JP2016051222A - 電源回路及びその制御方法 - Google Patents

電源回路及びその制御方法 Download PDF

Info

Publication number
JP2016051222A
JP2016051222A JP2014174540A JP2014174540A JP2016051222A JP 2016051222 A JP2016051222 A JP 2016051222A JP 2014174540 A JP2014174540 A JP 2014174540A JP 2014174540 A JP2014174540 A JP 2014174540A JP 2016051222 A JP2016051222 A JP 2016051222A
Authority
JP
Japan
Prior art keywords
power supply
voltage
circuit
switching
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014174540A
Other languages
English (en)
Other versions
JP6352733B2 (ja
Inventor
隆士 太矢
Takashi Taya
隆士 太矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lapis Semiconductor Co Ltd
Original Assignee
Lapis Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lapis Semiconductor Co Ltd filed Critical Lapis Semiconductor Co Ltd
Priority to JP2014174540A priority Critical patent/JP6352733B2/ja
Priority to US14/833,198 priority patent/US9407146B2/en
Priority to CN201510538291.4A priority patent/CN106208685B/zh
Publication of JP2016051222A publication Critical patent/JP2016051222A/ja
Application granted granted Critical
Publication of JP6352733B2 publication Critical patent/JP6352733B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/563Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices including two stages of regulation at least one of which is output level responsive, e.g. coarse and fine regulation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F5/00Systems for regulating electric variables by detecting deviations in the electric input to the system and thereby controlling a device within the system to obtain a regulated output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0045Converters combining the concepts of switch-mode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

【課題】消費電力を抑えつつ立ち上がり時間を短くすることができる電源回路及び電源回路の制御方法を提供することを目的とする。
【解決手段】電源回路1は、電源電圧が入力される電源端子20、スイッチ回路40及び、キャパシタとインダクタを備えスイッチ回路40に接続されてスイッチ回路40からの出力を平滑化して第1の電圧を出力する平滑化回路50を備えたスイッチングレギュレータ60、スイッチ回路40と平滑化回路50とシリーズレギュレータ70とがこの順番で直列に接続され,シリーズレギュレータ70に電源電圧を供給する切替回路80、シリーズレギュレータ70から第2の電圧を出力させる動作状態とスイッチングレギュレータ60とシリーズレギュレータ70とを休止させる制御部90から構成され、制御部90は動作状態中の電源電圧の測定結果に基づいて休止状態時の切替回路80のオンオフ制御を行う。
【選択図】図1

Description

本発明は、電源回路及びその制御方法に関し、特に無線通信LSIなどに用いられる電源回路及びその制御方法に関するものである。
従来、無線通信などに用いられるLSI(集積回路)においては、電源回路を設け、供給される電圧の変動や雑音を除去して、内部回路に一定電圧かつ雑音の少ない出力電圧を提供している。そして、このような出力電圧を供給するための電源回路としては、スイッチ素子とインダクタ・キャパシタとで構成される降圧型のスイッチングレギュレータ、演算増幅器とリニア動作の出力トランジスタとで構成されるシリーズレギュレータが知られている。
電池などを電源として動作する通信機器などにおいては、広い範囲の電源電圧に対して動作することが望ましいが、スイッチングレギュレータは、電源から供給される電源電圧を必要に応じてインダクタ・キャパシタに出力して出力電圧に変換するため、電力のロスが少ないという利点があるものの電源電圧が低下してくると変換効率が低下したりスイッチング動作自体ができなくなったりするなど、電源電圧から入力される好適な電圧範囲が狭い。
一方、シリーズレギュレータは、広い電圧範囲に対応でき、出力トランジスタを細かく制御することが可能であることから好適な出力電圧を得ることができるが、電源電圧が高い場合には出力電圧まで電圧降下させるために電力を熱に変換する必要があり電力損失が大きい。
双方の特徴を生かして、電力の無駄が少なく、かつ広い範囲の電源電圧に対応可能な電源回路として、スイッチングレギュレータとシリーズレギュレータとを並列又は直列に接続した構成の電源装置が提案されている(例えば、特許文献1、2、及び3参照。)。
特許文献1では、スイッチングレギュレータとシリーズレギュレータとを並列に構成し、制御信号によりいずれかに切り替えて使用することが開示されている。
特許文献2では、スイッチングレギュレータとシリーズレギュレータとを直列に接続し、スイッチングレギュレータとシリーズレギュレータと用いて出力電圧を生成するか、シリーズレギュレータのみを用いて出力電圧を生成するかを電源電圧に応じて切り替えることが開示されている。
特許文献3では、スイッチングレギュレータとシリーズレギュレータとを直列に接続し、スタンバイモードと通常モードとを備えた電源回路について、スタンバイモードのときに電圧平滑用コンデンサに電源電圧を供給し、通常モードへ復帰する際の立ち上がりを短時間とすることが開示されている。
特開2003−216247号公報 特開平5−236650号公報 特開2009−177909号公報
特許文献1では、スイッチングレギュレータとシリーズレギュレータとを並列に接続し、いずれかに切り替えて出力電圧を生成するため、切り替え時のノイズが大きくなってしまう。また、特許文献2及び特許文献3のように、スイッチングレギュレータとシリーズレギュレータとを直列に接続してスイッチングレギュレータとシリーズレギュレータとの動作をそれぞれ制御することで出力電圧を生成する場合には、並列に接続した場合のような切り替え時のノイズは低減されるが、消費電力を抑えつつ立ち上がり時間を短くすることができる無線通信用の電源回路を得ることが困難であった。
また、無線通信などに用いられるLSIにおいては、電源として例えばリチウムボタン電池などが用いられ、その電源電圧は1.6V〜3.6V程度の範囲となっており、このような無線通信用のLSIでは低消費電力化のため間欠的に動作する必要がある。そのため、休止状態と動作状態とを繰り返すことで省電力化を図っているが、このようなLSIでは、休止状態時の方が長いため休止状態時の消費電力を抑えつつ立ち上がり時間を短くすることが大変重要となっている。
例えば、特許文献3では、平滑化用のコンデンサをスタンバイ時にも電源電位に維持することを開示しているが、かかるコンデンサの電位を電源電位に維持したとしても電源電位まで電荷を供給しまた動作時にもシリーズレギュレータの電圧範囲まで電荷を放出することから電力を消費するため省電力化の観点からは充分ではなかった。また、スタンバイ状態でのコンデンサの電位はスイッチングレギュレータが通常動作しているときのコンデンサの電位とは大きく異なる電位に制御されることから、スタンバイ状態から通常動作に移行するときにはコンデンサに蓄積されている電圧を適切な範囲になるまで調整する必要があるため、立ち上がり時間を短くする観点からも充分ではなかった。
本発明は、このような課題を解決するために提案されたものであり、消費電力を抑えつつ立ち上がり時間を短くすることができる電源回路及び電源回路の制御方法を提供することを目的とする。
上記目的を達成するために、本発明の電源回路は、電源電圧が入力される電源端子と、前記電源端子に接続されるスイッチ回路と、キャパシタとインダクタとを備え、当該スイッチ回路に接続されて該スイッチ回路からの出力を平滑化して第1の電圧を出力する平滑化回路と、を備えたスイッチングレギュレータと、前記スイッチングレギュレータに接続され、前記第1の電圧又は前記電源が入力されて第2の電圧を出力するシリーズレギュレータであって、前記スイッチ回路と前記平滑化回路と該シリーズレギュレータとがこの順番で直列に接続される当該シリーズレギュレータと、一端が前記電源端子に接続され、他端が前記スイッチングレギュレータと前記シリーズレギュレータとの間に接続されて当該シリーズレギュレータに前記電源電圧を供給する切替部と、前記シリーズレギュレータから前記第2の電圧を出力させる動作状態と該スイッチングレギュレータと該シリーズレギュレータとを休止させる休止状態とを制御する制御信号を出力する制御部であって、当該動作状態中に前記電源電圧を測定し、該測定結果に基づいて該休止状態時の前記切替部のオンオフ制御を行う切替信号を出力する当該制御部と、を有する。
また、本発明の電源回路の制御方法は、電源電圧が入力される電源端子と、前記電源端子に接続されるスイッチ回路と、キャパシタとインダクタとを備え、当該スイッチ回路に接続されて該スイッチ回路からの出力を平滑化して第1の電圧を出力する平滑化回路と、を備えたスイッチングレギュレータと、前記スイッチングレギュレータに接続され、前記第1の電圧又は前記電源が入力されて第2の電圧を出力するシリーズレギュレータであって、前記スイッチ回路と前記平滑化回路と該シリーズレギュレータとがこの順番で直列に接続される当該シリーズレギュレータと、一端が前記電源端子に接続され、他端が前記スイッチングレギュレータと前記シリーズレギュレータとの間に接続されて当該シリーズレギュレータに前記電源電圧を供給する切替部と、を有する電源回路の制御方法であって、動作状態にあるときに前記電源電圧を測定し、前記動作状態から休止状態へ移行する場合に、測定された前記電源電圧と所定の電圧とを比較し、該所定の電圧より大きい場合には、前記スイッチングレギュレータと前記シリーズレギュレータとを休止状態とするとともに前記切替部をオフとし、該所定の電圧以下の場合には該スイッチングレギュレータと該シリーズレギュレータとを休止状態とするとともに前記切替部をオンとして該休止状態へ移行する。
本発明の電源回路及び電源回路の制御方法によれば、電源回路の消費電力を抑えつつ立ち上がり時間を短くすることができる、という効果を奏する。
本発明の電源回路に関するブロック図である。 本発明の電源回路に関する回路図である。 本発明の出力電圧を説明する図である。
以下、本発明の実施の形態を、図面を参照しつつ詳細に説明する。
[第1の実施の形態]
図1は、本発明の電源回路に関するブロック図である。電源回路1は、電源電圧を供給する電源10と、電源10が入力される電源端子20と、電源端子20に接続される電源電圧測定部30と、電源端子20に接続されるスイッチ回路40及びスイッチ回路40に接続される平滑化回路50とを有するスイッチングレギュレータ60と、スイッチングレギュレータ60に接続されるシリーズレギュレータ70と、一端が電源端子20に、他端がスイッチングレギュレータ60及びシリーズレギュレータ70の間に接続される切替回路80と、スイッチングレギュレータ60、シリーズレギュレータ70、及び切替回路80を制御する制御部90と、シリーズレギュレータ70からの出力電圧が供給される無線通信回路100を有している。
電源10は、例えばリチウムボタン電池などが用いられ、本実施の形態では電源端子20に1.6V〜3.6Vの範囲の電源電圧を供給している。
電源端子20は、電源10からの電源電圧を受けるものであって、電源電圧測定部30、スイッチングレギュレータ60、及び切替回路80に接続されている。
電源電圧測定部30は、電源端子20に接続されて制御部90からの信号に応じて電源電圧を測定し、その結果を制御部90へ出力するものである。電源電圧測定部30は、例えばADコンバータなど1mA程度の消費電力の大きい回路により構成され、シリーズレギュレータ70からの出力電圧の供給を受けて動作を行うものである。
スイッチングレギュレータ60は、電源端子20に接続されたスイッチ回路40と、スイッチ回路に接続された平滑化回路50とにより構成され、電源10からの電源電圧を例えば1.5V程度に降圧する機能を有している。
シリーズレギュレータ70は、スイッチングレギュレータ60の平滑化回路50に接続されている。シリーズレギュレータ70は電源電圧又はスイッチングレギュレータ60から出力される電圧を例えば1.2V程度に降圧する機能を有している。
切替回路80は、一端が電源端子20に接続されており、他端がスイッチングレギュレータ60の平滑化回路50とシリーズレギュレータ70との間に接続されている。切替回路80は、電源電圧に応じてスイッチングレギュレータ60を経由せずに電源電圧をシリーズレギュレータ70に供給することを可能とするものであり、制御部90から出力される切替信号により制御される。
制御部90は、電源電圧測定部30に接続され、スイッチングレギュレータ60、シリーズレギュレータ70、及び切替回路80にそれぞれ制御信号及び切替信号を出力する。
無線通信回路100は、シリーズレギュレータ70からの出力電圧が供給され、無線通信を行う負荷回路である。本実施の形態に用いられる無線通信回路100は、他の無線通信機器と無線により信号を送信、受信或いは送受信するためのものである。
図2は、図1の電源回路におけるスイッチングレギュレータ60、シリーズレギュレータ70、及び切替回路80の一部を回路図に置き換えたものである。
スイッチングレギュレータ60のスイッチ回路40は一端が電源端子20に接続され、他端がインダクタL1に接続されるPMOSトランジスタ41と、一端がPMOSトランジスタ41の他端に接続され、他端が接地されるNMOSトランジスタ42と、PMOSトランジスタ41及びNMOSトランジスタ42を制御するパルス波をこれらのゲート電極に出力するパルス発生回路43と、平滑化回路50から出力される電圧及び第1の基準電圧が入力され、これらの電圧を比較し差分をパルス発生回路43に出力する電圧比較回路44と、電圧比較回路44に第1の基準電圧を供給する第1の基準電圧回路45と、を有する。また、平滑化回路50は、PMOSトラン
ジスタ41の他端に接続されるインダクタL1と、一端がインダクタL1に接続され、他端が接地されているキャパシタC1とを有する。インダクタL1としては例えば10μH程度のインダクタンスを有し、キャパシタC1としては10μF程度のキャパシタンスを有する。
スイッチングレギュレータ60は、第1の基準電圧と平滑化回路50からの出力とを電圧比較回路44にて比較し、パルス発生回路43にてパルス波を生成してPMOSトランジスタ41及びNMOSトランジスタ42をオンオフさせることで一定の出力電圧が得られるように動作するものである。スイッチングレギュレータ60は、休止状態のときには制御部90からの信号に基づきPMOSトランジスタ41及びNMOSトランジスタ42の双方をオフとするようパルス発生回路43からそれぞれのトランジスタへ信号を供給することで休止状態となる。
また、シリーズレギュレータ70は、一端がインダクタL1及びキャパシタC1に接続され、他端が無線通信回路100に接続されるPMOSトランジスタ71と、PMOSトランジスタ71の他端からの出力と第2の基準電圧が入力され、PMOSトランジスタ71のゲート電極に接続する演算増幅器72と、演算増幅器72に第2の基準電圧を供給する第2の基準電圧回路73と、を有する。シリーズレギュレータは上述のように1.2V程度の出力電圧を出力し、無線通信回路100の動作時には10mA程度の電流を供給する。
シリーズレギュレータ70は、PMOSトランジスタ71からの出力と第2の基準電圧とを演算増幅器72にて比較し、PMOSトランジスタ71のゲート電圧を制御することで一定の出力電圧が得られるように動作するものである。シリーズレギュレータ70は、休止状態のときには制御部90からの信号に基づきPMOSトランジスタ71をオフにするよう演算増幅器72からPMOSトランジスタ71へ信号を供給することで休止状態となる。
切替回路80は、PMOSトランジスタ81により構成される。このPMOSトランジスタ81は制御部90からの信号に応じてオンオフ動作を行い、シリーズレギュレータ70へ電源電圧を供給するか否かが制御される。
本実施の形態における電源回路1の動作について図2、図3を用いて説明する。
無線通信回路100は、常に無線通信を行っているのではなく、一定期間の動作状態と休止状態とを繰り返しており、休止状態から動作状態へ移行する立ち上がり期間、無線通信回路の通信期間、動作状態から休止状態へ移行する立ち下がり期間を短くすることで消費電力の少ない休止状態をできる限り長く確保し低消費電力化を図っている。
動作開始時の動作状態として第1の動作状態においては、休止状態に移行する前に電源電圧を測定する。電源電圧が所定の電圧よりも大きい場合には、切替回路80はオフに制御され、スイッチングレギュレータ60、シリーズレギュレータ70を動作させることで出力電圧を無線通信回路100に供給する。また、第2の動作状態として、所定の電圧よりも小さい場合には、切替回路80はオンに制御され、スイッチングレギュレータ60を休止させ、シリーズレギュレータ70を動作させることで電源電圧を直接シリーズレギュレータ70に供給して出力電圧を無線通信回路100に供給する。これら第1の動作状態と第2の動作状態とは動作状態中に切り替えるのではなく、一定期間の間はいずれかの動作状態のままで動作を行う。なお、所定の電圧は例えば電源電圧に対する割合として満充電状態から放電が終わるまでの期間に対して6割の期間にあたる電圧などとして設定しても良く、スイッチングレギュレータの動作範囲から逆算して所定電圧を設定しても良い。本実施の形態ではスイッチングレギュレータ60の動作範囲から設定して例えば2.2Vとして説明する。
休止状態においては、第1の休止状態として、電源電圧が所定の電圧よりも大きい場合には、切替回路80はオフに制御され、スイッチングレギュレータ60及びシリーズレギュレータ70を休止させることで休止状態となる。また、第2の休止状態として、所定の電圧よりも小さい場合には、切替回路80はオンに制御され、スイッチングレギュレータ60及びシリーズレギュレータ70を休止させることで休止状態となる。
本実施の形態における電源回路1について、電源電圧が充分に充電された状態から徐々に放電されて電源電圧が低下していくときのこれら動作状態と休止状態との制御について説明する。
図3(d)に示すように、電源電圧が3.6Vの時は、所定の電圧である2.2Vよりも大きい電圧であるため、図3(a)、図3(b)、図3(d)に示すように、第1の動作状態にて一定期間動作し、出力電圧を出力している。この一定期間が経過する前に、電源電圧測定部30により電源電圧を測定し、測定結果を制御部90へ出力する。電源電圧測定部30は、前述のように例えばADコンバータを構成として含むため、その動作に1mA程度の電流量が必要となり、消費電力が大きく出力電圧により動作する。このため、電源電圧測定部30も電源回路1が休止状態のときには動作を休止している。また、図3(c)に示すようにキャパシタC1についてはスイッチングレギュレータ60の出力電圧に応じた電位が蓄積される。
制御部90では、図3(a)、図3(b)、図3(d)に示すように、電源電圧測定部30からの電源電圧の測定結果と所定の電圧とを比較し、所定の電圧よりも大きい電圧である場合には、第1の休止状態、すなわち、切替回路80をオフに制御してスイッチングレギュレータ60及びシリーズレギュレータ70を休止させる。また、第1の休止状態から動作状態に移行する場合についてもこの時点で電源電圧が所定の電圧より大きい電圧であることから、第1の動作状態に移行するよう、言い換えれば一定期間の休止状態が経過したのちに切替回路80をオフにし、スイッチングレギュレータ60とシリーズレギュレータ70とを動作させるように切替信号及び制御信号を出力するよう予め設定したうえで第1の休止状態へ移行する。
このように動作することで、休止状態のときにスイッチ回路40のPMOSトランジスタ41及びNMOSトランジスタ42をオフとし、スイッチングレギュレータ70のPMOSトランジスタ71をオフとし、切替回路80のPMOSトランジスタ81をオフとして休止状態になるため、平滑化回路50におけるキャパシタC1はいずれの経路からも切断された状態となり動作状態時に蓄積された電荷をそのまま保存して休止状態となる。その後第1の休止状態から動作状態へ復帰するため、キャパシタC1の電荷は動作時のまま保存されていることから動作開始時にキャパシタC1を充電する期間を必要とせずに効率的に動作状態へ復帰することができ、立ち上がり速度を短くすることができる。また、予め動作状態へ移行するときに第1の動作状態へ移行することを設定していることからも、動作状態へ移行する場合に電源電圧測定回路などを立ち上げた後に電源電圧の状態を確認して動作状態へ移行するなどの工程を経ることなく動作状態へ移行するため立ち上がり速度を短くすることができる。なお、図3(c)に示すように休止状態中のキャパシタC1の容量が減少しているが、これはキャパシタC1の容量が動作状態から休止状態へ移行したばかりのときよりも休止状態から動作状態へ移行したときの方がわずかに電荷量が減少していることを誇張して示したものである。
第1の動作状態にて動作しているときに、電源電圧が放電により低下し電源電圧測定部30からの測定結果が所定の電圧よりも低くなった場合には、第2の休止状態、すなわち切替回路80をオンに制御してスイッチングレギュレータ60及びシリーズレギュレータ70を休止させた休止状態に移行する。また、第2の休止状態から動作状態に移行する場合についてもこの時点で電源電圧が所定の電圧より小さい電圧であることから、第2の動作状態に移行するよう、言い換えれば一定期間の休止状態が経過したのちに切替回路をオンにし、スイッチングレギュレータ60を休止させシリーズレギュレータ70を動作させるように切替信号及び制御信号を出力するよう予め設定したうえで第2の休止状態へ移行する。
このように動作することで、休止状態から動作状態に移行するときに予め第2の動作状態へ移行するよう設定しているため、動作状態へ移行する場合に電源電圧測定回路などを立ち上げた後に電源電圧の状態を確認して動作状態へ移行するなどの工程を経ることなく動作状態へ移行するため立ち上がり速度を短くすることができる。また、キャパシタC1を電源電圧に接続することで電荷を保持する構成とし、立ち上がり速度を向上させている。キャパシタC1を電源電圧によって保持する場合には、その後動作状態に移行したときにシリーズレギュレータ70へ入力する適切な電圧までの差分が生じていないため、電源電圧が低下してきた場合にはその損失がなくなることから立ち上がり速度の向上を図ることができる。
なお、第2の動作状態にて動作しているときについても、制御部90は電源電圧測定部30からの測定結果と所定の電圧とを比較しており、電源電圧が充電などにより所定の電圧よりも高くなった場合には、制御部90により電源回路1は第1の休止状態へ移行する。また、この時点での電源電圧が所定の電圧よりも高いため第1の休止状態から第1の動作状態へ移行する。また、第2の動作状態にて動作しているときに、電源電圧が所定の電圧よりも低くなった場合には、制御部90により電源回路1は第2の休止状態へ移行する。また同様に第2の休止状態から第2の動作状態へ移行する。
このようにして、電源電圧の値に応じて休止状態及びその後の動作状態を制御することで休止状態から動作状態への立ち上がり速度を短くするとともに消費電力を少なくすることができる。
なお、上記実施の形態で説明した電源回路等の構成、各動作等は一例であり、本発明の趣旨を逸脱しない範囲内において種々の変更が可能であることはいうまでもない。たとえば電池を取り付けたときなどの無線通信機器の最初の起動時には、スイッチングレギュレータ60の調整を行うために、第2の動作状態にて立ち上げることとし、スイッチングレギュレータ60が立ちあがったのちに電源電圧を測定することで次の休止状態を判定し、休止状態に移行するよう制御回路90を設定しても良い。また、例えば最初の起動時に必ず第1の動作状態にて立ち上がることとし、電源電圧を測定してから休止状態へ移行するよう制御回路90を設定しても良い。また、待機状態が長時間に及ぶ場合には、電池電圧の変動が大きくなることから制御部90にタイマー部などを設け、一定時間動作状態に移行しない場合には、待機状態の経過時間に基づいて動作状態へ移行するよう設定しても良い。さらに、第1の動作状態での所定の電圧と第2の動作状態での所定の電圧とを異ならせる、例えば第1の動作状態での所定の電圧の方が第2の動作状態での所定の電圧よりも小さく設定することで、状態遷移にヒステリシスを持たせ、所定の電圧付近での第1の動作状態と第2の動作状態との振動的な遷移を防止することも可能である。また、第1の動作状態から休止状態を経て第2の動作状態に移行した場合、一定期間状態遷移を禁止するよう制御部に設けたタイマーにより制御を行うこととしても良い。
1 電源回路10 電源20 電源端子30 電源電圧測定部40 スイッチ回路50 平滑化回路60 スイッチングレギュレータ70 シリーズレギュレータ80 切替回路90 制御部100 無線通信回路

Claims (7)

  1. 電源電圧が入力される電源端子と、前記電源端子に接続されるスイッチ回路と、キャパシタとインダクタとを備え、当該スイッチ回路に接続されて該スイッチ回路からの出力を平滑化して第1の電圧を出力する平滑化回路と、を備えたスイッチングレギュレータと、前記スイッチングレギュレータに接続され、前記第1の電圧又は前記電源が入力されて第2の電圧を出力するシリーズレギュレータであって、前記スイッチ回路と前記平滑化回路と該シリーズレギュレータとがこの順番で直列に接続される当該シリーズレギュレータと、一端が前記電源端子に接続され、他端が前記スイッチングレギュレータと前記シリーズレギュレータとの間に接続されて当該シリーズレギュレータに前記電源電圧を供給する切替部と、前記シリーズレギュレータから前記第2の電圧を出力させる動作状態と該スイッチングレギュレータと該シリーズレギュレータとを休止させる休止状態とを制御する制御信号を出力する制御部であって、当該動作状態中に前記電源電圧を測定し、該測定結果に基づいて該休止状態時の前記切替部のオンオフ制御を行う切替信号を出力する当該制御部と、を有することを特徴とする電源回路。
  2. 請求項1に記載の電源回路において、前記制御部は、前記休止状態から前記動作状態へ移行するときに前記休止状態時に出力された前記切替信号に基づきその後前記スイッチングレギュレータと前記シリーズレギュレータそれぞれのオンオフ制御を行う動作信号を出力することを特徴とする電源回路。
  3. 請求項1又は請求項2に記載の電源回路において、前記制御部は、測定した前記電源電圧が所定の電圧値より大きい場合には前記切替回路をオフとし、該所定の電圧値以下の場合には該切替回路をオンとして前記休止状態へ移行する切替信号を出力することを特徴とする電源回路。
  4. 請求項2又は請求項3に記載の電源回路において、前記制御部は、前記休止状態から前記動作状態へ移行するときに、測定した前記電源電圧が所定の電圧値より大きい場合には、前記スイッチングレギュレータ及び前記シリーズレギュレータを起動させ、該所定の電圧値以下の場合には該スイッチングレギュレータを休止させかつ該シリーズレギュレータを起動させる前記動作信号を出力することを特徴とする電源回路。
  5. 請求項1乃至請求項4のいずれか1項に記載の電源回路において、前記スイッチングレギュレータの前記スイッチ回路は、ソース電極及びドレイン電極が前記電源端子及び前記インダクタに接続された第1導電型の第1のトランジスタと、ソース電極及びドレイン電極が前記インダクタ及び接地電位とに接続された、前記第1導電型とは異なる第2導電型の第2のトランジスタと、前記第1のトランジスタのゲート電極及び前記第2のトランジスタのゲート電極を制御するパルス発生回路と、前記電源電圧に基づく第1の基準電圧と前記平滑化回路からの前記第1の電圧とが入力され、該基準電圧と該第1の電圧との比較結果を前記パルス発生回路へ出力する比較回路と、を備え、前記制御部は、前記パルス発生回路に前記制御信号を出力して前記スイッチングレギュレータの制御を行うことを特徴とする電源回路。
  6. 請求項1乃至請求項5のいずれか1項に記載の電源回路において、前記シリーズレギュレータは、前記スイッチングレギュレータ及び前記切替回路に接続され、前記第2の電圧を出力する出力トランジスタと、前記電源電圧に基づく第2の基準電圧と前記第2の電圧とが入力され、前記出力トランジスタのゲート電極に制御電圧を出力する演算増幅器と、を備え、前記制御部は、前記演算増幅器に前記制御信号を出力して前記シリーズレギュレータの制御を行うことを特徴とする電源回路。
  7. 電源電圧が入力される電源端子と、前記電源端子に接続されるスイッチ回路と、キャパシタとインダクタとを備え、当該スイッチ回路に接続されて該スイッチ回路からの出力を平滑化して第1の電圧を出力する平滑化回路と、を備えたスイッチングレギュレータと、前記スイッチングレギュレータに接続され、前記第1の電圧又は前記電源が入力されて第2の電圧を出力するシリーズレギュレータであって、前記スイッチ回路と前記平滑化回路と該シリーズレギュレータとがこの順番で直列に接続される当該シリーズレギュレータと、一端が前記電源端子に接続され、他端が前記スイッチングレギュレータと前記シリーズレギュレータとの間に接続されて当該シリーズレギュレータに前記電源電圧を供給する切替部と、を有する電源回路の制御方法であって、動作状態にあるときに前記電源電圧を測定し、前記動作状態から休止状態へ移行する場合に、測定された前記電源電圧と所定の電圧とを比較し、該所定の電圧より大きい場合には、前記スイッチングレギュレータと前記シリーズレギュレータとを休止状態とするとともに前記切替部をオフとし、該所定の電圧以下の場合には該スイッチングレギュレータと該シリーズレギュレータとを休止状態とするとともに前記切替部をオンとして該休止状態へ移行することを特徴とする電源回路の制御方法。
JP2014174540A 2014-08-28 2014-08-28 電源回路及びその制御方法 Active JP6352733B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014174540A JP6352733B2 (ja) 2014-08-28 2014-08-28 電源回路及びその制御方法
US14/833,198 US9407146B2 (en) 2014-08-28 2015-08-24 Power source circuit and method of controlling power source circuit
CN201510538291.4A CN106208685B (zh) 2014-08-28 2015-08-28 电源电路及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174540A JP6352733B2 (ja) 2014-08-28 2014-08-28 電源回路及びその制御方法

Publications (2)

Publication Number Publication Date
JP2016051222A true JP2016051222A (ja) 2016-04-11
JP6352733B2 JP6352733B2 (ja) 2018-07-04

Family

ID=55403677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174540A Active JP6352733B2 (ja) 2014-08-28 2014-08-28 電源回路及びその制御方法

Country Status (3)

Country Link
US (1) US9407146B2 (ja)
JP (1) JP6352733B2 (ja)
CN (1) CN106208685B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245526B (zh) * 2018-09-21 2024-04-12 深圳市道通智能航空技术股份有限公司 一种供电电路及电子设备
CN111580431A (zh) * 2020-05-08 2020-08-25 北京中电华大电子设计有限责任公司 一种mcu中的电源快速唤醒电路和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034025A (ja) * 2004-07-20 2006-02-02 Sharp Corp 直流安定化電源装置
JP2008061328A (ja) * 2006-08-30 2008-03-13 Fujitsu Ltd 電子機器
JP2009055158A (ja) * 2007-08-24 2009-03-12 Yokogawa Electric Corp 電池駆動無線機器
JP2009177909A (ja) * 2008-01-23 2009-08-06 Denso Corp 電子制御装置及び電源装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236650A (ja) 1992-02-20 1993-09-10 Asahi Optical Co Ltd 電源装置
FI117772B (fi) * 2000-03-17 2007-02-15 Nokia Corp Menetelmä ja laite häviötyyppisen jännitesäätimen yli olevan jännitteen pienentämiseksi
US6646424B2 (en) * 2001-12-21 2003-11-11 Micrel, Incorporated Apparatus for converting voltage with regulator
JP2003216247A (ja) 2002-01-24 2003-07-31 Ricoh Co Ltd 直流安定化電源装置
US6661211B1 (en) * 2002-06-25 2003-12-09 Alcatel Canada Inc. Quick-start DC-DC converter circuit and method
JP4499985B2 (ja) * 2002-12-13 2010-07-14 株式会社リコー 電源用ic及びその電源用icを使用した通信装置
JP4493456B2 (ja) * 2003-12-10 2010-06-30 ローム株式会社 電源装置、及びそれを用いた携帯機器
US7084612B2 (en) * 2004-04-30 2006-08-01 Micrel, Inc. High efficiency linear regulator
DE102005020314A1 (de) * 2005-05-02 2006-11-09 Infineon Technologies Ag Spannungsversorgungsanordnung zur Versorgung einer ersten elektrischen Last und Verfahren zum Bereitstellen einer elektrischen Leistung
US20070024256A1 (en) * 2005-07-27 2007-02-01 Yi-Chung Chou Switch-mode multiple outputs dcdc converter
US20070290657A1 (en) * 2006-06-14 2007-12-20 David John Cretella Circuit and method for regulating voltage
US8324873B2 (en) * 2008-01-16 2012-12-04 Fujitsu Semiconductor Limited Power supply apparatus and power supply method
US8786264B2 (en) * 2012-01-11 2014-07-22 Blackberry Limited DCDC converter with converter modules that can be dynamically enabled or disabled

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006034025A (ja) * 2004-07-20 2006-02-02 Sharp Corp 直流安定化電源装置
JP2008061328A (ja) * 2006-08-30 2008-03-13 Fujitsu Ltd 電子機器
JP2009055158A (ja) * 2007-08-24 2009-03-12 Yokogawa Electric Corp 電池駆動無線機器
JP2009177909A (ja) * 2008-01-23 2009-08-06 Denso Corp 電子制御装置及び電源装置

Also Published As

Publication number Publication date
JP6352733B2 (ja) 2018-07-04
US9407146B2 (en) 2016-08-02
CN106208685B (zh) 2019-08-16
US20160065050A1 (en) 2016-03-03
CN106208685A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
JP4303731B2 (ja) デュアルモード電圧調整器
JP4319661B2 (ja) パルス幅変調モードおよび低ドロップアウト待機モードを備えるデュアルモード電圧調整器
US9401637B2 (en) Switching regulator with adaptive PWM/PFM modulator
US20120001610A1 (en) Buck-boost regulator with dead band
US20090167279A1 (en) DC Power Converter and Mode-Switching Method
TWI699641B (zh) 能隙參考電路以及具備該電路的dcdc轉換器
JP2011024395A (ja) 充電装置と電子機器
EP2701297B1 (en) Electronic apparatus and power controlling method thereof
JP2010011617A (ja) スイッチングレギュレータ及びそのスイッチングレギュレータを備えた半導体装置
JP2016048973A (ja) 半導体装置
JP2010051155A (ja) 電源回路
US9032228B2 (en) Standby power reducing apparatus
JP2007053883A (ja) 昇降圧チョッパ式dc−dcコンバータ
TWI533559B (zh) 電子裝置中的電路、電子裝置及供電方法
JP6043532B2 (ja) 電力供給装置、電力供給システム及び電力供給方法
JP6352733B2 (ja) 電源回路及びその制御方法
JP2008017663A (ja) スイッチング電源装置
JP2012196050A (ja) ソフトスタート回路
JP4400426B2 (ja) スイッチング電源装置
JP6018829B2 (ja) 電力供給装置、電力供給システム及び電力供給方法
TWI466410B (zh) 電源供應系統、電壓調節裝置及其控制方法
JP2013059186A (ja) 電源回路及びその制御方法
US20110254515A1 (en) Charge control device
JP2008092779A (ja) スイッチング電源制御システムおよび携帯端末
JP5641555B2 (ja) Dcdcコンバータおよびその起動制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180416

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180607

R150 Certificate of patent or registration of utility model

Ref document number: 6352733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150