JP2016048768A - Wiring board and manufacturing method of semiconductor device - Google Patents

Wiring board and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2016048768A
JP2016048768A JP2014173930A JP2014173930A JP2016048768A JP 2016048768 A JP2016048768 A JP 2016048768A JP 2014173930 A JP2014173930 A JP 2014173930A JP 2014173930 A JP2014173930 A JP 2014173930A JP 2016048768 A JP2016048768 A JP 2016048768A
Authority
JP
Japan
Prior art keywords
substrate
wiring board
manufacturing
layer
support substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014173930A
Other languages
Japanese (ja)
Inventor
正明 竹越
Masaaki Takekoshi
正明 竹越
中村 幸雄
Yukio Nakamura
幸雄 中村
森田 高示
Koji Morita
高示 森田
智彦 小竹
Tomohiko Kotake
智彦 小竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2014173930A priority Critical patent/JP2016048768A/en
Publication of JP2016048768A publication Critical patent/JP2016048768A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a wiring board which inhibits warpage occurring in the manufacturing process and packaging process of the wiring board, and to provide a manufacturing method of a semiconductor device.SOLUTION: A reinforcement substrate 9 is provided on a substrate part of a lamination body 600 provided with the substrate part in which a given number of insulation layers and wiring layers are provided on a support substrate. Subsequently, the support substrate is removed to obtain a wiring board.SELECTED DRAWING: Figure 11

Description

本発明は、配線板及び半導体装置の製造方法に関する。   The present invention relates to a wiring board and a method for manufacturing a semiconductor device.

近年、携帯型情報通信機器端末をはじめ、電子機器の小型化及び高機能化が急速に進んでおり、薄型かつ高機能な半導体装置が要求されている。半導体装置に用いる配線板を薄くすれば、半導体装置の薄型化に直結し、また配線板内の導体経路長が短縮できることから、高機能化にも有利である。そのため、配線板を極力薄型化することが求められている。   2. Description of the Related Art In recent years, electronic devices such as portable information communication device terminals have been rapidly reduced in size and functionality, and a thin and highly functional semiconductor device is required. If the wiring board used in the semiconductor device is thinned, it is directly connected to the thinning of the semiconductor device, and the conductor path length in the wiring board can be shortened, which is advantageous for high functionality. Therefore, it is required to make the wiring board as thin as possible.

例えば、配線基板の高密度化及び薄型化に対応する基板として汎用されつつある、ビルドアップ法により形成された多層配線板は、従来は、コア基板上に絶縁層及び配線層を繰り返し積層する方法により製造されてきた。しかしながら、上記のような薄型化の要求に応じて、コア基板を除去した多層配線板が検討されている。   For example, a multilayer wiring board formed by a build-up method, which is being widely used as a substrate for increasing the density and thickness of a wiring board, has conventionally been a method of repeatedly laminating an insulating layer and a wiring layer on a core substrate. Has been manufactured by. However, a multilayer wiring board from which the core substrate is removed has been studied in response to the demand for thinning as described above.

しかしながら、配線板を薄型化すると、その分剛性が小さくなることから、配線板の製造工程において発生する反りが大きくなる問題が生じる。これにより、配線板の製造時における配線加工、種々の穴あけ加工等の位置精度が悪化する場合があり、歩留まり良く配線板を製造することが困難となる。また、配線板の反りが大きいと、半導体チップのフリップチップ実装が困難になり、半導体装置の生産性にも悪影響を及ぼす。   However, when the wiring board is thinned, the rigidity is reduced accordingly, and thus a problem arises in that warpage generated in the manufacturing process of the wiring board increases. As a result, positional accuracy such as wiring processing and various drilling operations during the manufacture of the wiring board may be deteriorated, and it becomes difficult to manufacture the wiring board with a high yield. Further, when the wiring board is warped, it is difficult to flip-chip the semiconductor chip, which adversely affects the productivity of the semiconductor device.

この課題を解決するため、支持基板上に薄型の配線板を作り、最終的に支持基板を除去する方法が知られている。また、支持基板を除去する前に半導体チップを搭載する方法が提案されている。(特許文献1)   In order to solve this problem, a method of making a thin wiring board on a support substrate and finally removing the support substrate is known. In addition, a method of mounting a semiconductor chip before removing the support substrate has been proposed. (Patent Document 1)

特許第4866268号公報Japanese Patent No. 4866268

しかしながら、上記特許文献1に記載の方法では、より薄型の配線板を製造する場合、仮基板から配線部材を分離した後の工程(例えば、実装工程)において、反りが生じるおそれがある。   However, in the method described in Patent Document 1, when a thinner wiring board is manufactured, warping may occur in a process (for example, a mounting process) after the wiring member is separated from the temporary substrate.

また、実装工程における反りを低減するため、仮基板を設けたまま、半導体チップを搭載することも考えられるが、両面に半導体チップを搭載する必要があり、搭載に際して特殊な配線板の固定方法が必要になるため、生産性に問題がある。   In order to reduce warpage in the mounting process, it may be possible to mount a semiconductor chip with a temporary substrate provided, but it is necessary to mount the semiconductor chip on both sides, and there is a special method for fixing a wiring board when mounting. There is a problem with productivity because it is necessary.

本発明は、配線板の製造工程及び実装工程の反りを抑制することが可能な配線板及び半導体装置の製造方法を提供することを目的とする。   An object of the present invention is to provide a method for manufacturing a wiring board and a semiconductor device capable of suppressing warpage of the manufacturing process and the mounting process of the wiring board.

本発明者らは、上記の課題を解決すべく検討を進めた結果、下記の本発明により当該課題を解決できることを見出した。   As a result of investigations to solve the above problems, the present inventors have found that the following problems can be solved by the present invention.

[1]下記工程1〜3を有する、配線板の製造方法。
工程1:支持基板上の少なくとも一方の面に、任意の層数の絶縁層及び配線層を有する基板部を設ける工程
工程2:前記基板部上に補強基板を設ける工程
工程3:前記支持基板を除去する工程
[2]前記工程1で、支持基板上の少なくとも一方の面に下地層を設ける、[1]に記載の配線板の製造方法。
[1] A method for producing a wiring board, comprising the following steps 1 to 3.
Step 1: Providing a substrate portion having an arbitrary number of insulating layers and wiring layers on at least one surface on the support substrate Step 2: Providing a reinforcing substrate on the substrate portion Step 3: Providing the support substrate Step to remove
[2] The method for manufacturing a wiring board according to [1], wherein a base layer is provided on at least one surface of the support substrate in the step 1.

[3]前記下地層の大きさが、支持基板及び基板部の大きさよりも小さい、[1]又は[2]に記載の配線板の製造方法。   [3] The method for manufacturing a wiring board according to [1] or [2], wherein the size of the base layer is smaller than the size of the support substrate and the substrate portion.

[4]前記工程1で、支持基板の両面に基板部を設ける、[1]〜[3]のいずれか1つに記載の配線板の製造方法。   [4] The method for manufacturing a wiring board according to any one of [1] to [3], wherein in the step 1, substrate portions are provided on both surfaces of the support substrate.

[5]さらに、下記工程4及び5を有する、[1]〜[3]のいずれか1つに記載の配線板の製造方法。
工程4:前記基板部の最外層に開口部を有するソルダレジスト層を形成する工程
工程5:前記開口部にめっき処理又はプリフラックス処理を施す工程
[6]前記基板部のソルダレジスト層を除いた絶縁層の熱膨張係数が、支持基板に近いほど大きくなる、[1]〜[5]のいずれか一項に記載の配線板の製造方法。
[5] The method for manufacturing a wiring board according to any one of [1] to [3], further comprising the following steps 4 and 5.
Step 4: Step of forming a solder resist layer having an opening in the outermost layer of the substrate portion Step 5: Step of plating or prefluxing the opening
[6] The method for manufacturing a wiring board according to any one of [1] to [5], wherein a coefficient of thermal expansion of the insulating layer excluding the solder resist layer of the substrate portion increases as it approaches the support substrate.

[7]前記基板部のソルダレジスト層の熱膨張係数が、支持基板に近いほど大きくなる、[1]〜[6]のいずれか一項に記載の配線板の製造方法。   [7] The method for manufacturing a wiring board according to any one of [1] to [6], wherein a coefficient of thermal expansion of the solder resist layer of the substrate portion increases as the distance from the support substrate increases.

[8]前記支持基板が、ガラスクロスと熱硬化性樹脂とを含有する複合材を硬化してなる基板である[1]〜[7]のいずれか1つに記載の配線板の製造方法。   [8] The method for manufacturing a wiring board according to any one of [1] to [7], wherein the support substrate is a substrate obtained by curing a composite material containing glass cloth and a thermosetting resin.

[9]前記補強基板が接着層とコア基材を有する、[1]〜[8]のいずれか1つに記載の配線板の製造方法。   [9] The method for manufacturing a wiring board according to any one of [1] to [8], wherein the reinforcing substrate has an adhesive layer and a core base material.

[10]前記接着層が、ガラスクロスと熱硬化性樹脂とを含有する複合材である[9]に記載の配線板の製造方法。   [10] The method for manufacturing a wiring board according to [9], wherein the adhesive layer is a composite material containing glass cloth and a thermosetting resin.

[11]前記コア基材が、ガラスクロスと熱硬化性樹脂とを含有する複合材を硬化してなる基板である[9]又は[10]に記載の配線板の製造方法。   [11] The method for manufacturing a wiring board according to [9] or [10], wherein the core base material is a substrate formed by curing a composite material containing glass cloth and a thermosetting resin.

[12]前記支持基板の厚さが、基板部の厚さよりも厚い、[1]〜[11]のいずれか1つに記載の配線板の製造方法。   [12] The method for manufacturing a wiring board according to any one of [1] to [11], wherein the support substrate is thicker than the substrate portion.

[13]前記補強基板の厚さが、基板部の厚さよりも厚い、[1]〜[12]のいずれか1つに記載の配線板の製造方法。   [13] The method for manufacturing a wiring board according to any one of [1] to [12], wherein the reinforcing substrate is thicker than a thickness of the substrate portion.

[14] [1]〜[13]のいずれか1つに記載の配線板の製造方法を用いた、半導体装置の製造方法。   [14] A method for manufacturing a semiconductor device, using the method for manufacturing a wiring board according to any one of [1] to [13].

本発明によると、配線板の製造工程及び実装工程の反りを抑制することが可能な配線板及び半導体装置の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a wiring board and a semiconductor device which can suppress the curvature of the manufacturing process and mounting process of a wiring board can be provided.

図1は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図2は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図3は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図4は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図5は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図6は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 6 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図7は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 7 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図8は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 8 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図9は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 9 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図10は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 10 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図11は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図12は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 12 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図13は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 13 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図14は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図15は、本発明の配線板の製造方法の一例を示す断面図である。FIG. 15 is a cross-sectional view showing an example of a method for manufacturing a wiring board according to the present invention. 図16は、本発明の半導体装置の製造方法の一例を示す断面図である。FIG. 16 is a cross-sectional view showing an example of a method for manufacturing a semiconductor device of the present invention. 図17は、本発明の半導体装置の製造方法の一例を示す断面図である。FIG. 17 is a cross-sectional view showing an example of a method for manufacturing a semiconductor device of the present invention. 図18は、本発明の半導体装置の製造方法の一例を示す断面図である。FIG. 18 is a cross-sectional view showing an example of a method for manufacturing a semiconductor device of the present invention. 図19は、本発明の半導体装置の製造方法の一例を示す断面図である。FIG. 19 is a cross-sectional view showing an example of a method for manufacturing a semiconductor device of the present invention.

以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

本発明の配線板及び半導体装置の製造方法では、図1に示すように、まず、支持基板1として1mmの厚さの硬化済みのFR−4基材を用意する。   In the method for manufacturing a wiring board and a semiconductor device according to the present invention, as shown in FIG. 1, first, a cured FR-4 base material having a thickness of 1 mm is prepared as a support substrate 1.

支持基板1としては、有機基板、金属板等様々な種類の板を用いることができ、特に制限はないが、ガラスクロスと熱硬化性樹脂とを含有する複合材(プリプレグ)を硬化してなる基板、又は該基板の両面に金属箔を配した金属張積層板を用いることが好ましい。   As the support substrate 1, various types of plates such as an organic substrate and a metal plate can be used. Although there is no particular limitation, a composite material (prepreg) containing a glass cloth and a thermosetting resin is cured. It is preferable to use a substrate or a metal-clad laminate in which metal foil is disposed on both sides of the substrate.

ガラスクロスと熱硬化性樹脂とを含有する複合材(プリプレグ)に用いられる熱硬化性樹脂としては、特に制限されるものではないが、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。   Although it does not restrict | limit especially as a thermosetting resin used for the composite material (prepreg) containing a glass cloth and a thermosetting resin, For example, an epoxy resin, a phenol resin, unsaturated imide resin, cyanate resin , Isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, silicone resin, triazine resin, melamine resin and the like. These may be used alone or in combination of two or more.

これらの中でも、強度、耐薬品性、及び加工性に優れる支持基板1が得られる点から、エポキシ樹脂を含有することが好ましい。   Among these, it is preferable to contain an epoxy resin from the point that the support substrate 1 excellent in strength, chemical resistance, and workability can be obtained.

支持基板1の厚さとしては、特に制限されるものではないが、基板部の厚さよりも厚いことが好ましく、2000μm以下であることがより好ましい。支持基板1の厚さが基板部の厚さよりも厚い場合、基板部の反りが十分に抑制される傾向にある。また、支持基板1の厚さが2000μm以下であると、配線板作製工程で取り扱い性が良好となる傾向がある。   Although it does not restrict | limit especially as thickness of the support substrate 1, It is preferable that it is thicker than the thickness of a board | substrate part, and it is more preferable that it is 2000 micrometers or less. When the thickness of the support substrate 1 is thicker than the thickness of the substrate portion, the warp of the substrate portion tends to be sufficiently suppressed. Further, when the thickness of the support substrate 1 is 2000 μm or less, the handleability tends to be good in the wiring board manufacturing process.

その後、図2に示すように、下地層2及び配線層3aとして厚さ3μmの銅箔を、絶縁層4aとして10μmの半硬化の樹脂フィルムを用意する。
下地層2としては、例えば、銅箔等の金属箔、離型フィルム又は離型剤が用いられる。離型フィルムとしては、ポリエステル又はPET(ポリエチレンテレフタレート)のフィルムに薄いフッ素樹脂(ETFE)層を積層したもの、若しくは、ポリエステル又はPETのフィルムの表面にシリコーン離型処理を施したものが用いられる。また、離型剤としては、シリコーン系離型剤やフッ素系離型剤が用いられる。
Thereafter, as shown in FIG. 2, a copper foil having a thickness of 3 μm is prepared as the base layer 2 and the wiring layer 3a, and a semi-cured resin film having a thickness of 10 μm is prepared as the insulating layer 4a.
As the underlayer 2, for example, a metal foil such as a copper foil, a release film, or a release agent is used. As the release film, a polyester or PET (polyethylene terephthalate) film laminated with a thin fluororesin (ETFE) layer, or a polyester or PET film surface subjected to silicone release treatment is used. As the release agent, a silicone release agent or a fluorine release agent is used.

配線層3aとしては、特に限定されるものではなく、例えば、銅箔等の金属箔や、銅、ニッケル、銀等の金属と有機化合物を併用した導電材料などを用いることができる。また、配線層3aは、サブトラクティブ法、セミアディティブ法等の方法で形成することもできる。   The wiring layer 3a is not particularly limited, and for example, a metal foil such as a copper foil, a conductive material using a metal such as copper, nickel, silver, and an organic compound, or the like can be used. Further, the wiring layer 3a can be formed by a method such as a subtractive method or a semi-additive method.

配線層3aの厚さとしては、特に制限はないが、1〜12μmの厚さであることが好ましい。配線層3aの厚さが1μm以上であると良好な導電性が得られる傾向にあり、12μm以下であると絶縁層による配線層の埋め込みが容易になる傾向にある。   Although there is no restriction | limiting in particular as thickness of the wiring layer 3a, It is preferable that it is 1-12 micrometers in thickness. When the thickness of the wiring layer 3a is 1 μm or more, good conductivity tends to be obtained, and when it is 12 μm or less, the wiring layer tends to be embedded by the insulating layer.

絶縁層4aとしては、特に制限されるものではないが、例えば、半硬化の樹脂フィルム、半硬化のプリプレグ及び半硬化のビルドアップ材等の絶縁材料を用いることができる。絶縁層4aの厚さも、特に限定されるものではないが、例えば、5〜50μmの厚さであることが好ましい。絶縁層4aの厚さが5μm以上であると良好な絶縁性が得られる傾向にあり、50μm以下であると配線板を薄型化できる傾向にある。   Although it does not restrict | limit especially as the insulating layer 4a, For example, insulating materials, such as a semi-hardened resin film, a semi-hardened prepreg, and a semi-hardened buildup material, can be used. The thickness of the insulating layer 4a is not particularly limited, but is preferably 5 to 50 μm, for example. When the thickness of the insulating layer 4a is 5 μm or more, good insulation tends to be obtained, and when it is 50 μm or less, the wiring board tends to be thinned.

本発明の各絶縁層は、レーザー等を用いてビアホール、スルーホール等を形成してもよい。また、ビアホールの形成後、必要に応じて、デスミア用の溶液や現像液等の薬液を用いて処理してもよい。   Each insulating layer of the present invention may form a via hole, a through hole or the like using a laser or the like. Further, after the formation of the via hole, treatment may be performed using a chemical solution such as a desmear solution or a developer as necessary.

下地層2の大きさは、支持基板1、各配線層、及び各絶縁層の大きさよりも小さいことが好ましい。   The size of the base layer 2 is preferably smaller than the size of the support substrate 1, each wiring layer, and each insulating layer.

図2に示すように、支持基板1の両面に下から順に下地層2、絶縁層4a、及び配線層3aをそれぞれ積層する。その後、プレスにて加熱加圧することで図3に示す基板部101を有する積層体100が得られる。本発明の基板部は、任意の層数の絶縁層及び配線層を有するものである。前記基板部が、本発明の配線板に相当する。   As shown in FIG. 2, the base layer 2, the insulating layer 4 a, and the wiring layer 3 a are laminated on both surfaces of the support substrate 1 in order from the bottom. Then, the laminated body 100 which has the board | substrate part 101 shown in FIG. 3 is obtained by heat-pressing with a press. The board | substrate part of this invention has an insulating layer and wiring layer of arbitrary layers. The substrate portion corresponds to the wiring board of the present invention.

図3に示す実施形態では、下地層2の大きさが支持基板1、配線層3a、及び絶縁層4aの大きさよりも小さく設定されている。そのため、支持基板1と絶縁層4aとが、下地層2の外周部で接着される。また、支持基板1と下地層2(銅箔)は接着されていないため、後に下地層2の周縁に対応する部分又はその内側を切り落とすことで容易に支持基板1を除去することができる。   In the embodiment shown in FIG. 3, the size of the base layer 2 is set smaller than the sizes of the support substrate 1, the wiring layer 3a, and the insulating layer 4a. Therefore, the support substrate 1 and the insulating layer 4a are bonded together at the outer peripheral portion of the base layer 2. Further, since the support substrate 1 and the base layer 2 (copper foil) are not bonded, the support substrate 1 can be easily removed by cutting off the portion corresponding to the periphery of the base layer 2 or the inside thereof later.

次に、図4に示すように、配線層3aをサブトラクティブ法にて配線加工することで、積層体200が得られる。本発明の各配線層は、特に限定されるものではなく、セミアディティブ法等の方法で形成してもよい。   Next, as illustrated in FIG. 4, the multilayer body 200 is obtained by wiring the wiring layer 3 a by a subtractive method. Each wiring layer of the present invention is not particularly limited, and may be formed by a method such as a semi-additive method.

続いて、図5に示すように、絶縁層4bとして10μmの半硬化の樹脂フィルムを、配線層3bとして3μmの銅箔を用意する。そして、積層体200の両面に下から順に絶縁層4b、及び配線層3bをそれぞれ積層する。その後、プレスにて加熱加圧することで図6に示す基板部301を有する積層体300を得ることができる。   Subsequently, as shown in FIG. 5, a 10 μm semi-cured resin film is prepared as the insulating layer 4b, and a 3 μm copper foil is prepared as the wiring layer 3b. And the insulating layer 4b and the wiring layer 3b are laminated | stacked in order from the bottom on both surfaces of the laminated body 200, respectively. Then, the laminated body 300 which has the board | substrate part 301 shown in FIG. 6 can be obtained by heat-pressing with a press.

次に、図7に示すように、配線層3bをサブトラクティブ法にて配線加工することで、基板部401を有する積層体400が得られる。   Next, as illustrated in FIG. 7, the wiring body 3 b is processed by a subtractive method to obtain a stacked body 400 having a substrate portion 401.

ここで、絶縁層4aと絶縁層4bの熱膨張係数の関係は、絶縁層4a>絶縁層4bとなることが好ましい。こうすることにより、半導体装置を作製した際の反りが抑制される傾向にある。これは、半導体装置の反りが、主に半導体チップと配線板の熱膨張係数差によって、室温では半導体チップを上にして凸形状となるが、支持基板側の絶縁層を高熱膨張とすることで、配線板自体は半導体装置と逆方向へ反ろうとするためであると考えられる。   Here, the relationship between the thermal expansion coefficients of the insulating layer 4a and the insulating layer 4b is preferably such that the insulating layer 4a> the insulating layer 4b. By doing so, warpage when a semiconductor device is manufactured tends to be suppressed. This is because the warpage of the semiconductor device has a convex shape with the semiconductor chip facing upward at room temperature mainly due to the difference in thermal expansion coefficient between the semiconductor chip and the wiring board, but the insulating layer on the support substrate side has a high thermal expansion. It is considered that the wiring board itself tends to warp in the opposite direction to the semiconductor device.

図7に示す実施形態では、絶縁層と配線層を交互に2段積層しているが、積層する段数は特に限定されるものではなく、絶縁層と配線層とが交互に積層されていなくてもよい。   In the embodiment shown in FIG. 7, the insulating layers and the wiring layers are alternately stacked in two stages. However, the number of stacked layers is not particularly limited, and the insulating layers and the wiring layers are not alternately stacked. Also good.

次に、図8に示すように、積層体400の両側に、厚さ10μmの露光及び現像工程により開口部が得られる光硬化性を有するフィルムタイプのソルダレジストを用いて、ソルダレジスト層5aを設けることで、基板部501を有する積層体500が得られる。本発明の各ソルダレジスト層の形成方法は、特に限定されるものではなく、例えば、液状タイプのソルダレジストを塗布してもよい。   Next, as shown in FIG. 8, a solder resist layer 5 a is formed on both sides of the laminate 400 using a photo-curable film resist having a thickness of 10 μm through an exposure and development process. By providing, the laminated body 500 which has the board | substrate part 501 is obtained. The method for forming each solder resist layer of the present invention is not particularly limited. For example, a liquid type solder resist may be applied.

本発明の各ソルダレジスト層とは、基板部の最外層に配され、半導体チップや実装基板との電気的接続を得るための開口部を有する絶縁層を意味する。前記ソルダレジスト層としては、様々なソルダレジストを適用することができ、特に制限はないが、露光及び現像工程により開口部を得る光硬化性を有するタイプのものが広く使われており、コストを抑えることができ好ましい。   Each solder resist layer of the present invention means an insulating layer which is arranged on the outermost layer of the substrate portion and has an opening for obtaining electrical connection with a semiconductor chip or a mounting substrate. Various solder resists can be applied as the solder resist layer, and there is no particular limitation. However, a photocuring type that obtains an opening by exposure and development processes is widely used, and the cost is reduced. This is preferable because it can be suppressed.

本発明の各ソルダレジスト層の厚さも、特に制限されるものではないが、例えば、5〜25μmの厚さが、配線層を埋め込みやすく、かつ薄型にできるため好ましい。   The thickness of each solder resist layer of the present invention is not particularly limited, however, for example, a thickness of 5 to 25 μm is preferable because the wiring layer can be easily embedded and can be thinned.

続いて、図9に示すように、露光現像のプロセスを経て、ソルダレジスト層5aに開口部を設ける。開口部の形成方法も、特に限定されるものではなく、例えば、レーザ加工にて開口部を形成してもよい。さらに、ソルダレジスト層5aの開口部に露出した配線層3bに、無電解ニッケルめっきと無電解金めっき処理を行い、電極部6aを設けた。   Subsequently, as shown in FIG. 9, an opening is provided in the solder resist layer 5a through an exposure and development process. The method for forming the opening is not particularly limited, and for example, the opening may be formed by laser processing. Furthermore, the wiring layer 3b exposed at the opening of the solder resist layer 5a was subjected to electroless nickel plating and electroless gold plating to provide an electrode portion 6a.

前記めっき処理は、ソルダレジストの開口部に施す貴金属めっき処理のことを意味する。めっきの種類としては様々な種類のめっきを用いることができ、特に限定はないが、パッド金属の腐食防止の観点から、ニッケルめっき上に金メッキを施すことが好ましい。   The said plating process means the noble metal plating process performed to the opening part of a soldering resist. Various types of plating can be used as the type of plating, and although there is no particular limitation, gold plating is preferably performed on nickel plating from the viewpoint of preventing corrosion of the pad metal.

また、さらにプリフラックス処理を行ってもよい。プリフラックス処理とは、前記の電極部に施すフラックス処理のことを意味する。フラックスの種類としては様々な種類のフラックスを用いることができ、特に限定はないが、いわゆるOSP(Organic Solderability Preservative)処理に適する材料を用いた処理方法が、電極部の腐食防止性や経時安定性に優れるため好ましい。   Further, a preflux treatment may be performed. The preflux treatment means a flux treatment applied to the electrode part. Various types of flux can be used as the type of flux, and there is no particular limitation. However, a treatment method using a material suitable for so-called OSP (Organic Solderability Preservative) treatment is suitable for corrosion prevention and stability over time of the electrode part. It is preferable because it is excellent.

次に図10に示す実施形態では、積層体600の最外層の表面に離型処理を施した後、積層体600の両側に、下から順に、接着層7として、60μmの半硬化のFR−5基材(プリプレグ)を、コア基材8として、1mmの硬化済みのFR−5基材をそれぞれ配して、プレスで接着層7とコア基材8を基板部601に接着し、図11に示すような積層体600の両側に、接着層7とコア基材8を有する補強基板9が設けられた積層体700が得られる。積層体600の最外層の表面に行われる離型処理としては、特に制限はなく、フッ素系処理、シリコーン系処理等を用いることができる。補強基板9に用いられるコア基材8としては、例えば、有機基板、金属板等の板を用いることができる。これらの中でも、ガラスクロスと熱硬化性樹脂とを含有する複合材(プリプレグ)を硬化してなる基板を用いることが好ましい。ガラスクロスと熱硬化性樹脂とを含有する複合材(プリプレグ)に用いられる熱硬化性樹脂としては、特に制限されるものではないが、例えば、エポキシ樹脂、フェノール樹脂、不飽和イミド樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。これらは1種を単独で用いても、2種以上を併用してもよい。   Next, in the embodiment shown in FIG. 10, after the release treatment is performed on the surface of the outermost layer of the laminated body 600, a 60 μm semi-cured FR− is formed as an adhesive layer 7 on both sides of the laminated body 600 sequentially from the bottom. 5 base materials (prepreg) are used as the core base material 8 and a 1 mm hardened FR-5 base material is respectively disposed, and the adhesive layer 7 and the core base material 8 are bonded to the substrate portion 601 by a press. A laminated body 700 in which a reinforcing substrate 9 having an adhesive layer 7 and a core base material 8 is provided on both sides of the laminated body 600 as shown in FIG. There is no restriction | limiting in particular as a mold release process performed on the surface of the outermost layer of the laminated body 600, A fluorine processing, a silicone processing, etc. can be used. As the core base material 8 used for the reinforcing substrate 9, for example, a plate such as an organic substrate or a metal plate can be used. Among these, it is preferable to use the board | substrate formed by hardening | curing the composite material (prepreg) containing a glass cloth and a thermosetting resin. Although it does not restrict | limit especially as a thermosetting resin used for the composite material (prepreg) containing a glass cloth and a thermosetting resin, For example, an epoxy resin, a phenol resin, unsaturated imide resin, cyanate resin , Isocyanate resin, benzoxazine resin, oxetane resin, amino resin, unsaturated polyester resin, allyl resin, dicyclopentadiene resin, silicone resin, triazine resin, melamine resin and the like. These may be used alone or in combination of two or more.

これらの中でも、強度、耐薬品性、及び加工性に優れるコア基板が得られる点から、エポキシ樹脂を含有することが好ましい。   Among these, it is preferable to contain an epoxy resin from the viewpoint of obtaining a core substrate having excellent strength, chemical resistance, and processability.

また、補強基板9の接着層7には、半硬化の樹脂フィルム、半硬化のプリプレグ、半硬化のビルドアップ材、及びコア基材8に塗布又は貼付け加工して用いる接着剤等の材料を用いることができる。また、接着層7としては、離型フィルム又は離型剤を用いてもよい。接着層7に離型フィルム又は離型剤を用いた場合、積層体600最外層の表面に離型処理を行わなくてもよい。これらの中でも、接着層7には、ガラスクロスと熱硬化性樹脂とを含有する複合材(プリプレグ)を用いることが好ましい。プリプレグに用いられる熱硬化性樹脂としては、特に限定されるものではないが、例えば、前述のコア基材の説明で例示した熱硬化性樹脂等を用いることができる。   For the adhesive layer 7 of the reinforcing substrate 9, a material such as a semi-cured resin film, a semi-cured prepreg, a semi-cured build-up material, and an adhesive used by applying or pasting to the core substrate 8 is used. be able to. As the adhesive layer 7, a release film or a release agent may be used. When a release film or a release agent is used for the adhesive layer 7, it is not necessary to perform a release treatment on the surface of the outermost layer of the laminate 600. Among these, it is preferable to use a composite material (prepreg) containing a glass cloth and a thermosetting resin for the adhesive layer 7. Although it does not specifically limit as a thermosetting resin used for a prepreg, For example, the thermosetting resin etc. which were illustrated by description of the above-mentioned core base material can be used.

補強基板9の厚さとしては、特に制限されるものではないが、補強基板9は最終的に作製する基板部の厚さのより厚いことが反りを抑制する観点からは好ましく、2000μm以下であることがより好ましい。補強基板9の厚さが基板部の厚さよりも厚い場合、基板部の反りが十分に抑制される傾向にある。また、補強基板9の厚さが2000μm以下であると、配線板作製工程で取り扱い性が良好となる傾向がある。接着層7にプリプレグを用いる場合、プリプレグの厚さは基板部の凹凸を埋め込む観点から40μm以上とすることが好ましい。   The thickness of the reinforcing substrate 9 is not particularly limited, but the reinforcing substrate 9 is preferably thicker than the substrate portion to be finally produced from the viewpoint of suppressing warpage, and is 2000 μm or less. It is more preferable. When the thickness of the reinforcing substrate 9 is thicker than the thickness of the substrate portion, the warp of the substrate portion tends to be sufficiently suppressed. Further, when the thickness of the reinforcing substrate 9 is 2000 μm or less, the handleability tends to be improved in the wiring board manufacturing process. When a prepreg is used for the adhesive layer 7, the thickness of the prepreg is preferably 40 μm or more from the viewpoint of embedding the irregularities of the substrate portion.

次に、図12に示すように、下地層2の周縁に対応する部分を切断する。これにより、図12に示すように支持基板1と絶縁層4aとが接着されていた部分が切断されるため、支持基板1と下地層2とを分離することができる。   Next, as shown in FIG. 12, the part corresponding to the periphery of the base layer 2 is cut. Thereby, as shown in FIG. 12, since the part to which the support substrate 1 and the insulating layer 4a were bonded is cut | disconnected, the support substrate 1 and the base layer 2 can be isolate | separated.

続いて、図13に示すように下地層2をサブトラクティブ法にて配線加工することで、積層体800が得られる。 次に、図14に示すように積層体800の下地層2上に、厚さ10μmの露光及び現像工程により開口部が得られる光硬化性を有するフィルムタイプのソルダレジストを用いて、ソルダレジスト層5bを設ける。   Subsequently, as illustrated in FIG. 13, the base layer 2 is subjected to wiring processing by a subtractive method, whereby a stacked body 800 is obtained. Next, as shown in FIG. 14, a solder resist layer is used by using a film-type solder resist having a photocurable property in which openings are obtained by an exposure and development process having a thickness of 10 μm on the base layer 2 of the laminate 800. 5b is provided.

続いて、図15に示すように、露光現像のプロセスを経て、ソルダレジスト層5bに開口部を設ける。開口部の形成方法も、特に限定されるものではなく、例えば、レーザ加工にて開口部を形成してもよい。さらに、ソルダレジスト層5bの開口部に露出した下地層2に、無電解ニッケルめっきと無電解金めっき処理を行い、電極部6bを有する積層体900が得られる。このようなめっき処理やプリフラックス処理も、特に制限されるものではなく、必要に応じて行ってもよい。   Subsequently, as shown in FIG. 15, an opening is provided in the solder resist layer 5b through an exposure and development process. The method for forming the opening is not particularly limited, and for example, the opening may be formed by laser processing. Furthermore, the base layer 2 exposed at the opening of the solder resist layer 5b is subjected to electroless nickel plating and electroless gold plating, thereby obtaining a laminate 900 having the electrode portion 6b. Such plating treatment and preflux treatment are not particularly limited, and may be performed as necessary.

ここで、ソルダレジスト層5aとソルダレジスト層5bの熱膨張係数の関係は、ソルダレジスト層5a>ソルダレジスト層5bとなることが好ましい。こうすることにより、半導体装置を作製した際の反りが抑制される傾向にある。これは、前述した絶縁層の熱膨張係数差で半導体装置の反りを低減するメカニズムと同じであると考えられる。   Here, the relationship between the thermal expansion coefficients of the solder resist layer 5a and the solder resist layer 5b is preferably such that the solder resist layer 5a> the solder resist layer 5b. By doing so, warpage when a semiconductor device is manufactured tends to be suppressed. This is considered to be the same as the mechanism for reducing the warpage of the semiconductor device due to the difference in thermal expansion coefficient of the insulating layer.

次に、図16に示すように、積層体900に半導体チップ11を搭載する。ここで半導体チップ11は、厚さ60μmのチップを、素子面を下にしてフリップチップ接続する。 半導体チップの厚さ、搭載面、搭載数及び搭載方法も特に制限されるものではない。半導体チップを搭載する工程としては、ダイボンディングフィルムやダイボンディングペーストを用いる方法、アンダフィルや封止材を用いる方法等を用いることができ、特に制限はない。また、例えば、30μm程度の半導体チップの裏面にダイアタッチフィルムのような接着剤を用い、チップを重ねるようにして複数枚搭載してもよい。   Next, as shown in FIG. 16, the semiconductor chip 11 is mounted on the stacked body 900. Here, the semiconductor chip 11 is flip-chip connected to a chip having a thickness of 60 μm with the element surface facing down. The thickness, mounting surface, mounting number, and mounting method of the semiconductor chip are not particularly limited. As a process for mounting the semiconductor chip, a method using a die bonding film or a die bonding paste, a method using an underfill or a sealing material, and the like can be used, and there is no particular limitation. Further, for example, an adhesive such as a die attach film may be used on the back surface of a semiconductor chip of about 30 μm, and a plurality of chips may be mounted so as to overlap the chips.

続いて、図17に示すように、半導体チップ11又は半導体チップ11の接続部を保護するため、封止材12を配する。図17に示す実施形態では、半導体チップ11の全体を覆い、封止材の厚さが250μmとなるようにトランスファプレスで封止材12を封止しているが、封止の範囲、封止の方法、封止材の種類は、特に制限されるものではない。封止材の厚さとしては、例えば、薄い基板部を支えられるように150μm以上が好ましく、250μm以上がより好ましい。   Subsequently, as illustrated in FIG. 17, the sealing material 12 is disposed in order to protect the semiconductor chip 11 or the connection portion of the semiconductor chip 11. In the embodiment shown in FIG. 17, the entire semiconductor chip 11 is covered and the sealing material 12 is sealed by transfer press so that the thickness of the sealing material is 250 μm. The method and the kind of the sealing material are not particularly limited. The thickness of the sealing material is, for example, preferably 150 μm or more and more preferably 250 μm or more so that a thin substrate portion can be supported.

次に図18に示すように、補強基板9を基板部から分離し除去する。ここでは、図10に示す実施形態のように、積層体600の最外層の表面に離型処理を行っている。これにより、離型処理を施した面から補強基板を分離することができる。   Next, as shown in FIG. 18, the reinforcing substrate 9 is separated from the substrate portion and removed. Here, as in the embodiment shown in FIG. 10, the mold release process is performed on the surface of the outermost layer of the stacked body 600. Thereby, a reinforcement board | substrate can be isolate | separated from the surface which performed the mold release process.

続いて、図19に示すように個片化し、半導体装置13を得ることができる。個片化の方法としては、特に制限されるものではなく、ブレードダイシング装置、レーザ分割装置、及びメカニカルドリル分割装置等を用いた方法で行うことができる。   Subsequently, as shown in FIG. 19, the semiconductor device 13 can be obtained by dividing into pieces. The method of dividing into pieces is not particularly limited, and can be performed by a method using a blade dicing apparatus, a laser dividing apparatus, a mechanical drill dividing apparatus, or the like.

1 支持基板
2 下地層
3a 配線層
3b 配線層
4a 絶縁層
4b 絶縁層
5a ソルダレジスト層
5b ソルダレジスト層
6a 電極部
6b 電極部
7 接着層
8 コア基材
9 補強基板
10 バンプ
11 半導体チップ
12 封止材
13 半導体装置
100 積層体
200 積層体
300 積層体
400 積層体
500 積層体
600 積層体
700 積層体
800 積層体
900 積層体
101 基板部
301 基板部
401 基板部
501 基板部
601 基板部
DESCRIPTION OF SYMBOLS 1 Support substrate 2 Ground layer 3a Wiring layer 3b Wiring layer 4a Insulating layer 4b Insulating layer 5a Solder resist layer 5b Solder resist layer 6a Electrode part 6b Electrode part 7 Adhesive layer 8 Core base material 9 Reinforcing substrate 10 Bump 11 Semiconductor chip 12 Sealing Material 13 Semiconductor device 100 Laminated body 200 Laminated body 300 Laminated body 400 Laminated body 500 Laminated body 600 Laminated body 800 Laminated body 900 Laminated body 101 Substrate part 301 Substrate part 401 Substrate part 501 Substrate part 601 Substrate part

Claims (14)

下記工程1〜3を有する、配線板の製造方法。
工程1:支持基板上の少なくとも一方の面に、任意の層数の絶縁層及び配線層を有する基板部を設ける工程
工程2:前記基板部上に補強基板を設ける工程
工程3:前記支持基板を除去する工程
The manufacturing method of a wiring board which has the following processes 1-3.
Step 1: Providing a substrate portion having an arbitrary number of insulating layers and wiring layers on at least one surface on the support substrate Step 2: Providing a reinforcing substrate on the substrate portion Step 3: Providing the support substrate Step to remove
前記工程1で、支持基板上の少なくとも一方の面に下地層を設ける、請求項1に記載の配線板の製造方法。   The method for manufacturing a wiring board according to claim 1, wherein a base layer is provided on at least one surface of the support substrate in the step 1. 前記下地層の大きさが、支持基板及び基板部の大きさよりも小さい、請求項1又は2に記載の配線板の製造方法。   The method for manufacturing a wiring board according to claim 1, wherein the size of the base layer is smaller than the sizes of the support substrate and the substrate portion. 前記工程1で、支持基板の両面に基板部を設ける、請求項1〜3のいずれか一項に記載の配線板の製造方法。   The manufacturing method of the wiring board as described in any one of Claims 1-3 which provides a board | substrate part on both surfaces of a support substrate at the said process 1. さらに、下記工程4及び5を有する、請求項1〜4のいずれか一項に記載の配線板の製造方法。
工程4:前記基板部の最外層に開口部を有するソルダレジスト層を形成する工程
工程5:前記開口部にめっき処理又はプリフラックス処理を施す工程
Furthermore, the manufacturing method of the wiring board as described in any one of Claims 1-4 which has the following processes 4 and 5.
Step 4: Step of forming a solder resist layer having an opening in the outermost layer of the substrate portion Step 5: Step of plating or prefluxing the opening
前記基板部のソルダレジスト層を除いた絶縁層の熱膨張係数が、支持基板に近いほど大きくなる、請求項1〜5のいずれか一項に記載の配線板の製造方法。   The manufacturing method of the wiring board as described in any one of Claims 1-5 with which the thermal expansion coefficient of the insulating layer except the soldering resist layer of the said board | substrate part becomes large, so that it is close to a support substrate. 前記基板部のソルダレジスト層の熱膨張係数が、支持基板に近いほど大きくなる、請求項1〜6のいずれか一項に記載の配線板の製造方法。   The manufacturing method of the wiring board as described in any one of Claims 1-6 with which the thermal expansion coefficient of the soldering resist layer of the said board | substrate part becomes large, so that it is close to a support substrate. 前記支持基板が、ガラスクロスと熱硬化性樹脂とを含有する複合材を硬化してなる基板である請求項1〜7のいずれか一項に記載の配線板の製造方法。   The method for manufacturing a wiring board according to claim 1, wherein the support substrate is a substrate formed by curing a composite material containing glass cloth and a thermosetting resin. 前記補強基板が接着層とコア基材を有する、請求項1〜8のいずれか一項に記載の配線板の製造方法。   The method for manufacturing a wiring board according to claim 1, wherein the reinforcing substrate has an adhesive layer and a core base material. 前記接着層が、ガラスクロスと熱硬化性樹脂とを含有する複合材である請求項9に記載の配線板の製造方法。   The method for manufacturing a wiring board according to claim 9, wherein the adhesive layer is a composite material containing glass cloth and a thermosetting resin. 前記コア基材が、ガラスクロスと熱硬化性樹脂とを含有する複合材を硬化してなる基板である請求項9又は10に記載の配線板の製造方法。   The method for manufacturing a wiring board according to claim 9 or 10, wherein the core substrate is a substrate formed by curing a composite material containing glass cloth and a thermosetting resin. 前記支持基板の厚さが、基板部の厚さよりも厚い、請求項1〜11のいずれか一項に記載の配線板の製造方法。   The manufacturing method of the wiring board as described in any one of Claims 1-11 whose thickness of the said support substrate is thicker than the thickness of a board | substrate part. 前記補強基板の厚さが、基板部の厚さよりも厚い、請求項1〜12のいずれか一項に記載の配線板の製造方法。   The manufacturing method of the wiring board as described in any one of Claims 1-12 whose thickness of the said reinforcement board | substrate is thicker than the thickness of a board | substrate part. 請求項1〜13のいずれか一項に記載の配線板の製造方法を用いた、半導体装置の製造方法。   The manufacturing method of a semiconductor device using the manufacturing method of the wiring board as described in any one of Claims 1-13.
JP2014173930A 2014-08-28 2014-08-28 Wiring board and manufacturing method of semiconductor device Pending JP2016048768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014173930A JP2016048768A (en) 2014-08-28 2014-08-28 Wiring board and manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014173930A JP2016048768A (en) 2014-08-28 2014-08-28 Wiring board and manufacturing method of semiconductor device

Publications (1)

Publication Number Publication Date
JP2016048768A true JP2016048768A (en) 2016-04-07

Family

ID=55649506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014173930A Pending JP2016048768A (en) 2014-08-28 2014-08-28 Wiring board and manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP2016048768A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9905504B1 (en) 2016-09-30 2018-02-27 Shinko Electric Industries Co., Ltd. Carrier base material-added wiring substrate
US20180090426A1 (en) * 2016-09-29 2018-03-29 Shinko Electric Industries Co., Ltd. Carrier base material-added wiring substrate
JP2019212845A (en) * 2018-06-07 2019-12-12 新光電気工業株式会社 Wiring board, manufacturing method thereof, and manufacturing method of semiconductor package
CN115621242A (en) * 2022-12-15 2023-01-17 北京唯捷创芯精测科技有限责任公司 Substrate with low warping stress, preparation method, packaging structure and electronic product

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101137A (en) * 2003-09-24 2005-04-14 Hitachi Chem Co Ltd Substrate for supporting circuit formation, and substrate for packaging semiconductor element and its manufacturing method
JP2009043962A (en) * 2007-08-09 2009-02-26 Sony Corp Method for manufacturing semiconductor apparatus
JP2009260335A (en) * 2008-03-28 2009-11-05 Ngk Spark Plug Co Ltd Multi-layer wiring board and manufacturing method thereof
JP2010147955A (en) * 2008-12-22 2010-07-01 Element Denshi:Kk Circuit board including cavity and method of manufacturing the same
JP2013069808A (en) * 2011-09-21 2013-04-18 Shinko Electric Ind Co Ltd Semiconductor package and method for manufacturing the same
JP2013247333A (en) * 2012-05-29 2013-12-09 Kyocer Slc Technologies Corp Wiring board and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005101137A (en) * 2003-09-24 2005-04-14 Hitachi Chem Co Ltd Substrate for supporting circuit formation, and substrate for packaging semiconductor element and its manufacturing method
JP2009043962A (en) * 2007-08-09 2009-02-26 Sony Corp Method for manufacturing semiconductor apparatus
JP2009260335A (en) * 2008-03-28 2009-11-05 Ngk Spark Plug Co Ltd Multi-layer wiring board and manufacturing method thereof
JP2010147955A (en) * 2008-12-22 2010-07-01 Element Denshi:Kk Circuit board including cavity and method of manufacturing the same
JP2013069808A (en) * 2011-09-21 2013-04-18 Shinko Electric Ind Co Ltd Semiconductor package and method for manufacturing the same
JP2013247333A (en) * 2012-05-29 2013-12-09 Kyocer Slc Technologies Corp Wiring board and manufacturing method of the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180090426A1 (en) * 2016-09-29 2018-03-29 Shinko Electric Industries Co., Ltd. Carrier base material-added wiring substrate
KR20180035676A (en) * 2016-09-29 2018-04-06 신꼬오덴기 고교 가부시키가이샤 Carrier base material-added wiring substrate and method for manufacturing carrier base material-added wiring substrate
US10340214B2 (en) 2016-09-29 2019-07-02 Shinko Electric Industries Co., Ltd. Carrier base material-added wiring substrate
KR102394215B1 (en) * 2016-09-29 2022-05-09 신꼬오덴기 고교 가부시키가이샤 Carrier base material-added wiring substrate and method for manufacturing carrier base material-added wiring substrate
TWI767939B (en) * 2016-09-29 2022-06-21 日商新光電氣工業股份有限公司 Carrier base material-added wiring substrate and method for manufacturing carrier base material-added wiring substrate
US9905504B1 (en) 2016-09-30 2018-02-27 Shinko Electric Industries Co., Ltd. Carrier base material-added wiring substrate
JP2019212845A (en) * 2018-06-07 2019-12-12 新光電気工業株式会社 Wiring board, manufacturing method thereof, and manufacturing method of semiconductor package
CN115621242A (en) * 2022-12-15 2023-01-17 北京唯捷创芯精测科技有限责任公司 Substrate with low warping stress, preparation method, packaging structure and electronic product

Similar Documents

Publication Publication Date Title
US8745860B2 (en) Method for manufacturing printed wiring board
KR100965339B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
US10745819B2 (en) Printed wiring board, semiconductor package and method for manufacturing printed wiring board
JP5581519B2 (en) Semiconductor package and manufacturing method thereof
US10045436B2 (en) Printed circuit board and method of manufacturing the same
CN106257966B (en) Circuit board and method for manufacturing the same
KR101253514B1 (en) Method of resolving substrate warpage problem due to differences in thermal coefficients and electronic component embedded printed circuit board manufactured thereof
KR102194721B1 (en) Printed circuit board and manufacturing method thereof
US20090283302A1 (en) Printed circuit board and manufacturing method thereof
JP5296636B2 (en) Manufacturing method of semiconductor package
KR101874992B1 (en) A printed circuit board comprising embeded electronic component within and a method for manufacturing the same
JP2016048768A (en) Wiring board and manufacturing method of semiconductor device
CN101399248A (en) Wiring substrate and method of manufacturing the same
KR20090096809A (en) Method of manufacturing semiconductor chip embedded printed circuit board
JP2015109392A (en) Manufacturing method of wiring board
JP6417142B2 (en) Semiconductor device and manufacturing method thereof
KR20160004158A (en) Package substrate
CN106550542B (en) Component carrier with a pure dielectric layer inserted into and adjacent to a protective structure
KR101109287B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP2012186270A (en) Manufacturing method of semiconductor package
JP5633096B2 (en) Semiconductor package
JP2015122472A (en) Build-up insulating film, printed circuit board including embedded electronic component using the same and method for manufacturing the same
KR20140032674A (en) Manufacturing method of rigid flexible printed circuit board
JP2005123493A (en) Wiring substrate and element packaging substrate
JP2009267061A (en) Method of manufacturing wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180920