JP2008043899A - Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method - Google Patents

Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method Download PDF

Info

Publication number
JP2008043899A
JP2008043899A JP2006223419A JP2006223419A JP2008043899A JP 2008043899 A JP2008043899 A JP 2008043899A JP 2006223419 A JP2006223419 A JP 2006223419A JP 2006223419 A JP2006223419 A JP 2006223419A JP 2008043899 A JP2008043899 A JP 2008043899A
Authority
JP
Japan
Prior art keywords
dehumidifying
adsorbent
heat treatment
humidifying
treatment region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006223419A
Other languages
Japanese (ja)
Inventor
Hideto Hidaka
秀人 日高
Hiroyuki Kakiuchi
博行 垣内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006223419A priority Critical patent/JP2008043899A/en
Publication of JP2008043899A publication Critical patent/JP2008043899A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dehumidifying/humidifying rotor and a dehumidifying/dehumidifying device, and an operation method of the dehumidifying/humidifying device, capable of efficiently adsorbing moisture and increasing adsorbing amount by using the dehumidifying/humidifying device which has the dehumidifying/humidifying rotor built in it, and capable of efficiently desorbing moisture and increasing desorbing amount. <P>SOLUTION: The dehumidifying/humidifying rotor is equipped with a latent heat treating region 31 which concentrically carries an adsorbing material and a sensitive heat exchanging region 32 which carries no adsorbing material; the dehumidifying/humidifying device has the dehumidifying/humidifying rotor built in it; and the operation method of the dehumidifying/humidifying device is characterized in that the temperature of air supplied to the sensitive heat exchanging region 32 of an adsorbing zone A of the dehumidifying/humidifying device is at a temperature of or lower than that of the air supplied to the latent heat treating region 31, and the temperature of air supplied to the sensitive heat exchanging region 32 of a desorbing zone B is at a temperature of or higher than that of the air supplied to the latent heat treating region 31. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、除加湿ロータ、除加湿装置及びその運転方法に関するものであり、詳しくは、基材に吸着材が塗布された潜熱処理領域と基材に吸着材が塗布されていない顕熱交換領域とを設けた除加湿ロータ、及びその除加湿ロータを使用した除加湿装置、ならびにその除加湿装置の運転方法に関するものである。   The present invention relates to a dehumidifying / humidifying rotor, a dehumidifying / humidifying device, and an operation method thereof, and more specifically, a latent heat treatment region in which an adsorbent is applied to a base material and a sensible heat exchange region in which the adsorbent is not applied to a base material And a dehumidifying / humidifying device using the dehumidifying / humidifying rotor, and an operation method of the dehumidifying / humidifying device.

除加湿装置は、吸着材の吸着及び脱着機能を利用して、湿度調整を行うシステムであり、例えば、コジェネレーションシステムや電動ヒートポンプ、電熱(電気)ヒータ、マイクロガスタービン、ガスエンジン、燃料電池、太陽熱、地熱、燃焼熱、工場排熱、エンジンの排熱などの低温排熱を利用する各種の調湿装置に適用される。除加湿装置を利用した装置は、湿度の高低に対して必要に応じて、除湿あるいは加湿を適宜行うことで求める湿度に調整ができる点で、快適空間の構築などに有用である。   The dehumidifying / humidifying device is a system that adjusts humidity using the adsorption and desorption functions of an adsorbent, such as a cogeneration system, an electric heat pump, an electric heat (electric) heater, a micro gas turbine, a gas engine, a fuel cell, It is applied to various humidity control devices that use low-temperature exhaust heat such as solar heat, geothermal heat, combustion heat, factory exhaust heat, and engine exhaust heat. A device using a dehumidifying / humidifying device is useful for constructing a comfortable space in that it can be adjusted to a desired humidity by appropriately performing dehumidification or humidification for the level of humidity.

従来の除加湿装置で用いられる吸着素子としては、繊維質シートにゼオライトを担持させ、かかる繊維質シートをハニカム成形機で成形することにより、ハニカム構造体に構成されたロータ型の素子が提案されている。   As an adsorbing element used in a conventional dehumidifying / humidifying device, a rotor-type element configured in a honeycomb structure is proposed by supporting zeolite on a fibrous sheet and forming the fibrous sheet with a honeycomb molding machine. ing.

ハニカム構造体の吸着素子は、全体の体積に対する表面積が大きく、吸着能力に優れている特徴があるが、ハニカム構造のロータ型の吸着素子に処理空気を流過させ、吸着材が空気中の湿分を吸着すると、吸着熱が発生し、処理空気が下流に進むに連れて当該空気の温度が上昇して相対湿度が低下する。また空気中の湿分の吸着が進むにつれて、空気中の絶対湿度が低下することによっても相対湿度が低下する。このため空気中に含有さている湿分が吸着材に吸着されにくくなる問題が発生する。再生工程でも同様に、排熱やヒータなどで加熱した再生空気を除加湿ロータを流過させるが、吸着材が水蒸気を放出する際に脱着熱が奪われ、再生空気が下流方向に進むにつれて当該空気の温度が低下して相対湿度が上昇する。一方、湿分の脱着が進むにつれて、空気中の絶対湿度が上昇することによっても相対湿度が上昇する。このため湿分が吸着材より空気中に脱着されにくくなる問題が発生する。換言すれば吸着材の再生が進まなくなる問題が起こる。
特開2003−014252公報 特開2002−095964公報 第37回化学工学会秋季大会研究発表会講演要旨集O115(2005年9月15〜17日)
The adsorbing element of the honeycomb structure has a feature that it has a large surface area relative to the entire volume and has an excellent adsorbing ability. However, the processing material is passed through the rotor-type adsorbing element of the honeycomb structure so that the adsorbent is moistened in the air. When the minute is adsorbed, heat of adsorption is generated, and as the processing air advances downstream, the temperature of the air increases and the relative humidity decreases. Further, as the moisture in the air is adsorbed, the relative humidity is also reduced by the decrease in the absolute humidity in the air. For this reason, the problem that the moisture contained in the air becomes difficult to be adsorbed by the adsorbent occurs. Similarly, in the regeneration process, the regeneration air heated by exhaust heat or a heater is passed through the dehumidification / humidification rotor, but the desorption heat is taken away when the adsorbent releases water vapor, and the regeneration air moves in the downstream direction. Air temperature decreases and relative humidity increases. On the other hand, as the desorption of moisture proceeds, the relative humidity also increases due to the increase in absolute humidity in the air. This causes a problem that moisture is less likely to be desorbed into the air than the adsorbent. In other words, there arises a problem that the regeneration of the adsorbent does not proceed.
JP 2003-014252 A JP 2002-095964 A Proceedings of the 37th Annual Meeting of the Society of Chemical Engineers Autumn Meeting, O115 (September 15-17, 2005)

ところで、上記の様な除加湿装置において、さらなる除加湿性能の高性能化、特に電動ヒートポンプ排熱で効率的に除湿を行う場合など、より除加湿能力を発揮する除湿ロータが求められている。この課題を解決するために、低温で再生できる吸湿材や大きな吸着量を有する吸着材が開発されている。しかし、従来のハニカム構造のロータ型吸着素子は、吸着工程では吸着熱で処理空気の下流方向に処理空気の温度上昇し相対湿度が低下し吸着しにくくなり、また脱着工程では脱着熱で再生空気の温度が低下し、相対湿度が上昇し脱着しにくくなる、構造的な課題が存在する。   By the way, in the dehumidifying / humidifying apparatus as described above, there is a demand for a dehumidifying rotor that exhibits a higher dehumidifying / humidifying capability, for example, when the dehumidifying / humidifying performance is further improved, especially when the dehumidifying is performed efficiently by exhaust heat from the electric heat pump. In order to solve this problem, a hygroscopic material that can be regenerated at a low temperature and an adsorbent having a large adsorption amount have been developed. However, the conventional rotor-type adsorbing element having a honeycomb structure is difficult to be adsorbed because the temperature of the processing air rises in the downstream direction of the processing air due to the heat of adsorption in the adsorption process, and the relative humidity decreases, and the air is regenerated by the heat of desorption in the desorption process. There is a structural problem in that the temperature of the water decreases, the relative humidity increases, and it becomes difficult to desorb.

本発明は、上記の事情に鑑みてなされたものであり、その目的は、吸着部分では潜熱処理部で発生する吸着熱を顕熱処理部で放出し、潜熱処理部の温度を抑え、吸着しやすくさせる。脱着部分では潜熱処理部分で奪われる脱着熱を顕熱処理部からの伝熱によって熱を補給し、潜熱処理部の温度低下を抑え、再生しやすくさせる。吸着材を半径方向に塗り分けるだけであり、製造も簡単で、装置も簡素で大型にならないメリットがある。   The present invention has been made in view of the above circumstances, and the object thereof is to release the heat of adsorption generated in the latent heat treatment part at the adsorption part in the sensible heat treatment part, thereby suppressing the temperature of the latent heat treatment part and facilitating adsorption. Let In the desorption portion, the desorption heat taken away in the latent heat treatment portion is replenished by heat transfer from the sensible heat treatment portion, and the temperature decrease in the latent heat treatment portion is suppressed to facilitate the regeneration. There is an advantage that the adsorbent is simply applied in the radial direction, the manufacture is simple, and the apparatus is simple and does not become large.

即ち本発明の要旨は、半径方向に、同心円状に吸着材が担持された潜熱処理領域と吸着材が担持されない顕熱交換領域とを設けたことを特徴とする除加湿ロータに存する。   That is, the gist of the present invention resides in a dehumidifying / humidifying rotor characterized in that a latent heat treatment region in which an adsorbent is supported concentrically and a sensible heat exchange region in which no adsorbent is supported are provided in a radial direction.

また、本発明の別の要旨は、半径方向に、同心円状に吸着材が担持された潜熱処理領域と吸着材が担持されない顕熱交換領域とを設けた除加湿ロータを使用することを特徴とする除加湿装置に存する。   Further, another gist of the present invention is characterized in that a dehumidifying / humidifying rotor provided with a latent heat treatment region in which an adsorbent is supported concentrically and a sensible heat exchange region in which no adsorbent is supported is used in a radial direction. It exists in the dehumidifying / humidifying device.

また、更に本発明の別の要旨は、半径方向に、同心円状に吸着材が担持された潜熱処理領域と吸着材が担持されない顕熱交換領域とを設けた除加湿ロータを使用した除加湿装置において、吸着ゾーンの顕熱交換領域に供給する空気の温度は、当該吸着ゾーンの潜熱処理領域に供給する空気の温度以下であることを特徴とする除加湿装置の運転方法、また半径方向に、同心円状に吸着材が担持された潜熱処理領域と吸着材が担持されない顕熱交換領域とを設けた除加湿ロータを使用した除加湿装置において、脱着ゾーンの顕熱交換領域に供給する空気の温度は、当該脱着ゾーンの潜熱処理領域に供給する空気の温度以上であることを特徴とする除加湿装置の運転方法に存する。   Further, another gist of the present invention is a dehumidifying / humidifying device using a dehumidifying / humidifying rotor provided with a latent heat treatment region in which an adsorbent is supported concentrically in a radial direction and a sensible heat exchange region in which the adsorbent is not supported. In the operation method of the dehumidifying / humidifying device, wherein the temperature of the air supplied to the sensible heat exchange region of the adsorption zone is equal to or lower than the temperature of the air supplied to the latent heat treatment region of the adsorption zone, and in the radial direction, The temperature of the air supplied to the sensible heat exchange region of the desorption zone in a dehumidification / humidification device using a dehumidification / humidification rotor provided with a latent heat treatment region in which the adsorbent is supported concentrically and a sensible heat exchange region in which the adsorbent is not supported Lies in the operating method of the dehumidifying / humidifying device, characterized in that it is equal to or higher than the temperature of the air supplied to the latent heat treatment region of the desorption zone.

本発明は、上記のような除加湿ロータを組み込んだ除加湿装置を使用して上記に規定したような運転方法を採用することにより、吸着ゾーンでは潜熱処理領域で発生する吸着熱を顕熱処理部で放出することで潜熱処理領域の温度を抑え、効率的に吸着させ吸着量を増加させることができる。また、脱着ゾーンでは潜熱処理領域で奪われる脱着熱を顕熱処理領域からの伝熱によって熱を補給することで潜熱処理領域の温度低下を抑え、効率的に脱着させ脱着量を増加させることができる。   The present invention employs a dehumidifying / humidifying apparatus incorporating the dehumidifying / humidifying rotor as described above, and adopts the operating method as defined above, so that the adsorption heat generated in the latent heat treatment region is absorbed in the sensible heat treatment section. It is possible to suppress the temperature of the latent heat treatment region and efficiently adsorb and increase the adsorption amount. In addition, in the desorption zone, desorption heat deprived in the latent heat treatment region can be replenished by heat transfer from the sensible heat treatment region to suppress the temperature drop in the latent heat treatment region, and can be efficiently desorbed and the amount of desorption can be increased. .

以下、本発明に係る除加湿ロータ、除加湿装置及び除加湿装置の運転方法の実施形態を図面に基づいて詳細に説明する。図1は、本発明に係る除加湿ロータの左側面断面図である。当該図1において上半部を吸着ゾーンA、下半部を着脱ゾーンBとし、通常30rph程度の回転数で図示の通り反時計回りに回転させているが、吸着ゾーンA及び着脱ゾーンBは上下左右斜めのどの位置にでも設置することができ、回転方向も時計回りに回転させることも可能である。尚、吸着ゾーンAと脱着ゾーンB断面積比も図1では簡便に1:1としているが、これに限定するものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a dehumidifying / humidifying rotor, a dehumidifying / humidifying device, and a method of operating a dehumidifying / humidifying device according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a left side sectional view of a dehumidifying / humidifying rotor according to the present invention. In FIG. 1, the upper half is an adsorption zone A and the lower half is an attachment / detachment zone B, which is rotated counterclockwise as shown in the drawing at a rotation speed of about 30 rph. It can be installed at any position diagonally left and right, and can also be rotated clockwise. Incidentally, the sectional area ratio of the adsorption zone A and the desorption zone B is also simply set to 1: 1 in FIG. 1, but is not limited to this.

本発明の特徴は、除加湿ロータの半径方向に同心円状に吸着材が担持された潜熱処理領域31と吸着材が担持されない顕熱処理領域32を設けることである。図1においては、軸心に近い内環部を吸着材が担持された潜熱処理領域31とし、外環部を吸着材が担持されない顕熱交換領域32とした除加湿ロータの実施例である。   A feature of the present invention is that a latent heat treatment region 31 in which an adsorbent is supported concentrically in the radial direction of the dehumidifying / humidifying rotor and a sensible heat treatment region 32 in which the adsorbent is not supported are provided. FIG. 1 shows an embodiment of a dehumidifying / humidifying rotor in which the inner ring portion close to the axial center is a latent heat treatment region 31 in which an adsorbent is supported and the outer ring portion is a sensible heat exchange region 32 in which no adsorbent is supported.

図2は、本発明に係る除加湿ロータの正面断面図及び空気のフロー図である。本発明は除湿を目的に除加湿ロータを運転している一例として示しているが、本発明の作用効果を説明するためのものであって、加湿を目的に使用することも可能である。   FIG. 2 is a front sectional view of the dehumidifying / humidifying rotor according to the present invention and an air flow diagram. Although the present invention is shown as an example of operating a dehumidifying / humidifying rotor for the purpose of dehumidification, it is for explaining the operation and effect of the present invention, and can be used for the purpose of humidification.

吸着ゾーンAは外気を蒸発器41を通して流入した処理空気(冷気)1を除湿するために、当該処理空気1を潜熱処理領域31に供給し、当該処理空気に含有する湿気は潜熱処理領域31を構成する吸着材に接触して吸着されると共に吸着熱が発生する。一方、同じ処理空気1を顕熱処理領域32に供給するが、この顕熱処理領域32には吸着材が担持されておらず、吸着熱が発生することはない。よって、潜熱処理領域31は顕熱処理領域32よりも温度が高くなり、その温度差によって熱は矢印の如く潜熱処理領域31から顕熱処理領域32に移動し、それによって潜熱処理領域31の温度上昇が抑制される。   The adsorption zone A supplies the processing air 1 to the latent heat treatment region 31 in order to dehumidify the processing air (cold air) 1 that has flowed in the outside air through the evaporator 41, and the moisture contained in the processing air passes through the latent heat treatment region 31. It is adsorbed in contact with the adsorbing material and heat of adsorption is generated. On the other hand, the same processing air 1 is supplied to the sensible heat treatment region 32, but the sensible heat treatment region 32 does not carry an adsorbent and no heat of adsorption is generated. Therefore, the temperature of the latent heat treatment region 31 is higher than that of the sensible heat treatment region 32, and due to the temperature difference, heat moves from the latent heat treatment region 31 to the sensible heat treatment region 32 as indicated by the arrows. It is suppressed.

この結果、潜熱処理領域31を流過する処理空気1は温度上昇が抑えられので、当該処理空気1の相対湿度が低下せず吸着材の吸着能力が高まり除湿量が多くなる。除湿された空気は吸気3として室内などに供給される。排気4はそのまま室外に排気してもよいが、処理空気1が冷凍機などの蒸発機41で冷却される場合は、プレクールするための冷凍機の負荷を低減するためダクト43を介して蒸発器41の前に戻して循環して使用することも可能である。   As a result, the temperature rise of the processing air 1 flowing through the latent heat treatment region 31 is suppressed, so that the relative humidity of the processing air 1 does not decrease and the adsorption capacity of the adsorbent increases and the dehumidification amount increases. The dehumidified air is supplied to the room or the like as intake air 3. The exhaust 4 may be exhausted to the outside as it is, but when the process air 1 is cooled by an evaporator 41 such as a refrigerator, the evaporator is connected via a duct 43 in order to reduce the load of the refrigerator for precooling. It is also possible to return to 41 before use.

除加湿装置の簡便性を考えると吸着ゾーンAにおいて潜熱処理領域31と顕熱処理領域32には同じ処理空気1を供給することが通常であるが、より除湿能力を高めるために吸着処理側の顕熱処理領域32に潜熱処理領域31より低い温度の空気を流すことも可能である。   Considering the simplicity of the dehumidifying / humidifying device, the same processing air 1 is usually supplied to the latent heat treatment region 31 and the sensible heat treatment region 32 in the adsorption zone A. It is also possible to flow air having a temperature lower than that of the latent heat treatment region 31 through the heat treatment region 32.

他方、脱着ゾーンBも、同様に、外気を熱交換器42を通して流入した再生空気(加熱空気2で潜熱処理領域31の吸着材を加熱し、この加熱空気によって吸着ゾーンAで吸着材に吸着された水分を及び蒸気を脱着させるが、この水分及び蒸発による潜熱(いわゆる脱着熱)て潜熱処理領域31の温度は低下する。同時に顕熱処理領域32に再生空気2を供給しているため、顕熱処理領域32は潜熱処理領域31より温度が高くなり、その温度差によって熱は矢印の如く顕熱処理領域32から潜熱処理領域31に移動し、それによって潜熱処理領域31の温度低下が抑制される。   On the other hand, in the desorption zone B as well, the regenerated air that has flowed outside air through the heat exchanger 42 (the adsorbent in the latent heat treatment region 31 is heated by the heated air 2 and is adsorbed by the adsorbent in the adsorption zone A by this heated air. The moisture and vapor are desorbed, but the latent heat (so-called desorption heat) due to the moisture and evaporation lowers the temperature of the latent heat treatment region 31. At the same time, the regeneration air 2 is supplied to the sensible heat treatment region 32. The temperature of the region 32 is higher than that of the latent heat treatment region 31, and heat is transferred from the sensible heat treatment region 32 to the latent heat treatment region 31 as indicated by the arrow due to the temperature difference, thereby suppressing the temperature drop of the latent heat treatment region 31.

この結果、潜熱処理領域31を流過する処理空気2は温度低下が抑えられので、当該処理空気1の相対湿度が上昇せず吸着材の吸着は脱着されやすくなり、脱着量が多くなる。排気5は室外に排出し、排気6そのまま室外に排気してもよいが、熱交換器42などで再生空気を加熱する場合は、加熱エネルギーを削減する目的で熱交換器42の前に戻して循環して使用することも可能である。   As a result, since the temperature drop of the processing air 2 flowing through the latent heat treatment region 31 is suppressed, the relative humidity of the processing air 1 does not increase, and the adsorption of the adsorbent becomes easy to be desorbed, and the desorption amount increases. The exhaust 5 may be exhausted to the outside, and the exhaust 6 may be exhausted to the outside as it is. However, when the regeneration air is heated by the heat exchanger 42 or the like, it is returned to the front of the heat exchanger 42 for the purpose of reducing heating energy. It can also be used in a circulating manner.

除加湿装置の簡便性を考えると潜熱処理領域31と顕熱処理領域32には同じ再生空気2を供給することが通常であるが、より脱着能力を高めるために脱着ゾーンBの顕熱処理領域32に潜熱処理領域31より高い温度の空気を流すことも可能である。尚、除加湿ロータにおいて、顕熱処理領域32を半径方向の外環部にすることで、排気4及び排気6を循環して使用する際に、循環路43及び44を設置しやすい。   Considering the simplicity of the dehumidifying / humidifying device, the same regeneration air 2 is usually supplied to the latent heat treatment region 31 and the sensible heat treatment region 32. However, in order to further improve the desorption capability, the sensible heat treatment region 32 in the desorption zone B It is also possible to flow air having a temperature higher than that of the latent heat treatment region 31. In the dehumidifying / humidifying rotor, the sensible heat treatment region 32 is formed as an outer ring portion in the radial direction, so that the circulation paths 43 and 44 can be easily installed when the exhaust 4 and the exhaust 6 are circulated.

図3は、本発明に係る除加湿ロータのその他1の実施例の左側面断面図であり、軸心に近い内環部に顕熱処理領域32を、外環部に潜熱処理領域31を設けた実施例であり、潜熱処理領域31と顕熱処理領域32の流入空気入口面積比が最大1:1である場合でも外環部を潜熱処理領域31にすることで、潜熱処理領域31の半径方向の長さRは顕熱処理領域32の半径方向の長さRに比べ短くなり、潜熱処理領域31において吸着ゾーンと脱着ゾーンの切り替え部分での熱の移動が抑制される効果がある。 FIG. 3 is a left side sectional view of another embodiment of the dehumidifying / humidifying rotor according to the present invention, in which a sensible heat treatment region 32 is provided in the inner ring portion near the axis and a latent heat treatment region 31 is provided in the outer ring portion. In the embodiment, even when the inflow air inlet area ratio of the latent heat treatment region 31 and the sensible heat treatment region 32 is 1: 1 at the maximum, the outer ring portion is changed to the latent heat treatment region 31 so that the radial direction of the latent heat treatment region 31 is increased. The length R 1 is shorter than the radial length R 2 of the sensible heat treatment region 32, and there is an effect that heat transfer at the switching portion between the adsorption zone and the desorption zone is suppressed in the latent heat treatment region 31.

図4は、本発明に係る除加湿ロータのその他2の実施例の左側面断面図であり、軸心に近い内環部に顕熱処理領域32を、中間環部に潜熱処理領域31を、更に外環部に顕熱処理領域32を設けた実施例で装置は多少複雑にはなるが、潜熱処理領域31を顕熱処理領域32で挟み込むことによって効率的に加熱及び熱伝導が可能となる。   FIG. 4 is a left side sectional view of two other embodiments of the dehumidifying / humidifying rotor according to the present invention, in which a sensible heat treatment region 32 is provided in the inner ring portion close to the axial center, a latent heat treatment region 31 is provided in the intermediate ring portion, and In the embodiment in which the sensible heat treatment region 32 is provided in the outer ring portion, the apparatus is somewhat complicated. However, by sandwiching the latent heat treatment region 31 between the sensible heat treatment regions 32, heating and heat conduction can be efficiently performed.

図5は、本発明に係る除加湿ロータのその他3の実施例の左側面断面図であり、ロータを任意のブロック分割し、その中心軸より放射状に熱伝導率10W/mK未満の分割材33を挿入した実施例であり、このような構造にすることにより回転方向に熱の移動を防止することができる。尚、分割材33を図3及び図4の実施例の除加湿ロータに挿入して除加湿ロータを構成することもできる。   FIG. 5 is a left side cross-sectional view of the other three embodiments of the dehumidifying / humidifying rotor according to the present invention, in which the rotor is divided into arbitrary blocks, and divided members 33 having a thermal conductivity of less than 10 W / mK radially from the central axis thereof. In this example, heat can be prevented from moving in the rotational direction. Note that the dehumidifying / humidifying rotor can be configured by inserting the dividing member 33 into the dehumidifying / humidifying rotor of the embodiment of FIGS.

また、除加湿装置は、倉庫内などの冷却を目的としたデシカント(desiccant)冷却装置を始め、建物の設備として設置される大型のデシカント空調装置、室内に設置される小型の除湿器や加湿器を含む除湿空調装置、加湿空調装置装置などの調湿空調装置として構成され、吸着材の吸着・脱着作用を利用し、湿度調整すべき室内の空気または室内へ供給される空気から水分を除去してこれを屋外に排出したり、屋外の空気または屋外へ排出される空気から水分を吸着してこれを湿度調節すべき室内の空気または室内へ供給するシステムであり、余剰エネルギーを利用して湿度調節を行うことができる。   In addition, the dehumidifying / humidifying device includes a desiccant cooling device for cooling a warehouse or the like, a large desiccant air conditioner installed as a building facility, a small dehumidifier or humidifier installed indoors. It is configured as a humidity control air conditioner such as a dehumidifying air conditioner or a humidifying air conditioner that contains moisture and removes moisture from the indoor air to be humidity-adjusted or the air supplied to the room using the adsorption / desorption action of the adsorbent. This is a system that discharges this to the outdoors, or absorbs moisture from the outdoor air or the air that is discharged to the outside and supplies it to the indoor air or the room where the humidity should be adjusted. Adjustments can be made.

図1、図3及び図4の実施例で示す様な除加湿ロータは潜熱処理領域31と顕熱処理領域32で熱移動を行う必要があり、吸着材が担持されたロータ基材の熱伝導率は10W/mK以上、50W/mK以上が好ましく、100W/mK以上が更に好ましい。潜熱処理領域31の熱伝導率は10W/mKより小さいと潜熱処理領域31から顕熱処理領域32での熱の移動が上手くいかず、本願発明の効果が得られない。   The dehumidifying / humidifying rotor as shown in the embodiments of FIGS. 1, 3 and 4 needs to perform heat transfer in the latent heat treatment region 31 and the sensible heat treatment region 32, and the thermal conductivity of the rotor base material on which the adsorbent is supported. Is preferably 10 W / mK or more, 50 W / mK or more, and more preferably 100 W / mK or more. If the thermal conductivity of the latent heat treatment region 31 is less than 10 W / mK, the heat transfer from the latent heat treatment region 31 to the sensible heat treatment region 32 will not be successful, and the effect of the present invention will not be obtained.

図1〜5において、除加湿ロータを構成する潜熱処理領域31と顕熱処理領域32の流入空気入口の断面積比が、1:1〜4:1の値のものが好適である。すなわち、潜熱処理領域31が当該値より小さい場合には同量の空気を処理するに対して、顕熱処理領域32を含めると従来型より大幅に装置が大きくなる。一方、顕熱処理領域32が当該値より小さい場合には、顕熱処理領域32での顕熱処理量が小さくなるため、従来型より性能が劣り芳しくない。   In FIGS. 1-5, the cross-sectional area ratio of the inflow air inlet of the latent heat treatment area | region 31 and the sensible heat treatment area | region 32 which comprises a dehumidification / humidification rotor is a thing of the value of 1: 1-4: 1. That is, when the latent heat treatment region 31 is smaller than the value, the same amount of air is processed, but when the sensible heat treatment region 32 is included, the apparatus becomes significantly larger than the conventional type. On the other hand, when the sensible heat treatment region 32 is smaller than the value, the amount of sensible heat treatment in the sensible heat treatment region 32 is small, so the performance is not inferior to that of the conventional type.

また、図1、図3及び図4の実施例で示す様な除加湿ロータの基材の構成材料としては、金属、セラミックス、炭素材料などが挙げられるが、通常は剛性、熱伝導度及び製作コストの観点から、除加湿ロータの基材はアルミニウム、銅、炭素鋼、ステンレス、カーボンファイバー、真鍮、鉄、クロムニッケル、これらの合金などに選択される。中でもアルミニウム又はアルミニウム合金、銅または銅合金が好ましい。   The constituent materials of the base material of the dehumidifying / humidifying rotor as shown in the examples of FIGS. 1, 3 and 4 include metals, ceramics, carbon materials, etc., but usually rigidity, thermal conductivity and production From the viewpoint of cost, the base material of the dehumidifying / humidifying rotor is selected from aluminum, copper, carbon steel, stainless steel, carbon fiber, brass, iron, chromium nickel, and alloys thereof. Among these, aluminum or aluminum alloy, copper or copper alloy is preferable.

当該基材の厚さは、特に制限は無いが、この表面に塗布される吸着材の吸着材層の厚さや担持量の関係から、通常50〜300μm、好ましくは100〜200μmに設定される。また、基材表面は、腐食を防止し、吸着材を担持し易くするため、予め、エポキシ樹脂、フェノキシ樹脂或いはフッ素系樹脂などの薄い樹脂膜によってコーティングされてもよい。   Although there is no restriction | limiting in particular in the thickness of the said base material, From the relationship of the thickness of the adsorbent layer of the adsorbent apply | coated to this surface, and the load amount, it is normally set to 50-300 micrometers, Preferably it is set to 100-200 micrometers. Further, the surface of the base material may be previously coated with a thin resin film such as an epoxy resin, a phenoxy resin, or a fluorine resin in order to prevent corrosion and to easily carry the adsorbent.

除加湿ロータの基材に吸着材を担持させるには、当該ロータに吸着材が分散された水系分散液を流して塗布したり、浸けて塗布した後、当該ロータを加熱乾燥する。これにより、吸着材は、バインダーにより当該ロータ基材に積層状態で担持される。本発明においては、除加湿ロータを製造する際、当該ロータ基材に吸着材を担持させるに当たり、吸着材同士の接着力、吸着材と当該ロータ基材との接着力を高めるため、上記の水系分散液として、以下の様な吸着材とバインダーとが水に分散されてなる水系分散液が使用される。バインダーは、シリカゾルなどの無機バインダーも使用可能であるが、当該ロータ基材として接着性を考慮すると酢酸ビニル樹脂、アクリル樹脂、オレフィン樹脂、スチレン樹脂、及びシリコン樹脂などが使用可能である。   In order to support the adsorbent on the substrate of the dehumidifying / humidifying rotor, the rotor is heated and dried after the aqueous dispersion in which the adsorbent is dispersed is applied to the rotor by flowing or applied. Thereby, the adsorbent is supported on the rotor base material in a laminated state by the binder. In the present invention, when the dehumidifying / humidifying rotor is manufactured, in order to increase the adhesive force between the adsorbents and the adhesive force between the adsorbent and the rotor base material, As the dispersion, an aqueous dispersion in which an adsorbent and a binder as described below are dispersed in water is used. As the binder, an inorganic binder such as silica sol can be used, but vinyl acetate resin, acrylic resin, olefin resin, styrene resin, silicon resin, and the like can be used in consideration of adhesiveness as the rotor base material.

上記の有機バインダーは、有機溶媒に溶解して使用することもできるが、有機溶媒に溶解した場合は、バインダーが吸着材の表面を覆い、吸着速度が低下すると言う問題、及び有機媒体の揮発により環境汚染を惹起すると言う問題がある。そこで、本発明においては、吸着材の吸着性能の確保、除加湿ロータの基材との接着性の観点からも、エマルジョンとして使用される。バインダーの配合比率は、吸着材100重量部に対し、乾燥重量で5〜40重量部が好ましい。バインダーが5重量部より少ない場合は、吸着材同士及び除加湿ロータの基材に対する吸着材の固着が不充分であり、40重量部よりも多い場合は、吸着層において保持し得る吸着材の量が減少し、吸着能力が低下し、また除加湿ロータが大型化するので不利である。   The above organic binder can be used by dissolving in an organic solvent. However, when dissolved in an organic solvent, the binder covers the surface of the adsorbent, and the adsorption rate decreases, and the organic medium volatilizes. There is a problem of causing environmental pollution. Therefore, in the present invention, it is also used as an emulsion from the viewpoint of securing the adsorption performance of the adsorbent and the adhesion to the substrate of the dehumidifying / humidifying rotor. The blending ratio of the binder is preferably 5 to 40 parts by weight with respect to 100 parts by weight of the adsorbent. When the binder is less than 5 parts by weight, the adsorbents are not sufficiently fixed to each other and the base material of the dehumidifying / humidifying rotor. When the binder is more than 40 parts by weight, the amount of the adsorbent that can be held in the adsorption layer This is disadvantageous because the adsorption capacity is reduced, and the dehumidifying / humidifying rotor is enlarged.

また、上記の水系分散液においては、その安定性を高め、粘度調整を行うため、高吸水性ポリマーやカラギナン、キサンタンゴムアラビアガム等の有機増粘剤、分散剤が添加されてよい。また熱伝導率を向上させるため、熱伝導率の良い金属繊維、炭素繊維などの繊維状物質、アルミ、銅、銀などの金属粉体、或いはグラファイト、カーボンブラック、カーボンナノチューブ、窒化アルミ、窒化ホウ素などが添加されてもよい。更には、塗膜強度を向上させるため、カオリン、針状珪酸カルシウム、針状酸化亜鉛、セピオライト、針状炭酸カルシウム、チタン酸カルシウム、ホウ酸アルミ、針状塩基性硫酸マグネシウム等を添加されても良い。上記の様な機能付与添加物は、1種類によって粘度調整、熱伝導性向上、塗膜強度の向上などの複数の効果を同時に達成し得る場合もあるため、対象物品に応じて適宜選択される。   Further, in the above aqueous dispersion liquid, an organic thickener such as a superabsorbent polymer, carrageenan, xanthan gum arabic gum or the like may be added in order to increase the stability and adjust the viscosity. In order to improve thermal conductivity, metal fibers with good thermal conductivity, fibrous materials such as carbon fibers, metal powders such as aluminum, copper, silver, or graphite, carbon black, carbon nanotubes, aluminum nitride, boron nitride Etc. may be added. Furthermore, even if kaolin, acicular calcium silicate, acicular zinc oxide, sepiolite, acicular calcium carbonate, calcium titanate, aluminum borate, acicular basic magnesium sulfate, etc. are added to improve the strength of the coating film. good. The above-described function-imparting additive may be selected as appropriate depending on the target article, since it may sometimes achieve a plurality of effects such as viscosity adjustment, thermal conductivity improvement, and coating film strength improvement depending on one type. .

本発明で使用される吸着材としては、シリカゲル、活性炭、アルミナおよびアルミノシリケート、アルミノフォスフェート、シリコアルミノフォスフェート、鉄アルミノフォスフェートよりなるゼオライト類、メソポーラスシリカ、集積金属錯体などの多孔質材が挙げられる。中でも、吸着質蒸気及び水蒸気を容易に吸着し且つ容易に脱着し得るゼオライトが好ましい。特に、構造や吸着特性を制御し易いと言う観点からは、骨格構造に少なくともAlとPを含む結晶性アルミノフォスフェート類(ALPO系ゼオライト)が好ましく、代表的には、SAPO−34、FAPO−5、ALPO−5が挙げられる。上記の様な吸着材は、1種または2種以上を組み合わせて使用することができる。尚、ALPO系ゼオライトは、例えば、特公平01−05741号、特開2003−183020号、特開2004−136269号の公報に記載あれた公知の合成法を利用して製造することができる。   As the adsorbent used in the present invention, porous materials such as silica gel, activated carbon, alumina and aluminosilicate, aluminophosphate, silicoaluminophosphate, iron aluminophosphate, mesoporous silica, integrated metal complex, etc. Can be mentioned. Among these, zeolite that can adsorb adsorbate vapor and water vapor easily and can be easily desorbed is preferable. In particular, from the viewpoint of easy control of the structure and adsorption characteristics, crystalline aluminophosphates (ALPO-based zeolite) containing at least Al and P in the skeleton structure are preferable. Typically, SAPO-34, FAPO- 5, ALPO-5. The adsorbents as described above can be used alone or in combination of two or more. The ALPO-type zeolite can be produced by using a known synthesis method described in, for example, Japanese Patent Publication Nos. 01-05741, 2003-183020, and 2004-136269.

吸着材の粒子大きさは、吸着材個々の粒子における吸着質蒸気や水蒸気の拡散を促進して、吸着・脱着能力をより高める観点から、および、除加湿ロータの基材に担持させた吸着材を含む担体の接着強度を向上させる観点から、できる限り小さくするのが望ましく、通常は平均粒径が0.1〜300ミクロン、好ましくは0.5〜250ミクロン。更に好ましくは1〜200ミクロン、最も好ましくは2〜20ミクロンである。そして、除加湿ロータに充分な吸着・脱着能力を付与するために、吸着材の目付量は5〜400g/mである。 The particle size of the adsorbent is from the viewpoint of enhancing the adsorption / desorption capability by promoting the diffusion of adsorbate vapor and water vapor in the individual particles of the adsorbent, and the adsorbent carried on the substrate of the dehumidifying / humidifying rotor From the standpoint of improving the adhesive strength of the carrier containing N, it is desirable to make it as small as possible, and the average particle size is usually 0.1 to 300 microns, preferably 0.5 to 250 microns. More preferably, it is 1 to 200 microns, and most preferably 2 to 20 microns. And in order to provide sufficient adsorption | suction and desorption capability to a dehumidification / humidification rotor, the fabric weight of an adsorbent is 5-400 g / m < 2 >.

吸着材の吸着熱が、50kJ/mol以上(HO、298K)のものが好適である。水の凝縮潜熱が43.9kJ/molであり、通常の水の蒸発による物理吸着熱だけでなく、化学吸着分の熱量差が発生するからである。 It is preferable that the adsorption heat of the adsorbent is 50 kJ / mol or more (H 2 O, 298 K). This is because the latent heat of condensation of water is 43.9 kJ / mol, and not only the physical adsorption heat due to normal water evaporation, but also the calorific difference of chemical adsorption.

当該吸着熱とは、298Kにて水蒸気を吸着した際の吸着材1モル当たりの吸着熱量を指す。、吸着熱は例えば各種測定装置による測定によって求められる微分吸着熱として求められる。具体的には例えば(株)東京理工社製の「熱測定法表面解析装置 CSA−25Gとマルチマイクロカロリーメーター MMC−5113」の組合わせによる測定から求められる。   The heat of adsorption refers to the amount of heat of adsorption per mole of adsorbent when water vapor is adsorbed at 298K. The adsorption heat is obtained as, for example, differential adsorption heat obtained by measurement with various measuring devices. Specifically, it is calculated | required from the measurement by the combination of "Thermal measurement method surface-analysis apparatus CSA-25G and multi micro calorimeter MMC-5113" by Tokyo Riko Co., Ltd., for example.

本発明に係る除加湿ロータの左側面断面図。The left side sectional view of the dehumidification / humidification rotor concerning the present invention. 本発明に係る除加湿ロータの正面断面図及び空気のフロー図。The front sectional view of the dehumidification humidification rotor concerning the present invention, and the flow figure of air. 本発明に係る除加湿ロータのその他1の左側面断面図。The other left side sectional view of the dehumidification humidification rotor concerning the present invention. 本発明に係る除加湿ロータのその他2の左側面断面図。The other 2 left side surface sectional views of the dehumidification humidification rotor concerning the present invention. 本発明に係る除加湿ロータのその他3の左側面断面図。The other 3 left side surface sectional views of the dehumidification / humidification rotor concerning the present invention.

符号の説明Explanation of symbols

31 潜熱処理領域
32 顕熱処理領域
33 分割材
41 蒸発器
42 熱交換器
A 吸着ゾーン
B 脱着ゾーン
31 latent heat treatment region 32 sensible heat treatment region 33 divided material 41 evaporator 42 heat exchanger A adsorption zone B desorption zone

Claims (13)

半径方向に、同心円状に吸着材が担持された潜熱処理領域(31)と吸着材が担持されない顕熱交換領域(32)とを設けたことを特徴とする除加湿ロータ。   A dehumidifying / humidifying rotor comprising a latent heat treatment region (31) in which an adsorbent is supported concentrically and a sensible heat exchange region (32) in which no adsorbent is supported in a radial direction. 軸心に近い内環部を吸着材が担持された潜熱処理領域(31)とし、外環部を吸着材が担持されない顕熱交換領域(32)としたことを特徴とする除加湿ロータ。   A dehumidifying / humidifying rotor characterized in that an inner ring portion close to an axis is a latent heat treatment region (31) carrying an adsorbent and an outer ring portion is a sensible heat exchange region (32) not carrying an adsorbent. 軸心に近い内環部を吸着材が担持されない顕熱交換領域(32)とし、外環部を吸着材が担持された潜熱処理領域(31)としたことを特徴とする除加湿ロータ。   A dehumidifying / humidifying rotor characterized in that an inner ring portion close to an axial center is a sensible heat exchange region (32) in which no adsorbent is supported, and an outer ring portion is a latent heat treatment region (31) in which an adsorbent is supported. 軸心に近い内環部を吸着材が担持されない顕熱交換領域(32)とし、その外側の中環部を吸着材が担持された潜熱処理領域(31)とすると共に、さらにその外側の外環部を吸着材が担持されない顕熱交換領域(32)としたことを特徴とする除加湿ロータ。   The inner ring portion close to the axial center is the sensible heat exchange region (32) in which the adsorbent is not supported, the outer middle ring portion is the latent heat treatment region (31) in which the adsorbent is supported, and the outer ring is further outside. A dehumidifying / humidifying rotor characterized in that the portion is a sensible heat exchange region (32) in which no adsorbent is supported. 吸着材が担持されたロータ基材の熱伝導率が10W/mK以上であることを特徴とする請求項1乃至4のいずれかに記載の除加湿ロータ。   5. The dehumidifying / humidifying rotor according to claim 1, wherein the rotor base material carrying the adsorbent has a thermal conductivity of 10 W / mK or more. アルミニウム、銅、炭素鋼、ステンレス、カーボンファイバーより選ばれた基材表面に、吸着材を塗布して潜熱処理領域(31)を構成したことを特徴とする請求項1乃至5のいずれかに記載の除加湿ロータ。   6. The latent heat treatment region (31) is formed by applying an adsorbent to a substrate surface selected from aluminum, copper, carbon steel, stainless steel, and carbon fiber. Dehumidifying and humidifying rotor. 吸着材が、シリカゲル、活性炭、アルミナおよびアルミノシリケート、アルミノフォスフェート、シリコアルミノフォスフェート、鉄アルミノフォスフェートよりなるゼオライト類、メソポーラスシリカ、集積金属錯体から選ばれる少なくとも一種以上を含有することを特徴とする請求項1乃至6のいずれかに記載の除加湿ロータ。   The adsorbent contains at least one selected from silica gel, activated carbon, alumina and aluminosilicate, aluminophosphate, silicoaluminophosphate, iron aluminophosphate, mesoporous silica, and an integrated metal complex. The dehumidifying / humidifying rotor according to any one of claims 1 to 6. 吸着材の吸着熱が50kJ/mol以上(HO、298K)であることを特徴とする請求項1乃至7のいずれかに記載の除加湿ロータ。 The dehumidifying / humidifying rotor according to claim 1, wherein the adsorption heat of the adsorbent is 50 kJ / mol or more (H 2 O, 298 K). 軸心より放射状に、熱伝導率が10W/mK未満の分割材(33)を挿入した構造とし、除加湿ロータの回転方向に熱の移動を阻止することを特徴とする請求項1乃至8のいずれかに記載の除加湿ロータ。   9. The structure according to claim 1, wherein a dividing member (33) having a thermal conductivity of less than 10 W / mK is inserted radially from the axis to prevent heat from moving in the rotational direction of the dehumidifying / humidifying rotor. The dehumidifying / humidifying rotor according to any one of the above. 潜熱処理領域(31)と顕熱交換領域(32)の流入空気入口の断面積比が、1:1〜4:1であることを特徴とする請求項1乃至9のいずれかに記載の除加湿ロータ。   10. The removal according to claim 1, wherein the cross-sectional area ratio of the inlet air inlet of the latent heat treatment region (31) and the sensible heat exchange region (32) is 1: 1 to 4: 1. Humidification rotor. 半径方向に、同心円状に吸着材が担持された潜熱処理領域(31)と吸着材が担持されない顕熱交換領域(32)とを設けた除加湿ロータを使用することを特徴とする除加湿装置。   A dehumidifying / humidifying device using a dehumidifying / humidifying rotor provided with a latent heat treatment region (31) in which an adsorbent is supported concentrically and a sensible heat exchange region (32) in which no adsorbent is supported in a radial direction. . 半径方向に、同心円状に吸着材が担持された潜熱処理領域(31)と吸着材が担持されない顕熱交換領域(32)とを設けた除加湿ロータを使用した除加湿装置において、吸着ゾーン(A)の顕熱交換領域(32)に供給する空気の温度は、当該吸着ゾーン(A)の潜熱処理領域(31)に供給する空気の温度以下であることを特徴とする除加湿装置の運転方法。   In a dehumidifying / humidifying apparatus using a dehumidifying / humidifying rotor provided with a latent heat treatment region (31) in which an adsorbent is supported concentrically and a sensible heat exchange region (32) in which no adsorbent is supported in a radial direction, Operation of the dehumidifying / humidifying device characterized in that the temperature of the air supplied to the sensible heat exchange region (32) of A) is equal to or lower than the temperature of the air supplied to the latent heat treatment region (31) of the adsorption zone (A). Method. 半径方向に、同心円状に吸着材が担持された潜熱処理領域(31)と吸着材が担持されない顕熱交換領域(32)とを設けた除加湿ロータを使用した除加湿装置において、脱着ゾーン(B)の顕熱交換領域(32)に供給する空気の温度は、当該脱着ゾーン(B)の潜熱処理領域(31)に供給する空気の温度以上であることを特徴とする除加湿装置の運転方法。   In a dehumidifying / humidifying device using a dehumidifying / humidifying rotor provided with a latent heat treatment region (31) in which an adsorbent is supported concentrically and a sensible heat exchange region (32) in which no adsorbent is supported in a radial direction, The operation of the dehumidifying / humidifying device is characterized in that the temperature of the air supplied to the sensible heat exchange region (32) of B) is equal to or higher than the temperature of the air supplied to the latent heat treatment region (31) of the desorption zone (B). Method.
JP2006223419A 2006-08-18 2006-08-18 Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method Pending JP2008043899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223419A JP2008043899A (en) 2006-08-18 2006-08-18 Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223419A JP2008043899A (en) 2006-08-18 2006-08-18 Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method

Publications (1)

Publication Number Publication Date
JP2008043899A true JP2008043899A (en) 2008-02-28

Family

ID=39178143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223419A Pending JP2008043899A (en) 2006-08-18 2006-08-18 Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method

Country Status (1)

Country Link
JP (1) JP2008043899A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249271A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Desiccant air conditioning system, and desiccant unit
JP2010094199A (en) * 2008-10-15 2010-04-30 Mitsubishi Electric Corp Fluid treatment apparatus and refrigerator with the same
JP2011038441A (en) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd Intake air humidity controller for gas turbine, gas turbine and gas turbine combined cycle power generation plant equipped therewith, and output increasing method
JP2012524230A (en) * 2009-04-21 2012-10-11 エルジー・ハウシス・リミテッド Porous ceramic structure and dehumidifying / humidifying device including the same
JP2013048718A (en) * 2011-08-31 2013-03-14 Mitsubishi Electric Corp Deodorizing device
JP2018087679A (en) * 2016-11-30 2018-06-07 ダイキン工業株式会社 Humidifier
WO2021200072A1 (en) * 2020-03-31 2021-10-07 ダイキン工業株式会社 Air quality adjustment system
WO2023248560A1 (en) * 2022-06-21 2023-12-28 シャープ株式会社 Total heat exchange element and ventilator

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249271A (en) * 2007-03-30 2008-10-16 Osaka Gas Co Ltd Desiccant air conditioning system, and desiccant unit
JP2010094199A (en) * 2008-10-15 2010-04-30 Mitsubishi Electric Corp Fluid treatment apparatus and refrigerator with the same
US8657265B2 (en) 2009-04-21 2014-02-25 Lg Hausys, Ltd. Porous ceramic structure, and dehumidification/humidification apparatus comprising same
JP2012524230A (en) * 2009-04-21 2012-10-11 エルジー・ハウシス・リミテッド Porous ceramic structure and dehumidifying / humidifying device including the same
KR101228278B1 (en) * 2009-04-21 2013-01-30 (주)엘지하우시스 Porous ceramic structure and apparatus combined with dehumidifier and humidifier comprising the same
JP2011038441A (en) * 2009-08-07 2011-02-24 Mitsubishi Heavy Ind Ltd Intake air humidity controller for gas turbine, gas turbine and gas turbine combined cycle power generation plant equipped therewith, and output increasing method
JP2013048718A (en) * 2011-08-31 2013-03-14 Mitsubishi Electric Corp Deodorizing device
JP2018087679A (en) * 2016-11-30 2018-06-07 ダイキン工業株式会社 Humidifier
WO2021200072A1 (en) * 2020-03-31 2021-10-07 ダイキン工業株式会社 Air quality adjustment system
JP2021159830A (en) * 2020-03-31 2021-10-11 ダイキン工業株式会社 Air quality regulating system
JP7104339B2 (en) 2020-03-31 2022-07-21 ダイキン工業株式会社 Air quality adjustment system
JP7464868B2 (en) 2020-03-31 2024-04-10 ダイキン工業株式会社 Air quality control system
WO2023248560A1 (en) * 2022-06-21 2023-12-28 シャープ株式会社 Total heat exchange element and ventilator

Similar Documents

Publication Publication Date Title
Oh et al. Evaluation of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations
JP2008043899A (en) Dehumidifying and humidifying rotor, dehumidifying and humidifying device and its operation method
US4341539A (en) Thermally regenerative desiccant element
Venegas et al. Critical review and future prospects for desiccant coated heat exchangers: Materials, design, and manufacturing
JP2008057953A (en) Air conditioning system
Zhang et al. A pre-cooling Munters environmental control desiccant cooling cycle in combination with chilled-ceiling panels
JP2011036768A (en) Dehumidifier
Oh et al. Studying the performance of a dehumidifier with adsorbent coated heat exchangers for tropical climate operations
JP5497492B2 (en) Desiccant air conditioner
JP2009097837A (en) Humidistat and temperature control desiccant rotor and desiccant ventilation system using the same
JP2009136750A (en) Desiccant dehumidifier and desiccant air-conditioning system
JP4919498B2 (en) Air conditioning system
JP2005127683A (en) Heat exchanger using heat transfer material having vapor adsorption/desorption function
JP2011027332A (en) Heat exchanger and heat pump type desiccant system
JP2011143358A (en) Moisture absorption filter and humidifier
JP5063745B2 (en) Air conditioner
JP5601795B2 (en) Air conditioning method and air conditioning apparatus
JP4681203B2 (en) Air conditioner
Liu A novel heat recovery/desiccant cooling system
JP3438671B2 (en) Humidity controller
JP5241693B2 (en) Desiccant system
WO2004081462A1 (en) Air conditioning method using liquid desiccant
JP2006289258A (en) Dehumidification body and desiccant air-conditioner using the same
JP2002282641A (en) Dehumidifying air conditioner
JP3788236B2 (en) Rotor structure and humidity control apparatus including the same