances accumulated in the moisture adsorption / desorption device 2 are heated. Substances such as odor molecules can be desorbed and discharged. This makes it possible to efficiently regenerate the dehumidifying material 7 and to keep the moisture absorption / desorption device 2 hygienic.

前記マイクロ波照射装置によるマイクロ波照射時の安全性確保手段について説明する。除湿材7を内蔵した水分吸脱装置2およびマイクロ波照射装置の主要構成機器を筐体内に配設し、前記筐体の外面や開口となる空気ダクトに、金属製パンチングボード、あるいは導電性材料にて形成される網状シートを配設することによって、マイクロ波の外部漏洩を防止することが可能となる。さらに、除湿材7を内包する前記水分吸脱装置2の構成材や容器材として、非導電性材料あるいは低誘電率の材料を使用することによって、前記マイクロ波照射装置によるマイクロ波照射時の放電や、渦電流の発生に伴うマイクロ波の損失、更には誘電体へのマイクロ波の集中などの問題が防止でき、マイクロ波照射による除湿材7及び水分吸脱装置2からの水分、化学物質又は臭気分子の脱着を効率よく行うことができるようになる。   The safety ensuring means at the time of microwave irradiation by the microwave irradiation apparatus will be described. The main components of the moisture adsorption / desorption device 2 and the microwave irradiation device incorporating the dehumidifying material 7 are arranged in a casing, and a metal punching board or a conductive material is provided in an air duct serving as an outer surface or opening of the casing. By arranging the net-like sheet formed in (1), it is possible to prevent external leakage of microwaves. Furthermore, by using a non-conductive material or a low dielectric constant material as a constituent material or a container material of the moisture adsorption / desorption device 2 including the dehumidifying material 7, discharge at the time of microwave irradiation by the microwave irradiation device In addition, problems such as loss of microwaves due to generation of eddy currents and concentration of microwaves on the dielectric can be prevented, and moisture, chemical substances or moisture from the dehumidifying material 7 and the moisture adsorption / desorption device 2 due to microwave irradiation can be prevented. Odor molecules can be desorbed efficiently.

前記水分吸脱装置2は、図1〜図4に示されるように、流通空気の流れ方向に長辺を有する形状であることが好ましい。このように構成することによって、流通空気と除湿材7との接触の機会を増やすことができ、除湿材7の水分吸脱着が効率よく行えるとともに、伝熱シート8の熱伝導効果により流通空気の温度調整も可能となり、デシカント換気システム1のエネルギー効率が向上できる。   As shown in FIGS. 1 to 4, the moisture adsorption / desorption device 2 preferably has a shape having long sides in the flow direction of the circulating air. By comprising in this way, the opportunity of contact with circulation air and the dehumidification material 7 can be increased, the moisture absorption / desorption of the dehumidification material 7 can be performed efficiently, and the heat conduction effect of the heat transfer sheet 8 makes it possible for the circulation air to flow. Temperature adjustment is also possible, and the energy efficiency of the desiccant ventilation system 1 can be improved.

各流路には、図2、図3に示されるように、給気、排気のための給気ファン10、排気ファン11がそれぞれ配設されている。モードの切り替えを行う際には、各流路に配設された給気ファン10、排気ファン11は、前記水分吸脱装置2の切り換え開始時に停止させ、前記水分吸脱装置2の切り換え完了時に再稼働させるようにすることが望ましい。   As shown in FIGS. 2 and 3, an air supply fan 10 and an exhaust fan 11 for supplying and exhausting air are disposed in each flow path, respectively. When the mode is switched, the air supply fan 10 and the exhaust fan 11 disposed in each flow path are stopped when the switching of the moisture adsorption / desorption device 2 is started, and when the switching of the moisture adsorption / desorption device 2 is completed. It is desirable to restart.

また、水分吸脱装置2の切り換えを行う際、水分吸脱装置2のケーシング6が各流路のダクト4、4’、5、5’と適正に接続される位置にあるかどうかを検出する、例えば近接スイッチ、リミットスイッチ等の検出器(図示せず)と、その検出した結果により前記回転軸9の回転角を制御する制御手段とを備えるようにすることが好ましい。また、前記水分吸脱装置2とこれに接続する空気ダクト4、4’、5、5’の少なくとも1箇所以上において、両者を固定するための固定手段(図示せず)を備えるようにすることが望ましい。   Further, when the moisture absorption / desorption device 2 is switched, it is detected whether or not the casing 6 of the moisture absorption / desorption device 2 is in a position where it is properly connected to the ducts 4, 4 ′, 5, 5 ′ of each flow path. For example, it is preferable to include a detector (not shown) such as a proximity switch or a limit switch, and a control means for controlling the rotation angle of the rotating shaft 9 based on the detection result. Further, at least one place of the moisture absorption / desorption device 2 and the air ducts 4, 4 ′, 5 and 5 ′ connected thereto is provided with a fixing means (not shown) for fixing both. Is desirable.

(デシカント換気システム1の運転状態)
次に、デシカント換気システム1の運転状態について以下詳述する。
本発明に係るデシカント換気システム1は、給気又は排気のためのダクトが独立的に形成されることによって、外気の供給および室内空気の排気が併行して行われるようになっている。
(Operating state of desiccant ventilation system 1)
Next, the operation state of the desiccant ventilation system 1 will be described in detail below.
In the desiccant ventilation system 1 according to the present invention, the supply of outside air and the exhaust of room air are performed in parallel by forming ducts for supplying or exhausting air independently.

夏季運転の場合、給気流路Sにおいては、高温多湿の外気は、給気ファン10によって一方側のダクト4を通って水分吸脱装置2内の多数の伝熱シート8、8…によって層状に区画された多数の給気流路S、S…に分散して導かれ、この給気流路Sに内蔵する除湿材7と接触して除湿されながら流れた後、他方側のダクト5’を通って室内へ供給される。   In the case of summer operation, in the air supply passage S, the hot and humid outside air is stratified by the heat transfer sheets 8, 8... In the moisture adsorption / desorption device 2 through the duct 4 on one side by the air supply fan 10. After being distributed and guided to a large number of partitioned air supply passages S, S... In contact with the dehumidifying material 7 incorporated in the air supply passage S, the air flows while being dehumidified, and then passes through the duct 5 ′ on the other side. Supplied indoors.

一方、排気流路Eにおいては、室内空気は、排気ファン11によって一方側ダクト4’を通って水分吸脱装置2へ送られる。水分吸脱装置2の排気流路Eに導入された流通空気は、内蔵する除湿材7を乾燥(再生)した後、他方側ダクト5を通って外部へ排出される。   On the other hand, in the exhaust passage E, the indoor air is sent to the moisture adsorption / desorption device 2 through the one side duct 4 ′ by the exhaust fan 11. The circulating air introduced into the exhaust passage E of the moisture adsorption / desorption device 2 is dried (regenerated) from the built-in dehumidifying material 7 and then discharged to the outside through the other duct 5.

ここで、水分吸脱装置2の給気流路Sにおける除湿材7の水分吸着に伴う吸着熱は、前記除湿材7に接触する伝熱シート8を介して、排気流路Eの除湿材7に熱伝導される。これによって、給気流路Sの除湿材7は冷却されて水分吸着が促進されるとともに、排気流路Eの除湿材7は加熱されて、乾燥(再生)が促進されるようになる。   Here, the heat of adsorption accompanying the moisture adsorption of the dehumidifying material 7 in the air supply channel S of the moisture adsorption / desorption device 2 is transferred to the dehumidifying material 7 in the exhaust channel E via the heat transfer sheet 8 in contact with the dehumidifying material 7. Heat conduction. As a result, the dehumidifying material 7 in the air supply passage S is cooled to promote moisture adsorption, and the dehumidifying material 7 in the exhaust passage E is heated to promote drying (regeneration).

上述の流路構成による運転に伴って、給気流路Sに配設された除湿材7には多量の水分が吸着する。そのため、所定時間毎に流路を相互に切り換えて運転することによって、給気流路Sに配設された除湿材7の再生が可能となる。流路の切り換えは、前述の通り、前記水分吸脱装置2を前記軸9の軸芯回りにほぼ180度回転させることにより行われる。流路が切り換わることによって、これまで給気流路Sとして使用していた前記第1流路が排気流路Eとなり、これまで排気流路として使用していた前記第2流路が給気流路Sとなる。そして、給気流路Sで流通空気(給気)の除湿を行っていた除湿材7は、流通空気(排気)で水分を脱着して再生される。   Along with the operation by the above-described flow path configuration, a large amount of moisture is adsorbed to the dehumidifying material 7 disposed in the air supply flow path S. Therefore, it is possible to regenerate the dehumidifying material 7 disposed in the supply air flow path S by switching the flow paths to each other at predetermined time intervals. As described above, the flow path is switched by rotating the moisture adsorption / desorption device 2 about 180 degrees around the axis of the shaft 9. By switching the flow path, the first flow path that has been used as the supply flow path S until now becomes the exhaust flow path E, and the second flow path that has been used as the exhaust flow path until now is the supply flow path. S. And the dehumidification material 7 which performed the dehumidification of the circulation air (supply air) in the supply air flow path S is reproduced | regenerated by desorbing | moisture_content with circulation air (exhaust).

次に、水分吸脱装置2において除湿材7が吸脱着する水分量について、図7、図8に基づいて考察する。一般に、デシカント装置の除湿材によって、外気(図7中点A:温度30℃、相対湿度65%RH、水分量18g/kg)を相対湿度40%RHの室内空気まで除湿する除湿過程では、図7に示されるように、点A→点Bへの断熱変化となり、除湿される水分量は3g/kg(=18g/kg-15g/kg)程度である。これに対し、本発明に係る水分吸脱装置2による場合、前述の通り除湿材7の水分吸着に伴う吸着熱は伝熱シート8を通じて熱伝導されるため、理想的条件では同図に示されるように、点A→点Dへの除湿過程となり、除湿される水分量は10g/kg(=18g/kg-8g/kg)程度と、前述の一般的なデシカント装置より大幅に増大できる。   Next, the amount of moisture that the dehumidifying material 7 absorbs and desorbs in the moisture adsorption / desorption device 2 will be discussed based on FIGS. In general, in the dehumidifying process where the outside air (point A in Fig. 7: temperature 30 ° C, relative humidity 65% RH, water content 18g / kg) is dehumidified to room air with relative humidity 40% RH by the desiccant of the desiccant device. As shown in FIG. 7, the heat insulation changes from point A to point B, and the amount of moisture to be dehumidified is about 3 g / kg (= 18 g / kg-15 g / kg). On the other hand, in the case of the moisture adsorption / desorption device 2 according to the present invention, the adsorption heat accompanying the moisture adsorption of the dehumidifying material 7 is thermally conducted through the heat transfer sheet 8 as described above, and therefore is shown in the figure under ideal conditions. As described above, the dehumidifying process from point A to point D is performed, and the amount of water to be dehumidified is about 10 g / kg (= 18 g / kg-8 g / kg), which can be significantly increased as compared with the above-described general desiccant apparatus.

他方、室内空気(図8中点D:温度24℃、相対湿度40%RH、水分量8g/kg)により除湿材を再生する場合、一般的なデシカント装置では、図8に示されるように、点D→点Fへの断熱変化となり、脱着される水分量は1g/kg(=9g/kg-8g/kg)程度である。これに対し、本発明に係る水分吸脱装置2による場合、前述の通り除湿材7の水分脱着が伝熱シート8を通じて熱伝導された吸着熱により促進されるため、理想的条件では同図に示されるように、点D→点Aへの再生過程となり、脱着される水分量は10g/kg(=18g/kg-8g/kg)程度と、前述の一般的なデシカント装置より大幅に増大できるとともに、除湿材7の吸着した水分量と脱着した水分量とをほぼ同等にすることができる。   On the other hand, when the dehumidifying material is regenerated by room air (point D in FIG. 8: temperature 24 ° C., relative humidity 40% RH, water content 8 g / kg), in a general desiccant device, as shown in FIG. The adiabatic change from point D to point F, and the amount of moisture to be desorbed is about 1 g / kg (= 9 g / kg-8 g / kg). On the other hand, in the case of the moisture adsorption / desorption device 2 according to the present invention, the moisture desorption of the dehumidifying material 7 is promoted by the heat of adsorption conducted through the heat transfer sheet 8 as described above. As shown, the regeneration process is from point D to point A, and the amount of water to be desorbed is about 10 g / kg (= 18 g / kg-8 g / kg), which can be significantly increased from the above-mentioned general desiccant device. At the same time, the amount of moisture adsorbed by the dehumidifying material 7 and the amount of moisture desorbed can be made substantially equal.

なお、本発明に係る水分吸脱装置2では、除湿材による吸脱着の水分量は、伝熱シート8に塗布、含浸又は接着される除湿材7の量又は各流路に充填される除湿材7の量を調整すること、前記伝熱シート8を波形に形成すること又は前記スペーサ9a又は波板9bを配設することなどにより簡便に調整することが可能である。   In the moisture adsorption / desorption device 2 according to the present invention, the moisture amount of adsorption / desorption by the dehumidifying material is the amount of the dehumidifying material 7 applied, impregnated or adhered to the heat transfer sheet 8 or the dehumidifying material filled in each flow path. 7 can be easily adjusted by forming the heat transfer sheet 8 in a corrugated shape or by arranging the spacer 9a or the corrugated plate 9b.

冬季運転の場合、前述の夏季運転の場合と流路構成については同様であるが、温湿度の授受という点で異なる。具体的には、給気流路Sにおいては、低温低湿の外気は、給気ファン10によって一方側のダクト4を通って水分吸脱装置2内の多数の伝熱シート8、8…によって層状に区画された多数の給気流路S、S…に分散して導かれ、この給気流路Sに内蔵する除湿材7と接触して加湿(除湿材7が再生)されながら流れた後、他方側ダクト5’を通って室内へ供給される。   In the case of winter operation, the flow path configuration is the same as that in the case of summer operation described above, but is different in terms of temperature and humidity transfer. Specifically, in the air supply passage S, the low-temperature and low-humidity outside air is stratified by a large number of heat transfer sheets 8 in the moisture adsorption / desorption device 2 through the duct 4 on one side by the air supply fan 10. After being distributed and guided to a number of partitioned air supply passages S, S... And in contact with the dehumidifying material 7 built in the air supply passage S, the air flows while being humidified (the dehumidifying material 7 is regenerated), and then the other side. It is supplied into the room through the duct 5 '.

一方、排気流路Eにおいては、室内空気は、排気ファン11によって一方側ダクト4’を通って水分吸脱装置2へ送られる。水分吸脱装置2の排気流路Eに導入された流通空気は、内蔵する除湿材7に水分が吸着された後、他方側ダクト5を通って外部へ排出される。   On the other hand, in the exhaust passage E, the indoor air is sent to the moisture adsorption / desorption device 2 through the one side duct 4 ′ by the exhaust fan 11. The circulating air introduced into the exhaust passage E of the moisture adsorption / desorption device 2 is discharged to the outside through the other duct 5 after moisture is adsorbed by the built-in dehumidifying material 7.

ここで、前述の夏季運転の場合と同様に、水分吸脱装置2の排気流路Eにおける除湿材7の水分吸着に伴う吸着熱は、前記除湿材7に接触する伝熱シート8を介して、給気流路Sの除湿材7に熱伝導される。これによって、排気流路Eの除湿材7は冷却されて水分吸着が促進されるとともに、給気流路Sの除湿材7は加熱されて吸着した水分の脱着(再生)が促進されるようになる。   Here, as in the case of the summer operation described above, the heat of adsorption accompanying the moisture adsorption of the dehumidifying material 7 in the exhaust flow path E of the moisture adsorption / desorption device 2 passes through the heat transfer sheet 8 in contact with the dehumidifying material 7. The heat is conducted to the dehumidifying material 7 in the air supply channel S. As a result, the dehumidifying material 7 in the exhaust passage E is cooled to promote moisture adsorption, and the dehumidifying material 7 in the air supply passage S is heated to promote desorption (regeneration) of the adsorbed moisture. .

〔第2形態例〕
本発明の第2形態例に係るデシカント換気システム1の構成について、図9〜図11に基づいて詳述する。図9は本発明の第2形態例に係るデシカント換気システム1の平面図、図10はその給気流路Sを示す水平断面図、図11はその排気流路Eを示す水平断面図である。
本発明の第2形態例に係るデシカント換気システム1は、前記第1形態例に係るデシカント換気システム1と水分吸脱装置の構成という点で異なる。具体的には、本発明の第2形態例に係るデシカント換気システム1は、図10に示されるように、外気の供給および室内空気の排気を併行して行うために一方側ダクト4、4’と他方側ダクト5、5’とを独立的に形成し、両端部の側面部分に前記一方側ダクト4、4’と他方側ダクト5、5’とが夫々接続された所定長さのケーシング6内に、通気性を有しない熱交換可能な伝熱シート8、8…によって層状に区画された多数の流路が形成されるとともに、前記層状の流路に区画する各仕切り面の少なくとも一部に除湿材7が塗布、含浸又は接着されるか、前記層状の流路の少なくとも一部に除湿材が充填され、前記層状の流路は、一方側ダクト同士4、4’を連通する第1流路と、他方側ダクト同士を連通する第2流路とが交互に形成され、かつ前記ダクトと平行する中心軸9の軸芯回りに支持された水分吸脱装置2を配置している。
[Second embodiment]
The structure of the desiccant ventilation system 1 which concerns on the 2nd example of this invention is explained in full detail based on FIGS. 9-11. 9 is a plan view of the desiccant ventilation system 1 according to the second embodiment of the present invention, FIG. 10 is a horizontal sectional view showing the air supply passage S, and FIG. 11 is a horizontal sectional view showing the exhaust passage E.
The desiccant ventilation system 1 according to the second embodiment of the present invention is different from the desiccant ventilation system 1 according to the first embodiment in the configuration of the moisture adsorption / desorption device. Specifically, the desiccant ventilation system 1 according to the second embodiment of the present invention, as shown in FIG. 10, performs the supply of the outside air and the exhaust of the room air in parallel to perform the one-side ducts 4, 4 ′. And the other side ducts 5 and 5 'are formed independently, and the casing 6 having a predetermined length in which the one side ducts 4 and 4' and the other side ducts 5 and 5 'are respectively connected to the side portions of both ends. Inside, a large number of flow paths partitioned into layers by heat-exchangeable heat transfer sheets 8, 8... That do not have air permeability are formed, and at least a part of each partition surface partitioned into the layered flow paths The dehumidifying material 7 is applied, impregnated, or adhered to at least a part of the laminar flow path, and the dehumidifying material is filled in the first laminar flow path. The flow path and the second flow path communicating with the other side ducts are alternately formed. It is arranged water adsorption device 2 supported about the central axis of the central axis 9 parallel to the said duct.

そして、本発明の第2形態例に係るデシカント換気システム1は、所定時間毎に前記水分吸脱装置2を前記中心軸9の軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路Sとして流通させ、前記第2流路を排気流路Eとして流通させる状態と、前記第2流路を給気流路Sとして流通させ、前記第1流路を排気流路Eとして流通させる状態とを交互に切り換え可能とする。   The desiccant ventilation system 1 according to the second embodiment of the present invention rotates the moisture adsorption / desorption device 2 about 180 degrees around the axis of the central shaft 9 at predetermined time intervals, thereby Is circulated as an air supply flow path S, the second flow path is circulated as an exhaust flow path E, the second flow path is circulated as an air supply flow path S, and the first flow path is used as an exhaust flow path E. It is possible to alternately switch between the state of distribution.

さらに具体的には、図9に示されるように、前記中心軸9により回転可能に支持されたケーシング6は、固定板14、14…によって回転可能且つ気密保持可能に、固定された外筒15に支持されている。前記外筒15には、一方側ダクト4、4’と他方側ダクト5、5’との接続位置に、図12に示されるように、ヘッダー部16を設けるようにすることが好ましい。   More specifically, as shown in FIG. 9, the casing 6 rotatably supported by the central shaft 9 is fixed to the outer cylinder 15 so as to be rotatable and airtightly held by the fixing plates 14, 14. It is supported by. As shown in FIG. 12, the outer cylinder 15 is preferably provided with a header portion 16 at a connection position between the one-side ducts 4, 4 ′ and the other-side ducts 5, 5 ′.

次に、本第2形態例における伝熱シートの構成について説明する。図10、図11に示されるように、本第2形態例に係る水分吸脱装置2の第1流路及び第2流路を形成する伝熱シートにおいて、流路の入口及び/又は出口近傍部分は除湿材7が塗布、含浸又は接着されない伝熱シート17とし、その他の部分は除湿材7が塗布、含浸又は接着された伝熱シート8としている。そして、このように構成された伝熱シートは、図13(A)に示されるように、多数積層することによって第1流路及び第2流路を区画している。さらに具体的には、図13(B)に示されるように、前記伝熱シートの一方端に側板18を立設するとともに、他方端に切欠き部19a、19aを備えた側板19を立設したものを第1段目とし、同図(C)に示されるように、前記伝熱シートの一方端に切欠き部19a、19aを備えた側板19を立設するとともに、他方端に側板18を立設したものを次段に積層し、これらを多数積層した後、両端に端板6c、6cを、上部に天板6dを配設することにより、前記伝熱シートによって層状に区画された多数の流路が形成された水分吸脱装置2とすることができる。   Next, the structure of the heat transfer sheet in the second embodiment will be described. As shown in FIG. 10 and FIG. 11, in the heat transfer sheet forming the first flow path and the second flow path of the moisture adsorption / desorption device 2 according to the second embodiment, in the vicinity of the flow path inlet and / or outlet. The part is a heat transfer sheet 17 to which the dehumidifying material 7 is not applied, impregnated or adhered, and the other part is the heat transfer sheet 8 to which the dehumidifying material 7 is applied, impregnated or adhered. And the heat-transfer sheet | seat comprised in this way has divided the 1st flow path and the 2nd flow path by laminating | stacking many, as FIG. 13 (A) shows. More specifically, as shown in FIG. 13B, a side plate 18 is erected at one end of the heat transfer sheet, and a side plate 19 having notches 19a and 19a is erected at the other end. As shown in FIG. 2C, the side plate 19 provided with the notches 19a and 19a is erected at one end of the heat transfer sheet and the side plate 18 is provided at the other end. Were stacked in the next stage, and after laminating many of them, end plates 6c and 6c were disposed at both ends, and a top plate 6d was disposed at the top, thereby being partitioned into layers by the heat transfer sheet. It can be set as the moisture adsorption / desorption apparatus 2 in which many flow paths were formed.

さらに他の形態例として、図14に示されるように、伝熱シート8、17、17からなる1又は複数枚の伝熱シートを断面コ字形が連続する波板形状に折曲げ成形し、端板6e、6eと側板6f、6g、6hとを配設することにより、水分吸脱装置2を形成することができる。前記側板6f、6g、6hは離間部分を設けて配設することによって、伝熱シートの折り返しとなる閉鎖部分(図14中斜線部分)と各流路への開口部分とが交互に形成されるようになる。これにより、水分吸脱装置2の製造がさらに容易化できる。   As yet another embodiment, as shown in FIG. 14, one or a plurality of heat transfer sheets composed of heat transfer sheets 8, 17, and 17 are bent into a corrugated plate shape having a continuous U-shaped cross section, By disposing the plates 6e, 6e and the side plates 6f, 6g, 6h, the moisture adsorption / desorption device 2 can be formed. The side plates 6f, 6g, and 6h are provided with spaced portions so that closed portions (hatched portions in FIG. 14) that turn back the heat transfer sheet and openings to the respective channels are alternately formed. It becomes like this. Thereby, manufacture of the moisture absorption / desorption device 2 can be further facilitated.

上述のように、流路の入口及び/又は出口近傍部分は除湿材7が塗布、含浸又は接着されない伝熱シート17とし、その他の部分は除湿材7が塗布、含浸又は接着された伝熱シート8とすることにより、水分吸脱装置2の入口及び/又は出口近傍部分で、伝熱シート17を介して給気と排気との間で熱交換が行われる。また、その他の部分では除湿材が充填されることにより、前述の通り、一方側流路における除湿材の水分吸着に伴う吸着熱は、前記除湿材に接触する伝熱シートを介して、他方側流路の除湿材に熱伝導され、一方側流路の除湿材は冷却されて水分吸着が促進されるとともに、他方側流路の除湿材は加熱されて乾燥(再生)が促進されるようになる。これによって、デシカント換気システム1のエネルギー効率が向上する。   As described above, the heat transfer sheet 17 to which the dehumidifying material 7 is not applied, impregnated, or bonded is used in the vicinity of the inlet and / or outlet of the flow path, and the heat transfer sheet in which the dehumidifying material 7 is applied, impregnated, or bonded to the other parts. By setting it to 8, heat exchange is performed between the supply air and the exhaust gas via the heat transfer sheet 17 in the vicinity of the inlet and / or outlet of the moisture adsorption / desorption device 2. Further, as described above, the other part is filled with the dehumidifying material, so that the heat of adsorption accompanying the moisture adsorption of the dehumidifying material in the one-side flow path is transferred to the other side via the heat transfer sheet in contact with the dehumidifying material. Heat is conducted to the dehumidifying material in the flow path, the dehumidifying material in the one-side flow path is cooled to promote moisture adsorption, and the dehumidifying material in the other-side flow path is heated to promote drying (regeneration). Become. Thereby, the energy efficiency of the desiccant ventilation system 1 improves.

具体的に、本第2形態例の運転状態について、夏季運転の場合を例に、図15、図16に基づいて説明すると、給気流路Sにおいては、外気(点A:30℃、65%RH)が、伝熱シートによって層状に区画された多数の給気流路S、S…に分散して導かれ、除湿材7が塗布、含浸又は接着されない伝熱シート17からなる領域に流入する。この領域では、隣接する排気流路Eを流通する排気との間で、伝熱シート17を介して熱交換が行われ、給気流路Sを流通する空気は約30℃から約29℃へ冷却される(図15点A→点B)。次に、除湿材7が塗布、含浸又は接着された伝熱シート8からなる領域に流入し、流通空気の除湿と、この除湿に伴う除湿材7に発生する熱の伝熱とが、前記伝熱シート8によって行われる(図15点B→点C)。その後、除湿材7が塗布、含浸又は接着されない伝熱シート17からなる領域に流入し、除湿材7の水分吸着に伴い発生した熱も含めて排気流路Eを流通する排気との間で熱交換が行われ、約26℃程度に冷却されて、室内に供給される。   Specifically, the operation state of the second embodiment will be described based on FIG. 15 and FIG. 16, taking the case of summer operation as an example. In the air supply passage S, outside air (point A: 30 ° C., 65% RH) is distributed and guided to a number of air supply passages S, S... Partitioned in layers by the heat transfer sheet, and flows into a region composed of the heat transfer sheet 17 where the dehumidifying material 7 is not applied, impregnated or bonded. In this region, heat exchange is performed between the exhaust flowing through the adjacent exhaust flow path E via the heat transfer sheet 17, and the air flowing through the air supply flow path S is cooled from about 30 ° C. to about 29 ° C. (Point A → Point B in FIG. 15). Next, the dehumidifying material 7 flows into the region composed of the heat transfer sheet 8 coated, impregnated or adhered, and the dehumidification of the circulating air and the heat transfer of the heat generated in the dehumidifying material 7 due to the dehumidification are described above. This is performed by the heat sheet 8 (point B → point C in FIG. 15). Thereafter, the dehumidifying material 7 flows into a region composed of the heat transfer sheet 17 that is not applied, impregnated or adhered, and heat is generated between the dehumidifying material 7 and the exhaust flowing through the exhaust passage E including heat generated by moisture adsorption of the dehumidifying material 7. Exchange is performed, and it is cooled to about 26 ° C. and supplied indoors.

一方、排気流路Eにおいては、室内空気(点E:24℃、40%RH)は、除湿材7が塗布、含浸又は接着されない伝熱シート17からなる領域で給気流路Sとの熱交換が行われて加熱され(図16点E→点F)、これによって除湿材7が塗布、含浸又は接着された伝熱シート8からなる領域で除湿材7の再生が効率よく行われるようになる(図16点F→点G)。その後、除湿材7が塗布、含浸又は接着されない伝熱シート17からなる領域で給気流路Sとの熱交換が行われて加熱され(図16点G→点H)、外部へ放出される。   On the other hand, in the exhaust flow path E, room air (point E: 24 ° C., 40% RH) exchanges heat with the air supply flow path S in a region composed of the heat transfer sheet 17 to which the dehumidifying material 7 is not applied, impregnated, or bonded. Is performed and heated (point E → point F in FIG. 16), whereby the dehumidifying material 7 is efficiently regenerated in the region of the heat transfer sheet 8 to which the dehumidifying material 7 is applied, impregnated or adhered. (FIG. 16 Point F → Point G). Thereafter, heat exchange with the air supply flow path S is performed in a region composed of the heat transfer sheet 17 to which the dehumidifying material 7 is not applied, impregnated, or bonded, and is heated (point G → point H in FIG. 16) and released to the outside.

このように除湿材7が塗布、含浸又は接着されない伝熱シート17からなる領域で、給気流路Sと排気流路Eとを流通する流通空気の熱交換を行うことにより、図15及び図16に示されるように、除湿材7に吸脱着される水分量は、給気流路Sとして作用したときの吸着量ΔSと排気流路Eとして作用したときの脱着量ΔEとが同等(約6g/kg)にすることができ、デシカント換気システム1のエネルギー効率を向上することができるようになる。   15 and 16 by performing heat exchange of the circulating air flowing through the air supply flow path S and the exhaust flow path E in the region composed of the heat transfer sheet 17 to which the dehumidifying material 7 is not applied, impregnated, or bonded. As shown in FIG. 4, the amount of moisture absorbed and desorbed by the dehumidifying material 7 is equal to the adsorption amount ΔS when acting as the air supply channel S and the desorption amount ΔE when acting as the exhaust channel E (approximately 6 g / kg), and the energy efficiency of the desiccant ventilation system 1 can be improved.

さらに、デシカント換気システム1のエネルギー効率を向上するための手段について説明する。本発明に係るデシカント換気システム1は、前述の通り、外気が室内空気に比して相対的に多量の水分を含む条件(夏季運転条件)では、給気流路Sの流通空気は、除湿材7によって除湿されるとともに、排気流路Eの流通空気は、除湿材7を乾燥(再生)させ、室内空気が外気に比して相対的に多量の水分を含む条件(冬季運転条件)では、給気流路Sの流通空気は、除湿材7を乾燥(再生)させるとともに、排気流路Eの流通空気は、除湿材7によって除湿される運転が行われるようになっている。そして、このような流路構成において、本形態例では、図17に示されるように、前記除湿材7を乾燥(再生)させる流路であって前記除湿材7を通過する前に、エンジンや燃料電池などの原動機又は発電装置、一般空調機、湯沸かし器等の既存設備20から排出される高温空気或いは温排気と熱交換可能な熱交換器において加熱した空気を導く導入手段を備えるようにすることができる。具体的には、同図17に示されるように、夏季運転時(図示例)には排気流路Eの除湿材7への導入前に、外気を導入するためのダクト21、21aを接続し、冬季運転時には給気流路Sの除湿材7への導入前に、外気を導入するためのダクト21、21bを接続し、前記ダクト21の途中に前記既存設備20からの温排気と熱交換可能な熱交換器22を設ける。この熱交換器22で前記既存設備20からの温排気によって加熱された外気は、水分吸脱装置2に供給され、除湿材7に吸着している多量の水分を放散させ、除湿材7を効率よく乾燥(再生)させる。ここで、ダクト21から水分吸脱装置2に供給される空気量は、除湿材7を効率よく乾燥(再生)させるためには、水分吸脱装置2を正規に流通する空気量(夏季運転時においては排気流路Eを通って排気される室内空気の量、冬季運転時においては給気流路Sを通って供給される外気の量)以上とすることが好ましい。前記既存設備20からの温排気には、例えばエンジンや燃料電池などの原動機又は発電装置から排出される温排気、一般空調機で使用される冷媒の凝縮器を通過した温排気、又は湯沸かし器で発生する温排気を利用することができ、この他高温空気を排出する種々の既存設備20からの温排気を利用することが可能である。なお、夏季運転時と冬季運転時との流路の切り換えは、ダクト21a、21bの分岐点に配設された切り換え弁23を調整することにより行うことができる。   Furthermore, the means for improving the energy efficiency of the desiccant ventilation system 1 is demonstrated. As described above, in the desiccant ventilation system 1 according to the present invention, the circulation air in the supply air passage S is dehumidified under the condition that the outside air contains a relatively large amount of moisture compared to the room air (summer operation conditions). In addition, the circulation air in the exhaust passage E dries (regenerates) the dehumidifying material 7 and is supplied under conditions where the room air contains a relatively large amount of moisture compared to the outside air (in winter operation conditions). The circulating air in the air flow path S dries (regenerates) the dehumidifying material 7, and the circulating air in the exhaust flow path E is operated to be dehumidified by the dehumidifying material 7. In such a flow path configuration, in this embodiment, as shown in FIG. 17, a flow path for drying (regenerating) the dehumidifying material 7 and before passing through the dehumidifying material 7, Provide introduction means for guiding heated air in a heat exchanger capable of exchanging heat with hot air or hot exhaust discharged from existing equipment 20, such as a prime mover such as a fuel cell or a power generator, a general air conditioner, or a water heater. Can do. Specifically, as shown in FIG. 17, ducts 21 and 21a for introducing outside air are connected before introduction into the dehumidifying material 7 of the exhaust passage E during summer operation (illustrated example). During the winter operation, ducts 21 and 21b for introducing outside air are connected to the dehumidifying material 7 in the air supply channel S, and heat exchange with the hot exhaust from the existing equipment 20 is possible in the middle of the duct 21. A heat exchanger 22 is provided. The outside air heated by the hot exhaust from the existing equipment 20 in this heat exchanger 22 is supplied to the moisture adsorption / desorption device 2 to dissipate a large amount of moisture adsorbed on the dehumidifying material 7, thereby making the dehumidifying material 7 efficient. Dry (regenerate) well. Here, the amount of air supplied from the duct 21 to the moisture adsorption / desorption device 2 is the amount of air that normally flows through the moisture adsorption / desorption device 2 in order to efficiently dry (regenerate) the dehumidifying material 7 (during summer operation). Is preferably the amount of indoor air exhausted through the exhaust passage E, or the amount of outside air supplied through the air supply passage S during winter operation. The hot exhaust from the existing equipment 20 is generated by a hot exhaust discharged from a prime mover such as an engine or a fuel cell or a power generator, a hot exhaust passed through a refrigerant condenser used in a general air conditioner, or a water heater, for example. In addition to this, it is possible to use hot exhaust from various existing facilities 20 that discharge hot air. Note that the switching of the flow path between the summer operation and the winter operation can be performed by adjusting the switching valve 23 provided at the branch point of the ducts 21a and 21b.

本第2形態例に係るデシカント換気システム1は、上述のような構成によって、水分吸脱装置を単純な構造でコンパクト化することができるようになるとともに、製造コストを低減化することが可能となる。
〔他の形態例〕
(1)上記第1形態例では、水分吸脱装置2の伝熱シートは、除湿材7が塗布、含浸又は接着された伝熱シート8からなるものとしたが、第2形態例に示されるように、流路の入口及び/又は出口近傍部分は前記除湿材7が塗布、含浸又は接着されない伝熱シート17からなる領域とし、その他の部分は前記除湿材7が塗布、含浸又は接着された伝熱シート8からなる領域としてもよい。
(2)上記第2形態例では、水分吸脱装置2の伝熱シートは、流路の入口及び/又は出口近傍部分は前記除湿材7が塗布、含浸又は接着されない伝熱シート17からなる領域とし、その他の部分は前記除湿材7が塗布、含浸又は接着された伝熱シート8からなる領域としたが、第1形態例に示されるように、全体に除湿材7が塗布、含浸又は接着された伝熱シート8からなるものとしてもよい。
(3)上記第2形態例では一方側ダクト同士4、4’又は他方側ダクト同士5、5’を連通させて平行して流通させたが、一方側ダクトと他方側ダクトとを連通させ、給気と排気とを交差させるように流通させても良い。
(4)上記第2形態例において、水分吸脱装置2の第1流路及び/又は第2流路に、エンジンや燃料電池などの原動機又は発電装置、一般空調機、湯沸かし器等の既存設備20から排出される高温空気或いは温排気と熱交換可能な熱交換器22において加熱した空気を導く導入手段を備えるようにしたが、この手段は、上記第1形態例においても備えることができる。
With the configuration as described above, the desiccant ventilation system 1 according to the second embodiment can make the moisture adsorption / desorption device compact with a simple structure and can reduce the manufacturing cost. Become.
[Other examples]
(1) In the first embodiment, the heat transfer sheet of the moisture adsorption / desorption device 2 is composed of the heat transfer sheet 8 to which the dehumidifying material 7 is applied, impregnated, or bonded, but is shown in the second embodiment. As described above, the vicinity of the inlet and / or outlet of the flow path is a region composed of the heat transfer sheet 17 to which the dehumidifying material 7 is not applied, impregnated or adhered, and the other part is applied, impregnated or adhered to the dehumidifying material 7. It is good also as a field which consists of heat transfer sheets 8.
(2) In the second embodiment, the heat transfer sheet of the moisture adsorption / desorption device 2 is a region composed of the heat transfer sheet 17 where the dehumidifying material 7 is not applied, impregnated or bonded in the vicinity of the inlet and / or outlet of the flow path. In addition, the other part is an area composed of the heat transfer sheet 8 to which the dehumidifying material 7 is applied, impregnated, or bonded. However, as shown in the first embodiment, the dehumidifying material 7 is applied, impregnated, or bonded as a whole. It is good also as what consists of the heat-transfer sheet | seat 8 made.
(3) In the second embodiment, the one side ducts 4, 4 ′ or the other side ducts 5, 5 ′ are circulated in parallel, but the one side duct and the other side duct are communicated, You may distribute | circulate so that supply air and exhaust may cross.
(4) In the second embodiment, the existing equipment 20 such as a prime mover or power generator such as an engine or a fuel cell, a general air conditioner, or a water heater is provided in the first flow path and / or the second flow path of the moisture adsorption / desorption device 2. Introducing means for guiding the heated air in the heat exchanger 22 capable of exchanging heat with hot air or hot exhaust discharged from the air is provided, but this means can also be provided in the first embodiment.

本発明の第1形態例に係るデシカント換気システム1の平面図である。1 is a plan view of a desiccant ventilation system 1 according to a first embodiment of the present invention. その給気流路Sを示す水平断面図である。3 is a horizontal sectional view showing the air supply flow path S. FIG. その排気流路Eを示す水平断面図である。3 is a horizontal sectional view showing the exhaust flow path E. FIG. 本発明の第1形態例に係る(A)水分吸脱装置2の斜視図、(B)ヘッダー部13の拡大図である。It is the perspective view of the (A) moisture absorption / desorption device 2 which concerns on the 1st example of this invention, (B) The enlarged view of the header part 13. FIG. 本発明の第1形態例に係る水分吸脱装置2の流路の区画方式を示す斜視図(1)である。It is a perspective view (1) which shows the division system of the flow path of the moisture adsorption / desorption apparatus 2 which concerns on the 1st form example of this invention. 伝熱シート間に配設される(A)スペーサ(B)波板の配設状態図である。FIG. 5 is an arrangement state diagram of (A) spacer (B) corrugated plates arranged between heat transfer sheets. 本発明の第1形態例に係る夏季運転時、水分吸脱装置2を通過する給気の状態変化を示す空気線図である。It is an air line figure which shows the state change of the air supply which passes the moisture absorption / desorption apparatus 2 at the time of the summer driving | operation which concerns on the 1st form example of this invention. 本発明の第1形態例に係る夏季運転時、水分吸脱装置2を通過する排気の状態変化を示す空気線図である。It is an air line figure which shows the state change of the exhaust_gas | exhaustion which passes the moisture adsorption / desorption apparatus 2 at the time of the summer driving | operation which concerns on the 1st example of this invention. 本発明の第2形態例に係るデシカント換気システム1の平面図である。It is a top view of the desiccant ventilation system 1 which concerns on the 2nd form example of this invention. その給気流路Sを示す水平断面図である。3 is a horizontal sectional view showing the air supply flow path S. FIG. その排気流路Eを示す水平断面図である。3 is a horizontal sectional view showing the exhaust flow path E. FIG. 本発明の第2形態例に係る水分吸脱装置2の斜視図である。It is a perspective view of the moisture adsorption / desorption apparatus 2 which concerns on the 2nd form example of this invention. 本発明の第2形態例に係る水分吸脱装置2の流路の区画方式を示す斜視図(1)である。It is a perspective view (1) which shows the division system of the flow path of the moisture adsorption / desorption apparatus 2 which concerns on the 2nd form example of this invention. 本発明の第2形態例に係る水分吸脱装置2の流路の区画方式を示す斜視図(2)である。It is a perspective view (2) which shows the division system of the flow path of the moisture adsorption / desorption apparatus 2 which concerns on the 2nd form example of this invention. 本発明の第2形態例に係る夏季運転時、水分吸脱装置2を通過する給気の状態変化を示す空気線図である。It is an air line figure which shows the state change of the air supply which passes the moisture absorption / desorption apparatus 2 at the time of the summer driving | operation which concerns on the 2nd example of this invention. 本発明の第2形態例に係る夏季運転時、水分吸脱装置2を通過する排気の状態変化を示す空気線図である。It is an air line figure which shows the state change of the exhaust_gas | exhaustion which passes the moisture adsorption / desorption apparatus 2 at the time of the summer driving | operation which concerns on the 2nd form example of this invention. 本発明の第2形態例に係るデシカント換気システム1の平面図である。It is a top view of the desiccant ventilation system 1 which concerns on the 2nd form example of this invention.

1…デシカント換気システム、2…水分吸脱装置、4・4’…給気ダクト、5・5’…排気ダクト、6…ケーシング、7…除湿材、8…伝熱シート、9…軸、10…給気ファン、11…排気ファン DESCRIPTION OF SYMBOLS 1 ... Desiccant ventilation system, 2 ... Moisture absorption / desorption device, 4 * 4 '... Air supply duct, 5 * 5' ... Exhaust duct, 6 ... Casing, 7 ... Dehumidification material, 8 ... Heat-transfer sheet, 9 ... Shaft, 10 ... Air supply fan, 11 ... Exhaust fan

Claims (9)

外気の供給および室内空気の排気を併行して行うために一方側ダクトと他方側ダクトとを独立的に形成し、両端部に前記一方側ダクトと他方側ダクトとが夫々接続された所定長さのケーシング内に、通気性を有しない熱交換可能な伝熱シートによって層状に区画され、交互に第1流路と第2流路とから成る多数の層状の流路が形成されるとともに、前記第1流路と第2流路とに区画する各仕切り面のうち、流路の入口及び出口近傍部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着されない領域とされ、その他の部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着された領域とされ前記ダクトと平行する方向であって流通空気の流れ方向に長辺を有する形状からなり、かつ前記ダクトと平行する中心軸芯回りに支持された水分吸脱装置を配置し、
前記水分吸脱装置において、前記第1流路と第2流路とが各流路の空気を相互に対向して流通させるか又は平行して流通させるようにした対向流型又は平行流型の流路構成とされるとともに、前記伝熱シートの一方の面側で流通空気の除湿がなされると同時に、他方の面側で流通空気の加湿がなされ、前記伝熱シートの一方の面側に配設された除湿材の水分吸着に伴う吸着熱が前記伝熱シートを熱伝導して他方の面側の除湿材を加熱して、この除湿材の水分脱着作用を促進させる構成とされ、
所定時間毎に前記水分吸脱装置を前記中心軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路として流通させ、前記第2流路を排気流路として流通させる状態と、前記第2流路を給気流路として流通させ、前記第1流路を排気流路として流通させる状態とを交互に切り換え可能としたことを特徴とするデシカント換気システム。
A predetermined length in which one side duct and the other side duct are independently formed to supply outside air and exhaust indoor air, and the one side duct and the other side duct are respectively connected to both ends. In the casing, a plurality of layered flow paths are formed by alternately forming a first flow path and a second flow path, and are divided into layers by a heat exchangeable heat transfer sheet having no air permeability. Of the partition surfaces partitioned into the first flow channel and the second flow channel, the vicinity of the inlet and outlet of the flow channel is a region where the dehumidifying material is not applied, impregnated, or bonded to both surfaces of the heat transfer sheet. The portion is a region where a dehumidifying material is applied, impregnated, or adhered to both surfaces of the heat transfer sheet , and has a shape having a long side in a direction parallel to the duct and in a flow direction of the circulating air, and the duct Supported around parallel central axes The minute adsorption device is provided,
In the moisture adsorption / desorption device, the first flow path and the second flow path are made to flow in the flow paths facing each other or in parallel to each other. In addition to the flow path configuration, the circulating air is dehumidified on one side of the heat transfer sheet, and at the same time, the circulating air is humidified on the other side of the heat transfer sheet. Adsorption heat accompanying moisture adsorption of the disposed dehumidifying material is configured to promote the moisture desorption effect of the dehumidifying material by thermally conducting the heat transfer sheet and heating the dehumidifying material on the other surface side,
A state where the first flow path is circulated as an air supply flow path and the second flow path is circulated as an exhaust flow path by rotating the moisture adsorption / desorption device approximately 180 degrees around the central axis at predetermined time intervals. And a desiccant ventilation system characterized in that the second flow path can be circulated as an air supply flow path and the first flow path can be circulated as an exhaust flow path.
外気の供給および室内空気の排気を併行して行うために一方側ダクトと他方側ダクトとを独立的に形成し、両端面又は両端部の側面部分に前記一方側ダクトと他方側ダクトとが夫々接続された所定長さのケーシング内に、通気性を有しない熱交換可能な伝熱シートによって層状に区画された多数の層状の流路が形成されるとともに、前記層状の流路に区画する各仕切り面のうち、流路の入口及び出口近傍部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着されない領域とされ、その他の部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着された領域とされ
前記層状の流路は、一方側ダクト同士を連通するか又は一方側ダクトと他方側ダクトとを繋ぐ交差する対角関係にある2組の流路の内、一方組の一方側ダクトと他方側ダクトとを連通する第1流路と、他方側ダクト同士を連通するか又は一方側ダクトと他方側ダクトとを繋ぐ交差する対角関係にある2組の流路の内、他方組の一方側ダクトと他方側ダクトとを連通する第2流路とが交互に形成され、前記ダクトと平行する方向であって流通空気の流れ方向に長辺を有する形状からなり、かつ前記ダクトと平行する中心軸芯回りに支持された水分吸脱装置を配置し、
前記水分吸脱装置において、前記第1流路と第2流路とが各流路の空気を相互に対向して流通させるか又は平行して流通させるようにした対向流型又は平行流型の流路構成とされるとともに、前記伝熱シートの一方の面側で流通空気の除湿がなされると同時に、他方の面側で流通空気の加湿がなされ、前記伝熱シートの一方の面側に配設された除湿材の水分吸着に伴う吸着熱が前記伝熱シートを熱伝導して他方の面側の除湿材を加熱して、この除湿材の水分脱着作用を促進させる構成とされ、
所定時間毎に前記水分吸脱装置を前記中心軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路として流通させ、前記第2流路を排気流路として流通させる状態と、前記第2流路を給気流路として流通させ、前記第1流路を排気流路として流通させる状態とを交互に切り換え可能としたことを特徴とするデシカント換気システム。
One side duct and the other side duct are formed independently for supplying outside air and exhausting indoor air, and the one side duct and the other side duct are respectively provided at both end faces or side portions of both ends. A plurality of layered flow paths partitioned into layers by a heat-exchangeable heat transfer sheet having no air permeability are formed in the connected casings of a predetermined length, and each of the partitions partitioned into the layered flow paths is formed. Of the partition surface, the vicinity of the inlet and outlet of the flow path is a region where the dehumidifying material is not applied, impregnated or adhered to both surfaces of the heat transfer sheet, and the other portions are applied with the dehumidifying material on both surfaces of the heat transfer sheet, An impregnated or bonded area ,
The layered flow path is one of one set of one side duct and the other side of two sets of diagonal paths that connect one side ducts or connect one side duct and the other side duct. The first channel that communicates with the duct and the other channel among the two diagonal channels that communicate with each other or connect the one side duct and the other side duct. The second flow path communicating with the duct and the other side duct is alternately formed , and has a shape having a long side in a direction parallel to the duct and a flow direction of the circulating air, and a center parallel to the duct Place a moisture absorption / desorption device supported around the axis,
In the moisture adsorption / desorption device, the first flow path and the second flow path are made to flow in the flow paths facing each other or in parallel to each other. In addition to the flow path configuration, the circulating air is dehumidified on one side of the heat transfer sheet, and at the same time, the circulating air is humidified on the other side of the heat transfer sheet. Adsorption heat accompanying moisture adsorption of the disposed dehumidifying material is configured to promote the moisture desorption effect of the dehumidifying material by thermally conducting the heat transfer sheet and heating the dehumidifying material on the other surface side,
A state where the first flow path is circulated as an air supply flow path and the second flow path is circulated as an exhaust flow path by rotating the moisture adsorption / desorption device approximately 180 degrees around the central axis at predetermined time intervals. And a desiccant ventilation system characterized in that the second flow path can be circulated as an air supply flow path and the first flow path can be circulated as an exhaust flow path.
外気の供給および室内空気の排気を併行して行うために一方側ダクトと他方側ダクトとを独立的に形成し、これら一方側ダクトと他方側ダクトとが平行に配設された部位において、両ダクトに跨るとともに、両ダクトが接続された所定長さのケーシング内に、流路の入口及び出口近傍部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着されない領域とされ、その他の部分は前記伝熱シートの両面に除湿材が塗布、含浸又は接着された領域とされるとともに、通気性を有しない熱交換可能な多数の伝熱シートによって層状に区画された多数の層状の流路が形成され、該層状の流路は、一方側ダクトと他方側ダクトとを繋ぐとともに、交差する2組の対角関係の内、一方側対角の関係で一方側ダクトと他方側ダクトとが連通され、他方側対角の関係で一方側ダクトと他方側ダクトとが閉鎖された第1流路と、他方側対角の関係で一方側ダクトと他方側ダクトとが連通され、一方側対角の関係で一方側ダクトと他方側ダクトとが閉鎖された第2流路とが交互に形成され、前記ダクトと平行する方向であって流通空気の流れ方向に長辺を有する形状からなり、かつ前記ダクトと平行する中心軸芯回りに支持された水分吸脱装置を配置し、
前記水分吸脱装置において、前記第1流路と第2流路とが各流路の空気を相互に対向して流通させるか又は平行して流通させるようにした対向流型又は平行流型の流路構成とされるとともに、前記伝熱シートの一方の面側で流通空気の除湿がなされると同時に、他方の面側で流通空気の加湿がなされ、前記伝熱シートの一方の面側に配設された除湿材の水分吸着に伴う吸着熱が前記伝熱シートを熱伝導して他方の面側の除湿材を加熱して、この除湿材の水分脱着作用を促進させる構成とされ、
所定時間毎に前記水分吸脱装置を前記中心軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路として一方側ダクトから他方側ダクトへ流通させ、前記第2流路を排気流路として一方側ダクトから他方側ダクトへ流通させる状態と、前記第2流路を給気流路として一方側ダクトから他方側ダクトへ流通させ、前記第1流路を排気流路として一方側ダクトから他方側ダクトへ流通させる状態とを交互に切り換え可能とするか、所定時間毎に前記水分吸脱装置を前記中心軸芯回りにほぼ180度回転させることにより、前記第1流路を給気流路として一方側ダクトから他方側ダクトへ流通させ、前記第2流路を排気流路として他方側ダクトから一方側ダクトへ流通させる状態と、前記第2流路を給気流路として一方側ダクトから他方側ダクトへ流通させ、前記第1流路を排気流路として他方側ダクトから一方側ダクトへ流通させる状態とを交互に切り換え可能としたことを特徴とするデシカント換気システム。
One side duct and the other side duct are formed independently for supplying outside air and exhausting indoor air at the same time. In the casing of a predetermined length to which both ducts are connected while straddling the duct, the vicinity of the inlet and outlet of the flow path is a region where the dehumidifying material is not applied, impregnated, or adhered to both surfaces of the heat transfer sheet. part dehumidifying material applied to both sides of the heat transfer sheet, is a impregnated or bonded areas Rutotomoni, flow of a large number of layered partitioned in layers by breathable a number of heat transfer sheet capable of having no heat exchange A path is formed, and the layered flow path connects the one-side duct and the other-side duct, and of two sets of diagonal relationships that intersect, the one-side duct and the other-side duct have a one-side diagonal relationship. Communicated with the other side The first flow path in which the one-side duct and the other-side duct are closed due to the angular relationship, and the one-side duct and the other-side duct are communicated with each other in the other-side diagonal relationship. The second flow path in which the duct and the other side duct are closed are alternately formed , has a shape parallel to the duct and has a long side in the flow direction of the circulating air, and is parallel to the duct Place a moisture absorption / desorption device supported around the center axis,
In the moisture adsorption / desorption device, the first flow path and the second flow path are made to flow in the flow paths facing each other or in parallel to each other. In addition to the flow path configuration, the circulating air is dehumidified on one side of the heat transfer sheet, and at the same time, the circulating air is humidified on the other side of the heat transfer sheet. Adsorption heat accompanying moisture adsorption of the disposed dehumidifying material is configured to promote the moisture desorption effect of the dehumidifying material by thermally conducting the heat transfer sheet and heating the dehumidifying material on the other surface side,
By rotating the moisture adsorbing / desorbing device approximately 180 degrees around the center axis at predetermined time intervals, the first flow path is used as an air supply flow path to flow from one duct to the other duct, and the second flow path Circulates from the one side duct to the other side duct as an exhaust flow path, and circulates from the one side duct to the other side duct as the air supply flow path, while the first flow path serves as the exhaust flow path. It is possible to alternately switch the state of flowing from the side duct to the other side duct, or by rotating the moisture adsorption / desorption device approximately 180 degrees around the central axis at predetermined time intervals. A state in which the air supply channel is circulated from one duct to the other side duct, the second channel is circulated from the other side duct to the one side duct, and the second channel is used as the air supply channel. Duct or Desiccant ventilation system is circulated to the other side duct, characterized in that the switchable said first flow path alternately between a state in which circulating from the other side duct to one side duct as an exhaust passage.
前記水分吸脱装置の層状の流路は、1又は複数枚の伝熱シートを断面コ字形が連続する波板形状に折曲げ成形し、側板及び端板を配設することにより構成したことを特徴とする請求項1〜いずれかに記載のデシカント換気システム。 The layered flow path of the moisture adsorption / desorption device is configured by bending one or a plurality of heat transfer sheets into a corrugated plate shape having a continuous U-shaped cross section, and disposing side plates and end plates. The desiccant ventilation system according to any one of claims 1 to 3 . 前記第1流路と第2流路とを層状に仕切る伝熱シートとして平板又は波板が使用されるとともに、前記上下の伝熱シート間にはスペーサ又は波板が配設され、前記スペーサ又は波板表面の一部又は全面に除湿材が塗布、含浸又は接着されている請求項1〜いずれかに記載のデシカント換気システム。 A flat plate or a corrugated sheet is used as the heat transfer sheet that divides the first flow path and the second flow path into layers, and a spacer or a corrugated sheet is disposed between the upper and lower heat transfer sheets. The desiccant ventilation system according to any one of claims 1 to 4 , wherein a dehumidifying material is applied, impregnated, or adhered to a part or the entire surface of the corrugated plate. 前記伝熱シート、スペーサ又は波板は、直径0.1mm以下の微細粒子状に形成した除湿材を懸濁させた懸濁液を含浸後、乾燥固定したガラス繊維、植物繊維、動物繊維及び/又は化学繊維などの繊維状シートであることを特徴とする請求項1〜いずれかに記載のデシカント換気システム。 The heat transfer sheet, spacer or corrugated sheet is impregnated with a suspension in which a dehumidifying material formed in a fine particle shape with a diameter of 0.1 mm or less is impregnated, and then dried and fixed to glass fiber, plant fiber, animal fiber and / or Or it is a fibrous sheet, such as a chemical fiber, The desiccant ventilation system in any one of Claims 1-5 characterized by the above-mentioned. 前記水分吸脱装置を非電導性材料で構成するとともに、前記水分吸脱装置の近傍に、前記水分吸脱装置にマイクロ波を照射するためのマイクロ波照射装置を備えることを特徴とする請求項1〜いずれかに記載のデシカント換気システム。 The moisture absorption / desorption device is made of a non-conductive material, and a microwave irradiation device for irradiating the moisture absorption / desorption device with microwaves is provided in the vicinity of the moisture absorption / desorption device. The desiccant ventilation system in any one of 1-6 . 前記水分吸脱装置において、前記第1流路及び/又は第2流路に、エンジンや燃料電池などの原動機又は発電装置、一般空調機、湯沸かし器等の既存設備から排出される高温空気或いは温排気と熱交換可能な熱交換器において加熱した空気を導く導入手段を備えたことを特徴とする請求項1〜いずれかに記載のデシカント換気システム。 In the moisture adsorption / desorption device, high-temperature air or warm exhaust exhausted from existing equipment such as a prime mover such as an engine or a fuel cell or a power generation device, a general air conditioner, or a water heater in the first flow path and / or the second flow path. The desiccant ventilation system according to any one of claims 1 to 7 , further comprising introducing means for guiding heated air in a heat exchanger capable of exchanging heat with the desiccant. 前記水分吸脱装置を回転させて給気流路と排気流路との切り換えを行う際、前記水分吸脱装置と、前記一方側ダクト又は他方側ダクトとの適正な接続位置を検出する検出機構を備えるとともに、その検出結果に応じて前記水分吸脱装置の回転を制御する制御手段を備える請求項1〜いずれかに記載のデシカント換気システム。 A detection mechanism for detecting an appropriate connection position between the moisture adsorption / desorption device and the one side duct or the other side duct when the moisture adsorption / desorption device is rotated to switch between an air supply channel and an exhaust channel; The desiccant ventilation system according to any one of claims 1 to 8, further comprising a control unit that controls rotation of the moisture adsorption / desorption device according to a detection result.
JP2006161181A 2006-03-09 2006-06-09 Desiccant ventilation system Active JP4341924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006161181A JP4341924B2 (en) 2006-03-09 2006-06-09 Desiccant ventilation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006064040 2006-03-09
JP2006161181A JP4341924B2 (en) 2006-03-09 2006-06-09 Desiccant ventilation system

Publications (2)

Publication Number Publication Date
JP2007271247A JP2007271247A (en) 2007-10-18
JP4341924B2 true JP4341924B2 (en) 2009-10-14

Family

ID=38674232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006161181A Active JP4341924B2 (en) 2006-03-09 2006-06-09 Desiccant ventilation system

Country Status (1)

Country Link
JP (1) JP4341924B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589488B1 (en) * 2009-11-05 2016-01-28 유겐가이샤 테크노 프론티어 Heat-exchange construction

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009097837A (en) * 2007-10-19 2009-05-07 Shin Nippon Air Technol Co Ltd Humidistat and temperature control desiccant rotor and desiccant ventilation system using the same
KR101228278B1 (en) * 2009-04-21 2013-01-30 (주)엘지하우시스 Porous ceramic structure and apparatus combined with dehumidifier and humidifier comprising the same
JP5945507B2 (en) * 2011-02-10 2016-07-05 三建設備工業株式会社 Moisture absorption / release unit, humidity control system and air humidity control device
JP5623962B2 (en) * 2011-03-31 2014-11-12 大阪瓦斯株式会社 Air conditioning system
JP5967403B2 (en) * 2011-12-05 2016-08-10 パナソニックIpマネジメント株式会社 Air conditioner for vehicles
JPWO2013168772A1 (en) 2012-05-11 2016-01-07 三菱電機株式会社 Laminated total heat exchange element and heat exchange ventilator
JP2017013031A (en) * 2015-07-06 2017-01-19 大阪瓦斯株式会社 Humidity control element
JP2019207062A (en) * 2018-05-29 2019-12-05 パナソニックIpマネジメント株式会社 Moisture control system and air supply method of moisture control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101589488B1 (en) * 2009-11-05 2016-01-28 유겐가이샤 테크노 프론티어 Heat-exchange construction

Also Published As

Publication number Publication date
JP2007271247A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP4341924B2 (en) Desiccant ventilation system
US20230022397A1 (en) Air quality adjustment system
JP3992051B2 (en) Air conditioning system
JP2011036768A (en) Dehumidifier
JP4729409B2 (en) Desiccant ventilation system
US20140318369A1 (en) Dehumidification apparatus, and air conditioning apparatus and air conditioning system having the same
JP2009097837A (en) Humidistat and temperature control desiccant rotor and desiccant ventilation system using the same
JP2012135759A (en) Hygroscopic agent, method for production thereof, and apparatus using the hygroscopic agent
JP4420463B2 (en) Desiccant ventilation system
JP4075950B2 (en) Air conditioner
JP2004069257A (en) Humidity conditioning element and humidity conditioning device
JP4683548B2 (en) Desiccant ventilator
JP2011033302A (en) Humidity control ventilator
JP2011143358A (en) Moisture absorption filter and humidifier
JP5063745B2 (en) Air conditioner
JP2004069222A (en) Ventilating and humidity conditioning apparatus
JP2007170786A (en) Ventilation system
JP4393478B2 (en) Desiccant ventilation system
JP5241693B2 (en) Desiccant system
JP2000205598A (en) Dehumidifying air-conditioning method and device, and method for using the same
KR102161064B1 (en) Water adsorbent and a ventilator with water adsorbent
JP2005021840A (en) Heat exchange type dehumidification rotor and desiccant air-conditioner using it
JP6262445B2 (en) Total heat exchanger using water vapor permselective membrane
JPH02187542A (en) Dehumidifier and humidifier, and airconditioner equipped therewith
JP4161495B2 (en) Adsorption type air conditioner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4341924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130717

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250