WO2019026823A1 - Sheet for total heat exchangers, element for total heat exchangers, and total heat exchanger - Google Patents

Sheet for total heat exchangers, element for total heat exchangers, and total heat exchanger Download PDF

Info

Publication number
WO2019026823A1
WO2019026823A1 PCT/JP2018/028397 JP2018028397W WO2019026823A1 WO 2019026823 A1 WO2019026823 A1 WO 2019026823A1 JP 2018028397 W JP2018028397 W JP 2018028397W WO 2019026823 A1 WO2019026823 A1 WO 2019026823A1
Authority
WO
WIPO (PCT)
Prior art keywords
total heat
heat exchanger
fiber
less
sheet
Prior art date
Application number
PCT/JP2018/028397
Other languages
French (fr)
Japanese (ja)
Inventor
浩己 山本
山根 教郎
絵美 相澤
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to JP2019534487A priority Critical patent/JP7173012B2/en
Publication of WO2019026823A1 publication Critical patent/WO2019026823A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/02Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units

Definitions

  • the present invention relates to a total heat exchanger sheet, a total heat exchanger element, and a total heat exchanger.
  • heat exchanger a heat exchange ventilator
  • a heat exchanger has been proposed as a device capable of ventilating without impairing the effects of cooling and heating, in which heat is exchanged between air supply and exhaust during ventilation.
  • a plurality of partition plates (liners) are stacked via a spacer, and an air supply path for introducing outdoor air into the room and an exhaust path for discharging indoor air to the room are divided.
  • a total heat exchanger is widely adopted which performs heat exchange of latent heat (humidity) simultaneously with sensible heat (temperature).
  • Patent Document 1 discloses a fine cellulose fiber non-woven fabric layer made of fine cellulose fibers for the purpose of providing a multilayer structure having high air permeability and high moisture permeability and having high suitability as a sheet for a total heat exchanger.
  • a multilayer structure comprising at least one layer is described.
  • the present invention is a sheet for a total heat exchanger having high moisture permeability and air permeability and excellent in carbon dioxide barrier properties, a total heat exchanger element having the total heat exchanger sheet, and a total heat exchanger element including the total heat exchanger element It aims at providing a heat exchanger.
  • the present inventors in the sheet for total heat exchanger provided with the fiber layer containing the fine cellulose fiber, by setting the water content to a specific content, the air permeability and the moisture permeability are high, carbon dioxide barrier property It has been found that an excellent total heat exchanger sheet can be obtained. That is, the present invention relates to the following ⁇ 1> to ⁇ 18>. It has a ⁇ 1> base material layer and the fiber layer provided on this base material layer, This fiber layer contains the fine cellulose fiber of the fiber width of 1,000 nm or less, and moisture content is 8 mass% The above is a sheet for total heat exchangers. ⁇ 2> The sheet for total heat exchangers according to ⁇ 1>, further containing a moisture absorbent.
  • ⁇ 3> At least one member selected from metal halides, metal sulfates, metal acetates, amine salts, phosphoric acid compounds, guanidine salts, and metal hydroxides (preferably, metal halide salts)
  • the total heat exchanger sheet according to ⁇ 2> more preferably containing at least one selected from the group consisting of an alkali metal halide, an alkaline earth metal halide, still more preferably lithium chloride and calcium chloride.
  • the fine cellulose fiber is an ionic group (preferably an anionic group, more preferably a phosphoric acid group or a group derived from a phosphoric acid group, a carboxy group or a group derived from a carboxy group, a sulfonic acid group or a sulfonic acid At least one member selected from the group derived from a group, more preferably at least one member selected from a phosphate group or a group derived from a phosphate group, and a carboxy group or a group derived from a carboxy group, still more preferably
  • the total heat exchanger sheet according to any one of ⁇ 1> to ⁇ 4>, which has a phosphoric acid group or a group derived from a phosphoric acid group.
  • ⁇ 6> The sheet for total heat exchanger according to any one of ⁇ 1> to ⁇ 5>, wherein the contact angle of water on the surface on the fiber layer side is 50 ° or more.
  • D1 / D2 is 0.25 or more and 4 or less
  • ⁇ 1> A sheet for total heat exchangers according to any of ⁇ 6>.
  • ⁇ 8> The sheet for total heat exchanger according to any one of ⁇ 1> to ⁇ 7>, wherein the fiber width of the fine cellulose fibers is 30 nm or less.
  • ⁇ 9> The sheet for total heat exchanger according to any one of ⁇ 1> to ⁇ 8>, wherein the basis weight of the fine cellulose fibers is 0.1 g / m 2 or more and 3 g / m 2 or less.
  • ⁇ 12> Furthermore, it contains a hygroscopic agent, and the basis weight of the hygroscopic agent is 1 g / m 2 or more and 20 g / m 2 or less, preferably 3 g / m 2 or more and 15 g / m 2 or less, more preferably 5 g / m 2 or more 12 g / m 2
  • ⁇ 13> The sheet for total heat exchanger according to any one of ⁇ 1> to ⁇ 12>, wherein the base material layer and the fiber layer contain a hygroscopic agent.
  • ⁇ 14> Density is 0.65 g / cm 3 or more and 1.3 g / cm 3 or less (preferably 0.7 g / cm 3 or more and 1.3 g / cm 3 or less, more preferably 0.75 g / cm 3 or more and 1.0 g / cm is 3 or less), ⁇ 1> to the total heat exchanger sheet according to any one of ⁇ 13>.
  • ⁇ 16> basis weight 10 g / m 2 or more 300 g / m 2 or less (preferably 10 g / m 2 or more 200 g / m 2 or less, more preferably 30 g / m 2 or more 100 g / m 2 or less, more preferably 30 g / a m 2 or more 80 g / m 2 or less), ⁇ 1> the total heat exchanger sheet according to any one of 1 to ⁇ 15>.
  • ⁇ 17> A total heat exchanger element having the total heat exchanger sheet according to any one of ⁇ 1> to ⁇ 16>. The total heat exchanger provided with the element for all the heat exchangers as described in ⁇ 18> ⁇ 17>.
  • a sheet for a total heat exchanger having high moisture permeability and air permeability and excellent in carbon dioxide barrier property, an element for a total heat exchanger having the sheet for the total heat exchanger, and an element for the total heat exchanger A total heat exchanger is provided.
  • FIG. 1 is a graph showing the relationship between the amount of dropped NaOH and the conductivity of a fiber material having a phosphate group.
  • FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and the electrical conductivity of a fiber material having a carboxy group.
  • the sheet for total heat exchangers of the present invention has a substrate layer and a fiber layer provided on the substrate layer, and the fiber layer contains fine cellulose fibers having a fiber width of 1,000 nm or less, The water content is 8% by mass or more.
  • the total heat exchanger supplies fresh air and exchanges heat when discharging dirty air in the room.
  • the sensible heat temperature
  • the latent heat humidity
  • moisture permeability and heat conductivity are required.
  • high gas barrier properties mainly, carbon dioxide barrier properties
  • Patent Document 1 describes that by providing a fine cellulose fiber non-woven fabric layer, a multilayer structure having a high air permeability resistance (air permeability) can be obtained, but the influence of the water content of the multilayer structure is described. Has not been considered. According to the present invention, by setting the water content of the total heat exchanger sheet to a specific range, it is possible to obtain a total heat exchanger sheet having high moisture permeability and air permeability and further excellent in carbon dioxide barrier properties. The detailed mechanism of action by which the above effects can be obtained is unknown, but some are considered as follows.
  • the fiber layer containing the fine cellulose fiber high air permeability and carbon dioxide barrier property can be obtained, and further, by making the water content of the total heat exchanger sheet 8% by mass or more, the permeability is improved. It is thought that the humidity has improved. This is because setting the water content of the total heat exchanger sheet to 8% by mass or more makes the total heat exchanger sheet more hydrophilic than when the water content is less than 8% by mass, and the moisture permeability is improved. It is estimated that Hereinafter, the present invention will be described in more detail.
  • the total heat exchanger sheet of the present invention has a substrate layer and a fiber layer provided on the substrate layer. It does not specifically limit as a base material which comprises a base material layer, The base material selected from a nonwoven fabric, a porous membrane, and a fabric is illustrated preferably.
  • a base material which comprises a base material layer
  • the base material selected from a nonwoven fabric, a porous membrane, and a fabric is illustrated preferably.
  • the "substrate” means the substrate itself which forms the substrate layer before containing the hygroscopic agent
  • the "substrate layer” means the support of the fiber layer in the total heat exchanger sheet.
  • non-woven fabric examples include non-woven fabric composed of at least one selected from natural cellulose fiber, nylon fiber, polyester fiber, and polyolefin fiber.
  • porous membranes include olefin resins such as polyethylene and polypropylene; polysulfones; fluorine resins such as polytetrafluoroethylene, polyvinyl fluoride and polyvinylidene fluoride; polycarbonates; and nylon resins such as 6-nylon and 6,6-nylon And acrylic resins such as polymethyl methacrylate; polyketones such as poly (1-oxytrimethylene); and porous membranes composed of polyetheretherketone and the like.
  • the fabric include cellulose fibers including cellulose derivative fibers, nylon fibers, polyurethane fibers, and fabrics (including cross-woven fabrics) formed by mixing yarns thereof.
  • the substrate is preferably classified as "paper", which is preferably a non-woven fabric, more preferably a plant pulp fiber such as natural cellulose, from the viewpoint of easy formation of a fiber layer and obtaining a desired water content.
  • Paper is preferably a non-woven fabric, more preferably a plant pulp fiber such as natural cellulose, from the viewpoint of easy formation of a fiber layer and obtaining a desired water content.
  • Non-woven fabric The pulp used as the raw material of the base material may be either softwood pulp or hardwood pulp, and the cooking method and the bleaching method are not particularly limited. It is preferable to use softwood-bleached kraft pulp (NBKP), and it is more preferable to use NBKP as a main raw material, from the viewpoint of the strength of the base material and the carbon dioxide barrier property.
  • NNKP softwood-bleached kraft pulp
  • non-wood pulp such as hemp pulp, kenaf and bamboo
  • materials other than pulp fiber such as rayon fiber, nylon fiber and other heat-fusion fibers are also used as secondary materials. You may mix
  • the content of pulp in the base material is preferably 95% by mass or more, more preferably 98% by mass or more, and 100% by mass from the viewpoint of ease of forming a fiber layer and obtaining a desired water content. It is also good.
  • non-coated printing paper such as high quality paper, medium paper etc.
  • information paper such as copying paper, glassine paper processed by high pressure processing (measured by Canadian standard freeness test method (CSF specified in JIS P 8121)
  • CSF specified in JIS P 8121 Canadian standard freeness test method
  • the freeness is a degree of beating of about 40 to 80 ml
  • semi-glassine paper the degree of beating of about 100 to 200 ml or so above
  • more preferably fine wood paper or semigrass paper still more preferably semigrass paper.
  • the air permeability of the substrate is not particularly limited, but it is preferably 5 sec or more, more preferably 10 sec or more, still more preferably 30 sec or more, from the viewpoint of increasing the air permeability of the obtained total heat exchanger sheet. Also, from the viewpoint of economy, it is preferably 1,000 sec or less, more preferably 500 sec or less, and further preferably 200 sec or less.
  • the air permeability is measured by the method described in the examples.
  • the basis weight of the substrate is not particularly limited, but preferably 5 g / m 2 or more, more preferably 10 g / m 2 or more, further preferably from the viewpoint of making the basis weight of the obtained total heat exchanger sheet into a desired range. Is 20 g / m 2 or more, more preferably 25 g / m 2 or more, still more preferably 30 g / m 2 or more, still more preferably 35 g / m 2 or more, and preferably 200 g / m 2 or less, more preferably It is preferably 150 g / m 2 or less, more preferably 100 g / m 2 or less, and still more preferably 70 g / m 2 or less.
  • the basis weight is measured by the method described in the examples.
  • the thickness of the substrate is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more from the viewpoint of obtaining strength as a support, and from the viewpoint of reducing the thickness of the entire heat exchanger sheet.
  • it is 150 micrometers or less, More preferably, it is 120 micrometers or less, More preferably, it is 100 micrometers or less, More preferably, it is 90 micrometers or less, More preferably, it is 65 micrometers or less.
  • the thickness is measured by the method described in the examples.
  • the density of the substrate is not particularly limited, but it is preferably 0.3 g / cm 3 or more, more preferably 0.5 g / cm 3 or more, still more preferably from the viewpoint of making the density of the total heat exchanger sheet into a desired range. It is 0.6 g / cm 3 or more, more preferably 0.65 g / cm 3 or more, and preferably 1.3 g in view of easy availability, economy and suppression of the total mass of the entire heat exchanger. / Cm 3 or less, more preferably 1.0 g / cm 3 or less, further preferably 0.85 g / cm 3 or less, still more preferably 0.80 g / cm 3 or less. The density is measured by the method described in the examples.
  • the total heat exchanger sheet of the present invention has a fiber layer, and the fiber layer contains fine cellulose fibers having a fiber width of 1,000 nm or less.
  • the fiber width of the fine cellulose fiber can be read by, for example, an electron microscope.
  • the average fiber width of the fine cellulose fiber is preferably 1,000 nm or less, more preferably 100 nm or less, still more preferably 30 nm or less, further preferably from the viewpoint of obtaining a sheet for a total heat exchanger excellent in air permeability and moisture permeability. Is 10 nm or less, more preferably 8 nm or less.
  • the average fiber width of the fine cellulose fiber is preferably 2 nm or more, more preferably 3 nm or more.
  • the fine cellulose fiber is, for example, monofibrillar cellulose.
  • the average fiber width of the cellulose fiber is measured as follows using electron microscopy. First, an aqueous suspension of cellulose fiber having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and the suspension is cast on a hydrophilized carbon film-coated grid to obtain a sample for TEM observation. Do. If wide fibers are included, an SEM image of the surface cast on glass may be observed. Then, observation with an electron microscope image is performed at a magnification of 1,000 times, 5,000 times, 10,000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification are adjusted to satisfy the following conditions.
  • One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers cross the straight line X.
  • the width of the fiber intersecting with the straight line X and the straight line Y is visually read. In this way, three or more sets of observation images of surface portions not overlapping each other at least are obtained.
  • the fiber length of the fine cellulose fiber is not particularly limited, but is preferably 0.1 ⁇ m or more, and preferably 1,000 ⁇ m or less, more preferably 800 ⁇ m or less, still more preferably 600 ⁇ m or less.
  • the fiber length of the fine cellulose fiber can be calculated
  • the fine cellulose fiber preferably has a type I crystal structure.
  • the proportion of type I crystal structure in the fine cellulose fibers is preferably 30% or more, more preferably 40% or more, and still more preferably 50% or more. This is preferable because a fiber layer having excellent strength can be obtained.
  • the degree of crystallinity the X-ray diffraction profile is measured, and the pattern is determined by a conventional method (Seagal et al., Textile Research Journal, 29: 786, 1959).
  • the axial ratio (fiber length / fiber width) of the fine cellulose fiber is not particularly limited, but is preferably 20 or more, more preferably 50 or more, and preferably 10,000 or less, more preferably 1,000 or less. is there. By setting the axial ratio within the above range, a slurry viscosity suitable for forming a fiber layer can be obtained.
  • the basis weight (coating amount) of the fine cellulose fiber is preferably 0.1 g / m 2 or more, more preferably 0.2 g / m 2 or more, from the viewpoint of obtaining high air permeability and moisture permeability.
  • it is 0.3 g / m 2 or more, and from the viewpoint of making the sheet thickness as a total heat exchanger sheet into a desired range, and an economic point of view, preferably 20 g / m 2 or less, more preferably 10 g / M 2 or less, more preferably 3 g / m 2 or less, still more preferably 1 g / m 2 or less.
  • the fine cellulose fiber preferably has at least one of an ionic group and a nonionic group introduced.
  • the ionic group and the nonionic group are preferably hydrophilic groups. It is more preferable that the fine cellulose fiber has an ionic group from the viewpoint of improving the dispersibility of the fiber in the dispersion medium and enhancing the disintegration efficiency in the disintegration treatment.
  • the ionic group can contain either or both of an anionic group and a cationic group. In the present invention, it is particularly preferable to have an anionic group as the ionic group.
  • a phosphate group or a group derived from a phosphate group also referred to simply as a phosphate group
  • a carboxy group or a group derived from a carboxy group also referred to simply as a carboxy group
  • a sulfonic acid It is preferably at least one selected from a group derived from a group or a sulfonic acid group (sometimes simply referred to as a sulfonic acid group), and more preferably at least one selected from a phosphoric acid group and a carboxy group
  • a phosphate group is particularly preferred.
  • a phosphoric acid group is a group which functions as a dibasic acid which corresponds to what removed the hydroxy group from phosphoric acid.
  • Groups derived from phosphate groups include salts of phosphate groups, phosphate ester groups and the like.
  • the group originating in a phosphoric acid group may be contained in the fine cellulose fiber as a group which the phosphoric acid group condensed.
  • the phosphate group or the group derived from the phosphate group is, for example, a group represented by the following formula (1).
  • n is 2 or more and ⁇ 'is R or OR, at least one of each ⁇ n is O 2 - and the remainder is R or OR.
  • n is equal to or greater than 2
  • R each independently represents a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched chain Hydrocarbon groups, aromatic hydrocarbon groups, and derivatives thereof.
  • saturated-linear hydrocarbon group include methyl group, ethyl group, n-propyl group, and n-butyl group, but are not particularly limited.
  • Examples of the saturated-branched hydrocarbon group include i-propyl group and t-butyl group, but are not particularly limited.
  • the saturated-cyclic hydrocarbon group may, for example, be a cyclopentyl group or a cyclohexyl group, but is not particularly limited.
  • Examples of the unsaturated-linear hydrocarbon group include, but are not particularly limited to, a vinyl group, an allyl group and the like.
  • Examples of unsaturated-branched hydrocarbon groups include i-propenyl group and 3-butenyl group, but are not particularly limited.
  • As an aromatic hydrocarbon group although a phenyl group or a naphthalene group etc. are mentioned, it is not limited in particular.
  • As the derivative in R at least one of functional groups such as a carboxy group, a hydroxy group, or an amino group is added or substituted to the main chain or side chain of the various hydrocarbon groups. Although a group is mentioned, it is not limited in particular.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R to 20 or less, it is possible to prevent the molecule of the phosphorus oxo acid group containing R from becoming too large and maintain good permeability to the fiber material, It can contribute to the improvement of the yield of fine cellulose fiber.
  • ⁇ b + is a b-valent cation consisting of an organic substance or an inorganic substance.
  • organic b-valent cations include aliphatic ammonium or aromatic ammonium
  • inorganic b-valent cations include ions of alkali metals such as sodium, potassium or lithium, calcium, and the like.
  • a cation of a divalent metal such as magnesium, or a hydrogen ion but is not particularly limited.
  • the b-valent cation composed of an organic substance or an inorganic substance is preferably an ion of sodium or potassium which is not easily yellowed when the fiber material containing ⁇ is heated and which is industrially easy to use, but is not particularly limited.
  • the amount of ionic group introduced into the fine cellulose fiber is preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, still more preferably 0.50 mmol / g or more, per 1 g (mass) of the fine cellulose fiber. Still more preferably, it is 1.00 mmol / g or more.
  • the amount of ionic group introduced into the fine cellulose fiber is preferably 3.65 mmol / g or less, more preferably 3.50 mmol / g or less, still more preferably 3.00 mmol / g, per 1 g (mass) of the fine cellulose fiber. It is below.
  • the introduction amount of the ionic group to the fine cellulose fiber can be measured, for example, by the conductivity titration method. In the measurement by the conductivity titration method, the introduced amount is measured by determining the change in conductivity while adding an alkali such as an aqueous solution of sodium hydroxide to the obtained slurry containing fine cellulose fibers.
  • FIG. 1 is a graph showing the relationship between the amount of dropped NaOH and the electrical conductivity for fine cellulose fibers having a phosphate group.
  • the introduced amount of phosphate group to cellulose fiber is measured as follows. First, a slurry containing cellulose fibers is treated with an ion exchange resin. In addition, before the process by an ion exchange resin, you may implement the disintegration processing similar to the below-mentioned disintegration processing process with respect to a measuring object as needed. Then, while the aqueous sodium hydroxide solution is added, the change in electrical conductivity is observed to obtain a titration curve as shown in FIG. As shown in FIG. 1, at the beginning, the electrical conductivity rapidly decreases (hereinafter, referred to as “first region”).
  • the conductivity starts to rise slightly (hereinafter referred to as "the second region”).
  • the conductivity increment is increased (hereinafter referred to as "third region”).
  • the boundary point between the second area and the third area is defined as a point at which the second derivative value of the conductivity, that is, the change amount of the increment (inclination) of the conductivity is maximum.
  • the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration
  • the amount of alkali required in the second region is the amount of weakly acidic groups in the slurry used for titration Become equal.
  • the amount of strongly acidic groups is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation. Therefore, simply referring to the amount of introduction of phosphate group (or the amount of phosphate group) or the amount of introduction of substituents (or the amount of substituent group) means the amount of strongly acidic group.
  • the value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the slurry to be titrated is the amount of phosphate introduced (mmol / g).
  • FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and the electrical conductivity for fine cellulose fibers having a carboxy group.
  • the amount of carboxy group introduced into the fine cellulose fiber is measured as follows. First, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide to a slurry containing fine cellulose fibers to be measured, and a titration curve as shown in FIG. 2 is obtained. In addition, you may implement the disintegration processing similar to the below-mentioned disintegration processing process with respect to a measuring object as needed. The titration curve, as shown in FIG.
  • the boundary point between the first region and the second region is defined as a point at which the second derivative value of the conductivity, that is, the amount of change in the conductivity increment (slope) becomes maximum.
  • the value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve by the solid content (g) in the fine cellulose fiber-containing slurry to be titrated is the amount of introduction of carboxy group (mmol) / G).
  • g of a denominator is a mass of the fine cellulose fiber of an acid type, as for the said phosphoric acid group introduction amount (mmol / g), "the amount of phosphoric acid groups which an acidic cellulose fiber has" (following, The amount of phosphate group (referred to as acid type) is shown.
  • the amount of phosphoric acid groups possessed by the cellulose fiber in which the cation C is a counter ion can be determined. That is, it calculates with the following formula.
  • Amount of phosphoric acid group (C type) amount of phosphoric acid group (acid type) / ⁇ 1 + (W-1) x A / 1000 ⁇ here,
  • W Formula weight per monovalent C cation (for example, 23 for Na, 9 for Al) It is.
  • the carboxy group introduction amount means that "carboxy group amount of acid type cellulose fiber" (hereinafter, carboxy group amount (Referred to as acid type)).
  • carboxy group amount (Referred to as acid type)
  • the proton of the carboxy group is substituted by an arbitrary cation C so as to be a charge equivalent
  • “g” of the denominator is converted to the mass of the cellulose fiber when the cation C is a counter ion
  • the amount of carboxy groups possessed by the cellulose fiber in which the cation C is a counter ion hereinafter, the amount of carboxy groups (C type)
  • Carboxyl group weight (C type) Carboxyl group weight (acid type) / ⁇ 1+ (W-1) ⁇ (Carboxyl group weight (acid type)) / 1000 ⁇ here, W: Formula weight per monovalent C cation (for example, 23 for Na, 9 for Al) It is.
  • the ionic group introduction process which introduces an ionic group to a fiber raw material, the washing process, the alkali treatment process (neutralization process), and the fibrillation treatment process
  • an acid treatment step instead of or in addition to the washing step.
  • a phosphoric acid group introduction process and a carboxy group introduction process are illustrated as an ionicity group introduction process. Each of the steps will be described below.
  • (Ionic group introduction process) [Phosphoric acid group introduction process]
  • the process (phosphate group introduction process) of introducing a phosphate group to cellulose fiber will be described below.
  • the phosphoric acid group introducing step contains at least one compound (hereinafter also referred to as "compound A") selected from compounds which can react with the hydroxyl group of the fiber raw material containing cellulose and can introduce a phosphoric acid group. It is the process of acting on the fiber material.
  • compound A selected from compounds which can react with the hydroxyl group of the fiber raw material containing cellulose and can introduce a phosphoric acid group. It is the process of acting on the fiber material.
  • the reaction between the fiber material containing cellulose and the compound A may be carried out in the presence of at least one selected from urea and derivatives thereof (hereinafter also referred to as “compound B”).
  • compound B urea and derivatives thereof
  • the reaction between the fiber material containing cellulose and the compound A may be carried out in the absence of the compound B.
  • phosphoric acid and phosphoric acid are used as the compound A.
  • Sodium salt of phosphoric acid, potassium salt of phosphoric acid, or ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, or disodium hydrogen phosphate, ammonium dihydrogen phosphate is more preferable.
  • the amount of compound A added to the fiber raw material is not particularly limited, but when the amount of compound A added is converted to phosphorus atomic weight, the amount of phosphorus atom added to 100 parts by mass of fiber raw material (absolute dry mass) is preferably 0.
  • the compound B used in this embodiment is at least one selected from urea and derivatives thereof as described above.
  • compound B urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like can be mentioned.
  • the compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the homogeneity of the reaction, it is preferable to use an aqueous solution in which both the compound A and the compound B are dissolved.
  • the addition amount of the compound B with respect to 100 parts by mass of the fiber raw material is not particularly limited, but is preferably 1 part by mass or more, more preferably 10 parts by mass or more, still more preferably 100 parts by mass or more Preferably it is 500 mass parts or less, More preferably, it is 400 mass parts or less, More preferably, it is 350 mass parts or less.
  • an amide or an amine may be included in the reaction system.
  • the amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Among these, triethylamine is known to work as a good reaction catalyst.
  • the phosphoric acid group introducing step it is preferable to heat treat the fiber material after adding or mixing the compound A and the like to the fiber material.
  • the heat treatment temperature it is preferable to select a temperature at which the phosphoric acid group can be efficiently introduced while suppressing the thermal decomposition or hydrolysis reaction of the fiber.
  • the heat treatment temperature is preferably 50 ° C. or more, more preferably 100 ° C. or more, still more preferably 130 ° C. or more, and preferably 300 ° C. or less, more preferably 250 ° C. or less, still more preferably 200 ° C. or less .
  • the heat processing can utilize the apparatus which has various thermal media, and a stirring dryer, a rotary dryer, a disk dryer, a roll type heating apparatus, a plate type heating apparatus, a fluidized bed drying apparatus, a flash drying apparatus , A vacuum drying apparatus, an infrared heating apparatus, a far infrared heating apparatus, and a microwave heating apparatus are exemplified.
  • a method of impregnating a thin sheet of fiber raw material with the compound A by a method such as impregnation, and heating, or a method of heating and drying while kneading or stirring the fiber raw material and compound A with a kneader etc. can do.
  • an air-blowing oven may be mentioned.
  • the heat treatment time is preferably 1 second or more, more preferably 10 seconds or more, and preferably 300 minutes or less, more preferably 1,000 seconds or less after substantially removing moisture from the fiber raw material. More preferably, it is 800 seconds or less.
  • the phosphate group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphate group introduction step twice or more, many phosphate groups can be introduced into the fiber material. In the present invention, as an example of a preferable embodiment, the case of performing the phosphate group introducing step twice is mentioned.
  • the amount of phosphoric acid group introduced per 1 g (mass) of the fine cellulose fiber is preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, still more preferably 0.50 mmol / g or more, still more preferably It is 1.00 mmol / g or more.
  • the introduction amount of the phosphate group per 1 g (mass) of the fine cellulose fiber is preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and further preferably 3.00 mmol / g or less.
  • transduces a carboxy group into a cellulose fiber is demonstrated below.
  • the carboxy group introducing step has a fiber material containing cellulose, a compound having an oxidation treatment such as oxidation by ozone oxidation, Fenton method, TEMPO oxidation treatment, a group derived from a carboxylic acid or a derivative thereof, or a group derived from a carboxylic acid. It is carried out by treatment with an acid anhydride of the compound or a derivative thereof.
  • the compound having a group derived from carboxylic acid is not particularly limited, but dicarboxylic acids such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid and itaconic acid, tricarboxylic acids such as citric acid and aconitic acid Acid compounds are mentioned.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, but examples thereof include an imidized acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group.
  • TEMPO oxidation treatment When TEMPO oxidation treatment is carried out in the carboxy group introduction step, it is preferable to carry out under the conditions of pH 6 or more and 8 or less. Such treatment is also referred to as neutral TEMPO oxidation treatment.
  • the amount of carboxy group introduced per 1 g (mass) of the fine cellulose fiber is preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, still more preferably 0. It is 50 mmol / g or more, more preferably 0.90 mmol / g or more. Moreover, Preferably it is 2.50 mmol / g or less, More preferably, it is 2.20 mmol / g or less, More preferably, it is 2.00 mmol / g or less.
  • the introduction amount per 1 g (mass) of the fine cellulose fiber may be 5.8 mmol / g or less. It is preferable to introduce a carboxy group into the fiber material so that the amount of carboxy group introduced into the fine cellulose fiber is in the above range. By making the introduction amount of the carboxy group within the above range, it is possible to facilitate the miniaturization of the fiber raw material and to enhance the stability of the fine cellulose fiber.
  • the ionic group-introduced fiber may be washed with water or an organic solvent after the ionic group introduction step and before the alkaline treatment step.
  • the alkali group introduced fibers such as phosphate group introduced fibers which have been subjected to alkali treatment are washed with water or an organic solvent Is preferred.
  • the washing step it is preferable to repeat the filtration operation after dispersing the ionic group-introduced fiber in water or an organic solvent, and control the progress of the washing step by setting the electric conductivity of the filtrate to a desired range.
  • the washing step is carried out so that the conductivity of the filtrate is preferably 10,000 ⁇ S / cm or less, more preferably 1,000 ⁇ S / cm or less, still more preferably 300 ⁇ S / cm or less, still more preferably 150 ⁇ S / cm Is preferred.
  • Alkali treatment process When producing a fine cellulose fiber, an alkali treatment is performed on the fiber raw material to neutralize the ionic group between the ionic group introduction step and the defibration treatment step described later. It may have a sum process). Although it does not specifically limit as the method of alkali treatment, For example, the method of immersing an ionic group introduce
  • the alkali compound contained in the alkali solution is not particularly limited, and may be an inorganic alkali compound or an organic alkali compound. In the present invention, it is preferable to use sodium hydroxide or potassium hydroxide as an alkali compound because of its high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent.
  • the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohols, and more preferably an aqueous solvent containing at least water.
  • a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferable because of high versatility.
  • the temperature of the alkali solution in the alkali treatment step is not particularly limited, but is preferably 5 ° C. or more, more preferably 10 ° C. or more, and preferably 80 ° C. or less, more preferably 60 ° C. or less.
  • the immersion time of the ionic group-introduced fiber into the alkali solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 30 minutes or less, more preferably 20 It is less than a minute.
  • the use amount of the alkali solution in the alkali treatment is not particularly limited, but is preferably 100 parts by mass or more, more preferably 1,000 parts by mass or more, with respect to 100 parts by mass of the dry mass of the ionic group-introduced fiber. And preferably 100,000 parts by mass or less, more preferably 10,000 parts by mass or less.
  • an alkaline solution is gradually added to the dispersion in which the ionic group-introduced fiber is dispersed, and the pH in the system is preferably 10 or more. It is preferable to add an alkaline solution so that it is preferably 11 or more, more preferably 12 or more, and preferably 14 or less, more preferably 13.5 or less, and further preferably 13 or less.
  • the pH in the system is preferably 7 or more, more preferably 8 or more, still more preferably 9 or more, still more preferably 10 or more, and preferably 14 or less It is preferable to add an alkali solution so as to be more preferably 13.5 or less, further preferably 13 or less.
  • an acid treatment may be performed on the ionic group-introduced fiber raw material between the ionic group introduction step and the defibration treatment step described later.
  • the manufacturing method of a fine cellulose fiber the aspect which performs an ionic group introduction process, an acid treatment process, an alkali treatment process, and a disintegration treatment process in this order is mentioned.
  • the method of immersing a fiber raw material in the acidic liquid containing an acid is mentioned.
  • the concentration of the acidic solution to be used is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the pH of the acidic solution to be used is not particularly limited, but is preferably 0 or more, more preferably 1 or more, and preferably 4 or less, more preferably 3 or less.
  • Examples of the acid contained in the acidic solution include inorganic acids, sulfonic acids and carboxylic acids.
  • inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • carboxylic acids include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid and tartaric acid. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or more, more preferably 20 ° C. or more, and preferably 100 ° C. or less, more preferably 90 ° C. or less.
  • the immersion time to the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 120 minutes or less, more preferably 60 minutes or less.
  • the use amount of the acid solution in the acid treatment is not particularly limited, but preferably 100 parts by mass or more, more preferably 1,000 parts by mass or more with respect to 100 parts by mass of the absolute dry mass (absolute dry mass) of the fiber material. And preferably 100,000 parts by mass or less, more preferably 10,000 parts by mass or less.
  • the ionizable group-introduced fiber is subjected to a defibration treatment in a defibration treatment step to obtain a fine cellulose fiber.
  • a defibration treatment apparatus can be used.
  • the fibrillation treatment apparatus is not particularly limited, but a high-speed fibrillation machine, a grinder (stone mill type crusher), a high pressure homogenizer or an ultrahigh pressure homogenizer, a high pressure collision type crusher, a ball mill, a bead mill, a bead mill, a disc type refiner, a conical refiner, biaxial kneading Machine, vibration mill, homomixer under high speed rotation, ultrasonic dispersion machine, beater, etc. can be used, and solid content concentration of the fine cellulose fiber at the time of disentanglement processing can be set suitably.
  • a high-speed fibrillation machine a grinder (stone mill type crusher), a high pressure homogenizer or an ultrahigh pressure homogenizer, a high pressure collision type crusher, a ball mill, a bead mill, a bead mill, a disc type refiner, a conical refiner, biaxial kneading Machine, vibration mill, homomixer under high speed rotation, ultrasonic
  • a high-speed fibrillation machine a high pressure homogenizer, or an ultrahigh pressure homogenizer which is less affected by the grinding media and less likely to contaminate among the above-mentioned fibrillation treatment apparatuses.
  • the defibration treatment step it is preferable to dilute the ionic group-introduced fiber with a dispersion medium to form a slurry.
  • a dispersion medium one or more selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but alcohols, polyhydric alcohols, ketones, ethers, esters, non-proton polar solvents and the like are preferably exemplified.
  • alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol and glycerin.
  • ketones include acetone, methyl ethyl ketone (MEK) and the like.
  • the ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, propylene glycol monomethyl ether and the like.
  • esters include ethyl acetate and butyl acetate.
  • the aprotic polar solvent include dimethylsulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • solid content other than the ionic group-introduced fiber such as urea having hydrogen bonding property may be contained, for example.
  • the step of obtaining the fine cellulose fiber includes the step of refining the fiber raw material (coarse cellulose fiber). At this time, most of the coarse cellulose fibers are refined, but some of them may remain unrefined. In such a case, coarse cellulose fibers will be contained in the fiber layer.
  • the coarse cellulose fiber contained in the cellulose fiber-containing composition is prepared by adjusting the cellulose dispersion to a solid content concentration of 0.2% by mass, and a cooling high-speed centrifuge (Kokusan Co., Ltd., H-2000B) It is a cellulose fiber that settles when it is centrifuged at 12,000 G for 10 minutes using Less sedimented components means that the yield of supernatant after centrifugation is high. It is preferable that the supernatant yield after this centrifugation is 80 mass% or more with respect to the total mass of a cellulose fiber.
  • the supernatant yield after centrifugation is more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 99% by mass or more.
  • the supernatant yield after centrifugation of said fine cellulose fiber dispersion liquid can be measured by the following method in this specification.
  • the supernatant yield after centrifuging the fine cellulose fiber dispersion was measured by the method described below.
  • the supernatant yield after centrifugation is an index of the yield of fine cellulose fibers, and the higher the supernatant yield, the higher the yield of fine cellulose fibers.
  • Fine cellulose fiber dispersion is adjusted to a solid concentration of 0.2% by mass, and centrifuged at 12,000 G for 10 minutes using a cooling high-speed centrifuge (Kokusan Co., Ltd., H-2000B). The obtained supernatant was collected, and the solid concentration of the supernatant was measured.
  • the method of providing the fiber layer on the substrate is not particularly limited, and may be formed by a paper making method, or after fine cellulose fibers are applied on the substrate by coating, spraying or the like, and then dried. You may form a fiber layer.
  • the concentration of the fine cellulose fiber dispersion used to apply papermaking or fine cellulose fibers is not particularly limited, but from the viewpoint of suppressing an increase in viscosity, it is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably It is 3% by mass or less, more preferably 1.5% by mass or less, still more preferably 1% by mass or less, preferably 0.05% by mass or more from the viewpoint of efficiently applying fine cellulose fibers to a substrate More preferably, it is 0.1 mass% or more, More preferably, it is 0.3 mass% or more, More preferably, it is 0.5 mass% or more.
  • the concentration of the fine cellulose fiber dispersion and the amount applied to the substrate may be appropriately adjusted so that the basis weight (coating amount) of the fine cellulose fibers after drying falls within the above-described desired range.
  • the sheet for total heat exchangers of the present invention has a water content of 8% by mass or more. If the water content is less than 8% by mass, it is difficult to obtain high moisture permeability.
  • the moisture content can be adjusted by highly controlling the manufacturing process of the total heat exchanger sheet. According to the present inventors, for example, it is presumed that the type, blending amount, addition method, and the like of the fine cellulose fiber and the hygroscopic agent that constitute the sheet affect the water content.
  • the water content of the total heat exchanger sheet is preferably 9% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, still more preferably 15% by mass or more from the viewpoint of obtaining high moisture permeability. It is.
  • the water content of the total heat exchanger sheet is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably It is 20 mass% or less.
  • the moisture content (moisture content) of the total heat exchanger sheet is measured by the method described in the examples.
  • the total heat exchanger sheet of the present invention preferably contains a hygroscopic agent to obtain a desired moisture content.
  • the hygroscopic agent may be contained in either the base layer or the fiber layer, or may be contained in both the base layer and the fiber layer, but the ease of the production method and the fiber layer side It is preferable that both the base material layer and the fiber layer contain from the viewpoint of increasing the contact angle at the surface of the above. As described later, the contact angle is preferably high.
  • the hygroscopic agent is not particularly limited as long as it is a conventionally known hygroscopic agent, and may be appropriately selected and used.
  • metal halides include lithium chloride, sodium chloride, calcium chloride, magnesium chloride, aluminum chloride, zinc chloride and the like
  • metal lactates include sodium lactate and the like
  • metal sulfates include sodium sulfate Calcium sulfate, magnesium sulfate, zinc sulfate and the like are exemplified, and as metal acetate, potassium acetate and the like are exemplified.
  • examples of the amine salt include dimethylamine hydrochloride and the like
  • examples of the phosphoric acid compound include orthophosphoric acid and the like
  • examples of the guanidine salt include guanidine hydrochloride, guanidine phosphate, and guanidine sulfamate.
  • potassium hydroxide, sodium hydroxide, magnesium hydroxide etc. are illustrated as a metal hydroxide.
  • a water-soluble polymer which is a hygroscopic polymer, or a hydrophilic polymer having a hydrogel forming ability may be used as a hygroscopic agent.
  • the hygroscopic agent is preferably a metal salt, more preferably a metal halide salt, more preferably an alkali metal halide, from the viewpoints of excellent hygroscopicity and handleability and increasing the contact angle to water. It is more preferably an alkaline earth metal halide, and even more preferably at least one selected from the group consisting of lithium chloride and calcium chloride.
  • the present inventors initially predicted that the hydrophilicity of the total heat exchanger sheet is enhanced by containing the hygroscopic agent in the total heat exchanger sheet, and as a result, the contact angle of water is lowered.
  • the hygroscopic agent is a metal salt and the fine cellulose fiber has an ionic group, in particular an anionic group
  • the contact angle of water on the surface on the fiber layer side is increased as an unexpected effect.
  • the cross-linked structure is formed in a pseudo manner by the anionic group contained in the fine cellulose fiber and the metal atom of the hygroscopic agent, and as a result, the surface becomes hydrophobic and the water It is believed that the contact angle increases.
  • the fine cellulose fiber has a carboxy group or a phosphoric acid group as an anionic group, preferably a phosphoric acid group
  • the hygroscopic agent contains lithium chloride or calcium chloride.
  • the content of the hygroscopic agent in the total heat exchanger sheet is preferably 100 parts by mass or more, more preferably 100 parts by mass of the fine cellulose fibers from the viewpoint of making the water content of the total heat exchanger sheet into a desired range. Is 300 parts by mass or more, more preferably 500 parts by mass or more, still more preferably 600 parts by mass and preferably 10,000 parts by mass or less, more preferably 5,000 parts by mass or less, still more preferably 2 , 500 parts by mass or less.
  • the basis weight (coating amount) of the hygroscopic agent in the total heat exchanger sheet is preferably 1 g / m 2 or more, more preferably 3 g / m 2 or more from the viewpoint of making the water content of the total heat exchanger sheet into a desired range. , More preferably 5 g / m 2 or more, and preferably 20 g / m 2 or less, more preferably 15 g / m 2 or less, still more preferably 12 g / m 2 or less.
  • the method for allowing the sheet for total heat exchanger to contain a hygroscopic agent is not particularly limited, but from the viewpoint of increasing the contact angle of water on the surface of the fiber layer side, it is preferable to contain a hygroscopic agent after forming the fiber layer, After forming the layer, a method of spraying and applying an aqueous solution in which a hygroscopic agent is dissolved, and a method of immersing in an aqueous solution in which a hygroscopic agent is dissolved are preferably exemplified.
  • the contact angle of water on the surface on the fiber layer side can be further improved as compared with the method of forming the fiber layer after applying the hygroscopic agent to the base material layer in advance. Moreover, compared with the method of adding a hygroscopic agent to a fine cellulose fiber dispersion liquid, and providing it to a base material, aggregation of a fine cellulose fiber in a dispersion liquid can be suppressed more effectively.
  • the total heat exchanger sheet of the present invention is not particularly limited as long as it has at least one base layer and at least one fiber layer, and has a fiber layer on both sides of the base layer. It may be a three-layer structure of a material layer / fiber layer, or may be a two-layer structure of a fiber layer / substrate layer having a fiber layer on one side, and is not particularly limited. Among these, a two-layer structure of a fiber layer / substrate layer is preferable from the viewpoint of easy production, sufficient moisture permeability and air permeability, and carbon dioxide barrier property with a single fiber layer.
  • the density of the total heat exchanger sheet of the present invention is preferably 0.65 g / cm 3 or more, more preferably 0.7 g / cm 3 or more, still more preferably 0.75 g / cm 3 from the viewpoint of improving the heat conductivity. It is above.
  • the upper limit of the density is not particularly limited, but is preferably 1.3 g / cm 3 or less, more preferably 1.0 g / cm 3 or less, from the viewpoint of suppressing the mass of the entire heat exchanger.
  • the density of the total heat exchanger sheet is measured by the method described in the examples.
  • the thickness of the sheet for total heat exchanger of the present invention is preferably thin from the viewpoint that many sheets can be arranged in the total heat exchanger, and specifically, preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and further preferably Preferably it is 100 micrometers or less. Moreover, from a viewpoint of maintaining the intensity
  • the basis weight of the total heat exchanger sheet according to the present invention from the viewpoint of obtaining a desired density and thickness, preferably 10 g / m 2 or more, more preferably 30 g / m 2 or more, and preferably 300 g / m 2
  • the following content is more preferably 200 g / m 2 or less, still more preferably 100 g / m 2 or less, still more preferably 80 g / m 2 or less.
  • the contact angle of water on the surface on the fiber layer side is preferably 50 ° or more.
  • the contact angle of water is 50 ° or more, the spread of the adhesive is suppressed when the spacer and the liner are bonded and assembled as an element for a total heat exchanger, and the effective area of the sheet (liner) for a total heat exchanger The reduction is suppressed, and high moisture permeability and air permeability are maintained even after being processed into the total heat exchanger element.
  • the contact angle of water on the surface on the fiber layer side is more preferably 55 ° or more, and further preferably 60 ° or more.
  • the upper limit of the contact angle is not particularly limited, but is preferably 150 ° or less, more preferably 130 ° or less, and still more preferably 110 ° or less from the viewpoint of the coating property of the adhesive.
  • the contact angle means the contact angle to water 0.1 seconds after dropping, and is measured by the method described in the examples.
  • the contact angle of water on the surface on the fiber layer side is generally less than 50 ° if the metal-containing compound such as the moisture absorbent is not contained. It is considered that this is because the capillary action of the fine cellulose fiber reduces the contact angle of water.
  • the fine cellulose fiber has an ionic group, and the fiber layer has a cross-linked structure with the ionic group It is preferable to contain a hygroscopic agent having a metal atom capable of forming a (cross-linked structure). Thereby, it is presumed that a crosslinked structure (including a pseudo crosslinked structure) is formed, as a result of which the surface becomes hydrophobic and the contact angle is improved.
  • the ratio D1 / D2 of the two is preferably 0.25 or more.
  • the following is more preferable 0.3 or more and 3 or less, more preferably 0.5 or more 2 or less.
  • D1 / D2 is in the above range, the difference in the contact angle of water between one surface and the other surface is small, which is preferable because the assembly of the element for all heat exchangers is easy.
  • the total heat exchange sheet uses paper as a substrate and has a two-layer structure of a substrate layer and a fiber layer, generally the contact angle of the surface on the fiber layer side is small, and the substrate layer side The contact angle of the surface of is large.
  • the air permeability of the total heat exchanger sheet of the present invention is preferably high, preferably 500 sec or more, more preferably 1,000 sec or more, still more preferably 3,000 sec or more, from the viewpoint of separating air supply and exhaust. Still more preferably, it is 10,000 sec or more, still more preferably 25,000 sec or more.
  • the air permeability is measured by the method described in the examples.
  • the moisture permeability of the total heat exchanger sheet of the present invention is preferably high from the viewpoint of promoting the transfer of latent heat and improving the heat conductivity, preferably 2,800 g / (m 2 ⁇ 24 hr) or more, more preferably 3,000g / (m 2 ⁇ 24hr) or more, still more preferably 3,500g / (m 2 ⁇ 24hr) or more.
  • the moisture permeability is measured by the method described in the examples.
  • the sheet for total heat exchangers of the present invention preferably has high carbon dioxide barrier properties (CO 2 barrier properties) from the viewpoint of suppressing carbon dioxide in exhaust gas from being mixed into the charge air, as described in the Examples.
  • the carbon dioxide concentration reduction rate measured by the method of is preferably 1.3% or less, more preferably 1.0% or less, still more preferably 0.8% or less, still more preferably 0.5% or less More preferably, it is 0.3% or less.
  • the sheet for total heat exchanger of the present invention may contain other components in the substrate layer or the fiber layer, and specifically, sizing agents, wet strength agents, surfactants, flame retardants Agents, antifungal agents, rust inhibitors, antiblocking agents and the like.
  • the fiber layer may contain the other components described above, but the total content of the fine cellulose fiber, the hygroscopic agent, and the water in the fiber layer is preferably relative to the total mass of the fiber layer. It is 90 mass% or more, More preferably, it is 95 mass% or more, More preferably, it is 97 mass% or more, and 100 mass% may be sufficient.
  • anionic surfactants such as alkyl sulfates, polyoxyethylene alkyl sulfates, alkyl benzene sulfonates, ⁇ -olefin sulfonates, alkyl trimethyl ammonium chloride, dialkyl dimethyl ammonium chloride, benzalko chloride
  • cationic surfactants such as aluminum
  • amphoteric surfactants such as trimethylglycine, alkyl dimethylamino acetic acid betaine and alkylamido dimethylamino acetic acid betaine
  • nonionic surfactants such as alkyl polyoxyethylene ether and fatty acid glycerol ester.
  • Flame retardants include halogen flame retardants, red phosphorus, melamine phosphate, ammonium polyphosphate, melamine polyphosphate, melamine pyrophosphate, piperazine polyphosphate, piperazine pyrophosphate, guanidine phosphate, guanidine guanidine sulfamate (condensed)
  • Examples thereof include phosphorus-based flame retardants such as phosphoric acid ester compounds and phosphazene compounds, nitrogen-based flame retardants such as melamine cyanurate, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, phosphinates and diphosphinates.
  • the fungicide examples include benzimidazole compounds, pyrithione compounds, iodopropenylbutyl carbamate compounds, isothiazolone compounds, organic nitrogen sulfur compounds and the like.
  • a water-soluble rust inhibitor is preferable, and examples thereof include alkali metal salts of aliphatic carboxylic acids and piperazine derivatives such as monohydroxymonoethyl piperazine.
  • the antiblocking agent include waxes selected from polyethylene wax, zinc stearate, polyethylene wax emulsion, polyethylene oxide wax, paraffin wax and the like, metal soaps such as silicone resin and higher fatty acid calcium salt, etc.
  • the sheet for total heat exchangers of the present invention may further have a calendering step for the purpose of post-processing as coating treatment or chemical treatment, adjustment of average thickness and thinning.
  • a coating solution of a flame retardant is prepared, and the step of coating and drying the coating solution is exemplified in the steps of spray coating, printing method, coating method and the like.
  • the process of the calendering process which performs smoothing or thin film formation with a calender apparatus to the sheet
  • the calendering apparatus examples include a conventional calendering apparatus using a single press roll and a super calendering apparatus having a multi-staged structure. It is preferable to select these devices and the material (hardness of the material) and the linear pressure of each of both sides at the time of calendering according to the purpose.
  • the roll material may be appropriately selected from a combination of a metal roll and a resin roll with high hardness, a combination of a metal roll and a cotton roll, a combination of a metal roll and an amide roll, and the like.
  • the total heat exchanger element of the present invention includes the above-described total heat exchanger sheet of the present invention, and in particular, as a liner of the total heat exchanger element. More specifically, the total heat exchanger element sandwiches a spacer constituting a flow path between each sheet of the plurality of total heat exchanger sheets (liner), and the spacer and the sheet Are attached with an adhesive or the like. Moreover, the total heat exchanger of this invention is equipped with the element for all heat exchangers of the said this invention. As a total heat exchanger used suitably, a stationary total heat exchanger is illustrated.
  • the stationary total heat exchanger may be a cross flow type or a counter flow type, and is not particularly limited.
  • the stationary total heat exchanger is an element for a total heat exchanger having a structure in which two flow paths independent of one another are partitioned by the total heat exchanger sheet (liner) according to the present invention, It is configured by combining fans.
  • the air supply fan By means of the air supply fan, the feed gas, such as ambient air, is drawn into the total heat exchanger element and contacts the total heat exchanger sheet incorporated in the total heat exchanger element.
  • exhaust gas such as room air is sucked into the total heat exchanger element by the exhaust fan and similarly contacts the total heat exchanger sheet.
  • the feed gas and the exhaust gas which are in contact via the total heat exchanger sheet, exchange heat through temperature and humidity.
  • the heat-exchanged supply gas is blown into the air supply fan and taken, for example, into the room.
  • the heat-exchanged exhaust gas is blown into an exhaust fan and discharged, for example, outdoors.
  • the sheet for total heat exchanger of the present invention has high moisture permeability and air permeability, and further has excellent carbon dioxide barrier properties, so it is excellent not only for sensible heat but also for latent heat exchange, and has high heat conductivity. Furthermore, mixing of the air supply and the exhaust is suppressed. Therefore, the total heat exchanger provided with the total heat exchanger sheet of the present invention is capable of efficient heat exchange. That is, it is possible to ventilate the air inside of which the carbon dioxide concentration has been increased while suppressing the release of heat or cold in the building, and to increase the efficiency of the total heat exchanger which maintains the heat effect by air conditioning and heating. be able to.
  • Example 1 Provide of Fine Cellulose Fiber> (Phosphoric acid group introduction process) Softwood kraft pulp manufactured by Oji Paper Co., Ltd. (solid content 93% by mass, basis weight 208 g / m 2 in sheet form, as a raw material pulp, Canadian Standard Freeness Measured according to JIS P 8121: 2012 CSF) used 700 ml).
  • the raw material pulp was subjected to a phosphorylation treatment as follows.
  • a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to the above-mentioned raw material pulp, and 45 parts by mass of ammonium dihydrogen phosphate and 120 parts by mass of urea with respect to 100 parts by mass (absolute dry mass) of the raw material pulp It adjusted so that it might become 150 mass parts of water, and obtained the chemical
  • the chemical-impregnated pulp obtained was heated for 200 seconds with a hot air drier at 165 ° C. to introduce a phosphoric acid group to the cellulose in the pulp to obtain a phosphorylated pulp.
  • washing process Next, the resulting phosphorylated pulp was subjected to a washing treatment.
  • the washing process is performed by pouring 10 L of ion-exchanged water with respect to 100 g (absolutely dry mass) of phosphorylated pulp, stirring to uniformly disperse the pulp to obtain a pulp dispersion, and repeating the filtration dewatering operation. went. When the electric conductivity of the filtrate became 100 ⁇ S / cm or less, it was regarded as the washing end point.
  • alkali treatment process Next, the phosphated pulp after washing was subjected to alkali treatment (neutralization treatment) as follows. First, after diluting the phosphorylated pulp after washing with 10 L of ion exchanged water, a phosphated pulp slurry having a pH of 12 or more and 13 or less was obtained by gradually adding 1N aqueous sodium hydroxide solution while stirring. . Next, the phosphorylated pulp slurry was dewatered to obtain a phosphorylated pulp subjected to an alkali treatment (neutralization treatment). Next, the above-mentioned washing treatment was performed on the phosphated pulp after the alkali treatment.
  • the phosphated pulp after alkali treatment thus obtained was subjected to measurement of infrared absorption spectrum using FT-IR. As a result, absorption attributable to phosphate groups was observed at around 1230 cm -1 , confirming that phosphate groups were added to the pulp. Moreover, the amount of phosphate groups (the amount of strongly acidic groups) measured by the above-mentioned measurement method was 1.45 mmol / g.
  • the fine cellulose fiber dispersion obtained above is coated with a fine bared cellulose fiber (hereinafter referred to as CNF) after drying with a meyer bar It coated so that a coating amount may be 0.4 g / m ⁇ 2 >, and the fiber layer was formed.
  • CNF fine bared cellulose fiber
  • a sheet for total heat exchanger was prepared. The basis weight of this total heat exchanger sheet was 73 g / m 2 and the water content was 10% by mass.
  • Example 2 Example 1 was repeated except that in place of lithium chloride, calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was impregnated and dried so that the coated amount after drying was 4.9 g / m 2. A total heat exchanger sheet was prepared in the same manner. The basis weight of this total heat exchanger sheet was 73 g / m 2 and the water content was 10% by mass.
  • Example 3 In Example 1, the fine cellulose fiber dispersion is coated so that the coated amount of the fine cellulose fiber (CNF) after drying is 0.8 g / m 2, and then lithium chloride (Wako Pure Chemical Industries, Ltd. as a moisture absorbent) A sheet for a total heat exchanger was produced in the same manner as in Example 1 except that impregnation and drying were performed so that the mass after drying was set to 5.2 g / m 2 . The basis weight of this total heat exchanger sheet was 78 g / m 2 and the water content was 12% by mass.
  • Example 4 Example 3 is repeated except that in place of lithium chloride, calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) is impregnated and dried so that the coated amount after drying is 6.0 g / m 2.
  • a total heat exchanger sheet was prepared in the same manner. The basis weight of this total heat exchanger sheet was 76 g / m 2 and the water content was 10% by mass.
  • a pulp containing NBKP and LBKP at 50: 50 (mass ratio) is beaten to 170 ml with Canadian Standard Freeness, 1.0 part of aluminum sulfate, 0.01 part of alkyl ketene dimer as sizing agent (size pine K-903- 20, Arakawa Chemical Industries Co., Ltd. product, 0.15 parts of wet paper strength agent (Arafix 255, Arakawa Chemical Co., Ltd. product) were added with respect to 100 mass parts of pulp.
  • a semi-glassine paper having a basis weight of 40 g / m 2 was produced by using a Fourdrinier multi-tubular paper machine.
  • a fine cellulose fiber dispersion is dried with a mayer bar of fine cellulose fiber (CNF) It coated so that a coating amount might be 0.4 g / m ⁇ 2 >, and formed the fiber layer.
  • lithium chloride manufactured by Wako Pure Chemical Industries, Ltd.
  • a hygroscopic agent is impregnated and dried with a mangle roll so that the coated amount after drying is 5.6 g / m 2 to prepare a sheet for total heat exchanger did.
  • the basis weight of the total heat exchanger sheet was 60 g / m 2 , and the water content was 17% by mass.
  • Example 5 is the same as Example 5 except that calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) is impregnated and dried so that the coated amount after drying is 5.0 g / m 2 in place of lithium chloride.
  • a total heat exchanger sheet was prepared in the same manner. The basis weight of this total heat exchanger sheet was 58 g / m 2 , and the water content was 17% by mass.
  • Comparative Example 1 A total heat exchanger sheet was produced in the same manner as in Example 1 except that water was coated and impregnated in place of the fine cellulose fiber dispersion and the hygroscopic agent in Example 1.
  • the basis weight of the total heat exchanger sheet was 60 g / m 2 , and the water content was 5% by mass.
  • Comparative Example 2 A sheet for a total heat exchanger was produced in the same manner as in Example 1 except that the absorbent was replaced with water and impregnated in Example 1.
  • the basis weight of the total heat exchanger sheet was 63 g / m 2 and the water content was 4% by mass.
  • Comparative Example 3 A total heat exchanger sheet was produced in the same manner as in Example 5 except that water was applied and impregnated in place of the fine cellulose fiber dispersion and the hygroscopic agent in Example 5.
  • the basis weight of this total heat exchanger sheet was 40 g / m 2 , and the water content was 5% by mass.
  • Comparative Example 4 A sheet for a total heat exchanger was produced in the same manner as in Example 5 except that the absorbent was replaced with water and impregnated in Example 5.
  • the basis weight of this total heat exchanger sheet was 41 g / m 2 , and the water content was 3% by mass.
  • Water content (water content)> The water content (hereinafter, also simply referred to as the water content) of the substrate and the obtained total heat exchanger sheet was measured in accordance with JIS P 8127: 2010.
  • the air permeability of the total heat exchanger sheet was measured in accordance with the 5-2: 2000 Oken type air permeability method.
  • ⁇ CO2 barrier property Measuring device in which a carbon dioxide (CO 2 ) analyzer is installed inside a cubic container made of acrylic having a square window section of 20 cm on each side at the center of each of 4 side surfaces and 1 top surface And In a state where a 25 cm square total heat exchanger sheet is attached to each window of the measuring apparatus, 5,000 ppm of carbon dioxide is enclosed in a container, and the concentration of CO 2 is 15 at 20 ° C. ⁇ 65% conditions. The measurement was performed 4 times every minute for a total of 1 hour. From the measured values after 15 minutes, 30 minutes, 45 minutes and 60 minutes, the reduction rate of the carbon dioxide concentration at each time point is determined, the average is further determined, and the carbon dioxide concentration reduction rate of the measured sample is obtained. . As the carbon dioxide concentration reduction rate is lower, the total heat exchanger sheet is more excellent in carbon dioxide (CO 2 ) barrier properties. A carbon dioxide concentration reduction rate of 1.3% or less is suitably used as a sheet for total heat exchangers.
  • the sheet for total heat exchangers of the present invention has high moisture permeability and air permeability, and is also excellent in carbon dioxide barrier properties. Therefore, a total heat exchanger that is suitably used as a liner for a total heat exchanger element and configured using the total heat exchanger element has high carbon dioxide barrier properties and heat exchange properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Paper (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide: a sheet for total heat exchangers, which has high water vapor permeability and high air permeability, while exhibiting excellent carbon dioxide barrier properties; an element for total heat exchangers, which comprises this sheet for total heat exchangers; and a total heat exchanger which is provided with this element for total heat exchangers. A sheet for total heat exchangers according to the present invention comprises a base material layer and a fiber layer that is arranged on the base material layer; and the fiber layer contains fine cellulose fibers that have fiber widths of 1,000 nm or less, and has a moisture content of 8% by mass or more.

Description

全熱交換器用シート、全熱交換器用素子、及び全熱交換器Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
 本発明は、全熱交換器用シート、全熱交換器用素子、及び全熱交換器に関する。 The present invention relates to a total heat exchanger sheet, a total heat exchanger element, and a total heat exchanger.
 従来、冷房や暖房の効果を損なわずに換気できる装置として、換気の際に給気と排気との間で熱交換させる熱交換換気装置(熱交換器)が提案されている。この熱交換器としては、スペーサーを介して複数の仕切り板(ライナー)を積層させ、室外の空気を室内に導入する給気経路と、室内の空気を室外に排出する排気経路とが区画され、顕熱(温度)と同時に潜熱(湿度)の熱交換を行う、全熱交換器が広く採用されている。
 特許文献1には、透気度が大きく、かつ、透湿度も高い、全熱交換器用シートとして適性の高い多層構造体を提供することを目的として、微細セルロース繊維からなる微細セルロース繊維不織布層を少なくとも一層含む多層構造体が記載されている。
Heretofore, a heat exchange ventilator (heat exchanger) has been proposed as a device capable of ventilating without impairing the effects of cooling and heating, in which heat is exchanged between air supply and exhaust during ventilation. As this heat exchanger, a plurality of partition plates (liners) are stacked via a spacer, and an air supply path for introducing outdoor air into the room and an exhaust path for discharging indoor air to the room are divided. A total heat exchanger is widely adopted which performs heat exchange of latent heat (humidity) simultaneously with sensible heat (temperature).
Patent Document 1 discloses a fine cellulose fiber non-woven fabric layer made of fine cellulose fibers for the purpose of providing a multilayer structure having high air permeability and high moisture permeability and having high suitability as a sheet for a total heat exchanger. A multilayer structure comprising at least one layer is described.
国際公開第2014/014099号International Publication No. 2014/014099
 本発明は、透湿度及び透気度が高く、二酸化炭素バリア性にも優れる全熱交換器用シート、前記全熱交換器用シートを有する全熱交換器用素子、並びに前記全熱交換器用素子を備える全熱交換器を提供することを目的とする。 The present invention is a sheet for a total heat exchanger having high moisture permeability and air permeability and excellent in carbon dioxide barrier properties, a total heat exchanger element having the total heat exchanger sheet, and a total heat exchanger element including the total heat exchanger element It aims at providing a heat exchanger.
 本発明者等は、微細セルロース繊維を含有する繊維層を設けた全熱交換器用シートにおいて、水分を特定の含有量とすることにより、透気度及び透湿度が高く、二酸化炭素バリア性にも優れる全熱交換器用シートが得られることを見出した。
 すなわち、本発明は、以下の<1>~<18>に関する。
 <1> 基材層と、該基材層上に設けられた繊維層とを有し、該繊維層は、繊維幅1,000nm以下の微細セルロース繊維を含有し、水分含有量が8質量%以上である、全熱交換器用シート。
 <2> 更に吸湿剤を含有する、<1>に記載の全熱交換器用シート。
 <3> 前記吸湿剤が、ハロゲン化金属塩、金属硫酸塩、金属酢酸塩、アミン塩、リン酸化合物、グアニジン塩、及び金属水酸化物から選択される少なくとも1つ(好ましくはハロゲン化金属塩、より好ましくはアルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物、更に好ましくは塩化リチウム及び塩化カルシウムよりなる群から選択される少なくとも1つ)を含む、<2>に記載の全熱交換器用シート。
 <4> 前記微細セルロース繊維100質量部に対する前記吸湿剤の含有量が100質量部以上である、<2>又は<3>に記載の全熱交換器用シート。
 <5> 前記微細セルロース繊維がイオン性基(好ましくはアニオン性基、より好ましくはリン酸基又はリン酸基に由来する基、カルボキシ基又はカルボキシ基に由来する基、及びスルホン酸基又はスルホン酸基に由来する基から選択される少なくとも1種、更に好ましくはリン酸基又はリン酸基に由来する基、及びカルボキシ基又はカルボキシ基に由来する基から選択される少なくとも1種、より更に好ましくはリン酸基又はリン酸基に由来する基)を有する、<1>~<4>のいずれかに記載の全熱交換器用シート。
 <6> 前記繊維層側の表面における水の接触角が50°以上である、<1>~<5>のいずれかに記載の全熱交換器用シート。
 <7> 全熱交換器用シートの一方の表面における水の接触角をD1、他方の表面における水の接触角をD2としたとき、D1/D2が0.25以上4以下である、<1>~<6>のいずれかに記載の全熱交換器用シート。
 <8> 前記微細セルロース繊維の繊維幅が30nm以下である、<1>~<7>のいずれかに記載の全熱交換器用シート。
 <9> 前記微細セルロース繊維の目付が0.1g/m以上3g/m以下である、<1>~<8>のいずれかに記載の全熱交換器用シート。
 <10> 一層の基材層と、該基材層上に設けられた一層の繊維層とを有する、<1>~<9>のいずれかに記載の全熱交換器用シート。
 <11> 水分含有量が25質量%以下である、<1>~<10>のいずれかに記載の全熱交換器用シート。
 <12> 更に、吸湿剤を含有し、吸湿剤の目付けが1g/m以上20g/m以下、好ましくは3g/m以上15g/m以下、より好ましくは5g/m以上12g/m以下である、<1>~<11>のいずれかに記載の全熱交換器用シート。
 <13> 基材層及び繊維層が吸湿剤を含有する、<1>~<12>のいずれかに記載の全熱交換器用シート。
 <14> 密度が0.65g/cm以上1.3g/cm以下(好ましくは0.7g/cm以上1.3g/cm以下、より好ましくは0.75g/cm以上1.0g/cm以下)である、<1>~<13>のいずれかに記載の全熱交換器用シート。
 <15> 厚みが20μm以上150μm以下(好ましくは20μm以上120μm以下、より好ましくは30μm以上100μm以下)である、<1>~<14>のいずれかに記載の全熱交換器用シート。
 <16> 坪量が、10g/m以上300g/m以下(好ましくは10g/m以上200g/m以下、より好ましくは30g/m以上100g/m以下、更に好ましくは30g/m以上80g/m以下)である、<1>~<15>のいずれかに記載の全熱交換器用シート。
 <17> <1>~<16>のいずれかに記載の全熱交換器用シートを有する、全熱交換器用素子。
 <18> <17>に記載の全熱交換器用素子を備える、全熱交換器。
The present inventors, in the sheet for total heat exchanger provided with the fiber layer containing the fine cellulose fiber, by setting the water content to a specific content, the air permeability and the moisture permeability are high, carbon dioxide barrier property It has been found that an excellent total heat exchanger sheet can be obtained.
That is, the present invention relates to the following <1> to <18>.
It has a <1> base material layer and the fiber layer provided on this base material layer, This fiber layer contains the fine cellulose fiber of the fiber width of 1,000 nm or less, and moisture content is 8 mass% The above is a sheet for total heat exchangers.
<2> The sheet for total heat exchangers according to <1>, further containing a moisture absorbent.
<3> At least one member selected from metal halides, metal sulfates, metal acetates, amine salts, phosphoric acid compounds, guanidine salts, and metal hydroxides (preferably, metal halide salts) The total heat exchanger sheet according to <2>, more preferably containing at least one selected from the group consisting of an alkali metal halide, an alkaline earth metal halide, still more preferably lithium chloride and calcium chloride.
The sheet | seat for all heat exchangers as described in <2> or <3> whose content of the said moisture absorbent is 100 mass parts or more with respect to 100 mass parts of <4> said fine cellulose fibers.
<5> The fine cellulose fiber is an ionic group (preferably an anionic group, more preferably a phosphoric acid group or a group derived from a phosphoric acid group, a carboxy group or a group derived from a carboxy group, a sulfonic acid group or a sulfonic acid At least one member selected from the group derived from a group, more preferably at least one member selected from a phosphate group or a group derived from a phosphate group, and a carboxy group or a group derived from a carboxy group, still more preferably The total heat exchanger sheet according to any one of <1> to <4>, which has a phosphoric acid group or a group derived from a phosphoric acid group.
<6> The sheet for total heat exchanger according to any one of <1> to <5>, wherein the contact angle of water on the surface on the fiber layer side is 50 ° or more.
When the contact angle of water on one surface of the sheet for all heat exchangers is D1, and the contact angle of water on the other surface is D2, D1 / D2 is 0.25 or more and 4 or less, <1> A sheet for total heat exchangers according to any of <6>.
<8> The sheet for total heat exchanger according to any one of <1> to <7>, wherein the fiber width of the fine cellulose fibers is 30 nm or less.
<9> The sheet for total heat exchanger according to any one of <1> to <8>, wherein the basis weight of the fine cellulose fibers is 0.1 g / m 2 or more and 3 g / m 2 or less.
<10> A sheet for total heat exchangers according to any one of <1> to <9>, having one base layer and one fiber layer provided on the base layer.
<11> The sheet for total heat exchangers according to any one of <1> to <10>, wherein the water content is 25% by mass or less.
<12> Furthermore, it contains a hygroscopic agent, and the basis weight of the hygroscopic agent is 1 g / m 2 or more and 20 g / m 2 or less, preferably 3 g / m 2 or more and 15 g / m 2 or less, more preferably 5 g / m 2 or more 12 g / m 2 The sheet for total heat exchangers according to any one of <1> to <11>, which is m 2 or less.
<13> The sheet for total heat exchanger according to any one of <1> to <12>, wherein the base material layer and the fiber layer contain a hygroscopic agent.
<14> Density is 0.65 g / cm 3 or more and 1.3 g / cm 3 or less (preferably 0.7 g / cm 3 or more and 1.3 g / cm 3 or less, more preferably 0.75 g / cm 3 or more and 1.0 g / cm is 3 or less), <1> to the total heat exchanger sheet according to any one of <13>.
<15> The total heat exchanger sheet according to any one of <1> to <14>, having a thickness of 20 μm to 150 μm (preferably 20 μm to 120 μm, more preferably 30 μm to 100 μm).
<16> basis weight, 10 g / m 2 or more 300 g / m 2 or less (preferably 10 g / m 2 or more 200 g / m 2 or less, more preferably 30 g / m 2 or more 100 g / m 2 or less, more preferably 30 g / a m 2 or more 80 g / m 2 or less), <1> the total heat exchanger sheet according to any one of 1 to <15>.
<17> A total heat exchanger element having the total heat exchanger sheet according to any one of <1> to <16>.
The total heat exchanger provided with the element for all the heat exchangers as described in <18><17>.
 本発明によれば、透湿度及び透気度が高く、二酸化炭素バリア性にも優れる全熱交換器用シート、前記全熱交換器用シートを有する全熱交換器用素子、並びに前記全熱交換器用素子を備える全熱交換器が提供される。 According to the present invention, a sheet for a total heat exchanger having high moisture permeability and air permeability and excellent in carbon dioxide barrier property, an element for a total heat exchanger having the sheet for the total heat exchanger, and an element for the total heat exchanger A total heat exchanger is provided.
図1は、リン酸基を有する繊維原料に対するNaOH滴下量と電気伝導度との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the amount of dropped NaOH and the conductivity of a fiber material having a phosphate group. 図2は、カルボキシ基を有する繊維原料に対するNaOH滴下量と電気伝導との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and the electrical conductivity of a fiber material having a carboxy group.
[全熱交換器用シート]
 本発明の全熱交換器用シートは、基材層と、該基材層上に設けられた繊維層とを有し、該繊維層は、繊維幅1,000nm以下の微細セルロース繊維を含有し、水分含有量が8質量%以上である。
 全熱交換器は、新鮮な外気を供給すると共に、室内の汚れた空気を排出する際に、熱交換を行う。この際、熱交換効率向上の観点から、全熱交換器用シートには、顕熱(温度)を移動可能であると共に、湿気を通過させることで、潜熱(湿度)も移動可能であることが求められる。従って、透湿度及び伝熱性が求められる。
 また、全熱交換器用シートを通して、給気と排気が混じり合わないように、高いガスバリア性(主として、二酸化炭素バリア性)も求められている。
[Seat for all heat exchangers]
The sheet for total heat exchangers of the present invention has a substrate layer and a fiber layer provided on the substrate layer, and the fiber layer contains fine cellulose fibers having a fiber width of 1,000 nm or less, The water content is 8% by mass or more.
The total heat exchanger supplies fresh air and exchanges heat when discharging dirty air in the room. At this time, from the viewpoint of improving the heat exchange efficiency, it is required that the sensible heat (temperature) can be moved to the total heat exchanger sheet and the latent heat (humidity) can also be moved by passing moisture. Be Therefore, moisture permeability and heat conductivity are required.
In addition, high gas barrier properties (mainly, carbon dioxide barrier properties) are also required so that the air supply and the exhaust can not be mixed through the total heat exchanger sheet.
 特許文献1には、微細セルロース繊維不織布層を設けることにより、透気抵抗度(透気度)の高い多層構造体が得られることが記載されているが、該多層構造体の水分量の影響については検討されていない。
 本発明によれば、全熱交換器用シートの水分量を特定の範囲とすることによって、透湿度及び透気度が高く、更に二酸化炭素バリア性にも優れる全熱交換器用シートが得られる。上記の効果が得られる詳細な作用機構は不明であるが、一部は以下のように考えられる。
 すなわち、微細セルロース繊維を含有する繊維層を設けることで、高い透気度及び二酸化炭素バリア性が得られるが、更に、全熱交換器用シートの水分量を8質量%以上とすることにより、透湿度が向上したものと考えられる。これは、全熱交換器用シートの水分量を8質量%以上とすることで、水分量が8質量%未満である場合に比べて、全熱交換器用シートがより親水的となり、透湿度が向上したものと推定される。
 以下、本発明について更に詳細に説明する。
Patent Document 1 describes that by providing a fine cellulose fiber non-woven fabric layer, a multilayer structure having a high air permeability resistance (air permeability) can be obtained, but the influence of the water content of the multilayer structure is described. Has not been considered.
According to the present invention, by setting the water content of the total heat exchanger sheet to a specific range, it is possible to obtain a total heat exchanger sheet having high moisture permeability and air permeability and further excellent in carbon dioxide barrier properties. The detailed mechanism of action by which the above effects can be obtained is unknown, but some are considered as follows.
That is, by providing the fiber layer containing the fine cellulose fiber, high air permeability and carbon dioxide barrier property can be obtained, and further, by making the water content of the total heat exchanger sheet 8% by mass or more, the permeability is improved. It is thought that the humidity has improved. This is because setting the water content of the total heat exchanger sheet to 8% by mass or more makes the total heat exchanger sheet more hydrophilic than when the water content is less than 8% by mass, and the moisture permeability is improved. It is estimated that
Hereinafter, the present invention will be described in more detail.
<基材層>
 本発明の全熱交換器用シートは、基材層と該基材層上に設けられた繊維層とを有する。
 基材層を構成する基材としては特に限定されず、不織布、多孔質膜、及び布帛から選択される基材が好ましく例示される。
 なお、本発明の全熱交換器用シートは、後述するように、基材に微細セルロースを含有する繊維層を形成し、更に、吸湿剤を含有させることが好ましい。このとき、「基材」とは、吸湿剤を含有する前の基材層を形成する基材そのものを意味し、「基材層」とは、全熱交換器用シートにおける繊維層の支持体となる基材自体及び吸湿剤を含む支持体層の全体を意味する。
 不織布としては、天然セルロース繊維、ナイロン繊維、ポリエステル繊維、及びポリオレフィン繊維から選択される少なくとも1つから構成される不織布が例示される。
 多孔質膜としては、ポリエチレン、ポリプロピレン等のオレフィン樹脂;ポリスルホン;ポリテトラフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン等のフッ素系樹脂;ポリカーボネート;6-ナイロン、6,6-ナイロン等のナイロン系樹脂;ポリメチルメタクリレート等のアクリル系樹脂;ポリ(1-オキシトリメチレン)等のポリケトン;ポリエーテルエーテルケトン等から構成される多孔質膜が例示される。
 また、布帛としては、セルロース誘導体繊維を含むセルロース繊維、ナイロン繊維、ポリウレタン繊維、及びこれらの混紡糸からなる布帛(交織布帛を含む)が例示される。
<Base layer>
The total heat exchanger sheet of the present invention has a substrate layer and a fiber layer provided on the substrate layer.
It does not specifically limit as a base material which comprises a base material layer, The base material selected from a nonwoven fabric, a porous membrane, and a fabric is illustrated preferably.
In the total heat exchanger sheet of the present invention, as described later, it is preferable to form a fiber layer containing fine cellulose on a base material, and to further contain a hygroscopic agent. At this time, the "substrate" means the substrate itself which forms the substrate layer before containing the hygroscopic agent, and the "substrate layer" means the support of the fiber layer in the total heat exchanger sheet. And the entire support layer containing the hygroscopic agent.
Examples of the non-woven fabric include non-woven fabric composed of at least one selected from natural cellulose fiber, nylon fiber, polyester fiber, and polyolefin fiber.
Examples of porous membranes include olefin resins such as polyethylene and polypropylene; polysulfones; fluorine resins such as polytetrafluoroethylene, polyvinyl fluoride and polyvinylidene fluoride; polycarbonates; and nylon resins such as 6-nylon and 6,6-nylon And acrylic resins such as polymethyl methacrylate; polyketones such as poly (1-oxytrimethylene); and porous membranes composed of polyetheretherketone and the like.
Further, examples of the fabric include cellulose fibers including cellulose derivative fibers, nylon fibers, polyurethane fibers, and fabrics (including cross-woven fabrics) formed by mixing yarns thereof.
 これらの中でも、基材は、繊維層形成の容易性、所望の水分量を得る観点から、好ましくは不織布であり、より好ましくは天然セルロース等の植物のパルプ繊維からなる、「紙」に分類される不織布である。
 基材の原料として使用するパルプは、針葉樹パルプ及び広葉樹パルプのいずれでもよく、また、蒸解方法や漂白方法は特に限定されない。基材の強度や、二酸化炭素バリア性の観点からは、針葉樹晒クラフトパルプ(NBKP)を使用することが好ましく、NBKPを主原料として使用することがより好ましい。また、木材パルプ以外にも、麻パルプやケナフ、竹などの非木材パルプを使用してもよく、更に、レーヨン繊維やナイロン繊維、その他熱融着繊維など、パルプ繊維以外の材料も副資材として配合してもよい。
 基材中のパルプの含有量は、繊維層形成の容易性、及び所望の水分量を得る観点から、好ましくは95質量%以上、より好ましくは98質量%以上であり、100質量%であってもよい。
 紙としては、上質紙、中質紙等の非塗工印刷用紙、コピー用紙等の情報用紙、高圧加工したグラシン紙(JIS P 8121に規定されるカナダ標準ろ水度試験法(CSF)で測定したフリーネスである叩解度が40~80ml程度)、パルプの叩解度がグラシン紙よりも低いセミグラシン紙(上記叩解度が100~200ml程度)が例示される。
 これらの中でも、更に好ましくは上質紙又はセミグラシン紙、より更に好ましくはセミグラシン紙である。
Among these, the substrate is preferably classified as "paper", which is preferably a non-woven fabric, more preferably a plant pulp fiber such as natural cellulose, from the viewpoint of easy formation of a fiber layer and obtaining a desired water content. Non-woven fabric.
The pulp used as the raw material of the base material may be either softwood pulp or hardwood pulp, and the cooking method and the bleaching method are not particularly limited. It is preferable to use softwood-bleached kraft pulp (NBKP), and it is more preferable to use NBKP as a main raw material, from the viewpoint of the strength of the base material and the carbon dioxide barrier property. In addition to wood pulp, non-wood pulp such as hemp pulp, kenaf and bamboo may be used, and materials other than pulp fiber such as rayon fiber, nylon fiber and other heat-fusion fibers are also used as secondary materials. You may mix | blend.
The content of pulp in the base material is preferably 95% by mass or more, more preferably 98% by mass or more, and 100% by mass from the viewpoint of ease of forming a fiber layer and obtaining a desired water content. It is also good.
As paper, non-coated printing paper such as high quality paper, medium paper etc., information paper such as copying paper, glassine paper processed by high pressure processing (measured by Canadian standard freeness test method (CSF specified in JIS P 8121) For example, the freeness is a degree of beating of about 40 to 80 ml, and semi-glassine paper (the degree of beating of about 100 to 200 ml or so above), which is lower than that of glassine.
Among these, more preferably fine wood paper or semigrass paper, still more preferably semigrass paper.
 基材の透気度は特に限定されないが、得られる全熱交換器用シートの透気度を高める観点から、好ましくは5sec以上、より好ましくは10sec以上、更に好ましくは30sec以上である。また、経済性の観点から、好ましくは1,000sec以下、より好ましくは500sec以下、更に好ましくは200sec以下である。透気度は、実施例に記載の方法により測定される。 The air permeability of the substrate is not particularly limited, but it is preferably 5 sec or more, more preferably 10 sec or more, still more preferably 30 sec or more, from the viewpoint of increasing the air permeability of the obtained total heat exchanger sheet. Also, from the viewpoint of economy, it is preferably 1,000 sec or less, more preferably 500 sec or less, and further preferably 200 sec or less. The air permeability is measured by the method described in the examples.
 基材の坪量は、特に限定されないが、得られる全熱交換器用シートの坪量を所望の範囲とする観点から、好ましくは5g/m以上、より好ましくは10g/m以上、更に好ましくは20g/m以上、より更に好ましくは25g/m以上、より更に好ましくは30g/m以上、より更に好ましくは35g/m以上であり、そして、好ましくは200g/m以下、より好ましくは150g/m以下、更に好ましくは100g/m以下、より更に好ましくは70g/m以下である。坪量は、実施例に記載の方法により測定される。 The basis weight of the substrate is not particularly limited, but preferably 5 g / m 2 or more, more preferably 10 g / m 2 or more, further preferably from the viewpoint of making the basis weight of the obtained total heat exchanger sheet into a desired range. Is 20 g / m 2 or more, more preferably 25 g / m 2 or more, still more preferably 30 g / m 2 or more, still more preferably 35 g / m 2 or more, and preferably 200 g / m 2 or less, more preferably It is preferably 150 g / m 2 or less, more preferably 100 g / m 2 or less, and still more preferably 70 g / m 2 or less. The basis weight is measured by the method described in the examples.
 基材の厚みは、特に限定されないが、支持体としての強度を得る観点から、好ましくは10μm以上、より好ましくは20μm以上であり、そして、全熱交換器用シート全体としての厚みを薄くする観点から、好ましくは150μm以下、より好ましくは120μm以下、更に好ましくは100μm以下、より更に好ましくは90μm以下、より更に好ましくは65μm以下である。厚みは、実施例に記載の方法により測定される。 The thickness of the substrate is not particularly limited, but is preferably 10 μm or more, more preferably 20 μm or more from the viewpoint of obtaining strength as a support, and from the viewpoint of reducing the thickness of the entire heat exchanger sheet. Preferably it is 150 micrometers or less, More preferably, it is 120 micrometers or less, More preferably, it is 100 micrometers or less, More preferably, it is 90 micrometers or less, More preferably, it is 65 micrometers or less. The thickness is measured by the method described in the examples.
 基材の密度は特に限定されないが、全熱交換器用シートの密度を所望の範囲とする観点から、好ましくは0.3g/cm以上、より好ましくは0.5g/cm以上、更に好ましくは0.6g/cm以上、より更に好ましくは0.65g/cm以上であり、そして、入手容易性、経済性、及び全熱交換器全体の質量を抑制する観点から、好ましくは1.3g/cm以下、より好ましくは1.0g/cm以下、更に好ましくは0.85g/cm以下、より更に好ましくは0.80g/cm以下である。密度は、実施例に記載の方法により測定される。 The density of the substrate is not particularly limited, but it is preferably 0.3 g / cm 3 or more, more preferably 0.5 g / cm 3 or more, still more preferably from the viewpoint of making the density of the total heat exchanger sheet into a desired range. It is 0.6 g / cm 3 or more, more preferably 0.65 g / cm 3 or more, and preferably 1.3 g in view of easy availability, economy and suppression of the total mass of the entire heat exchanger. / Cm 3 or less, more preferably 1.0 g / cm 3 or less, further preferably 0.85 g / cm 3 or less, still more preferably 0.80 g / cm 3 or less. The density is measured by the method described in the examples.
<繊維層>
 本発明の全熱交換器用シートは繊維層を有し、前記繊維層は、繊維幅1,000nm以下の微細セルロース繊維を含有する。微細セルロース繊維の繊維幅は、例えば、電子顕微鏡等により読み取り可能である。
 微細セルロース繊維の平均繊維幅は、透気度及び透湿度に優れた全熱交換器用シートを得る観点から、好ましくは1,000nm以下、より好ましくは100nm以下、更に好ましくは30nm以下、より更に好ましくは10nm以下、より更に好ましくは8nm以下である。また、微細セルロース繊維の平均繊維幅は、好ましくは2nm以上、より好ましくは3nm以上である。微細セルロース繊維の平均繊維幅を2nm以上とすることにより、セルロース分子として水に溶解することを抑制し、微細セルロース繊維による透気度及び透湿度の向上という効果を発現しやすい。なお、微細セルロース繊維は、例えば単繊維状のセルロースである。
<Fiber layer>
The total heat exchanger sheet of the present invention has a fiber layer, and the fiber layer contains fine cellulose fibers having a fiber width of 1,000 nm or less. The fiber width of the fine cellulose fiber can be read by, for example, an electron microscope.
The average fiber width of the fine cellulose fiber is preferably 1,000 nm or less, more preferably 100 nm or less, still more preferably 30 nm or less, further preferably from the viewpoint of obtaining a sheet for a total heat exchanger excellent in air permeability and moisture permeability. Is 10 nm or less, more preferably 8 nm or less. The average fiber width of the fine cellulose fiber is preferably 2 nm or more, more preferably 3 nm or more. By setting the average fiber width of the fine cellulose fiber to 2 nm or more, dissolution in water as cellulose molecules is suppressed, and the effect of improving the air permeability and the moisture permeability by the fine cellulose fiber is easily exhibited. The fine cellulose fiber is, for example, monofibrillar cellulose.
 セルロース繊維の平均繊維幅は、電子顕微鏡観察を用いて以下のようにして測定される。
 まず、濃度0.05質量%以上0.1質量%以下のセルロース繊維の水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。幅の広い繊維を含む場合には、ガラス上にキャストした表面のSEM像を観察してもよい。
 次いで、観察対象となる繊維の幅に応じて1,000倍、5,000倍、10,000倍、又は50,000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
 (1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
 (2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交錯する繊維の幅を目視で読み取る。このようにして、少なくとも互いに重なっていない表面部分の観察画像を3組以上得る。次いで、各画像に対して、直線X、直線Yと交錯する繊維の幅を読み取る。これにより、少なくとも20本×2×3=120本の繊維幅を読み取る。そして、読み取った繊維幅の平均値を、セルロース繊維の平均繊維幅とする。
The average fiber width of the cellulose fiber is measured as follows using electron microscopy.
First, an aqueous suspension of cellulose fiber having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and the suspension is cast on a hydrophilized carbon film-coated grid to obtain a sample for TEM observation. Do. If wide fibers are included, an SEM image of the surface cast on glass may be observed.
Then, observation with an electron microscope image is performed at a magnification of 1,000 times, 5,000 times, 10,000 times, or 50,000 times depending on the width of the fiber to be observed. However, the sample, observation conditions and magnification are adjusted to satisfy the following conditions.
(1) One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers cross the straight line X.
(2) Draw a straight line Y intersecting perpendicularly with the straight line in the same image, and 20 or more fibers cross the straight line Y.
With respect to the observation image satisfying the above conditions, the width of the fiber intersecting with the straight line X and the straight line Y is visually read. In this way, three or more sets of observation images of surface portions not overlapping each other at least are obtained. Then, for each image, the width of the fiber intersecting the straight line X and the straight line Y is read. Thereby, a fiber width of at least 20 × 2 × 3 = 120 is read. And let the average value of the read fiber width be the average fiber width of a cellulose fiber.
 微細セルロース繊維の繊維長は、特に限定されないが、好ましくは0.1μm以上であり、そして、好ましくは1,000μm以下、より好ましくは800μm以下、更に好ましくは600μm以下である。微細セルロース繊維の繊維長を上記範囲内とすることにより、微細セルロース繊維の結晶領域の破壊を抑制できる。また、微細セルロース繊維のスラリー粘度を適切な範囲とすることも可能となり、繊維層の形成が容易となる。
 なお、微細セルロース繊維の繊維長は、例えばTEM、SEM、AFMによる画像解析より求めることができる。
The fiber length of the fine cellulose fiber is not particularly limited, but is preferably 0.1 μm or more, and preferably 1,000 μm or less, more preferably 800 μm or less, still more preferably 600 μm or less. By setting the fiber length of the fine cellulose fiber within the above range, it is possible to suppress the destruction of the crystal region of the fine cellulose fiber. Moreover, it becomes possible to make the slurry viscosity of a fine cellulose fiber into a suitable range, and formation of a fiber layer becomes easy.
In addition, the fiber length of a fine cellulose fiber can be calculated | required from the image analysis by TEM, SEM, and AFM, for example.
 微細セルロース繊維は、I型結晶構造を有していることが好ましい。ここで、微細セルロース繊維がI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。
 微細セルロース繊維に占めるI型結晶構造の割合は、好ましくは30%以上、より好ましくは40%以上、更に好ましくは50%以上である。これにより、強度に優れた繊維層が得られるので好ましい。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
The fine cellulose fiber preferably has a type I crystal structure. Here, the fact that the fine cellulose fiber has a type I crystal structure can be identified in a diffraction profile obtained from a wide angle X-ray diffraction photograph using CuKα (λ = 1.5418 Å) monochromatized with graphite. Specifically, it can be identified from having typical peaks at two positions of 2θ = 14 ° or more and 17 ° or less and 2θ = 22 ° or more and 23 ° or less.
The proportion of type I crystal structure in the fine cellulose fibers is preferably 30% or more, more preferably 40% or more, and still more preferably 50% or more. This is preferable because a fiber layer having excellent strength can be obtained. With regard to the degree of crystallinity, the X-ray diffraction profile is measured, and the pattern is determined by a conventional method (Seagal et al., Textile Research Journal, 29: 786, 1959).
 微細セルロース繊維の軸比(繊維長/繊維幅)は、特に限定されないが、好ましくは20以上、より好ましくは50以上であり、そして、好ましくは10,000以下、より好ましくは1,000以下である。軸比を前記範囲内とすることにより、繊維層の形成に適したスラリー粘度が得られる。 The axial ratio (fiber length / fiber width) of the fine cellulose fiber is not particularly limited, but is preferably 20 or more, more preferably 50 or more, and preferably 10,000 or less, more preferably 1,000 or less. is there. By setting the axial ratio within the above range, a slurry viscosity suitable for forming a fiber layer can be obtained.
 本発明において、微細セルロース繊維の目付け(塗工量)は、高い透気度及び透湿度を得る観点から、好ましくは0.1g/m以上、より好ましくは0.2g/m以上、更に好ましくは0.3g/m以上であり、そして、全熱交換器用シートとしてのシート厚みを所望の範囲とする観点、及び経済性の観点から、好ましくは20g/m以下、より好ましくは10g/m以下、更に好ましくは3g/m以下、より更に好ましくは1g/m以下である。 In the present invention, the basis weight (coating amount) of the fine cellulose fiber is preferably 0.1 g / m 2 or more, more preferably 0.2 g / m 2 or more, from the viewpoint of obtaining high air permeability and moisture permeability. Preferably, it is 0.3 g / m 2 or more, and from the viewpoint of making the sheet thickness as a total heat exchanger sheet into a desired range, and an economic point of view, preferably 20 g / m 2 or less, more preferably 10 g / M 2 or less, more preferably 3 g / m 2 or less, still more preferably 1 g / m 2 or less.
 本発明において、微細セルロース繊維は、イオン性基及び非イオン性基のうちの少なくとも1種の基が導入されていることが好ましい。また、イオン性基及び非イオン性基は、親水性基であることが好ましい。分散媒中における繊維の分散性を向上させ、解繊処理における解繊効率を高める観点からは、微細セルロース繊維がイオン性基を有することがより好ましい。イオン性基としては、アニオン性基及びカチオン性基のいずれか一方又は双方を含むことができる。本発明においては、イオン性基としてアニオン性基を有することが特に好ましい。
 アニオン性基としては、リン酸基又はリン酸基に由来する基(単にリン酸基ということもある)、カルボキシ基又はカルボキシ基に由来する基(単にカルボキシ基ということもある)、及びスルホン酸基又はスルホン酸基に由来する基(単にスルホン酸基ということもある)から選択される少なくとも1種であることが好ましく、リン酸基及びカルボキシ基から選択される少なくとも1種であることがより好ましく、リン酸基であることが特に好ましい。
In the present invention, the fine cellulose fiber preferably has at least one of an ionic group and a nonionic group introduced. In addition, the ionic group and the nonionic group are preferably hydrophilic groups. It is more preferable that the fine cellulose fiber has an ionic group from the viewpoint of improving the dispersibility of the fiber in the dispersion medium and enhancing the disintegration efficiency in the disintegration treatment. The ionic group can contain either or both of an anionic group and a cationic group. In the present invention, it is particularly preferable to have an anionic group as the ionic group.
As the anionic group, there are a phosphate group or a group derived from a phosphate group (also referred to simply as a phosphate group), a carboxy group or a group derived from a carboxy group (also referred to simply as a carboxy group), and a sulfonic acid It is preferably at least one selected from a group derived from a group or a sulfonic acid group (sometimes simply referred to as a sulfonic acid group), and more preferably at least one selected from a phosphoric acid group and a carboxy group Preferably, a phosphate group is particularly preferred.
 リン酸基は、リン酸からヒドロキシ基を取り除いたものにあたる二塩基酸として機能する基である。リン酸基に由来する基には、リン酸基の塩、リン酸エステル基などが含まれる。なお、リン酸基に由来する基は、リン酸基が縮合した基として微細セルロース繊維に含まれていてもよい。
 リン酸基又はリン酸基に由来する基は、例えば下記式(1)で表される基である。
A phosphoric acid group is a group which functions as a dibasic acid which corresponds to what removed the hydroxy group from phosphoric acid. Groups derived from phosphate groups include salts of phosphate groups, phosphate ester groups and the like. In addition, the group originating in a phosphoric acid group may be contained in the fine cellulose fiber as a group which the phosphoric acid group condensed.
The phosphate group or the group derived from the phosphate group is, for example, a group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、b及びnは自然数である(ただし、a=b×mである)。α,α,・・・,α及びα’のうちの少なくとも1つはO-であり、残りはR及びORのいずれかである。各α及びα’の全てがO-であっても構わない。nが2以上であり、α’がR又はORである場合には、各αのうちの少なくとも1つがO-で残りがR又はORである。nが2以上であり、α’がO-である場合には、各αは全てRであってもよいし、全てORであってもよいし、少なくとも1つがO-で残りがR又はORであってもよい。Rは、各々独立に、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、芳香族炭化水素基、及びこれらの誘導基を表す。
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。芳香族炭化水素基としては、フェニル基、又はナフタレン基等が挙げられるが、特に限定されない。
 また、前記Rにおける誘導体としては、前記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、前記Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を20以下とすることにより、Rを含むリンオキソ酸基の分子が大きくなりすぎることを抑えて、繊維原料への浸透性を良好に保つことができるため、微細セルロース繊維の収率の向上に寄与することができる。
 βb+は有機物又は無機物からなるb価の陽イオンである。有機物からなるb価の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、無機物からなるb価の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなるb価の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、特に限定されない。
In formula (1), a, b and n are natural numbers (however, a = b × m). alpha 1, alpha 2, at least one of · · ·, alpha n and alpha 'is O - a and the remainder is either R or OR. All the alpha n and alpha 'is O - may be a. When n is 2 or more and α 'is R or OR, at least one of each α n is O 2 - and the remainder is R or OR. n is equal to or greater than 2, alpha 'is O - when it is may be a respective alpha n are all R, may be all OR, at least one O - remaining in the R or It may be OR. R each independently represents a hydrogen atom, a saturated-linear hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-linear hydrocarbon group, an unsaturated-branched chain Hydrocarbon groups, aromatic hydrocarbon groups, and derivatives thereof.
Examples of the saturated-linear hydrocarbon group include methyl group, ethyl group, n-propyl group, and n-butyl group, but are not particularly limited. Examples of the saturated-branched hydrocarbon group include i-propyl group and t-butyl group, but are not particularly limited. The saturated-cyclic hydrocarbon group may, for example, be a cyclopentyl group or a cyclohexyl group, but is not particularly limited. Examples of the unsaturated-linear hydrocarbon group include, but are not particularly limited to, a vinyl group, an allyl group and the like. Examples of unsaturated-branched hydrocarbon groups include i-propenyl group and 3-butenyl group, but are not particularly limited. As an aromatic hydrocarbon group, although a phenyl group or a naphthalene group etc. are mentioned, it is not limited in particular.
In addition, as the derivative in R, at least one of functional groups such as a carboxy group, a hydroxy group, or an amino group is added or substituted to the main chain or side chain of the various hydrocarbon groups. Although a group is mentioned, it is not limited in particular. The number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, and more preferably 10 or less. By setting the number of carbon atoms constituting the main chain of R to 20 or less, it is possible to prevent the molecule of the phosphorus oxo acid group containing R from becoming too large and maintain good permeability to the fiber material, It can contribute to the improvement of the yield of fine cellulose fiber.
β b + is a b-valent cation consisting of an organic substance or an inorganic substance. Examples of organic b-valent cations include aliphatic ammonium or aromatic ammonium, and examples of inorganic b-valent cations include ions of alkali metals such as sodium, potassium or lithium, calcium, and the like. Or a cation of a divalent metal such as magnesium, or a hydrogen ion, but is not particularly limited. These can also be applied combining 1 type or 2 or more types. The b-valent cation composed of an organic substance or an inorganic substance is preferably an ion of sodium or potassium which is not easily yellowed when the fiber material containing β is heated and which is industrially easy to use, but is not particularly limited.
 微細セルロース繊維に対するイオン性基の導入量は、微細セルロース繊維1g(質量)あたり、好ましくは0.10mmol/g以上、より好ましくは0.20mmol/g以上、更に好ましくは0.50mmol/g以上、より更に好ましくは1.00mmol/g以上である。また、微細セルロース繊維に対するイオン性基の導入量は、微細セルロース繊維1g(質量)あたり、好ましくは3.65mmol/g以下、より好ましくは3.50mmol/g以下、更に好ましくは3.00mmol/g以下である。イオン性基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易とすることができ、微細セルロース繊維の安定性を高めることが可能となる。また、イオン性基の導入量を上記範囲内とすることにより、より解繊が容易となる。
 微細セルロース繊維に対するイオン性基の導入量は、例えば伝導度滴定法により測定することができる。伝導度滴定法による測定では、得られた微細セルロース繊維を含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながら伝導度の変化を求めることにより、導入量を測定する。
The amount of ionic group introduced into the fine cellulose fiber is preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, still more preferably 0.50 mmol / g or more, per 1 g (mass) of the fine cellulose fiber. Still more preferably, it is 1.00 mmol / g or more. The amount of ionic group introduced into the fine cellulose fiber is preferably 3.65 mmol / g or less, more preferably 3.50 mmol / g or less, still more preferably 3.00 mmol / g, per 1 g (mass) of the fine cellulose fiber. It is below. By setting the introduction amount of the ionic group within the above range, it is possible to facilitate the miniaturization of the fiber raw material, and it is possible to enhance the stability of the fine cellulose fiber. In addition, by setting the introduction amount of the ionic group within the above range, disentanglement becomes easier.
The introduction amount of the ionic group to the fine cellulose fiber can be measured, for example, by the conductivity titration method. In the measurement by the conductivity titration method, the introduced amount is measured by determining the change in conductivity while adding an alkali such as an aqueous solution of sodium hydroxide to the obtained slurry containing fine cellulose fibers.
 図1は、リン酸基を有する微細セルロース繊維に対するNaOH滴下量と電気伝導度の関係を示すグラフである。
 セルロース繊維に対するリン酸基の導入量は、次のように測定される。
 まず、セルロース繊維を含有するスラリーをイオン交換樹脂で処理する。なお、必要に応じて、イオン交換樹脂による処理の前に、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図1に示すような滴定曲線を得る。
 図1に示すように、最初は急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。更にその後、伝導度の増分が増加する(以下、「第3領域」という)。なお、第2領域と第3領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。このように、滴定曲線には、3つの領域が現れる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致する。このため、単にリン酸基導入量(又はリン酸基量)又は置換基導入量(又は置換基量)といった場合は、強酸性基量のことを表す。従って、上記で得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象スラリー中の固形分(g)で除して得られる値が、リン酸基導入量(mmol/g)となる。
FIG. 1 is a graph showing the relationship between the amount of dropped NaOH and the electrical conductivity for fine cellulose fibers having a phosphate group.
The introduced amount of phosphate group to cellulose fiber is measured as follows.
First, a slurry containing cellulose fibers is treated with an ion exchange resin. In addition, before the process by an ion exchange resin, you may implement the disintegration processing similar to the below-mentioned disintegration processing process with respect to a measuring object as needed. Then, while the aqueous sodium hydroxide solution is added, the change in electrical conductivity is observed to obtain a titration curve as shown in FIG.
As shown in FIG. 1, at the beginning, the electrical conductivity rapidly decreases (hereinafter, referred to as “first region”). Thereafter, the conductivity starts to rise slightly (hereinafter referred to as "the second region"). Thereafter, the conductivity increment is increased (hereinafter referred to as "third region"). The boundary point between the second area and the third area is defined as a point at which the second derivative value of the conductivity, that is, the change amount of the increment (inclination) of the conductivity is maximum. Thus, three regions appear in the titration curve. Among them, the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration, and the amount of alkali required in the second region is the amount of weakly acidic groups in the slurry used for titration Become equal. When the phosphoric acid group causes condensation, the weakly acidic group is apparently lost, and the amount of alkali required for the second region is smaller than the amount of alkali required for the first region. On the other hand, the amount of strongly acidic groups is the same as the amount of phosphorus atoms regardless of the presence or absence of condensation. Therefore, simply referring to the amount of introduction of phosphate group (or the amount of phosphate group) or the amount of introduction of substituents (or the amount of substituent group) means the amount of strongly acidic group. Therefore, the value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the slurry to be titrated is the amount of phosphate introduced (mmol / g).
 図2は、カルボキシ基を有する微細セルロース繊維に対するNaOH滴下量と電気伝導度の関係を示すグラフである。
 微細セルロース繊維に対するカルボキシ基の導入量は、次のように測定される。
 まず、測定対象となる微細セルロース繊維を含有するスラリーに、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図2に示すような滴定曲線を得る。なお、必要に応じて、後述の解繊処理工程と同様の解繊処理を測定対象に対して実施してもよい。滴定曲線は、図2に示すように、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでの第1領域と、その後に伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細セルロース繊維含有スラリー中の固形分(g)で除して得られる値が、カルボキシ基の導入量(mmol/g)となる。
FIG. 2 is a graph showing the relationship between the amount of dropped NaOH and the electrical conductivity for fine cellulose fibers having a carboxy group.
The amount of carboxy group introduced into the fine cellulose fiber is measured as follows.
First, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide to a slurry containing fine cellulose fibers to be measured, and a titration curve as shown in FIG. 2 is obtained. In addition, you may implement the disintegration processing similar to the below-mentioned disintegration processing process with respect to a measuring object as needed. The titration curve, as shown in FIG. 2, shows that after the conductivity decreases, the first region until the conductivity increment (slope) becomes almost constant, and then the conductivity increment (slope) increases. It is divided into the second area. The boundary point between the first region and the second region is defined as a point at which the second derivative value of the conductivity, that is, the amount of change in the conductivity increment (slope) becomes maximum. And the value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve by the solid content (g) in the fine cellulose fiber-containing slurry to be titrated is the amount of introduction of carboxy group (mmol) / G).
 なお、前記リン酸基導入量(mmol/g)は、分母の“g”が酸型の微細セルロース繊維の質量であることから、「酸型のセルロース繊維が有するリン酸基量」(以降、リン酸基量(酸型)と呼ぶ)を示している。ここで、リン酸基のプロトンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母の“g”を当該陽イオンCが対イオンであるときのセルロース繊維の質量に変換することで、「陽イオンCが対イオンであるセルロース繊維が有するリン酸基量」(以降、リン酸基量(C型))を求めることができる。
 すなわち、下記計算式によって算出する。
 リン酸基量(C型)=リン酸基量(酸型)/{1+(W-1)×A/1000}
 ここで、
 A[mmol/g]:セルロース繊維が有するリン酸基由来の総アニオン量(前記リン酸基の強酸性基量と弱酸性基量を足した値)
 W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
である。
In addition, since "g" of a denominator is a mass of the fine cellulose fiber of an acid type, as for the said phosphoric acid group introduction amount (mmol / g), "the amount of phosphoric acid groups which an acidic cellulose fiber has" (following, The amount of phosphate group (referred to as acid type) is shown. Here, when the proton of the phosphate group is substituted by an arbitrary cation C so as to be a charge equivalent, “g” of the denominator is the mass of the cellulose fiber when the cation C is a counter ion By conversion, “the amount of phosphoric acid groups possessed by the cellulose fiber in which the cation C is a counter ion” (hereinafter, the amount of phosphoric acid groups (C type)) can be determined.
That is, it calculates with the following formula.
Amount of phosphoric acid group (C type) = amount of phosphoric acid group (acid type) / {1 + (W-1) x A / 1000}
here,
A [mmol / g]: total amount of anion derived from the phosphate group of the cellulose fiber (value obtained by adding the amount of strongly acidic group and the amount of weakly acidic group of the phosphate group)
W: Formula weight per monovalent C cation (for example, 23 for Na, 9 for Al)
It is.
 なお、前記カルボキシ基導入量(mmol/g)は、分母の“g”が酸型のセルロース繊維の質量であることから、「酸型のセルロース繊維が有するカルボキシ基量」(以降、カルボキシ基量(酸型)と呼ぶ)を示している。ここで、カルボキシ基のプロトンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母の“g”を当該陽イオンCが対イオンであるときのセルロース繊維の質量に変換することで、「陽イオンCが対イオンであるセルロース繊維が有するカルボキシ基量」(以降、カルボキシ基量(C型))を求めることができる。
 すなわち、下記計算式によって算出する。
 カルボキシ基量(C型)=カルボキシ基量(酸型)/{1+(W-1)×(カルボキシ基量(酸型))/1000}
 ここで、
 W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
である。
In addition, since "g" of the denominator is the mass of acid type cellulose fiber, the carboxy group introduction amount (mmol / g) means that "carboxy group amount of acid type cellulose fiber" (hereinafter, carboxy group amount (Referred to as acid type)). Here, when the proton of the carboxy group is substituted by an arbitrary cation C so as to be a charge equivalent, “g” of the denominator is converted to the mass of the cellulose fiber when the cation C is a counter ion By doing this, “the amount of carboxy groups possessed by the cellulose fiber in which the cation C is a counter ion” (hereinafter, the amount of carboxy groups (C type)) can be determined.
That is, it calculates with the following formula.
Carboxyl group weight (C type) = Carboxyl group weight (acid type) / {1+ (W-1) × (Carboxyl group weight (acid type)) / 1000}
here,
W: Formula weight per monovalent C cation (for example, 23 for Na, 9 for Al)
It is.
 上述のようなイオン性基を導入した微細セルロース繊維を得るためには、繊維原料にイオン性基を導入するイオン性基導入工程、洗浄工程、アルカリ処理工程(中和工程)、解繊処理工程をこの順で有することが好ましく、洗浄工程の代わりに、又は洗浄工程に加えて、酸処理工程を有していてもよい。イオン性基導入工程としては、リン酸基導入工程及びカルボキシ基導入工程が例示される。以下、それぞれの工程について説明する。
(イオン性基導入工程)
〔リン酸基導入工程〕
 セルロース繊維にリン酸基を導入する工程(リン酸基導入工程)について以下に説明する。
 リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応し、リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。
 リン酸基導入工程では、セルロースを含む繊維原料と化合物Aとの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aとの反応を行ってもよい。
In order to obtain the fine cellulose fiber which introduced the above-mentioned ionic group, the ionic group introduction process which introduces an ionic group to a fiber raw material, the washing process, the alkali treatment process (neutralization process), and the fibrillation treatment process In this order, it is preferable to have an acid treatment step instead of or in addition to the washing step. A phosphoric acid group introduction process and a carboxy group introduction process are illustrated as an ionicity group introduction process. Each of the steps will be described below.
(Ionic group introduction process)
[Phosphoric acid group introduction process]
The process (phosphate group introduction process) of introducing a phosphate group to cellulose fiber will be described below.
The phosphoric acid group introducing step contains at least one compound (hereinafter also referred to as "compound A") selected from compounds which can react with the hydroxyl group of the fiber raw material containing cellulose and can introduce a phosphoric acid group. It is the process of acting on the fiber material.
In the phosphate group introducing step, the reaction between the fiber material containing cellulose and the compound A may be carried out in the presence of at least one selected from urea and derivatives thereof (hereinafter also referred to as “compound B”). On the other hand, the reaction between the fiber material containing cellulose and the compound A may be carried out in the absence of the compound B.
 リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、化合物Aとしては、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、又はリン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、又はリン酸水素二ナトリウム、リン酸二水素アンモニウムがより好ましい。
 繊維原料に対する化合物Aの添加量は、特に限定されないが、化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)100質量部に対するリン原子の添加量は、好ましくは0.5質量部以上、より好ましくは1質量部以上、更に好ましくは2質量部以上であり、そして、好ましくは100質量部以下、より好ましくは50質量部以下、更に好ましくは30質量部以下である。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、微細セルロース繊維の収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
From the viewpoint of high efficiency of introduction of the phosphate group, easy improvement of the fibrillation efficiency in the fibrillation step described later, low cost, and easy industrial application, phosphoric acid and phosphoric acid are used as the compound A. Sodium salt of phosphoric acid, potassium salt of phosphoric acid, or ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, or disodium hydrogen phosphate, ammonium dihydrogen phosphate is more preferable.
The amount of compound A added to the fiber raw material is not particularly limited, but when the amount of compound A added is converted to phosphorus atomic weight, the amount of phosphorus atom added to 100 parts by mass of fiber raw material (absolute dry mass) is preferably 0. .5 parts by mass or more, more preferably 1 part by mass or more, further preferably 2 parts by mass or more, and preferably 100 parts by mass or less, more preferably 50 parts by mass or less, still more preferably 30 parts by mass or less . By making the addition amount of the phosphorus atom with respect to a fiber raw material into the said range, the yield of a fine cellulose fiber can be improved more. On the other hand, by setting the addition amount of phosphorus atoms to the fiber raw material to the upper limit value or less, it is possible to balance the effect of improving the yield and the cost.
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、及び1-エチル尿素などが挙げられる。
 反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性を更に向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
 繊維原料(絶乾質量)100質量部に対する化合物Bの添加量は、特に限定されないが、好ましくは1質量部以上、より好ましくは10質量部以上、更に好ましくは100質量部以上であり、そして、好ましくは500質量部以下、より好ましくは400質量部以下、更に好ましくは350質量部以下である。
The compound B used in this embodiment is at least one selected from urea and derivatives thereof as described above. As compound B, urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like can be mentioned.
From the viewpoint of improving the uniformity of the reaction, the compound B is preferably used as an aqueous solution. Further, from the viewpoint of further improving the homogeneity of the reaction, it is preferable to use an aqueous solution in which both the compound A and the compound B are dissolved.
The addition amount of the compound B with respect to 100 parts by mass of the fiber raw material (absolute dry mass) is not particularly limited, but is preferably 1 part by mass or more, more preferably 10 parts by mass or more, still more preferably 100 parts by mass or more Preferably it is 500 mass parts or less, More preferably, it is 400 mass parts or less, More preferably, it is 350 mass parts or less.
 セルロースを含む繊維原料と化合物Aとの反応においては、化合物Bの他に、アミド類又はアミン類を反応系に含んでもよい。アミド類としては、ホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。 In the reaction of the fiber material containing cellulose and the compound A, in addition to the compound B, an amide or an amine may be included in the reaction system. Examples of the amides include formamide, dimethylformamide, acetamide, dimethylacetamide and the like. Examples of amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine and the like. Among these, triethylamine is known to work as a good reaction catalyst.
 リン酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リン酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、好ましくは50℃以上、より好ましくは100℃以上、更に好ましくは130℃以上であり、そして、好ましくは300℃以下、より好ましくは250℃以下、更に好ましくは200℃以下である。
 また、加熱処理は、種々の熱媒体を有する機器を利用することができ、撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置が例示される。
 加熱処理においては、例えば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱乾燥する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることによるものと考えられる。
In the phosphoric acid group introducing step, it is preferable to heat treat the fiber material after adding or mixing the compound A and the like to the fiber material. As the heat treatment temperature, it is preferable to select a temperature at which the phosphoric acid group can be efficiently introduced while suppressing the thermal decomposition or hydrolysis reaction of the fiber. The heat treatment temperature is preferably 50 ° C. or more, more preferably 100 ° C. or more, still more preferably 130 ° C. or more, and preferably 300 ° C. or less, more preferably 250 ° C. or less, still more preferably 200 ° C. or less .
Moreover, the heat processing can utilize the apparatus which has various thermal media, and a stirring dryer, a rotary dryer, a disk dryer, a roll type heating apparatus, a plate type heating apparatus, a fluidized bed drying apparatus, a flash drying apparatus , A vacuum drying apparatus, an infrared heating apparatus, a far infrared heating apparatus, and a microwave heating apparatus are exemplified.
In the heat treatment, for example, a method of impregnating a thin sheet of fiber raw material with the compound A by a method such as impregnation, and heating, or a method of heating and drying while kneading or stirring the fiber raw material and compound A with a kneader etc. can do. Thereby, it becomes possible to suppress the concentration nonuniformity of the compound A in a fiber raw material, and to introduce | transduce a phosphate group more uniformly to the cellulose fiber surface contained in a fiber raw material. This is because when water molecules move to the surface of the fiber material with drying, the compound A to be dissolved is attracted to the water molecules by surface tension and moves to the surface of the fiber material (that is, concentration unevenness of the compound A occurs) It is thought that it is because it can be suppressed.
 また、加熱処理に用いる加熱装置としては、スラリーが保持する水分及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、所望の軸比の微細繊維を得ることが可能となる。 In addition, as a heating device used for the heat treatment, the water contained in the slurry and the water generated by the dehydration condensation (phosphorylation of esterification) of the compound A and the hydroxyl group contained in the cellulose etc. It is preferable that it is an apparatus which can be discharged outside. As such a heating device, for example, an air-blowing oven may be mentioned. In addition to being able to suppress the hydrolysis reaction of the phosphate ester bond which is the reverse reaction of phosphoric acid esterification by always draining the water in the device system, it is also possible to suppress the acid hydrolysis of the sugar chain in the fiber. it can. For this reason, it is possible to obtain fine fibers with a desired axial ratio.
 加熱処理の時間は、繊維原料から実質的に水分が除かれてから、好ましくは1秒以上、より好ましくは10秒以上であり、そして、好ましくは300分以下、より好ましくは1,000秒以下、更に好ましくは800秒以下である。加熱温度と加熱時間を適切な範囲とすることにより、リン酸基の導入量を好ましい範囲内とすることができる。 The heat treatment time is preferably 1 second or more, more preferably 10 seconds or more, and preferably 300 minutes or less, more preferably 1,000 seconds or less after substantially removing moisture from the fiber raw material. More preferably, it is 800 seconds or less. By making heating temperature and heating time into a suitable range, the introduction amount of a phosphoric acid group can be carried out in a preferable range.
 リン酸基導入工程は、少なくとも1回行えばよいが、2回以上繰り返して行ってもよい。2回以上のリン酸基導入工程を行うことにより、繊維原料に対して多くのリン酸基を導入することができる。本発明においては、好ましい態様の一例として、リン酸基導入工程を2回行う場合が挙げられる。 The phosphate group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphate group introduction step twice or more, many phosphate groups can be introduced into the fiber material. In the present invention, as an example of a preferable embodiment, the case of performing the phosphate group introducing step twice is mentioned.
 微細セルロース繊維1g(質量)あたりのリン酸基の導入量は、好ましくは0.10mmol/g以上、より好ましくは0.20mmol/g以上、更に好ましくは0.50mmol/g以上、より更に好ましくは1.00mmol/g以上である。また、微細セルロース繊維1g(質量)あたりのリン酸基の導入量は、好ましくは5.20mmol/g以下、より好ましくは3.65mmol/g以下、更に好ましくは3.00mmol/g以下である。微細セルロース繊維へのリン酸基の導入量が上記範囲内となるように、繊維原料にリン酸基を導入することが好ましい。リン酸基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細セルロース繊維の安定性を高めることができる。 The amount of phosphoric acid group introduced per 1 g (mass) of the fine cellulose fiber is preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, still more preferably 0.50 mmol / g or more, still more preferably It is 1.00 mmol / g or more. Moreover, the introduction amount of the phosphate group per 1 g (mass) of the fine cellulose fiber is preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and further preferably 3.00 mmol / g or less. It is preferable to introduce a phosphate group into the fiber raw material so that the amount of phosphate group introduced into the fine cellulose fiber falls within the above range. By making the introduction amount of the phosphoric acid group within the above range, it is possible to facilitate the miniaturization of the fiber raw material and to enhance the stability of the fine cellulose fiber.
〔カルボキシ基導入工程〕
 セルロース繊維にカルボキシ基を導入する工程(カルボキシ基導入工程)について以下に説明する。
 カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物若しくはその誘導体、又はカルボン酸由来の基を有する化合物の酸無水物若しくはその誘導体によって処理することにより行われる。
 カルボン酸由来の基を有する化合物としては、特に限定されないが、マレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、カルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、マレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
[Carboxyl group introduction step]
The process (carboxyl group introduction process) which introduce | transduces a carboxy group into a cellulose fiber is demonstrated below.
The carboxy group introducing step has a fiber material containing cellulose, a compound having an oxidation treatment such as oxidation by ozone oxidation, Fenton method, TEMPO oxidation treatment, a group derived from a carboxylic acid or a derivative thereof, or a group derived from a carboxylic acid. It is carried out by treatment with an acid anhydride of the compound or a derivative thereof.
The compound having a group derived from carboxylic acid is not particularly limited, but dicarboxylic acids such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid and itaconic acid, tricarboxylic acids such as citric acid and aconitic acid Acid compounds are mentioned. The derivative of the compound having a group derived from a carboxylic acid is not particularly limited, but examples thereof include an imidized acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group. Although it does not specifically limit as an imide compound of the acid anhydride of the compound which has a carboxy group, The imidate of dicarboxylic acid compounds, such as maleimide, a succinimide, and a phthalimide, is mentioned.
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、pHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。更に亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。 When TEMPO oxidation treatment is carried out in the carboxy group introduction step, it is preferable to carry out under the conditions of pH 6 or more and 8 or less. Such treatment is also referred to as neutral TEMPO oxidation treatment. Neutral TEMPO oxidation treatment is carried out, for example, with sodium phosphate buffer (pH = 6.8), pulp as a fiber raw material, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a catalyst, etc. It can be carried out by adding a nitroxy radical, sodium hypochlorite as a sacrificial reagent. Further, by coexisting sodium chlorite, aldehyde generated in the process of oxidation can be efficiently oxidized to a carboxy group.
 TEMPO酸化によりカルボキシ基を導入する場合、微細セルロース繊維1g(質量)あたりのカルボキシ基の導入量は、好ましくは0.10mmol/g以上、より好ましくは0.20mmol/g以上、更に好ましくは0.50mmol/g以上、より更に好ましくは0.90mmol/g以上である。また、好ましくは2.50mmol/g以下、より好ましくは2.20mmol/g以下、更に好ましくは2.00mmol/g以下である。その他、置換基がカルボキシメチル基である場合、微細セルロース繊維1g(質量)あたりの導入量は、5.8mmol/g以下であってもよい。
 微細セルロース繊維へのカルボキシ基の導入量が上記範囲内となるように、繊維原料にカルボキシ基を導入することが好ましい。カルボキシ基の導入量を上記範囲内とすることにより、繊維原料の微細化を容易にし、微細セルロース繊維の安定性を高めることができる。
When a carboxy group is introduced by TEMPO oxidation, the amount of carboxy group introduced per 1 g (mass) of the fine cellulose fiber is preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, still more preferably 0. It is 50 mmol / g or more, more preferably 0.90 mmol / g or more. Moreover, Preferably it is 2.50 mmol / g or less, More preferably, it is 2.20 mmol / g or less, More preferably, it is 2.00 mmol / g or less. In addition, when the substituent is a carboxymethyl group, the introduction amount per 1 g (mass) of the fine cellulose fiber may be 5.8 mmol / g or less.
It is preferable to introduce a carboxy group into the fiber material so that the amount of carboxy group introduced into the fine cellulose fiber is in the above range. By making the introduction amount of the carboxy group within the above range, it is possible to facilitate the miniaturization of the fiber raw material and to enhance the stability of the fine cellulose fiber.
(洗浄工程)
 アルカリ処理工程におけるアルカリ溶液使用量を減らすために、イオン性基導入工程の後であってアルカリ処理工程の前に、イオン性基導入繊維を水や有機溶媒により洗浄してもよい。アルカリ処理工程の後であって解繊処理工程の前には、取り扱い性を向上させる観点から、アルカリ処理を行ったリン酸基導入繊維等のイオン性基導入繊維を水や有機溶媒により洗浄することが好ましい。
 洗浄工程では、イオン性基導入繊維を水や有機溶媒に分散させた後に、濾過する操作を繰り返すことが好ましく、濾液の電気伝導度を所望の範囲とすることで洗浄工程の進行を管理することができる。濾液の電気伝導度が、好ましくは10,000μS/cm以下、より好ましくは1,000μS/cm以下、更に好ましくは300μS/cm以下、より更に好ましくは150μS/cmとなるように、洗浄工程を行うことが好ましい。
(Washing process)
In order to reduce the amount of alkaline solution used in the alkaline treatment step, the ionic group-introduced fiber may be washed with water or an organic solvent after the ionic group introduction step and before the alkaline treatment step. After the alkali treatment step and before the defibration treatment step, from the viewpoint of improving the handleability, the alkali group introduced fibers such as phosphate group introduced fibers which have been subjected to alkali treatment are washed with water or an organic solvent Is preferred.
In the washing step, it is preferable to repeat the filtration operation after dispersing the ionic group-introduced fiber in water or an organic solvent, and control the progress of the washing step by setting the electric conductivity of the filtrate to a desired range. Can. The washing step is carried out so that the conductivity of the filtrate is preferably 10,000 μS / cm or less, more preferably 1,000 μS / cm or less, still more preferably 300 μS / cm or less, still more preferably 150 μS / cm Is preferred.
(アルカリ処理工程(中和工程))
 微細セルロース繊維を製造する場合、イオン性基導入工程と、後述する解繊処理工程との間に、繊維原料に対してアルカリ処理を行い、イオン性基の中和を行う、アルカリ処理工程(中和工程)を有していてもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、イオン性基導入繊維を浸漬する方法が挙げられる。
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本発明においては、汎用性が高いことから、水酸化ナトリウム又は水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水又は有機溶媒のいずれであってもよい。アルカリ溶液に含まれる溶媒は、水、又はアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、水酸化ナトリウム水溶液、又は水酸化カリウム水溶液が好ましい。
(Alkali treatment process (neutralization process))
When producing a fine cellulose fiber, an alkali treatment is performed on the fiber raw material to neutralize the ionic group between the ionic group introduction step and the defibration treatment step described later. It may have a sum process). Although it does not specifically limit as the method of alkali treatment, For example, the method of immersing an ionic group introduce | transducing fiber in an alkali solution is mentioned.
The alkali compound contained in the alkali solution is not particularly limited, and may be an inorganic alkali compound or an organic alkali compound. In the present invention, it is preferable to use sodium hydroxide or potassium hydroxide as an alkali compound because of its high versatility. Also, the solvent contained in the alkaline solution may be either water or an organic solvent. The solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohols, and more preferably an aqueous solvent containing at least water. As the alkali solution, a sodium hydroxide aqueous solution or a potassium hydroxide aqueous solution is preferable because of high versatility.
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、好ましくは5℃以上、より好ましくは10℃以上であり、そして、好ましくは80℃以下、より好ましくは60℃以下である。アルカリ処理工程におけるイオン性基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、好ましくは5分以上、より好ましくは10分以上であり、そして、好ましくは30分以下、より好ましくは20分以下である。
 アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、イオン性基導入繊維の絶対乾燥質量100質量部に対して、好ましくは100質量部以上、より好ましくは1,000質量部以上であり、そして、好ましくは100,000質量部以下、より好ましくは10,000質量部以下である。
The temperature of the alkali solution in the alkali treatment step is not particularly limited, but is preferably 5 ° C. or more, more preferably 10 ° C. or more, and preferably 80 ° C. or less, more preferably 60 ° C. or less. The immersion time of the ionic group-introduced fiber into the alkali solution in the alkali treatment step is not particularly limited, but is preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 30 minutes or less, more preferably 20 It is less than a minute.
The use amount of the alkali solution in the alkali treatment is not particularly limited, but is preferably 100 parts by mass or more, more preferably 1,000 parts by mass or more, with respect to 100 parts by mass of the dry mass of the ionic group-introduced fiber. And preferably 100,000 parts by mass or less, more preferably 10,000 parts by mass or less.
 アルカリ処理においては、例えば、イオン性基としてリン酸基を導入した場合、イオン性基導入繊維を分散させた分散液にアルカリ溶液を徐々に添加し、系内のpHを好ましくは10以上、より好ましくは11以上、更に好ましくは12以上、そして、好ましくは14以下、より好ましくは13.5以下、更に好ましくは13以下となるように、アルカリ溶液を添加することが好ましい。
 また、イオン性基としてカルボキシ基を導入した場合には、系内のpHを好ましくは7以上、より好ましくは8以上、更に好ましくは9以上、より更に好ましくは10以上、そして、好ましくは14以下、より好ましくは13.5以下、更に好ましくは13以下となるようにアルカリ溶液を添加することが好ましい。
 アルカリ溶液の添加量を上記の範囲とすることにより、より解繊処理を容易に行うことができ、繊維幅の小さな微細セルロース繊維を容易に得ることができる。
In the alkali treatment, for example, when a phosphate group is introduced as an ionic group, an alkaline solution is gradually added to the dispersion in which the ionic group-introduced fiber is dispersed, and the pH in the system is preferably 10 or more. It is preferable to add an alkaline solution so that it is preferably 11 or more, more preferably 12 or more, and preferably 14 or less, more preferably 13.5 or less, and further preferably 13 or less.
When a carboxy group is introduced as an ionic group, the pH in the system is preferably 7 or more, more preferably 8 or more, still more preferably 9 or more, still more preferably 10 or more, and preferably 14 or less It is preferable to add an alkali solution so as to be more preferably 13.5 or less, further preferably 13 or less.
By setting the addition amount of the alkaline solution in the above range, the defibration treatment can be more easily performed, and the fine cellulose fiber with a small fiber width can be easily obtained.
(酸処理工程)
 微細セルロース繊維の製造において、イオン性基導入工程と、後述する解繊処理工程との間に、イオン性基導入繊維原料に対して、酸処理を行ってもよい。微細セルロース繊維の製造方法の一例としては、イオン性基導入工程、酸処理工程、アルカリ処理工程、及び解繊処理工程をこの順で行う態様が挙げられる。
 酸処理の方法としては、特に限定されないが、酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、好ましくは10質量%以下、より好ましくは5質量%以下である。また、使用する酸性液のpHは、特に限定されないが、好ましくは0以上、より好ましくは1以上であり、そして、好ましくは4以下、より好ましくは3以下である。
(Acid treatment process)
In the production of the fine cellulose fiber, an acid treatment may be performed on the ionic group-introduced fiber raw material between the ionic group introduction step and the defibration treatment step described later. As an example of the manufacturing method of a fine cellulose fiber, the aspect which performs an ionic group introduction process, an acid treatment process, an alkali treatment process, and a disintegration treatment process in this order is mentioned.
Although it does not specifically limit as the method of an acid treatment, The method of immersing a fiber raw material in the acidic liquid containing an acid is mentioned. The concentration of the acidic solution to be used is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less. The pH of the acidic solution to be used is not particularly limited, but is preferably 0 or more, more preferably 1 or more, and preferably 4 or less, more preferably 3 or less.
 酸性液に含まれる酸としては、無機酸、スルホン酸、カルボン酸等が例示される。
 無機酸としては、硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。
 スルホン酸としては、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。
 カルボン酸としては、ギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。
 これらの中でも、塩酸又は硫酸を用いることが特に好ましい。
Examples of the acid contained in the acidic solution include inorganic acids, sulfonic acids and carboxylic acids.
Examples of inorganic acids include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
Examples of carboxylic acids include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid and tartaric acid.
Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
 酸処理における酸溶液の温度は、特に限定されないが、好ましくは5℃以上、より好ましくは20℃以上であり、そして、好ましくは100℃以下、より好ましくは90℃以下である。
 酸処理における酸溶液への浸漬時間は、特に限定されないが、好ましくは5分以上、より好ましくは10分以上であり、そして、好ましくは120分以下、より好ましくは60分以下である。
 酸処理における酸溶液の使用量は、特に限定されないが、繊維原料の絶対乾燥質量(絶乾質量)100質量部に対して、好ましくは100質量部以上、より好ましくは1,000質量部以上であり、そして、好ましくは100,000質量部以下、より好ましくは10,000質量部以下である。
The temperature of the acid solution in the acid treatment is not particularly limited, but is preferably 5 ° C. or more, more preferably 20 ° C. or more, and preferably 100 ° C. or less, more preferably 90 ° C. or less.
The immersion time to the acid solution in the acid treatment is not particularly limited, but is preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 120 minutes or less, more preferably 60 minutes or less.
The use amount of the acid solution in the acid treatment is not particularly limited, but preferably 100 parts by mass or more, more preferably 1,000 parts by mass or more with respect to 100 parts by mass of the absolute dry mass (absolute dry mass) of the fiber material. And preferably 100,000 parts by mass or less, more preferably 10,000 parts by mass or less.
(解繊処理工程)
 イオン性基導入繊維は、解繊処理工程で解繊処理することにより、微細セルロース繊維が得られる。
 解繊処理工程においては、解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、又はビーターなどを使用することができ、解繊処理時の微細セルロース繊維の固形分濃度は適宜設定できる。上記解繊処理装置の中でも、粉砕メディアの影響が少なく、コンタミネーションのおそれが少ない高速解繊機、高圧ホモジナイザー、超高圧ホモジナイザーを用いることがより好ましい。
(Disintegration process)
The ionizable group-introduced fiber is subjected to a defibration treatment in a defibration treatment step to obtain a fine cellulose fiber.
In the defibration treatment step, a defibration treatment apparatus can be used. The fibrillation treatment apparatus is not particularly limited, but a high-speed fibrillation machine, a grinder (stone mill type crusher), a high pressure homogenizer or an ultrahigh pressure homogenizer, a high pressure collision type crusher, a ball mill, a bead mill, a bead mill, a disc type refiner, a conical refiner, biaxial kneading Machine, vibration mill, homomixer under high speed rotation, ultrasonic dispersion machine, beater, etc. can be used, and solid content concentration of the fine cellulose fiber at the time of disentanglement processing can be set suitably. It is more preferable to use a high-speed fibrillation machine, a high pressure homogenizer, or an ultrahigh pressure homogenizer which is less affected by the grinding media and less likely to contaminate among the above-mentioned fibrillation treatment apparatuses.
 解繊処理工程においては、イオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、及び極性有機溶媒などの有機溶媒から選択される1種又は2種以上を使用することができる。
 極性有機溶媒としては、とくに限定されないが、アルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン極性溶媒等が好ましく例示される。
 アルコール類としては、メタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、エチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、ジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF),ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
 また、イオン性基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのイオン性基導入繊維以外の固形分が含まれていてもよい。
In the defibration treatment step, it is preferable to dilute the ionic group-introduced fiber with a dispersion medium to form a slurry. As the dispersion medium, one or more selected from water and an organic solvent such as a polar organic solvent can be used.
The polar organic solvent is not particularly limited, but alcohols, polyhydric alcohols, ketones, ethers, esters, non-proton polar solvents and the like are preferably exemplified.
Examples of alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like. Examples of polyhydric alcohols include ethylene glycol, propylene glycol and glycerin. Examples of ketones include acetone, methyl ethyl ketone (MEK) and the like. The ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, propylene glycol monomethyl ether and the like. Examples of esters include ethyl acetate and butyl acetate. Examples of the aprotic polar solvent include dimethylsulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
Further, in the slurry obtained by dispersing the ionic group-introduced fiber in the dispersion medium, solid content other than the ionic group-introduced fiber such as urea having hydrogen bonding property may be contained, for example.
(粗大セルロース繊維)
 上述したように微細セルロース繊維を得る工程においては、繊維原料(粗大セルロース繊維)を微細化する工程を含む。このとき粗大セルロース繊維の大部分は微細化されるが、その一部は微細化されずに残る場合がある。このような場合、繊維層に粗大セルロース繊維が含まれることとなる。
 本発明において、セルロース繊維含有組成物中に含まれる粗大セルロース繊維とは、セルロース分散液を固形分濃度0.2質量%に調整し、冷却高速遠心分離機((株)コクサン、H-2000B)を用い、12,000G、10分の条件で遠心分離した際に沈降するセルロース繊維のことである。
 沈降成分が少ないとは、すなわち遠心分離後の上澄み液の収率が高いということである。この遠心分離後の上澄み収率がセルロース繊維の全質量に対して、80質量%以上であることが好ましい。遠心分離後の上澄み収率は90%質量以上であることがより好ましく、95質量%以上であることが更に好ましく、99質量%以上であることが特に好ましい。なお、上記の微細セルロース繊維分散液の遠心分離後の上澄み収率は、本明細書においては以下の方法により測定することができる。
 微細セルロース繊維分散液を遠心分離した後の上澄み収率を以下に記載の方法により測定した。遠心分離後の上澄み収率は、微細セルロース繊維の収率の指標となり、上澄み収率が高い程、微細セルロース繊維の収率が高い。
 微細セルロース繊維分散液を固形分濃度0.2質量%に調整し、冷却高速遠心分離機((株)コクサン、H-2000B)を用い、12,000G、10分の条件で遠心分離する。得られた上澄み液を回収し、上澄み液の固形分濃度を測定した。下記式に基づいて、微細セルロース繊維の収率を求める。
 微細セルロース繊維の収率(%)=上澄みの固形分濃度(%)/0.2×100
(Coarse cellulose fiber)
As described above, the step of obtaining the fine cellulose fiber includes the step of refining the fiber raw material (coarse cellulose fiber). At this time, most of the coarse cellulose fibers are refined, but some of them may remain unrefined. In such a case, coarse cellulose fibers will be contained in the fiber layer.
In the present invention, the coarse cellulose fiber contained in the cellulose fiber-containing composition is prepared by adjusting the cellulose dispersion to a solid content concentration of 0.2% by mass, and a cooling high-speed centrifuge (Kokusan Co., Ltd., H-2000B) It is a cellulose fiber that settles when it is centrifuged at 12,000 G for 10 minutes using
Less sedimented components means that the yield of supernatant after centrifugation is high. It is preferable that the supernatant yield after this centrifugation is 80 mass% or more with respect to the total mass of a cellulose fiber. The supernatant yield after centrifugation is more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 99% by mass or more. In addition, the supernatant yield after centrifugation of said fine cellulose fiber dispersion liquid can be measured by the following method in this specification.
The supernatant yield after centrifuging the fine cellulose fiber dispersion was measured by the method described below. The supernatant yield after centrifugation is an index of the yield of fine cellulose fibers, and the higher the supernatant yield, the higher the yield of fine cellulose fibers.
The fine cellulose fiber dispersion is adjusted to a solid concentration of 0.2% by mass, and centrifuged at 12,000 G for 10 minutes using a cooling high-speed centrifuge (Kokusan Co., Ltd., H-2000B). The obtained supernatant was collected, and the solid concentration of the supernatant was measured. The yield of fine cellulose fibers is determined based on the following equation.
Fine cellulose fiber yield (%) = supernatant solid concentration (%) / 0.2 x 100
(繊維層の形成方法)
 本発明において、基材上に繊維層を設ける方法は特に限定されず、抄紙法により形成してもよく、また、塗布、噴霧等により基材上に微細セルロース繊維を付与した後、乾燥して繊維層を形成してもよい。
 抄紙又は微細セルロース繊維の付与に使用する微細セルロース繊維分散液の濃度は特に限定されないが、粘度の増加を抑制する観点から、好ましくは10質量%以下、より好ましくは5質量%以下、更に好ましくは3質量%以下、より更に好ましくは1.5質量%以下、より更に好ましくは1質量%以下であり、効率的に微細セルロース繊維を基材に付与する観点から、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.3質量%以上、より更に好ましくは0.5質量%以上である。
 乾燥後の微細セルロース繊維の目付け(塗工量)が上述した所望の範囲となるように、微細セルロース繊維分散液の濃度及び基材への付与量は適宜調整すればよい。
(Method of forming fiber layer)
In the present invention, the method of providing the fiber layer on the substrate is not particularly limited, and may be formed by a paper making method, or after fine cellulose fibers are applied on the substrate by coating, spraying or the like, and then dried. You may form a fiber layer.
The concentration of the fine cellulose fiber dispersion used to apply papermaking or fine cellulose fibers is not particularly limited, but from the viewpoint of suppressing an increase in viscosity, it is preferably 10% by mass or less, more preferably 5% by mass or less, still more preferably It is 3% by mass or less, more preferably 1.5% by mass or less, still more preferably 1% by mass or less, preferably 0.05% by mass or more from the viewpoint of efficiently applying fine cellulose fibers to a substrate More preferably, it is 0.1 mass% or more, More preferably, it is 0.3 mass% or more, More preferably, it is 0.5 mass% or more.
The concentration of the fine cellulose fiber dispersion and the amount applied to the substrate may be appropriately adjusted so that the basis weight (coating amount) of the fine cellulose fibers after drying falls within the above-described desired range.
<水分量>
 本発明の全熱交換器用シートは、水分含有量が8質量%以上である。水分含有量が8質量%未満であると、高い透湿度を得ることが困難である。
 水分含有量は、全熱交換器用シートの製造プロセスを高度に制御することによって調整することが可能である。本発明者等によれば、例えば、シートを構成する微細セルロース繊維や吸湿剤などの種類や配合量、添加方法などが、水分含有量に影響を与えるものと推定される。
 全熱交換器用シートの水分含有量は、高い透湿度を得る観点から、好ましくは9質量%以上、より好ましくは10質量%以上、更に好ましくは12質量%以上、より更に好ましくは15質量%以上である。また、結露を防止する観点、及び全熱交換用シートの強度を高める観点から、全熱交換器用シートの水分含有量は、好ましくは30質量%以下、より好ましくは25質量%以下、更に好ましくは20質量%以下である。
 全熱交換器用シートの水分含有量(水分量)は、実施例に記載の方法により測定される。
<Water content>
The sheet for total heat exchangers of the present invention has a water content of 8% by mass or more. If the water content is less than 8% by mass, it is difficult to obtain high moisture permeability.
The moisture content can be adjusted by highly controlling the manufacturing process of the total heat exchanger sheet. According to the present inventors, for example, it is presumed that the type, blending amount, addition method, and the like of the fine cellulose fiber and the hygroscopic agent that constitute the sheet affect the water content.
The water content of the total heat exchanger sheet is preferably 9% by mass or more, more preferably 10% by mass or more, still more preferably 12% by mass or more, still more preferably 15% by mass or more from the viewpoint of obtaining high moisture permeability. It is. In addition, from the viewpoint of preventing condensation and enhancing the strength of the total heat exchange sheet, the water content of the total heat exchanger sheet is preferably 30% by mass or less, more preferably 25% by mass or less, still more preferably It is 20 mass% or less.
The moisture content (moisture content) of the total heat exchanger sheet is measured by the method described in the examples.
(吸湿剤)
 本発明の全熱交換器用シートは、所望の水分量とするために、吸湿剤を含有することが好ましい。なお、吸湿剤は、基材層及び繊維層のいずれか一方が含有していてもよく、基材層及び繊維層の双方が含有していてもよいが、製造方法の容易性及び繊維層側の表面での接触角を高める観点から、基材層及び繊維層の双方が含有していることが好ましい。なお、後述するように、接触角は高いほうが好ましい。
 吸湿剤としては、従来公知の吸湿剤であれば特に限定されず、適宜選択して用いればよい。具体的には、ハロゲン化金属塩、金属乳酸塩、金属硫酸塩、金属酢酸塩、アミン塩、リン酸化合物、グアニジン塩、及び金属水酸化物から選択される少なくとも1つが好ましい。
 ハロゲン化金属塩としては、塩化リチウム、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、塩化アルミニウム、塩化亜鉛等が例示され、金属乳酸塩としては、乳酸ナトリウム等が例示され、金属硫酸塩としては、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸亜鉛等が例示され、金属酢酸塩としては、酢酸カリウム等が例示される。
 また、アミン塩としては、塩酸ジメチルアミン等が例示され、リン酸化合物としては、オルトリン酸等が例示され、グアニジン塩としては、塩酸グアニジン、リン酸グアニジン、スルファミン酸グアニジン等が例示される。更に、金属水酸化物としては、水酸化カリウム、水酸化ナトリウム、水酸化マグネシウム等が例示される。
 更に、吸湿剤として、吸湿性高分子である、水溶性高分子や、ハイドロゲル形成能を有する親水性高分子を使用してもよい。
 これらの中でも、吸湿性及び取扱い性に優れ、また、水に対する接触角を増加させる観点から、吸湿剤は金属塩であることが好ましく、ハロゲン化金属塩であることがより好ましく、アルカリ金属ハロゲン化物、アルカリ土類金属ハロゲン化物であることが更に好ましく、塩化リチウム及び塩化カルシウムよりなる群から選択される少なくとも1つであることがより更に好ましい。
 本発明者等は、全熱交換器用シートに吸湿剤を含有させることにより、全熱交換器用シートの親水性が高まり、結果として水の接触角が低くなると、当初予想していた。しかし、吸湿剤が金属塩であり、微細セルロース繊維がイオン性基、特にアニオン性基を有する場合、予想外の効果として、繊維層側の表面における水の接触角が増加する。その詳細な理由は不明であるが、微細セルロース繊維の含有するアニオン性基と、吸湿剤の金属原子とにより、擬似的に架橋構造が形成され、その結果、表面が疎水的になり、水に対する接触角が増加すると考えられる。
 上記の観点からは、微細セルロース繊維がアニオン性基としてカルボキシ基又はリン酸基、好ましくはリン酸基を有し、吸湿剤が塩化リチウム又は塩化カルシウムを含有する態様が特に好適である。
(Hygroscopic agent)
The total heat exchanger sheet of the present invention preferably contains a hygroscopic agent to obtain a desired moisture content. The hygroscopic agent may be contained in either the base layer or the fiber layer, or may be contained in both the base layer and the fiber layer, but the ease of the production method and the fiber layer side It is preferable that both the base material layer and the fiber layer contain from the viewpoint of increasing the contact angle at the surface of the above. As described later, the contact angle is preferably high.
The hygroscopic agent is not particularly limited as long as it is a conventionally known hygroscopic agent, and may be appropriately selected and used. Specifically, at least one selected from metal halides, metal lactates, metal sulfates, metal acetates, amine salts, phosphoric acid compounds, guanidine salts, and metal hydroxides is preferable.
Examples of metal halides include lithium chloride, sodium chloride, calcium chloride, magnesium chloride, aluminum chloride, zinc chloride and the like, and metal lactates include sodium lactate and the like, and metal sulfates include sodium sulfate Calcium sulfate, magnesium sulfate, zinc sulfate and the like are exemplified, and as metal acetate, potassium acetate and the like are exemplified.
Further, examples of the amine salt include dimethylamine hydrochloride and the like, examples of the phosphoric acid compound include orthophosphoric acid and the like, and examples of the guanidine salt include guanidine hydrochloride, guanidine phosphate, and guanidine sulfamate. Furthermore, potassium hydroxide, sodium hydroxide, magnesium hydroxide etc. are illustrated as a metal hydroxide.
Furthermore, a water-soluble polymer which is a hygroscopic polymer, or a hydrophilic polymer having a hydrogel forming ability may be used as a hygroscopic agent.
Among them, the hygroscopic agent is preferably a metal salt, more preferably a metal halide salt, more preferably an alkali metal halide, from the viewpoints of excellent hygroscopicity and handleability and increasing the contact angle to water. It is more preferably an alkaline earth metal halide, and even more preferably at least one selected from the group consisting of lithium chloride and calcium chloride.
The present inventors initially predicted that the hydrophilicity of the total heat exchanger sheet is enhanced by containing the hygroscopic agent in the total heat exchanger sheet, and as a result, the contact angle of water is lowered. However, when the hygroscopic agent is a metal salt and the fine cellulose fiber has an ionic group, in particular an anionic group, the contact angle of water on the surface on the fiber layer side is increased as an unexpected effect. Although the detailed reason is unknown, the cross-linked structure is formed in a pseudo manner by the anionic group contained in the fine cellulose fiber and the metal atom of the hygroscopic agent, and as a result, the surface becomes hydrophobic and the water It is believed that the contact angle increases.
From the above viewpoint, an embodiment is particularly preferable in which the fine cellulose fiber has a carboxy group or a phosphoric acid group as an anionic group, preferably a phosphoric acid group, and the hygroscopic agent contains lithium chloride or calcium chloride.
 全熱交換器用シートにおける吸湿剤の含有量は、全熱交換器用シートの水分含有量を所望の範囲とする観点から、微細セルロース繊維100質量部に対して、好ましくは100質量部以上、より好ましくは300質量部以上、更に好ましくは500質量部以上、より更に好ましくは600質量部以上であり、そして、好ましくは10,000質量部以下、より好ましくは5,000質量部以下、更に好ましくは2,500質量部以下である。
 全熱交換器用シートにおける吸湿剤の目付け(塗工量)は、全熱交換器用シートの水分量を所望の範囲とする観点から、好ましくは1g/m以上、より好ましくは3g/m以上、更に好ましくは5g/m以上であり、そして、好ましくは20g/m以下、より好ましくは15g/m以下、更に好ましくは12g/m以下である。
The content of the hygroscopic agent in the total heat exchanger sheet is preferably 100 parts by mass or more, more preferably 100 parts by mass of the fine cellulose fibers from the viewpoint of making the water content of the total heat exchanger sheet into a desired range. Is 300 parts by mass or more, more preferably 500 parts by mass or more, still more preferably 600 parts by mass and preferably 10,000 parts by mass or less, more preferably 5,000 parts by mass or less, still more preferably 2 , 500 parts by mass or less.
The basis weight (coating amount) of the hygroscopic agent in the total heat exchanger sheet is preferably 1 g / m 2 or more, more preferably 3 g / m 2 or more from the viewpoint of making the water content of the total heat exchanger sheet into a desired range. , More preferably 5 g / m 2 or more, and preferably 20 g / m 2 or less, more preferably 15 g / m 2 or less, still more preferably 12 g / m 2 or less.
 全熱交換器用シートに吸湿剤を含有させる方法は特に限定されないが、繊維層側の表面における水の接触角を増加させる観点からは、繊維層を形成後に吸湿剤を含有させることが好ましく、繊維層を形成後に、吸湿剤を溶解した水溶液を噴霧、塗布する方法や、吸湿剤を溶解した水溶液に浸漬する方法が好ましく例示される。
 この方法によれば、予め吸湿剤を基材層に付与した後に繊維層を形成する方法と比較して、繊維層側の表面における水の接触角を更に向上させることができる。また、微細セルロース繊維分散液に吸湿剤を添加して、基材に付与する方法と比較して、分散液中で微細セルロース繊維の凝集をより効果的に抑えることができる。
The method for allowing the sheet for total heat exchanger to contain a hygroscopic agent is not particularly limited, but from the viewpoint of increasing the contact angle of water on the surface of the fiber layer side, it is preferable to contain a hygroscopic agent after forming the fiber layer, After forming the layer, a method of spraying and applying an aqueous solution in which a hygroscopic agent is dissolved, and a method of immersing in an aqueous solution in which a hygroscopic agent is dissolved are preferably exemplified.
According to this method, the contact angle of water on the surface on the fiber layer side can be further improved as compared with the method of forming the fiber layer after applying the hygroscopic agent to the base material layer in advance. Moreover, compared with the method of adding a hygroscopic agent to a fine cellulose fiber dispersion liquid, and providing it to a base material, aggregation of a fine cellulose fiber in a dispersion liquid can be suppressed more effectively.
<全熱交換器用シート>
 以下に、本発明の全熱交換器用シートの好ましい態様について説明する。
 本発明の全熱交換器用シートは、少なくとも一層の基材層と、少なくとも一層の繊維層とを有していれば特に限定されず、基材層の両面に繊維層を有する、繊維層/基材層/繊維層の3層構造としてもよく、一方の面に繊維層を有する、繊維層/基材層の2層構造としてもよく、特に限定されない。
 これらの中でも、製造の容易性や、一層の繊維層で十分な透湿度及び透気度、二酸化炭素バリア性が得られる観点から、繊維層/基材層の2層構造であることが好ましい。
<Sheet for total heat exchanger>
Below, the preferable aspect of the sheet | seat for total heat exchangers of this invention is demonstrated.
The total heat exchanger sheet of the present invention is not particularly limited as long as it has at least one base layer and at least one fiber layer, and has a fiber layer on both sides of the base layer. It may be a three-layer structure of a material layer / fiber layer, or may be a two-layer structure of a fiber layer / substrate layer having a fiber layer on one side, and is not particularly limited.
Among these, a two-layer structure of a fiber layer / substrate layer is preferable from the viewpoint of easy production, sufficient moisture permeability and air permeability, and carbon dioxide barrier property with a single fiber layer.
 本発明の全熱交換器用シートの密度は、伝熱性を向上させる観点から、好ましくは0.65g/cm以上、より好ましくは0.7g/cm以上、更に好ましくは0.75g/cm以上である。密度の上限は特に限定されないが、熱交換器全体の質量を抑制する観点から、好ましくは1.3g/cm以下、より好ましくは1.0g/cm以下である。
 全熱交換器用シートの密度は、実施例に記載の方法により測定される。
The density of the total heat exchanger sheet of the present invention is preferably 0.65 g / cm 3 or more, more preferably 0.7 g / cm 3 or more, still more preferably 0.75 g / cm 3 from the viewpoint of improving the heat conductivity. It is above. The upper limit of the density is not particularly limited, but is preferably 1.3 g / cm 3 or less, more preferably 1.0 g / cm 3 or less, from the viewpoint of suppressing the mass of the entire heat exchanger.
The density of the total heat exchanger sheet is measured by the method described in the examples.
 本発明の全熱交換器用シートの厚みは、全熱交換器に多くのシートを配置可能である観点から、薄い方が好ましく、具体的には、好ましくは150μm以下、より好ましくは120μm以下、更に好ましくは100μm以下である。
 また、全熱交換器用シートとして必要な強度を維持する観点から、好ましくは20μm以上、より好ましくは30μm以上である。
The thickness of the sheet for total heat exchanger of the present invention is preferably thin from the viewpoint that many sheets can be arranged in the total heat exchanger, and specifically, preferably 150 μm or less, more preferably 120 μm or less, and further preferably Preferably it is 100 micrometers or less.
Moreover, from a viewpoint of maintaining the intensity | strength required as a sheet | seat for all heat exchangers, Preferably it is 20 micrometers or more, More preferably, it is 30 micrometers or more.
 本発明の全熱交換器用シートの坪量は、所望の密度及び厚みを得る観点から、好ましくは10g/m以上、より好ましくは30g/m以上であり、そして、好ましくは300g/m以下、より好ましくは200g/m以下、更に好ましくは100g/m以下、より更に好ましくは80g/m以下である。 The basis weight of the total heat exchanger sheet according to the present invention, from the viewpoint of obtaining a desired density and thickness, preferably 10 g / m 2 or more, more preferably 30 g / m 2 or more, and preferably 300 g / m 2 The following content is more preferably 200 g / m 2 or less, still more preferably 100 g / m 2 or less, still more preferably 80 g / m 2 or less.
 本発明の全熱交換器用シートが、外面の少なくとも一面に繊維層を有する場合、繊維層側の表面における水の接触角は、好ましくは50°以上である。水の接触角が50°以上であると、全熱交換器用素子としてスペーサーとライナーを接着して組み立てる際の、接着剤の濡れ広がりが抑制され、全熱交換器用シート(ライナー)の有効面積の低下が抑制され、全熱交換器用素子に加工後も高い透湿性及び透気性が維持される。
 繊維層側の表面における水の接触角は、より好ましくは55°以上、更に好ましくは60°以上である。
 接触角の上限は特に限定されないが、接着剤の塗布性の観点から、好ましくは150°以下、より好ましくは130°以下、更に好ましくは110°以下である。
 接触角は、滴下0.1秒後の水に対する接触角を意味し、実施例に記載の方法により測定される。
When the sheet for total heat exchangers of the present invention has a fiber layer on at least one surface of the outer surface, the contact angle of water on the surface on the fiber layer side is preferably 50 ° or more. When the contact angle of water is 50 ° or more, the spread of the adhesive is suppressed when the spacer and the liner are bonded and assembled as an element for a total heat exchanger, and the effective area of the sheet (liner) for a total heat exchanger The reduction is suppressed, and high moisture permeability and air permeability are maintained even after being processed into the total heat exchanger element.
The contact angle of water on the surface on the fiber layer side is more preferably 55 ° or more, and further preferably 60 ° or more.
The upper limit of the contact angle is not particularly limited, but is preferably 150 ° or less, more preferably 130 ° or less, and still more preferably 110 ° or less from the viewpoint of the coating property of the adhesive.
The contact angle means the contact angle to water 0.1 seconds after dropping, and is measured by the method described in the examples.
 微細セルロース繊維を含有する繊維層を設けた場合、吸湿剤等の金属含有化合物を含有しないと、繊維層側の表面における水の接触角は、一般に50°未満となる。これは、微細セルロース繊維の毛細管現象により、水の接触角が低下するためと考えられる。
 繊維層側の表面における水の接触角を上記の範囲とするためには、上述したように微細セルロース繊維がイオン性基を有し、かつ、繊維層が、該イオン性基と架橋構造(擬似的な架橋構造を含む)を形成し得る金属原子を有する吸湿剤を含有することが好ましい。
 これにより、架橋構造(擬似的な架橋構造を含む)が形成され、その結果表面が疎水的になり、接触角が向上するものと推測される。
When the fiber layer containing the fine cellulose fiber is provided, the contact angle of water on the surface on the fiber layer side is generally less than 50 ° if the metal-containing compound such as the moisture absorbent is not contained. It is considered that this is because the capillary action of the fine cellulose fiber reduces the contact angle of water.
In order to make the contact angle of water on the surface on the fiber layer side into the above range, as described above, the fine cellulose fiber has an ionic group, and the fiber layer has a cross-linked structure with the ionic group It is preferable to contain a hygroscopic agent having a metal atom capable of forming a (cross-linked structure).
Thereby, it is presumed that a crosslinked structure (including a pseudo crosslinked structure) is formed, as a result of which the surface becomes hydrophobic and the contact angle is improved.
 また、全熱交換器用シートの一方の表面における水の接触角をD1、他方の表面における水の接触角をD2としたとき、両者の比であるD1/D2は、好ましくは0.25以上4以下、より好ましくは0.3以上3以下、更に好ましくは0.5以上2以下である。
 D1/D2が上記範囲内であると、一方の表面と他方の表面における水の接触角の差が少なく、全熱交換器用素子の組み立てが容易であるので好ましい。
 なお、全熱交換シートが基材として紙を使用し、基材層と繊維層との二層構成である場合には、一般に繊維層側の表面の接触角が小さく、また、基材層側の表面の接触角が大きい。
When the contact angle of water on one surface of the total heat exchanger sheet is D1 and the contact angle of water on the other surface is D2, the ratio D1 / D2 of the two is preferably 0.25 or more. The following is more preferable 0.3 or more and 3 or less, more preferably 0.5 or more 2 or less.
When D1 / D2 is in the above range, the difference in the contact angle of water between one surface and the other surface is small, which is preferable because the assembly of the element for all heat exchangers is easy.
In the case where the total heat exchange sheet uses paper as a substrate and has a two-layer structure of a substrate layer and a fiber layer, generally the contact angle of the surface on the fiber layer side is small, and the substrate layer side The contact angle of the surface of is large.
 本発明の全熱交換器用シートの透気度は、給気と排気とを分離する観点から、高い方が好ましく、好ましくは500sec以上、より好ましくは1,000sec以上、更に好ましくは3,000sec以上、より更に好ましくは10,000sec以上、より更に好ましくは25,000sec以上である。
 透気度は、実施例に記載の方法により測定される。
The air permeability of the total heat exchanger sheet of the present invention is preferably high, preferably 500 sec or more, more preferably 1,000 sec or more, still more preferably 3,000 sec or more, from the viewpoint of separating air supply and exhaust. Still more preferably, it is 10,000 sec or more, still more preferably 25,000 sec or more.
The air permeability is measured by the method described in the examples.
 本発明の全熱交換器用シートの透湿度は、潜熱の移動を促し、伝熱性を向上させる観点から、高いことが好ましく、好ましくは、2,800g/(m・24hr)以上、より好ましくは3,000g/(m・24hr)以上、更に好ましくは3,500g/(m・24hr)以上である。
 透湿度は、実施例に記載の方法により測定される。
The moisture permeability of the total heat exchanger sheet of the present invention is preferably high from the viewpoint of promoting the transfer of latent heat and improving the heat conductivity, preferably 2,800 g / (m 2 · 24 hr) or more, more preferably 3,000g / (m 2 · 24hr) or more, still more preferably 3,500g / (m 2 · 24hr) or more.
The moisture permeability is measured by the method described in the examples.
 本発明の全熱交換器用シートは、排気中の二酸化炭素が給気中に混入することを抑制する観点から、高い二酸化炭素バリア性(COバリア性)を有することが好ましく、実施例に記載の方法により測定された二酸化炭素濃度低下率は、好ましくは1.3%以下、より好ましくは1.0%以下、更に好ましくは0.8%以下、より更に好ましくは0.5%以下、より更に好ましくは0.3%以下である。 The sheet for total heat exchangers of the present invention preferably has high carbon dioxide barrier properties (CO 2 barrier properties) from the viewpoint of suppressing carbon dioxide in exhaust gas from being mixed into the charge air, as described in the Examples. The carbon dioxide concentration reduction rate measured by the method of is preferably 1.3% or less, more preferably 1.0% or less, still more preferably 0.8% or less, still more preferably 0.5% or less More preferably, it is 0.3% or less.
 本発明の全熱交換器用シートは、基材層又は繊維層中に、他の成分を含有していてもよく、具体的には、サイズ剤、湿潤紙力増強剤、界面活性剤、難燃化剤、防カビ剤、防錆剤、ブロッキング防止剤等が挙げられる。
 なお、繊維層は、上述した他の成分を含有していてもよいが、繊維層中の微細セルロース繊維、吸湿剤、及び水分の合計含有量は、繊維層の合計質量に対して、好ましくは90質量%以上、より好ましくは95質量%以上、更に好ましくは97質量%以上であり、100質量%であってもよい。
The sheet for total heat exchanger of the present invention may contain other components in the substrate layer or the fiber layer, and specifically, sizing agents, wet strength agents, surfactants, flame retardants Agents, antifungal agents, rust inhibitors, antiblocking agents and the like.
The fiber layer may contain the other components described above, but the total content of the fine cellulose fiber, the hygroscopic agent, and the water in the fiber layer is preferably relative to the total mass of the fiber layer. It is 90 mass% or more, More preferably, it is 95 mass% or more, More preferably, it is 97 mass% or more, and 100 mass% may be sufficient.
 界面活性剤としては、アルキル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、α-オレフィンスルホン酸塩などのアニオン界面活性剤、塩化アルキルトリメチルアンモニウム、塩化ジアルキルジメチルアンモニウム、塩化ベンザルコニウムなどのカチオン界面活性剤、トリメチルグリシン、アルキルジメチルアミノ酢酸ベタイン、アルキルアミドジメチルアミノ酢酸ベタインなどの両性界面活性剤、アルキルポリオキシエチレンエーテル、脂肪酸グリセロールエステルなどのノニオン界面活性剤が挙げられる。
 難燃化剤としては、ハロゲン系難燃剤、赤燐、リン酸メラミン、ポリリン酸アンモニウム、ポリリン酸メラミン、ピロリン酸メラミン、ポリリン酸ピペラジン、ピロリン酸ピペラジン、リン酸グアニジン、スルファミン酸グアニジン、(縮合)リン酸エステル化合物、ホスファゼン化合物などのリン系難燃剤、メラミンシアヌレートなどの窒素系難燃剤、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物、ホスフィン酸塩やジホスフィン酸塩などが挙げられる。
As surfactants, anionic surfactants such as alkyl sulfates, polyoxyethylene alkyl sulfates, alkyl benzene sulfonates, α-olefin sulfonates, alkyl trimethyl ammonium chloride, dialkyl dimethyl ammonium chloride, benzalko chloride And cationic surfactants such as aluminum; amphoteric surfactants such as trimethylglycine, alkyl dimethylamino acetic acid betaine and alkylamido dimethylamino acetic acid betaine; and nonionic surfactants such as alkyl polyoxyethylene ether and fatty acid glycerol ester.
Flame retardants include halogen flame retardants, red phosphorus, melamine phosphate, ammonium polyphosphate, melamine polyphosphate, melamine pyrophosphate, piperazine polyphosphate, piperazine pyrophosphate, guanidine phosphate, guanidine guanidine sulfamate (condensed) Examples thereof include phosphorus-based flame retardants such as phosphoric acid ester compounds and phosphazene compounds, nitrogen-based flame retardants such as melamine cyanurate, metal hydroxides such as magnesium hydroxide and aluminum hydroxide, phosphinates and diphosphinates.
 防カビ剤としては、ベンズイミダゾール系化合物、ピリチオン系化合物、ヨードプロペニルブチルカルバメート系化合物、イソチアゾロン系化合物、有機窒素硫黄系化合物等が例示される。
 防錆剤としては、水溶性防錆剤が好ましく、脂肪族カルボン酸のアルカリ金属塩や、モノヒドロキシモノエチルピペラジン等のピペラジン誘導体が例示される。
 ブロッキング防止剤としては、ポリエチレン系ワックス、ステアリン酸亜鉛、ポリエチレンワックス乳化物、酸化ポリエチレン系ワックス、パラフィンワックス等から選択されたワックス類、シリコーン系樹脂や高級脂肪酸カルシウム塩などの金属石鹸類等が挙げられる。
Examples of the fungicide include benzimidazole compounds, pyrithione compounds, iodopropenylbutyl carbamate compounds, isothiazolone compounds, organic nitrogen sulfur compounds and the like.
As the rust inhibitor, a water-soluble rust inhibitor is preferable, and examples thereof include alkali metal salts of aliphatic carboxylic acids and piperazine derivatives such as monohydroxymonoethyl piperazine.
Examples of the antiblocking agent include waxes selected from polyethylene wax, zinc stearate, polyethylene wax emulsion, polyethylene oxide wax, paraffin wax and the like, metal soaps such as silicone resin and higher fatty acid calcium salt, etc. Be
 本発明の全熱交換器用シートを製造するに際し、必要に応じて、更に被覆処理又は化学処理としての後加工、平均厚み調整や薄膜化を目的としてカレンダー処理工程を有していてもよい。
 後加工の工程では、例えば難燃剤の塗工液を調製し、該塗工液をスプレー塗布、印刷法、塗工法などの工程で、塗布乾燥させる工程が例示される。
 また、得られた全熱交換器用シートにカレンダー装置によって平滑化又は薄膜化を施すカレンダー処理の工程を設けて、平均厚みを調整したり、密度を更に向上させることができる。カレンダー装置としては単一プレスロールによる通常のカレンダー装置、多段式に設置された構造を有するスーパーカレンダー装置が例示される。これらの装置、及びカレンダー処理時における両側それぞれの材質(材質硬度)及び線圧を目的に応じて選定することが好ましい。具体的には、ロール材質については、金属ロールと高硬度の樹脂ロールとの組合せ、金属ロールとコットンロールとの組合せ、金属ロールとアミドロールとの組合せ等、適宜選択すればよい。
When producing the sheet for total heat exchangers of the present invention, if necessary, it may further have a calendering step for the purpose of post-processing as coating treatment or chemical treatment, adjustment of average thickness and thinning.
In the step of post-processing, for example, a coating solution of a flame retardant is prepared, and the step of coating and drying the coating solution is exemplified in the steps of spray coating, printing method, coating method and the like.
Moreover, the process of the calendering process which performs smoothing or thin film formation with a calender apparatus to the sheet | seat for total heat exchangers obtained can be provided, an average thickness can be adjusted, and density can be further improved. Examples of the calendering apparatus include a conventional calendering apparatus using a single press roll and a super calendering apparatus having a multi-staged structure. It is preferable to select these devices and the material (hardness of the material) and the linear pressure of each of both sides at the time of calendering according to the purpose. Specifically, the roll material may be appropriately selected from a combination of a metal roll and a resin roll with high hardness, a combination of a metal roll and a cotton roll, a combination of a metal roll and an amide roll, and the like.
[全熱交換器用素子、及び全熱交換器]
 本発明の全熱交換器用素子は、上述した本発明の全熱交換器用シートを有し、特に、全熱交換器用素子のライナーとして有する。
 より具体的には、全熱交換器用素子は、複数枚の全熱交換器用シート(ライナー)の、それぞれのシートとシートとの間に、流路を構成するスペーサーを挟持し、スペーサーとシートとを接着剤等で貼付して構成される。
 また、本発明の全熱交換器は、前記本発明の全熱交換器用素子を備える。好適に使用される全熱交換器としては、静止型全熱交換器が例示される。静止型全熱交換器は、直交流型でもよく、向流型でもよく、特に限定されない。静止型全熱交換器は、本発明の全熱交換器用シート(ライナー)で仕切られ、互いに独立した2つの流路を交互に積み重ねた構造を有する全熱交換器用素子に、給気ファン及び排気ファンを組み合わせて構成される。
 給気ファンによって、外気などである供給気体が全熱交換器用素子に吸い込まれて、全熱交換器用素子内に組み込まれた全熱交換器用シートに接触する。一方、排気ファンによって室内空気などの排出気体が、全熱交換器用素子に吸い込まれて、同様に全熱交換器用シートに接触する。
 全熱交換器用シートを介して接触した供給気体と排出気体とは、温度及び湿度を通じて、熱交換を行う。熱交換された供給気体は、給気ファンに吹き込まれて、例えば室内に取り込まれる。一方で、熱交換された排出気体は、排気ファンに吹き込まれて、例えば屋外に排出される。
 本発明の全熱交換器用シートは、透湿度及び透気度が高く、更に、優れた二酸化炭素バリア性を有するため、顕熱のみならず、潜熱の交換にも優れ、高い伝熱性を有し、更に、給気と排気との混じりが抑制される。従って、本発明の全熱交換器用シートを備える全熱交換器は、効率的な熱交換が可能である。すなわち、建物内の熱又は冷熱の放出を抑制しつつ、二酸化炭素濃度が増大した内部の空気を排出する換気を行うことができ、冷暖房による熱効果を維持する全熱交換器の効率をより高めることができる。
[Element for total heat exchanger and total heat exchanger]
The total heat exchanger element of the present invention includes the above-described total heat exchanger sheet of the present invention, and in particular, as a liner of the total heat exchanger element.
More specifically, the total heat exchanger element sandwiches a spacer constituting a flow path between each sheet of the plurality of total heat exchanger sheets (liner), and the spacer and the sheet Are attached with an adhesive or the like.
Moreover, the total heat exchanger of this invention is equipped with the element for all heat exchangers of the said this invention. As a total heat exchanger used suitably, a stationary total heat exchanger is illustrated. The stationary total heat exchanger may be a cross flow type or a counter flow type, and is not particularly limited. The stationary total heat exchanger is an element for a total heat exchanger having a structure in which two flow paths independent of one another are partitioned by the total heat exchanger sheet (liner) according to the present invention, It is configured by combining fans.
By means of the air supply fan, the feed gas, such as ambient air, is drawn into the total heat exchanger element and contacts the total heat exchanger sheet incorporated in the total heat exchanger element. On the other hand, exhaust gas such as room air is sucked into the total heat exchanger element by the exhaust fan and similarly contacts the total heat exchanger sheet.
The feed gas and the exhaust gas, which are in contact via the total heat exchanger sheet, exchange heat through temperature and humidity. The heat-exchanged supply gas is blown into the air supply fan and taken, for example, into the room. On the other hand, the heat-exchanged exhaust gas is blown into an exhaust fan and discharged, for example, outdoors.
The sheet for total heat exchanger of the present invention has high moisture permeability and air permeability, and further has excellent carbon dioxide barrier properties, so it is excellent not only for sensible heat but also for latent heat exchange, and has high heat conductivity. Furthermore, mixing of the air supply and the exhaust is suppressed. Therefore, the total heat exchanger provided with the total heat exchanger sheet of the present invention is capable of efficient heat exchange. That is, it is possible to ventilate the air inside of which the carbon dioxide concentration has been increased while suppressing the release of heat or cold in the building, and to increase the efficiency of the total heat exchanger which maintains the heat effect by air conditioning and heating. be able to.
 以下に実施例と比較例を挙げて本発明の特徴を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。 EXAMPLES The features of the present invention will be more specifically described below with reference to examples and comparative examples. The materials, amounts used, proportions, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Accordingly, the scope of the present invention should not be construed as limited by the specific examples shown below.
[実施例1]
<微細セルロース繊維の製造>
(リン酸基導入工程)
 原料パルプとして、王子製紙(株)製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/mシート状、離解してJIS P 8121:2012に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
 この原料パルプに対してリン酸化処理を次のようにして行った。
 まず、上記原料パルプに、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、原料パルプ100質量部(絶乾質量)に対して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプを得た。
Example 1
<Production of Fine Cellulose Fiber>
(Phosphoric acid group introduction process)
Softwood kraft pulp manufactured by Oji Paper Co., Ltd. (solid content 93% by mass, basis weight 208 g / m 2 in sheet form, as a raw material pulp, Canadian Standard Freeness Measured according to JIS P 8121: 2012 CSF) used 700 ml).
The raw material pulp was subjected to a phosphorylation treatment as follows.
First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to the above-mentioned raw material pulp, and 45 parts by mass of ammonium dihydrogen phosphate and 120 parts by mass of urea with respect to 100 parts by mass (absolute dry mass) of the raw material pulp It adjusted so that it might become 150 mass parts of water, and obtained the chemical | medical solution impregnation pulp. Next, the chemical-impregnated pulp obtained was heated for 200 seconds with a hot air drier at 165 ° C. to introduce a phosphoric acid group to the cellulose in the pulp to obtain a phosphorylated pulp.
(洗浄工程)
 次いで、得られたリン酸化パルプに対して洗浄処理を行った。
 洗浄処理は、リン酸化パルプ100g(絶乾質量)に対して10Lのイオン交換水を注ぎ、パルプが均一に分散するよう撹拌してパルプ分散液を得た後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
(Washing process)
Next, the resulting phosphorylated pulp was subjected to a washing treatment.
The washing process is performed by pouring 10 L of ion-exchanged water with respect to 100 g (absolutely dry mass) of phosphorylated pulp, stirring to uniformly disperse the pulp to obtain a pulp dispersion, and repeating the filtration dewatering operation. went. When the electric conductivity of the filtrate became 100 μS / cm or less, it was regarded as the washing end point.
(アルカリ処理工程)
 次いで、洗浄後のリン酸化パルプに対してアルカリ処理(中和処理)を次のようにして行った。
 まず、洗浄後のリン酸化パルプを10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、アルカリ処理(中和処理)が施されたリン酸化パルプを得た。
 次いで、アルカリ処理後のリン酸化パルプに対して、上記洗浄処理を行った。
 これにより得られたアルカリ処理後のリン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。また、前述した測定方法で測定されるリン酸基量(強酸性基量)は、1.45mmol/gであった。
 また、得られたリン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置にセルロースI型結晶に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
(Alkali treatment process)
Next, the phosphated pulp after washing was subjected to alkali treatment (neutralization treatment) as follows.
First, after diluting the phosphorylated pulp after washing with 10 L of ion exchanged water, a phosphated pulp slurry having a pH of 12 or more and 13 or less was obtained by gradually adding 1N aqueous sodium hydroxide solution while stirring. . Next, the phosphorylated pulp slurry was dewatered to obtain a phosphorylated pulp subjected to an alkali treatment (neutralization treatment).
Next, the above-mentioned washing treatment was performed on the phosphated pulp after the alkali treatment.
The phosphated pulp after alkali treatment thus obtained was subjected to measurement of infrared absorption spectrum using FT-IR. As a result, absorption attributable to phosphate groups was observed at around 1230 cm -1 , confirming that phosphate groups were added to the pulp. Moreover, the amount of phosphate groups (the amount of strongly acidic groups) measured by the above-mentioned measurement method was 1.45 mmol / g.
Moreover, when the obtained phosphorylated pulp was tested and analyzed by an X-ray diffractometer, it was found at two positions of 2θ = 14 ° or more and 17 ° or less and 2θ = 22 or more and 23 ° or less A typical peak was confirmed in cellulose type I crystals, and it was confirmed that cellulose type I crystals were contained.
(解繊処理工程)
 上記アルカリ処理工程を経て得られたリン酸化パルプにイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置((株)スギノマシン製、スターバースト)で200MPaの圧力にて2回処理し、微細セルロース繊維を含む微細セルロース繊維分散液を得た。X線回折により、この微細セルロース繊維がセルロースI型結晶を維持していることが確認された。また、微細セルロース繊維の繊維幅を透過型電子顕微鏡を用いて測定したところ、3~5nmであった。
 更に、得られた微細セルロース繊維について、上述した方法に従って微細セルロース繊維の収率を測定したところ、収率は、99.2%であった。
(Disintegration process)
Ion-exchanged water was added to the phosphorylated pulp obtained through the above-mentioned alkali treatment step to prepare a slurry having a solid content concentration of 2% by mass. This slurry was treated twice with a wet atomization device (Starburst, manufactured by Sugino Machine Co., Ltd.) at a pressure of 200 MPa to obtain a fine cellulose fiber dispersion containing fine cellulose fibers. It was confirmed by X-ray diffraction that the fine cellulose fibers maintain cellulose type I crystals. The fiber width of the fine cellulose fiber was measured using a transmission electron microscope and found to be 3 to 5 nm.
Furthermore, when the yield of the fine cellulose fiber was measured according to the method mentioned above about the obtained fine cellulose fiber, the yield was 99.2%.
<全熱交換器用シートの作製>
 NBKP(針葉樹晒クラフトパルプ:Needle Bleached Kraft Pulp)とLBKP(広葉樹晒クラフトパルプ:Leaf Bleached Kraft Pulp)を65:35(質量比)で配合したパルプを、カナディアンスタンダードフリーネスで450mlまで叩解し、硫酸アルミニウム1.0質量部、サイズ剤としてアルキルケテンダイマー0.01質量部(サイズパインK-903-20、荒川化学工業(株)製)をパルプ100質量部に対して添加した。この紙料を使用して、長網多筒型抄紙機により、坪量60g/mの上質紙を抄造した。
 次いで、上記で得られた上質紙を基材とし、基材の一方の面に、上記で得られた微細セルロース繊維分散液をメイヤーバーで乾燥後の微細セルロース繊維(以下、CNF)の目付け(塗工量)が0.4g/mとなるように塗工して、繊維層を形成した。
 次いで、吸湿剤として塩化リチウム(和光純薬工業(株)製)をマングルロールで乾燥後の目付け(塗工量)が3.9g/mとなるように含浸乾燥して、実施例1の全熱交換器用シートを作製した。この全熱交換器用シートの坪量は73g/m、水分含有量は10質量%であった。
<Preparation of a sheet for total heat exchanger>
Pulp blended with NBKP (Needle bleached Kraft Pulp) and LBKP (Leaf Bleached Kraft Pulp) at 65:35 (mass ratio) is refined to 450 ml with Canadian Standard Freeness, aluminum sulfate 1.0 parts by mass, and 0.01 parts by mass of alkyl ketene dimer (size pine K-903-20, manufactured by Arakawa Chemical Industries, Ltd.) as a sizing agent were added to 100 parts by mass of pulp. Using this stock, high-quality paper with a basis weight of 60 g / m 2 was produced by using a Fourdrinier multi-tubular paper machine.
Next, using the high-quality paper obtained above as a base material, on one side of the base material, the fine cellulose fiber dispersion obtained above is coated with a fine bared cellulose fiber (hereinafter referred to as CNF) after drying with a meyer bar It coated so that a coating amount may be 0.4 g / m < 2 >, and the fiber layer was formed.
Next, impregnating and drying lithium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) as a moisture absorbent with a mangle roll so that the coating weight (coating amount) after drying is 3.9 g / m 2 , A sheet for total heat exchanger was prepared. The basis weight of this total heat exchanger sheet was 73 g / m 2 and the water content was 10% by mass.
[実施例2]
 実施例1において、塩化リチウムに代えて塩化カルシウム(和光純薬工業(株)製)を乾燥後の塗工量が4.9g/mとなるように含浸乾燥した以外は、実施例1と同様にして全熱交換器用シートを作製した。この全熱交換器用シートの坪量は73g/m、水分含有量は10質量%であった。
Example 2
Example 1 was repeated except that in place of lithium chloride, calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) was impregnated and dried so that the coated amount after drying was 4.9 g / m 2. A total heat exchanger sheet was prepared in the same manner. The basis weight of this total heat exchanger sheet was 73 g / m 2 and the water content was 10% by mass.
[実施例3]
 実施例1において、微細セルロース繊維分散液を、乾燥後の微細セルロース繊維(CNF)の塗工量が0.8g/mとなるように塗工し、次いで、吸湿剤として塩化リチウム(和光純薬工業(株)製)を乾燥後の質量が5.2g/mとなるように含浸乾燥した以外は、実施例1と同様にして全熱交換器用シートを作製した。この全熱交換器用シートの坪量は78g/m、水分含有量は12質量%であった。
[Example 3]
In Example 1, the fine cellulose fiber dispersion is coated so that the coated amount of the fine cellulose fiber (CNF) after drying is 0.8 g / m 2, and then lithium chloride (Wako Pure Chemical Industries, Ltd. as a moisture absorbent) A sheet for a total heat exchanger was produced in the same manner as in Example 1 except that impregnation and drying were performed so that the mass after drying was set to 5.2 g / m 2 . The basis weight of this total heat exchanger sheet was 78 g / m 2 and the water content was 12% by mass.
[実施例4]
 実施例3において、塩化リチウムに代えて塩化カルシウム(和光純薬工業(株)製)を乾燥後の塗工量が6.0g/mとなるように含浸乾燥した以外は、実施例3と同様にして全熱交換器用シートを作製した。この全熱交換器用シートの坪量は76g/m、水分含有量は10質量%であった。
Example 4
Example 3 is repeated except that in place of lithium chloride, calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) is impregnated and dried so that the coated amount after drying is 6.0 g / m 2. A total heat exchanger sheet was prepared in the same manner. The basis weight of this total heat exchanger sheet was 76 g / m 2 and the water content was 10% by mass.
[実施例5]
 NBKPとLBKPを50:50(質量比)で配合したパルプを、カナディアンスタンダードフリーネスで170mlまで叩解し、硫酸アルミニウム1.0部、サイズ剤としてアルキルケテンダイマー0.01部(サイズパインK-903-20、荒川化学工業(株)製)、湿潤紙力増強剤0.15部(アラフィックス255、荒川化学工業(株)製)をパルプ100質量部に対して添加した。この紙料を使用して、長網多筒型抄紙機により、坪量40g/mのセミグラシン紙を抄造した。
 次いで、上記で得られたセミグラシン紙を基材とし、基材の一方の面に、実施例1と同様にして、微細セルロース繊維分散液をメイヤーバーで、微細セルロース繊維(CNF)の乾燥後の塗工量が0.4g/mとなるように塗工して、繊維層を形成した。
 次いで、吸湿剤として塩化リチウム(和光純薬工業(株)製)をマングルロールで乾燥後の塗工量が5.6g/mとなるように含浸乾燥して、全熱交換器用シートを作製した。この全熱交換器用シートの坪量は60g/m、水分含有量は17質量%であった。
[Example 5]
A pulp containing NBKP and LBKP at 50: 50 (mass ratio) is beaten to 170 ml with Canadian Standard Freeness, 1.0 part of aluminum sulfate, 0.01 part of alkyl ketene dimer as sizing agent (size pine K-903- 20, Arakawa Chemical Industries Co., Ltd. product, 0.15 parts of wet paper strength agent (Arafix 255, Arakawa Chemical Co., Ltd. product) were added with respect to 100 mass parts of pulp. Using this stock, a semi-glassine paper having a basis weight of 40 g / m 2 was produced by using a Fourdrinier multi-tubular paper machine.
Then, using the obtained semi-glassine paper as a base material and using one side of the base material in the same manner as in Example 1, a fine cellulose fiber dispersion is dried with a mayer bar of fine cellulose fiber (CNF) It coated so that a coating amount might be 0.4 g / m < 2 >, and formed the fiber layer.
Subsequently, lithium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) as a hygroscopic agent is impregnated and dried with a mangle roll so that the coated amount after drying is 5.6 g / m 2 to prepare a sheet for total heat exchanger did. The basis weight of the total heat exchanger sheet was 60 g / m 2 , and the water content was 17% by mass.
[実施例6]
 実施例5において、塩化リチウムに代えて塩化カルシウム(和光純薬工業(株)製)を乾燥後の塗工量が5.0g/mとなるように含浸乾燥した以外は、実施例5と同様にして全熱交換器用シートを作製した。この全熱交換器用シートの坪量は58g/m、水分含有量は17質量%であった。
[Example 6]
Example 5 is the same as Example 5 except that calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) is impregnated and dried so that the coated amount after drying is 5.0 g / m 2 in place of lithium chloride. A total heat exchanger sheet was prepared in the same manner. The basis weight of this total heat exchanger sheet was 58 g / m 2 , and the water content was 17% by mass.
[比較例1]
 実施例1において、微細セルロース繊維分散液、及び吸湿剤に代えて、水を塗工、含浸した以外は、実施例1と同様にして全熱交換器用シートを作製した。この全熱交換器用シートの坪量は60g/m、水分含有量は5質量%であった。
Comparative Example 1
A total heat exchanger sheet was produced in the same manner as in Example 1 except that water was coated and impregnated in place of the fine cellulose fiber dispersion and the hygroscopic agent in Example 1. The basis weight of the total heat exchanger sheet was 60 g / m 2 , and the water content was 5% by mass.
[比較例2]
 実施例1において、吸湿剤に代えて水を含浸した以外は、実施例1と同様にして全熱交換器用シートを作製した。この全熱交換器用シートの坪量は63g/m、水分含有量は4質量%であった。
Comparative Example 2
A sheet for a total heat exchanger was produced in the same manner as in Example 1 except that the absorbent was replaced with water and impregnated in Example 1. The basis weight of the total heat exchanger sheet was 63 g / m 2 and the water content was 4% by mass.
[比較例3]
 実施例5において、微細セルロース繊維分散液、及び吸湿剤に代えて、水を塗工、含浸した以外は、実施例5と同様にして全熱交換器用シートを作製した。この全熱交換器用シートの坪量は40g/m、水分含有量は5質量%であった。
Comparative Example 3
A total heat exchanger sheet was produced in the same manner as in Example 5 except that water was applied and impregnated in place of the fine cellulose fiber dispersion and the hygroscopic agent in Example 5. The basis weight of this total heat exchanger sheet was 40 g / m 2 , and the water content was 5% by mass.
[比較例4]
 実施例5において、吸湿剤に代えて水を含浸した以外は、実施例5と同様にして全熱交換器用シートを作製した。この全熱交換器用シートの坪量は41g/m、水分含有量は3質量%であった。
Comparative Example 4
A sheet for a total heat exchanger was produced in the same manner as in Example 5 except that the absorbent was replaced with water and impregnated in Example 5. The basis weight of this total heat exchanger sheet was 41 g / m 2 , and the water content was 3% by mass.
[評価及び分析]
<水分含有量(水分量)>
 基材及び得られた全熱交換器用シートの水分含有量(以下、単に水分量ともいう。)は、JIS P 8127:2010に準拠して測定した。
[Evaluation and analysis]
<Water content (water content)>
The water content (hereinafter, also simply referred to as the water content) of the substrate and the obtained total heat exchanger sheet was measured in accordance with JIS P 8127: 2010.
<坪量>
 JIS P 8124:2011に準拠して全熱交換器用シートの坪量を測定した。
<Basic weight>
The basis weight of the total heat exchanger sheet was measured in accordance with JIS P 8124: 2011.
<厚み>
 JIS P 8118:2014に準拠して全熱交換器用シートの厚みを測定した。
<Thickness>
The thickness of the total heat exchanger sheet was measured in accordance with JIS P 8118: 2014.
<密度>
 上述した測定方法により得られた坪量及び紙厚から、全熱交換器用シートの密度を算出した。
<Density>
The density of the sheet for all heat exchangers was calculated from the basis weight and the paper thickness obtained by the measurement method described above.
<水接触角>
 JIS R 3257:1999に準拠し、動的水接触角試験機(Fibro社製、1100DAT)を用い、全熱交換器用シートの表面に蒸留水を4μL滴下し、滴下後0.1秒後の水接触角を測定した。測定は、繊維層側の表面(CNF面)及び基材層側の表面(裏面)のそれぞれで行った。
<Water contact angle>
According to JIS R 3257: 1999, 4 μL of distilled water is dropped on the surface of the total heat exchanger sheet using a dynamic water contact angle tester (manufactured by Fibro, 1100 DAT), and water after 0.1 seconds after dropping The contact angle was measured. The measurement was performed on each of the surface on the fiber layer side (CNF surface) and the surface on the substrate layer side (back surface).
<透気度>
 JAPAN TAPPI 紙パルプ試験方法 No.5-2:2000の王研式透気度法に準拠して、全熱交換器用シートの透気度を測定した。
<Air permeability>
JAPAN TAPPI Pulp and Paper Testing Method No. The air permeability of the total heat exchanger sheet was measured in accordance with the 5-2: 2000 Oken type air permeability method.
<二酸化炭素バリア性>
 側面4面と上面1面の各中央に各辺20cmの正方形の窓部を有するアクリル製の各辺1mの立方体形の容器の内部に二酸化炭素(CO)分析計を設置したものを測定装置とした。
 前記測定装置の各窓部に、25cm角とした全熱交換器用シートを貼った状態で、容器内に二酸化炭素を5,000ppm封入し、20℃×65%条件下でCOの濃度を15分おきに4回、計1時間測定した。
 15分後、30分後、45分後、60分後の各測定値より、各時点の二酸化炭素濃度の低下率を求め、更に平均を求めて、測定した試料の二酸化炭素濃度低下率とする。二酸化炭素濃度低下率が低い程、全熱交換器用シートは、二酸化炭素(CO)バリア性に優れている。
 なお、二酸化炭素濃度低下率が1.3%以下のものが全熱交換器用シートとして好適に用いられる。
<CO2 barrier property>
Measuring device in which a carbon dioxide (CO 2 ) analyzer is installed inside a cubic container made of acrylic having a square window section of 20 cm on each side at the center of each of 4 side surfaces and 1 top surface And
In a state where a 25 cm square total heat exchanger sheet is attached to each window of the measuring apparatus, 5,000 ppm of carbon dioxide is enclosed in a container, and the concentration of CO 2 is 15 at 20 ° C. × 65% conditions. The measurement was performed 4 times every minute for a total of 1 hour.
From the measured values after 15 minutes, 30 minutes, 45 minutes and 60 minutes, the reduction rate of the carbon dioxide concentration at each time point is determined, the average is further determined, and the carbon dioxide concentration reduction rate of the measured sample is obtained. . As the carbon dioxide concentration reduction rate is lower, the total heat exchanger sheet is more excellent in carbon dioxide (CO 2 ) barrier properties.
A carbon dioxide concentration reduction rate of 1.3% or less is suitably used as a sheet for total heat exchangers.
<透湿度>
 20℃×65%RH条件下で、JIS Z 0208:1976に準拠して測定した。
 但し、透湿度は、下記にようにして算出した。
 試験開始1時間後の質量増分(g)をAとし、試験開始1時間後から2時間後までの質量増分(g)をBとし、下記式(1)により1時間あたりの質量増分Cを求めた。この値を、透湿性シート1m、24時間あたりの値に換算して透湿度(g/(m・24h))を求めた。
   1時間あたりの質量増分C=(A+B)/2     (1)
 実施例及び比較例の結果を以下の表1に示す。
Moisture permeability
It was measured in accordance with JIS Z 0208: 1976 under conditions of 20 ° C. × 65% RH.
However, the moisture permeability was calculated as follows.
The mass increment (g) one hour after the start of the test is A, and the mass increment (g) from one hour to two hours after the start of the test is B, and the mass increment C per hour is calculated by the following formula (1) The The moisture permeability sheet (m / (m 2 · 24 h)) was determined by converting this value to a value of 1 m 2 of the moisture permeable sheet per 24 hours.
Mass increment per hour C = (A + B) / 2 (1)
The results of Examples and Comparative Examples are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明の全熱交換器用シートは、高い透湿度及び透気度を有し、更に、二酸化炭素バリア性にも優れる。従って、全熱交換器用素子のライナーとして好適に使用され、前記全熱交換器用素子を使用して構成された全熱交換器は、高い二酸化炭素バリア性と熱交換性を有する。 The sheet for total heat exchangers of the present invention has high moisture permeability and air permeability, and is also excellent in carbon dioxide barrier properties. Therefore, a total heat exchanger that is suitably used as a liner for a total heat exchanger element and configured using the total heat exchanger element has high carbon dioxide barrier properties and heat exchange properties.

Claims (11)

  1.  基材層と、
     該基材層上に設けられた繊維層とを有し、
     該繊維層は、繊維幅1,000nm以下の微細セルロース繊維を含有し、
     水分含有量が8質量%以上である、
     全熱交換器用シート。
    A substrate layer,
    And a fiber layer provided on the substrate layer,
    The fiber layer contains fine cellulose fibers having a fiber width of 1,000 nm or less,
    The water content is at least 8% by mass,
    Seat for total heat exchanger.
  2.  更に吸湿剤を含有する、請求項1に記載の全熱交換器用シート。 The total heat exchanger sheet according to claim 1, further comprising a hygroscopic agent.
  3.  前記吸湿剤が、ハロゲン化金属塩、金属硫酸塩、金属酢酸塩、アミン塩、リン酸化合物、グアニジン塩、及び金属水酸化物から選択される少なくとも1つを含む、請求項2に記載の全熱交換器用シート。 The whole of claim 2, wherein the hygroscopic agent comprises at least one selected from metal halides, metal sulfates, metal acetates, amine salts, phosphoric acid compounds, guanidine salts, and metal hydroxides. Heat exchanger sheet.
  4.  前記微細セルロース繊維100質量部に対する前記吸湿剤の含有量が100質量部以上である、請求項2又は3に記載の全熱交換器用シート。 The sheet | seat for total heat exchangers of Claim 2 or 3 whose content of the said hygroscopic agent with respect to 100 mass parts of said fine cellulose fibers is 100 mass parts or more.
  5.  前記微細セルロース繊維がイオン性基を有する、請求項1~4のいずれかに記載の全熱交換器用シート。 The total heat exchanger sheet according to any one of claims 1 to 4, wherein the fine cellulose fibers have an ionic group.
  6.  前記繊維層側の表面における水の接触角が50°以上である、請求項1~5のいずれかに記載の全熱交換器用シート。 The total heat exchanger sheet according to any one of claims 1 to 5, wherein a contact angle of water on the surface on the fiber layer side is 50 ° or more.
  7.  全熱交換器用シートの一方の表面における水の接触角をD1、他方の表面における水の接触角をD2としたとき、D1/D2が0.25以上4以下である、請求項1~6のいずれかに記載の全熱交換器用シート。 The contact angle of water on one surface of the total heat exchanger sheet is D1, and the contact angle of water on the other surface is D2, D1 / D2 is 0.25 or more and 4 or less. The sheet for all heat exchangers described in any one.
  8.  前記微細セルロース繊維の繊維幅が30nm以下である、請求項1~7のいずれかに記載の全熱交換器用シート。 The total heat exchanger sheet according to any one of claims 1 to 7, wherein the fiber width of the fine cellulose fibers is 30 nm or less.
  9.  前記微細セルロース繊維の目付が0.1g/m以上3g/m以下である、請求項1~8のいずれかに記載の全熱交換器用シート。 The sheet for total heat exchangers according to any one of claims 1 to 8, wherein the basis weight of the fine cellulose fibers is 0.1 g / m 2 or more and 3 g / m 2 or less.
  10.  請求項1~9のいずれかに記載の全熱交換器用シートを有する、全熱交換器用素子。 A total heat exchanger element comprising the total heat exchanger sheet according to any one of claims 1 to 9.
  11.  請求項10に記載の全熱交換器用素子を備える、全熱交換器。 A total heat exchanger comprising the element for total heat exchanger according to claim 10.
PCT/JP2018/028397 2017-07-31 2018-07-30 Sheet for total heat exchangers, element for total heat exchangers, and total heat exchanger WO2019026823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019534487A JP7173012B2 (en) 2017-07-31 2018-07-30 TOTAL HEAT EXCHANGER SHEET, TOTAL HEAT EXCHANGER ELEMENT, AND TOTAL HEAT EXCHANGER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-148476 2017-07-31
JP2017148476 2017-07-31

Publications (1)

Publication Number Publication Date
WO2019026823A1 true WO2019026823A1 (en) 2019-02-07

Family

ID=65233990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028397 WO2019026823A1 (en) 2017-07-31 2018-07-30 Sheet for total heat exchangers, element for total heat exchangers, and total heat exchanger

Country Status (2)

Country Link
JP (1) JP7173012B2 (en)
WO (1) WO2019026823A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125893A (en) * 2019-02-06 2020-08-20 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
WO2020189433A1 (en) * 2019-03-15 2020-09-24 三菱製紙株式会社 Total heat exchange element

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060796A (en) * 1996-08-21 1998-03-03 Lintec Corp Raw material for whole heat transfer element
JP2004285529A (en) * 2003-03-25 2004-10-14 Asahi Kasei Corp Formed product of water-resistant/oil-resistant cellulose and method for producing the formed product
JP2008014623A (en) * 2006-06-05 2008-01-24 Rengo Co Ltd Sheet for total heat exchangers
JP2008032390A (en) * 2001-06-01 2008-02-14 Mitsubishi Paper Mills Ltd Total heat exchanging element paper
WO2014014099A1 (en) * 2012-07-19 2014-01-23 旭化成せんい株式会社 Multilayered structure comprising fine fiber cellulose layer
WO2015008868A1 (en) * 2013-07-19 2015-01-22 旭化成せんい株式会社 Fine cellulose fiber sheet
WO2015050104A1 (en) * 2013-10-02 2015-04-09 東レ株式会社 Base paper for heat exchanger, and total heat exchange element using same
JP2016029226A (en) * 2014-07-15 2016-03-03 王子ホールディングス株式会社 Base paper for total heat exchanger element and production method of the same
JP2016080269A (en) * 2014-10-17 2016-05-16 パナソニックIpマネジメント株式会社 Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252128B2 (en) * 2013-11-19 2017-12-27 王子ホールディングス株式会社 Process for producing deesterified compound
JP6314094B2 (en) * 2015-01-22 2018-04-18 大王製紙株式会社 Composite paper manufacturing method and composite paper
JP2017096590A (en) * 2015-11-27 2017-06-01 パナソニックIpマネジメント株式会社 Partition member for total heat exchange element, total heat exchange element using the same, and total heat exchange type ventilation device
JP6927969B2 (en) * 2016-06-28 2021-09-01 日本製紙株式会社 Total heat exchange element paper

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060796A (en) * 1996-08-21 1998-03-03 Lintec Corp Raw material for whole heat transfer element
JP2008032390A (en) * 2001-06-01 2008-02-14 Mitsubishi Paper Mills Ltd Total heat exchanging element paper
JP2004285529A (en) * 2003-03-25 2004-10-14 Asahi Kasei Corp Formed product of water-resistant/oil-resistant cellulose and method for producing the formed product
JP2008014623A (en) * 2006-06-05 2008-01-24 Rengo Co Ltd Sheet for total heat exchangers
WO2014014099A1 (en) * 2012-07-19 2014-01-23 旭化成せんい株式会社 Multilayered structure comprising fine fiber cellulose layer
WO2015008868A1 (en) * 2013-07-19 2015-01-22 旭化成せんい株式会社 Fine cellulose fiber sheet
WO2015050104A1 (en) * 2013-10-02 2015-04-09 東レ株式会社 Base paper for heat exchanger, and total heat exchange element using same
JP2016029226A (en) * 2014-07-15 2016-03-03 王子ホールディングス株式会社 Base paper for total heat exchanger element and production method of the same
JP2016080269A (en) * 2014-10-17 2016-05-16 パナソニックIpマネジメント株式会社 Partition member for full heat exchanging element, full heat exchanging element using the same and full heat exchanging type ventilation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020125893A (en) * 2019-02-06 2020-08-20 王子ホールディングス株式会社 Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
WO2020189433A1 (en) * 2019-03-15 2020-09-24 三菱製紙株式会社 Total heat exchange element
CN113557134A (en) * 2019-03-15 2021-10-26 三菱制纸株式会社 Total heat exchange element

Also Published As

Publication number Publication date
JP7173012B2 (en) 2022-11-16
JPWO2019026823A1 (en) 2020-06-11

Similar Documents

Publication Publication Date Title
JP7259226B2 (en) sheet
JPWO2018008736A1 (en) Sheet
JP7173012B2 (en) TOTAL HEAT EXCHANGER SHEET, TOTAL HEAT EXCHANGER ELEMENT, AND TOTAL HEAT EXCHANGER
JP6648849B1 (en) Sheet for total heat exchanger, element for total heat exchanger, and total heat exchanger
JP7346873B2 (en) Seat manufacturing method
JP2021004374A (en) Method for producing fibrous cellulose, fibrous cellulose dispersion, and sheet
WO2019124364A1 (en) Sheet
JP6607327B1 (en) Sheet
JP2020105473A (en) Fibrous cellulose, fibrous cellulose-containing material, formed body, and method for producing fibrous cellulose
WO2021131380A1 (en) Sheet and method for producing sheet
JP6617843B1 (en) Sheet
JP7346874B2 (en) Method for producing a dispersion containing fine fibrous cellulose and method for producing a sheet containing fine fibrous cellulose
WO2020230513A1 (en) Pattern formation substrate
JP7395836B2 (en) Method for producing fine fibrous cellulose-containing dispersion
JP2020172035A (en) Laminate
JP6705532B1 (en) Sheet
JP7375319B2 (en) Method for producing fibrous cellulose-containing sheet
JP7346870B2 (en) Sheet manufacturing method and sheet
JP2020105472A (en) Fibrous cellulose and method for manufacturing the same
JP2020105474A (en) Fibrous cellulose, fibrous cellulose containing material, molding and method for manufacturing fibrous cellulose
JP7167528B2 (en) sheet
JP7338776B2 (en) Method for producing fibrous cellulose-containing slurry
JP2020193401A (en) Laminate
JP2020109190A (en) Fibrous cellulose, fibrous cellulose-containing material, formed body, and method for producing fibrous cellulose
JP2020158735A (en) Method for producing fibrous cellulose-containing slurry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18840165

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534487

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18840165

Country of ref document: EP

Kind code of ref document: A1