JP2016027188A - Low-thermal expansion cast steel product and method for producing the same - Google Patents

Low-thermal expansion cast steel product and method for producing the same Download PDF

Info

Publication number
JP2016027188A
JP2016027188A JP2015043009A JP2015043009A JP2016027188A JP 2016027188 A JP2016027188 A JP 2016027188A JP 2015043009 A JP2015043009 A JP 2015043009A JP 2015043009 A JP2015043009 A JP 2015043009A JP 2016027188 A JP2016027188 A JP 2016027188A
Authority
JP
Japan
Prior art keywords
cast steel
steel product
less
thermal expansion
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015043009A
Other languages
Japanese (ja)
Other versions
JP6504859B2 (en
Inventor
晴康 大野
Haruyasu Ono
晴康 大野
浩太郎 小奈
Kotaro Ona
浩太郎 小奈
直輝 坂口
Naoteru Sakaguchi
直輝 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Steel Corp
Original Assignee
Shinhokoku Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Steel Corp filed Critical Shinhokoku Steel Corp
Priority to JP2015043009A priority Critical patent/JP6504859B2/en
Priority to TW104120545A priority patent/TWI655301B/en
Priority to KR1020150091502A priority patent/KR102360098B1/en
Priority to CN201510378417.6A priority patent/CN105296846B/en
Publication of JP2016027188A publication Critical patent/JP2016027188A/en
Application granted granted Critical
Publication of JP6504859B2 publication Critical patent/JP6504859B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cast steel product with a low thermal expansion coefficient.SOLUTION: A low-thermal expansion cast steel product has a component composition (mass%) comprising C: 0.04% or less, Si: 0.3% or less, Mn: 0.5% or less, Al: 0.2% or less, Ni: 31-34%, and Co: 2-6%, with the balance being Fe and inevitable impurities, where the austenite structure has an average crystal grain size of 200 μm or less, and a thermal expansion coefficient at 18-28°C is 0.2×10/°C or less.SELECTED DRAWING: Figure 3

Description

本発明は低い熱膨張係数を有する低熱膨張鋳鋼品及びその製造方法に関する。   The present invention relates to a low thermal expansion cast steel product having a low thermal expansion coefficient and a method for producing the same.

エレクトロニクスや半導体関連機器、レーザー加工機、超精密加工機器の部品材料として、熱的に安定なインバー合金が広く使用されている。   Thermally stable Invar alloys are widely used as component materials for electronics, semiconductor-related equipment, laser processing machines, and ultra-precision processing equipment.

特許文献1には、Ni:29.5〜35%、Co:2.0〜7.0%、Cr:0.001〜2.0%を含有する、熱膨張係数が0.5×10-6/℃〜2.0×10-6/℃の低熱膨張合金が開示されている。この合金は、均質溶体化処理後、焼入れするかあるいは1℃/sec以下の速度で冷却して焼鈍を行った後、10%以上の冷間圧延加工を行うことで得られる。 Patent Document 1 includes Ni: 29.5 to 35%, Co: 2.0 to 7.0%, Cr: 0.001 to 2.0%, and a thermal expansion coefficient of 0.5 × 10 −. 6 /℃~2.0×10 -6 / ℃ low thermal expansion alloy is disclosed. This alloy is obtained by quenching after homogeneous solution treatment, or by annealing at a rate of 1 ° C./sec or less and then performing a cold rolling process of 10% or more.

特許文献2には、Co:65%以下、Ni:30%以下、Cr:10%以下を含有し、Co及びNiの合計含有量が25〜65%である低熱膨張線が開示されている。特許文献2は、低熱膨張線を冷間加工によりオーステナイト相の一部の加工誘起マルテンサイト相に変態させる方法を開示している。   Patent Document 2 discloses a low thermal expansion line containing Co: 65% or less, Ni: 30% or less, Cr: 10% or less, and a total content of Co and Ni of 25 to 65%. Patent Document 2 discloses a method of transforming a low thermal expansion line into a part of a work-induced martensite phase of an austenite phase by cold working.

特許文献3には、Ni:0.03〜1.5%、NiとCoの合計:53〜55%、Cr:9〜10%を含有する低熱膨張合金を開示している。特許文献3は、合金を650〜900℃で焼鈍した後、炉内で20℃/min未満の速度で冷却する方法を開示している。   Patent Document 3 discloses a low thermal expansion alloy containing Ni: 0.03 to 1.5%, Ni and Co: 53 to 55%, and Cr: 9 to 10%. Patent Document 3 discloses a method of annealing an alloy at 650 to 900 ° C. and then cooling the alloy at a rate of less than 20 ° C./min in a furnace.

特許第2796966号公報Japanese Patent No. 2796966 特開平6−279945号公報JP-A-6-279945 特許第5534150号公報Japanese Patent No. 5534150

鋳造技術講座編集委員会編(1967),鋼鋳物,日刊工業新聞社,p.3〜32,Casting Technology Course Editorial Committee (1967), Steel Castings, Nikkan Kogyo Shimbun, p. 3-32,

一般に、複雑な形状を有する部材には、製造の容易さから、機械加工や溶接ではなく、鋳鋼品が用いられる。鋳鋼品は鋳型に溶湯を流し込むことにより、小型の部品から大型の部品まで任意の形状が得られるので、製造が容易であるという利点がある。   In general, a cast steel product is used for a member having a complicated shape instead of machining or welding because of ease of manufacture. Cast steel products have the advantage of being easy to manufacture because any shape from small to large parts can be obtained by pouring molten metal into the mold.

これまで、試験片レベルのインバー合金については、前記のとおり、種々の発明がされている。しかしながら、すべての部位について熱膨張係数が低い値を示す、特に重量が10kg以上となるような大型の鋳鋼品については報告されていない。これは、鋳型による凝固では、鋳型壁面にほぼ垂直な方向に温度勾配が生じて壁面から中心に向けて凝固が進行するが、特に大型であったり、形状が複雑であったりする場合に、鋳鋼品全体を一様な組織とするのが難しいためであると考えられる。   So far, as described above, various inventions have been made for invar alloys at the specimen level. However, no reports have been made on large cast steel products that show low values of thermal expansion coefficients for all parts, in particular, that have a weight of 10 kg or more. This is because in solidification with a mold, a temperature gradient is generated in a direction substantially perpendicular to the mold wall surface, and solidification proceeds from the wall surface to the center. This is thought to be because it is difficult to make the entire product uniform.

本発明は、上記の問題を解決し、重量が10kg以上となるような大型であっても、すべての部位において低い熱膨張係数を有する鋳鋼品及びその製造方法を提供することを課題とする。   This invention solves said problem and makes it a subject to provide the cast-steel goods which have a low thermal expansion coefficient in all the parts, and its manufacturing method, even if it is large sized so that a weight may be 10 kg or more.

本発明者らは、特に重量が10kg以上となるような大型であっても、すべての部位について熱膨張係数が低い値を示す、鋳鋼品を製造する方法について鋭意検討した。その結果、鋳造後の鋳鋼品をMs点以下まで強制冷却することにより一部分あるいは大部分をマルテンサイト変態させた後、再度、加熱してマルテンサイト組織をオーステナイト化し、その後、所定の速度で冷却することにより、通常の鋳鋼品であれば1〜10mm程度の大きさのオーステナイト結晶粒となる組織が(たとえば非特許文献1参照)、鋳鋼品の全体にわたり、通常の凝固の組織制御では得られない微細な組織となり、その結果、鋳鋼品が大型であっても、どの部位についても熱膨張係数が低い鋳鋼品を製造できることを見出した。本発明は上記の知見に基づきなされたものであって、その要旨は以下のとおりである。   The present inventors have intensively studied a method for producing a cast steel product that exhibits a low coefficient of thermal expansion for all the parts even when the weight is particularly large such as 10 kg or more. As a result, part or most of the cast steel product after casting is forcibly cooled to the Ms point or less to transform it into martensite, and then heated again to austenite the martensite structure, and then cooled at a predetermined rate. Therefore, if it is a normal cast steel product, the structure which becomes an austenite crystal grain of the magnitude | size about 1-10 mm (for example, refer nonpatent literature 1) cannot be obtained by the normal solidification structure control over the whole cast steel product. As a result, it has been found that even if the cast steel product is large, a cast steel product having a low thermal expansion coefficient can be produced at any part. The present invention has been made based on the above findings, and the gist thereof is as follows.

(1)成分組成が、質量%で、C:0.04%以下、Ni:31〜34%及びCo:2〜6%を含有し、残部がFe及び不可避的不純物であり、オーステナイト組織の平均結晶粒径が200μm以下であり、18〜28℃における熱膨張係数が0.2×10-6/℃以下であることを特徴とする低熱膨張鋳鋼品。 (1) Component composition is mass%, C: 0.04% or less, Ni: 31-34% and Co: 2-6%, the balance is Fe and inevitable impurities, the average of austenite structure A low thermal expansion cast steel product having a crystal grain size of 200 μm or less and a thermal expansion coefficient at 18 to 28 ° C. of 0.2 × 10 −6 / ° C. or less.

(2)重量が10kg以上であることを特徴とする前記(1)の低熱膨張鋳鋼品。   (2) The low thermal expansion cast steel product according to (1), wherein the weight is 10 kg or more.

(3)最大肉厚が35mm以上であることを特徴とする前記(1)又は(2)の低熱膨張鋳鋼品。   (3) The low thermal expansion cast steel product according to (1) or (2) above, wherein the maximum thickness is 35 mm or more.

(4)成分組成が、質量%で、C:0.04%以下、Ni:31〜34%及びCo:2〜6%を含有し、残部がFe及び不可避的不純物である鋳鋼品を、Ms点以下まで冷却して、Ms点以下の温度で0.5〜3hr保持した後室温まで昇温するクライオ処理工程と、クライオ処理を施した鋳鋼品を、800〜1100℃に加熱し、0.5〜5hr保持する再結晶処理工程と、再結晶処理を施した鋳鋼品を、650〜300℃の間における冷却速度を30℃/min以上で急冷する冷却工程を順に備えることを特徴とする低熱膨張鋳鋼品の製造方法。   (4) A cast steel product whose component composition is mass%, C: 0.04% or less, Ni: 31-34% and Co: 2-6%, the balance being Fe and unavoidable impurities, Ms A cryotreatment step of cooling to a temperature below the point, holding at 0.5 to 3 hr at a temperature below the Ms point, and then raising the temperature to room temperature, and heating the cast steel product subjected to the cryotreatment to 800 to 1100 ° C. Low heat, characterized by comprising a recrystallization treatment step for 5 to 5 hours and a cooling step for rapidly cooling the recast cast steel product at a cooling rate of 650 to 300 ° C. at 30 ° C./min or more. A method for producing an expanded cast steel product.

(5)前記クライオ処理工程の前に、さらに、鋳鋼品を800〜1100℃に加熱して、0.5〜5hr保持する溶体化処理工程を備えることを特徴とする前記(4)の低熱膨張鋳鋼品の製造方法。   (5) The low thermal expansion of (4) above, further comprising a solution treatment step of heating the cast steel product to 800 to 1100 ° C. and holding it for 0.5 to 5 hours before the cryo treatment step. Manufacturing method of cast steel products.

(6)前記クライオ処理工程の前に、さらに、鋳鋼品を1100〜1300℃で5〜50hr保持する拡散処理工程を備えることを特徴とする前記(3)の低熱膨張鋳鋼品の製造方法。   (6) The method for producing a low-thermal-expansion cast steel product according to (3), further comprising a diffusion treatment step of holding the cast steel product at 1100 to 1300 ° C. for 5 to 50 hours before the cryotreatment step.

(7)前記溶体化処理工程の前に、さらに、鋳鋼品を1100〜1300℃で5〜50hr保持する拡散処理工程を備えることを特徴とする前記(5)の低熱膨張鋳鋼品の製造方法。   (7) The method for producing a low-thermal-expansion cast steel product according to (5), further comprising a diffusion treatment step of holding the cast steel product at 1100 to 1300 ° C. for 5 to 50 hours before the solution treatment step.

(8)前記クライオ処理工程と前記再結晶処理工程の間に、さらに、鋳鋼品を300〜400℃で1〜10hr保持する調質処理工程を備えることを特徴とする前記(4)〜(7)のいずれかの低熱膨張鋳鋼品の製造方法。   (8) The above (4) to (7), further comprising a tempering treatment step of holding a cast steel product at 300 to 400 ° C. for 1 to 10 hours between the cryotreatment step and the recrystallization treatment step. ) Any one of the methods for producing a low thermal expansion cast steel product.

本発明によれば、鋳造後の鋳鋼品に所定の熱処理を施すことにより、鋳鋼品の全体を結晶粒径の小さな組織とすることにより、すべての部位で熱膨張係数が低い鋳鋼品が得られるので、熱的に安定でありかつ複雑な形状が必要となる大型の部品などに適用できる。   According to the present invention, by performing a predetermined heat treatment on the cast steel product after casting, the entire cast steel product has a structure with a small crystal grain size, so that a cast steel product having a low coefficient of thermal expansion can be obtained at all sites. Therefore, it can be applied to a large component that is thermally stable and requires a complicated shape.

鋳鋼品にクライオ処理を施した後の組織の一例である。It is an example of the structure | tissue after performing a cryo process to a cast steel product. 鋳鋼品に再結晶処理を施した組織の一例である。It is an example of the structure | tissue which gave the recrystallization process to the cast steel article. 鋳鋼品に溶体化処理を施した後の組織の一例である。It is an example of the structure | tissue after performing solution treatment to a cast steel product.

以下、本発明について詳細に説明する。以下、成分組成に関する「%」は特に断りのない限り「質量%」を表すものとする。はじめに、本発明の鋳鋼品の成分組成について説明する。本発明においては、特に大型の鋳鋼品について、鋳鋼品全体の熱膨張係数を低い値とするため、成分組成を厳密に制御する必要がある。   Hereinafter, the present invention will be described in detail. Hereinafter, “%” regarding the component composition represents “% by mass” unless otherwise specified. First, the component composition of the cast steel product of the present invention will be described. In the present invention, particularly for large cast steel products, the component composition must be strictly controlled in order to make the thermal expansion coefficient of the entire cast steel product low.

Niは、熱膨張係数を低下させる元素である。Ni量は多すぎても少なすぎても熱膨張係数が十分に小さくならない。また、Ni量が多すぎると冷却によりマルテンサイト変態を生じさせるのが困難になる。大型の鋳鋼品全体にわたり熱膨張係数を低い値とするためには、Ni量を狭い範囲に制御する必要がある。具体的には、Niは31〜34%の範囲とする。   Ni is an element that lowers the thermal expansion coefficient. If the amount of Ni is too large or too small, the thermal expansion coefficient does not become sufficiently small. Moreover, when there is too much Ni amount, it will become difficult to produce a martensitic transformation by cooling. In order to make the thermal expansion coefficient low throughout the large cast steel product, it is necessary to control the amount of Ni within a narrow range. Specifically, Ni is set to a range of 31 to 34%.

Coは、Niとの組み合わせにより熱膨張係数の低下に寄与する。所望の熱膨張係数を得るため、Coの範囲は2〜6%とする。   Co contributes to a decrease in the thermal expansion coefficient when combined with Ni. In order to obtain a desired thermal expansion coefficient, the range of Co is 2 to 6%.

Cは、オーステナイトに固溶し強度の上昇に寄与する。しかしながら、Cは再結晶処理工程でマトリックスに固溶し、冷却時に析出し、熱膨張係数を大きくする。熱膨張係数を0.2×10-6/℃以下にするためには、Cの析出量を低くする必要がある。したがって、その量を0.04%以下とする。 C dissolves in austenite and contributes to an increase in strength. However, C forms a solid solution in the matrix in the recrystallization treatment process, precipitates during cooling, and increases the thermal expansion coefficient. In order to set the thermal expansion coefficient to 0.2 × 10 −6 / ° C. or less, it is necessary to reduce the amount of precipitated C. Therefore, the amount is 0.04% or less.

Si、Mn、及びAlは脱酸剤として添加される。本発明においては、吹かれの無い健全な鋳鋼品をつくるため、脱酸に必要な最小限の量をそれぞれ添加すればよい。添加量はそれぞれ、Si:0.3%以下、Mn:0.5%以下、及びAl:0.2%以下とする。   Si, Mn, and Al are added as deoxidizers. In the present invention, in order to produce a sound cast steel product without blowing, the minimum amount necessary for deoxidation may be added. Addition amounts are set to Si: 0.3% or less, Mn: 0.5% or less, and Al: 0.2% or less, respectively.

成分組成の残部は、Fe及び不可避的不純物である。不可避的不純物とは、本発明で規定する成分組成を有する鋼を工業的に製造する際に、原料や製造環境等から、意図的に鋼に含有させたものではなく、不可避的に混入するものをいう。   The balance of the component composition is Fe and inevitable impurities. Inevitable impurities are those that are inevitably mixed rather than intentionally included in the steel from the raw materials and manufacturing environment, etc., when industrially manufacturing steel having the component composition specified in the present invention. Say.

具体的には、S、P、Cu、Crなどが挙げられる。これらの元素が不可避的に混入する場合の含有量はP:0.01%以下、S:0.01%以下、Cu:0.01%以下、Cr:0.01%以下程度である。なお、C、Si、Mn及びAlも、含有を意図しなくとも不可避的不純物として混入する場合があるが、上述した含有量の範囲であれば問題はない。   Specifically, S, P, Cu, Cr, etc. are mentioned. When these elements are inevitably mixed, the contents are P: 0.01% or less, S: 0.01% or less, Cu: 0.01% or less, and Cr: 0.01% or less. C, Si, Mn, and Al may be mixed as inevitable impurities even if not intended to be contained, but there is no problem as long as the content is within the above range.

本発明の鋳鋼品の組織は、平均粒径が200μm以下のオーステナイト組織である。組織は、微細な等軸晶を中心とする。組織のすべてが等軸晶である必要はないが、等軸晶の割合が面積率で60%以上であることが好ましい。等軸晶の割合が面積率で90%以上であればより好ましく、95%以上であればさらに好ましい。   The structure of the cast steel product of the present invention is an austenite structure having an average particle size of 200 μm or less. The structure is centered on fine equiaxed crystals. It is not necessary for all the structures to be equiaxed crystals, but the proportion of equiaxed crystals is preferably 60% or more in terms of area ratio. The ratio of equiaxed crystals is more preferably 90% or more in terms of area ratio, and even more preferably 95% or more.

大型の鋳鋼品の場合、鋳鋼品のすべての組織について、平均粒径が200μm以下のオーステナイト組織となることが重要である。これを満たさない組織が存在すると、鋳鋼品全体で低い熱膨張係数を得ることができなくなる。   In the case of a large cast steel product, it is important that all the structures of the cast steel product have an austenite structure with an average particle size of 200 μm or less. If there is a structure that does not satisfy this requirement, a low thermal expansion coefficient cannot be obtained for the entire cast steel product.

次に、本発明の低熱膨張鋳鋼品の製造方法について説明する。   Next, the manufacturing method of the low thermal expansion cast steel product of this invention is demonstrated.

本発明の低熱膨張鋳鋼品の製造に用いる鋳型や、鋳型への溶鋼の注入装置、注入方法は特に限定されるものではなく、公知の装置、方法を用いればよい。鋳型で製造された鋳鋼品の組織は柱状晶を中心とした組織となる。この鋳鋼品に、以下の熱処理を施す。   The mold used for producing the low thermal expansion cast steel product of the present invention, the apparatus for injecting molten steel into the mold, and the injection method are not particularly limited, and any known apparatus or method may be used. The structure of the cast steel product manufactured by the mold is a structure centered on columnar crystals. The cast steel product is subjected to the following heat treatment.

はじめに、鋳鋼品を、Ms点以下まで急冷し、Ms点以下の温度で0.5〜3hr保持した後、室温まで昇温する(クライオ処理工程)。冷却の方法は特に限定されない。一般的に、Ms点は鋼の成分を用いて、下記の式で推定できる。   First, a cast steel product is rapidly cooled to the Ms point or lower, held at a temperature lower than the Ms point for 0.5 to 3 hours, and then heated to room temperature (cry treatment process). The cooling method is not particularly limited. In general, the Ms point can be estimated by the following equation using steel components.

Ms=521−353C−22Si−24.3Mn−7.7Cu−17.3Ni
−17.7Cr−25.8Mo
ここで、C、Si、Mn、Cu、Ni、Cr、Moは各元素の含有量(質量%)である。含有しない元素は0とする。
Ms = 521-353C-22Si-24.3Mn-7.7Cu-17.3Ni
-17.7Cr-25.8Mo
Here, C, Si, Mn, Cu, Ni, Cr, and Mo are content (mass%) of each element. The element not contained is 0.

本発明の低熱膨張鋳鋼品の成分組成の場合、上式で計算されるMs点は、特にNi量に依存して、−10℃から−70℃程度となるので、冷却媒体としてはドライアイスとメチルアルコ−ルあるいはエチルアルコール、液体窒素に浸漬する方法、あるいは液体窒素を噴霧する方法が用いることができる。これに依り、微細なマルテンサイトを含有した組織が形成される。また、昇温は室温の大気中に引き上げることで行えばよい。図1に、クライオ処理工程の後の組織の例を示す。   In the case of the component composition of the low thermal expansion cast steel product of the present invention, the Ms point calculated by the above formula is about −10 ° C. to −70 ° C., particularly depending on the amount of Ni. A method of immersing in methyl alcohol or ethyl alcohol, liquid nitrogen, or a method of spraying liquid nitrogen can be used. Accordingly, a structure containing fine martensite is formed. Further, the temperature increase may be performed by raising the temperature in the atmosphere at room temperature. In FIG. 1, the example of the structure | tissue after a cryo processing process is shown.

次に、鋳鋼品を800〜1100℃まで再加熱し、800〜1100℃で0.5〜5hr保持する(再結晶処理工程)。その後、650〜300℃の間の冷却速度を30℃/min以上とし、鋳鋼品を冷却する(冷却工程)。これにより、マルテンサイトが形成された組織はオーステナイト組織へと戻る。通常の凝固により形成される組織の結晶粒径は1〜10mm程度であるが、上記のクライオ処理工程と、その後の再結晶処理工程、冷却工程を経ることでで、オーステナイト組織は、等軸晶を中心とした平均粒径が200μm以下となる微細な組織となる。図2に、再結晶処理工程の後の組織の例を示す。   Next, the cast steel product is reheated to 800 to 1100 ° C. and held at 800 to 1100 ° C. for 0.5 to 5 hours (recrystallization treatment step). Then, the cooling rate between 650-300 degreeC shall be 30 degrees C / min or more, and a cast steel product is cooled (cooling process). Thereby, the structure in which martensite is formed returns to the austenite structure. The crystal grain size of the structure formed by normal solidification is about 1 to 10 mm, but the austenite structure is equiaxed by passing through the cryo treatment step, the subsequent recrystallization treatment step, and the cooling step. It becomes a fine structure with an average particle diameter of 200 μm or less. FIG. 2 shows an example of the structure after the recrystallization treatment step.

本発明において、再結晶処理工程の冷却速度は極めて重要である。本発明者らは冷却速度の影響を鋭意検討するため、大型の鋳鋼品の部位および肉厚の異なる箇所に熱電対を埋め込み、冷却時の温度を実測することにより冷却速度を求め、その測定箇所より採取した試験片の熱膨張係数を測定した。その結果、化学成分を上記の範囲とし、オーステナイト組織の平均粒径を200μm以下とし、かつ、650〜300℃の間の冷却速度が30℃/min以上とすることにより、18〜28℃における熱膨張係数を0.2×10-6/℃以下にすることが可能であることを見出した。 In the present invention, the cooling rate of the recrystallization process is extremely important. In order to diligently examine the influence of the cooling rate, the inventors have embedded a thermocouple in a part of a large cast steel product and a part having a different thickness, and obtained the cooling rate by actually measuring the temperature during cooling, and the measurement part The thermal expansion coefficient of the test specimen collected from the sample was measured. As a result, when the chemical component is in the above range, the average particle size of the austenite structure is 200 μm or less, and the cooling rate between 650 to 300 ° C. is 30 ° C./min or more, the heat at 18 to 28 ° C. It has been found that the expansion coefficient can be 0.2 × 10 −6 / ° C. or lower.

クライオ処理の前に、鋳鋼品を800〜1100℃に加熱して、0.5〜5hr保持し、急冷する溶体化処理工程を設けてもよい。溶体化により、鋳造時に析出した析出物が固溶して、延性、靭性が向上する。図3に、溶体化処理を施した後の組織の例を示す。この段階での組織は、通常の鋳鋼品と同様、柱状晶が主体のオーステナイト組織である。   Prior to the cryo treatment, a solution treatment step of heating the cast steel product to 800 to 1100 ° C., holding it for 0.5 to 5 hours, and quenching may be provided. Due to the solution treatment, precipitates deposited at the time of casting become a solid solution, and ductility and toughness are improved. FIG. 3 shows an example of the structure after the solution treatment. The structure at this stage is an austenite structure mainly composed of columnar crystals, as in a normal cast steel product.

クライオ処理工程の前(溶体化処理工程を設けた場合は溶体化処理工程の前)に、さらに、鋳鋼品を1100〜1300℃で5〜50hr保持する拡散処理工程を備えてもよい。これにより鋼中のNi及び不純物の偏析がなくなり、大きなサイズの鋳鋼品であっても、極めて低い熱膨張係数を有する鋳鋼品をより安定して製造できる。   A diffusion treatment step of holding the cast steel product at 1100 to 1300 ° C. for 5 to 50 hours may be further provided before the cryotreatment step (before the solution treatment step when the solution treatment step is provided). This eliminates the segregation of Ni and impurities in the steel, and even a large-sized cast steel product can more stably produce a cast steel product having an extremely low coefficient of thermal expansion.

クライオ処理工程と再結晶処理工程の間に、再結晶オーステナイト結晶粒をより微細化させるために、鋳鋼品をAC点直下の300〜400℃に加熱し、300〜400℃で1〜10hr保持するマルテンサイトの調質処理を施してもよい(調質処理工程)。 In order to make the recrystallized austenite crystal grains finer between the cryoprocessing step and the recrystallization processing step, the cast steel product is heated to 300 to 400 ° C. just below the AC 3 point and held at 300 to 400 ° C. for 1 to 10 hours. The martensite may be tempered (tempering treatment step).

表1に示す成分組成となるように調整した溶湯を鋳型に注湯し、表1に記載の重量、最大肉厚を有する鋳鋼品を製造した。記載のないFe以外の元素の含有量は、不可避的不純物レベルであることを確認した。   The molten metal adjusted to have the component composition shown in Table 1 was poured into a mold to produce a cast steel product having the weight and maximum wall thickness shown in Table 1. It was confirmed that the contents of elements other than Fe, which are not described, are inevitable impurity levels.

製造した鋳鋼品に対し、
(a)クライオ処理→再結晶処理
(b)溶体化処理→クライオ処理→再結晶処理
(c)拡散処理→クライオ処理→再結晶処理
(d)拡散処理→溶体化処理→クライオ処理→再結晶処理
(e)拡散処理→溶体化処理→クライオ処理→調質処理→再結晶処理
(f)クライオ処理→調質処理→再結晶処理
(g)溶体化処理
のいずれかの熱処理を施し、最終的な鋳鋼品を得た。
For manufactured cast steel products,
(A) Cryo treatment → recrystallization treatment (b) Solution treatment → cry treatment → recrystallization treatment (c) Diffusion treatment → cry treatment → recrystallization treatment (d) Diffusion treatment → solution treatment → cry treatment → recrystallization treatment (E) Diffusion treatment → Solution treatment → Cryo treatment → Refining treatment → Recrystallization treatment (f) Cryo treatment → Refining treatment → Recrystallization treatment (g) Perform any one of the heat treatments of solution treatment, and finally A cast steel product was obtained.

製造した鋳鋼品の各位置における肉厚の中心部より試験片を採取し、前記の熱処理を施し、各試験を行なった。熱膨張係数は、熱膨張測定機を用い、18〜28℃の平均熱膨張係数として求めた。オーステナイト組織の平均結晶粒径は、観察した結晶粒の円相当径の平均値として求めた。No.3、No.8及びNo.16については、複数の位置について測定を行った。結果を表1に示す。   A test piece was sampled from the central portion of the wall thickness at each position of the manufactured cast steel product, subjected to the heat treatment, and each test was performed. The thermal expansion coefficient was obtained as an average thermal expansion coefficient of 18 to 28 ° C. using a thermal expansion measuring machine. The average crystal grain size of the austenite structure was determined as the average value of the equivalent circle diameters of the observed crystal grains. No. 3, no. 8 and no. For 16, measurements were taken at a plurality of positions. The results are shown in Table 1.

表1に示すとおり、本発明例の鋳鋼品は、結晶粒径が小さく、鋳鋼品全体にわたり低い熱膨張係数が得られていることが確認できた。   As shown in Table 1, it was confirmed that the cast steel product of the example of the present invention had a small crystal grain size and a low thermal expansion coefficient was obtained over the entire cast steel product.

Claims (8)

成分組成が、質量%で、
C :0.04%以下、
Si:0.3%以下、
Mn:0.5%以下、
Al:0.2%以下、
Ni:31〜34%、及び
Co:2〜6%
を含有し、残部がFe及び不可避的不純物であり、
オーステナイト組織の平均結晶粒径が200μm以下であり、
18〜28℃における熱膨張係数が0.2×10-6/℃以下である
ことを特徴とする低熱膨張鋳鋼品。
Ingredient composition is mass%,
C: 0.04% or less,
Si: 0.3% or less,
Mn: 0.5% or less,
Al: 0.2% or less,
Ni: 31-34%, and Co: 2-6%
And the balance is Fe and inevitable impurities,
The average crystal grain size of the austenite structure is 200 μm or less,
A low thermal expansion cast steel product having a thermal expansion coefficient at 18 to 28 ° C. of 0.2 × 10 −6 / ° C. or less.
重量が10kg以上であることを特徴とする請求項1に記載の低熱膨張鋳鋼品。   The low thermal expansion cast steel product according to claim 1, wherein the weight is 10 kg or more. 最大肉厚が35mm以上であることを特徴とする請求項1又は2に記載の低熱膨張鋳鋼品。   3. The low thermal expansion cast steel product according to claim 1 or 2, wherein the maximum thickness is 35 mm or more. 成分組成が、質量%で、
C :0.04%以下、
Si:0.3%以下、
Mn:0.5%以下、
Al:0.2%以下、
Ni:31〜34%、及び
Co:2〜6%
を含有し、残部がFe及び不可避的不純物である鋳鋼品を、Ms点以下まで冷却して、Ms点以下の温度で0.5〜3hr保持した後室温まで昇温するクライオ処理工程と、
クライオ処理を施した鋳鋼品を、800〜1100℃に加熱し、0.5〜5hr保持する再結晶処理工程と、
再結晶処理を施した鋳鋼品を、650〜300℃の間における冷却速度を30℃/min以上で急冷する冷却工程
を順に備えることを特徴とする低熱膨張鋳鋼品の製造方法。
Ingredient composition is mass%,
C: 0.04% or less,
Si: 0.3% or less,
Mn: 0.5% or less,
Al: 0.2% or less,
Ni: 31-34%, and Co: 2-6%
A cryoprocessing step of cooling the cast steel product containing Fe and the inevitable impurities to the Ms point or less, holding the solution at a temperature of the Ms point or less for 0.5 to 3 hours, and then raising the temperature to room temperature;
A recrystallization treatment step in which the cryotreated cast steel product is heated to 800 to 1100 ° C. and held for 0.5 to 5 hours;
A method for producing a low-thermal-expansion cast steel product comprising a cooling step of rapidly cooling a recast-treated cast steel product at a cooling rate of 650 to 300 ° C at 30 ° C / min or higher.
前記クライオ処理工程の前に、さらに、鋳鋼品を800〜1100℃に加熱して、0.5〜5hr保持する溶体化処理工程を備えることを特徴とする請求項4に記載の低熱膨張鋳鋼品の製造方法。   5. The low thermal expansion cast steel product according to claim 4, further comprising a solution treatment step of heating the cast steel product to 800 to 1100 ° C. and holding for 0.5 to 5 hours before the cryotreatment step. Manufacturing method. 前記クライオ処理工程の前に、さらに、鋳鋼品を1100〜1300℃で5〜50hr保持する拡散処理工程を備えることを特徴とする請求項3に記載の低熱膨張鋳鋼品の製造方法。   The method for producing a low-thermal-expansion cast steel product according to claim 3, further comprising a diffusion treatment step of holding the cast steel product at 1100 to 1300 ° C for 5 to 50 hours before the cryotreatment step. 前記溶体化処理工程の前に、さらに、鋳鋼品を1100〜1300℃で5〜50hr保持する拡散処理工程を備えることを特徴とする請求項5に記載の低熱膨張鋳鋼品の製造方法。   The method for producing a low thermal expansion cast steel product according to claim 5, further comprising a diffusion treatment step of holding the cast steel product at 1100 to 1300 ° C for 5 to 50 hours before the solution treatment step. 前記クライオ処理工程と前記再結晶処理工程の間に、さらに、鋳鋼品を300〜400℃で1〜10hr保持する調質処理工程を備えることを特徴とする請求項4〜7のいずれか1項に記載の低熱膨張鋳鋼品の製造方法。   The tempering process which hold | maintains a cast steel product for 1 to 10 hours at 300-400 degreeC is further provided between the said cryo process process and the said recrystallization process process, The any one of Claims 4-7 characterized by the above-mentioned. A method for producing a low thermal expansion cast steel product according to claim 1.
JP2015043009A 2014-07-02 2015-03-04 Low thermal expansion cast steel product and method of manufacturing the same Active JP6504859B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015043009A JP6504859B2 (en) 2014-07-02 2015-03-04 Low thermal expansion cast steel product and method of manufacturing the same
TW104120545A TWI655301B (en) 2014-07-02 2015-06-25 Low thermal expansion cast steel and manufacturing method thereof
KR1020150091502A KR102360098B1 (en) 2014-07-02 2015-06-26 Low thermal expansion cast steel and method for producing the same
CN201510378417.6A CN105296846B (en) 2014-07-02 2015-07-01 Low thermal expansion cast steel product and its manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014137153 2014-07-02
JP2014137153 2014-07-02
JP2015043009A JP6504859B2 (en) 2014-07-02 2015-03-04 Low thermal expansion cast steel product and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2016027188A true JP2016027188A (en) 2016-02-18
JP6504859B2 JP6504859B2 (en) 2019-04-24

Family

ID=55352681

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015029619A Active JP6058045B2 (en) 2014-07-02 2015-02-18 High rigidity low thermal expansion casting and method for producing the same
JP2015043009A Active JP6504859B2 (en) 2014-07-02 2015-03-04 Low thermal expansion cast steel product and method of manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015029619A Active JP6058045B2 (en) 2014-07-02 2015-02-18 High rigidity low thermal expansion casting and method for producing the same

Country Status (3)

Country Link
JP (2) JP6058045B2 (en)
KR (2) KR102360099B1 (en)
TW (2) TWI655300B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145491A (en) * 2017-03-07 2018-09-20 新報国製鉄株式会社 Low thermal expansion alloy
JP2018145474A (en) * 2017-03-03 2018-09-20 新報国製鉄株式会社 Low thermal expansion alloy
JP2018178151A (en) * 2017-04-04 2018-11-15 新報国製鉄株式会社 Low heat expansion cast steel small in anisotropy and secular change, and forged steel article
WO2019044721A1 (en) * 2017-09-01 2019-03-07 新報国製鉄株式会社 Low thermal expansion alloy
WO2021192060A1 (en) * 2020-03-24 2021-09-30 新報国製鉄株式会社 Low-thermal-expansion casting and method for manufacturing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7237345B2 (en) * 2019-01-30 2023-03-13 新報国マテリアル株式会社 Low thermal expansion casting and its manufacturing method
JP7251767B2 (en) * 2019-01-30 2023-04-04 新報国マテリアル株式会社 Low thermal expansion casting and its manufacturing method
WO2020195405A1 (en) * 2019-03-26 2020-10-01 日本鋳造株式会社 Low thermal expansion alloy having excellent low temperature stability and method for producing same
JP6754027B1 (en) * 2019-03-26 2020-09-09 日本鋳造株式会社 Low thermal expansion alloy with excellent low temperature stability and its manufacturing method
WO2021117239A1 (en) * 2019-12-13 2021-06-17 三菱電機株式会社 Alloy, wire, and alloy powder
US20230082149A1 (en) 2020-04-27 2023-03-16 Shinhokoku Material Corp. Low thermal expansion cast steel and method of production of same
WO2022014544A1 (en) * 2020-07-17 2022-01-20 新報国マテリアル株式会社 Low thermal expansion casting and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350446A (en) * 1986-08-19 1988-03-03 Hitachi Metarupureshijiyon:Kk Low thermal expansion alloy
JPH04289149A (en) * 1991-03-15 1992-10-14 Sumitomo Special Metals Co Ltd Low thermal expansion material and its manufacture
JPH06100985A (en) * 1992-09-22 1994-04-12 Sumitomo Special Metals Co Ltd Fe-ni-co low thermal expansion alloy
JPH06179938A (en) * 1992-12-15 1994-06-28 Toshiba Corp High strength and low expansion cast iron and production thereof
JP2001011580A (en) * 1999-07-02 2001-01-16 Shin-Hokoku Steel Corp LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2796966A (en) 1953-09-08 1957-06-25 Ibm Type element driving mechanism
JPS5470298A (en) 1977-11-09 1979-06-05 Hokuriku Pharmaceutical 22diphenylmethyleneindolithidine*its acid added salt and its manufacture
JPS60159157A (en) * 1984-01-30 1985-08-20 Nippon Yakin Kogyo Co Ltd Fe-ni alloy having excellent hot workability
JPS6164853A (en) * 1984-09-06 1986-04-03 Toshiba Corp Base material for pipe parts and its manufacture
JPS63270443A (en) * 1987-04-28 1988-11-08 Hitachi Metal Precision:Kk Low thermal expansion cast alloy and its production
JPH06279945A (en) 1993-03-26 1994-10-04 Hitachi Metals Ltd Wire with high strength and low thermal expansion and its production
JP3150831B2 (en) 1993-09-30 2001-03-26 日本冶金工業株式会社 High Young's modulus low thermal expansion Fe-Ni alloy
JP3384318B2 (en) * 1998-03-17 2003-03-10 住友金属工業株式会社 Oxide dispersed low thermal expansion alloy
JPH11293413A (en) 1998-04-13 1999-10-26 Nippon Chuzo Kk Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity
TWI250216B (en) * 2000-02-09 2006-03-01 Nippon Mining Co Ltd Fe-Ni-Co alloy for completely flat mask of press-formed type, and completely flat mask and color cathode-ray tube using the same
JP4253100B2 (en) * 2000-03-17 2009-04-08 日本鋳造株式会社 Low thermal expansion alloy with excellent machinability and manufacturing method thereof
JP4319817B2 (en) * 2001-11-19 2009-08-26 新日本製鐵株式会社 Low alloy steel excellent in hydrochloric acid corrosion resistance and sulfuric acid corrosion resistance and its welded joint
JP2003221650A (en) * 2001-11-22 2003-08-08 Shin-Hokoku Steel Corp Low-temperature stable alloy with low thermal expansion and high free-cutting property
JP2003247048A (en) * 2002-02-25 2003-09-05 Jfe Steel Kk Low thermal expansion alloy thin sheet having excellent etch rate and etch precision and production method thereof
JP2005271000A (en) * 2004-03-23 2005-10-06 Jfe Steel Kk Method for producing high nickel alloy steel plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6350446A (en) * 1986-08-19 1988-03-03 Hitachi Metarupureshijiyon:Kk Low thermal expansion alloy
JPH04289149A (en) * 1991-03-15 1992-10-14 Sumitomo Special Metals Co Ltd Low thermal expansion material and its manufacture
JPH06100985A (en) * 1992-09-22 1994-04-12 Sumitomo Special Metals Co Ltd Fe-ni-co low thermal expansion alloy
JPH06179938A (en) * 1992-12-15 1994-06-28 Toshiba Corp High strength and low expansion cast iron and production thereof
JP2001011580A (en) * 1999-07-02 2001-01-16 Shin-Hokoku Steel Corp LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018145474A (en) * 2017-03-03 2018-09-20 新報国製鉄株式会社 Low thermal expansion alloy
JP2018145491A (en) * 2017-03-07 2018-09-20 新報国製鉄株式会社 Low thermal expansion alloy
JP2018178151A (en) * 2017-04-04 2018-11-15 新報国製鉄株式会社 Low heat expansion cast steel small in anisotropy and secular change, and forged steel article
WO2019044721A1 (en) * 2017-09-01 2019-03-07 新報国製鉄株式会社 Low thermal expansion alloy
JPWO2019044721A1 (en) * 2017-09-01 2019-11-07 新報国製鉄株式会社 Low thermal expansion alloy
US11371123B2 (en) 2017-09-01 2022-06-28 Shinhokoku Material Corp. Low thermal expansion alloy
WO2021192060A1 (en) * 2020-03-24 2021-09-30 新報国製鉄株式会社 Low-thermal-expansion casting and method for manufacturing same
EP4130299A4 (en) * 2020-03-24 2023-12-20 Shinhokoku Material Corp. Low-thermal-expansion casting and method for manufacturing same

Also Published As

Publication number Publication date
JP6058045B2 (en) 2017-01-11
KR102360098B1 (en) 2022-02-08
TWI655300B (en) 2019-04-01
JP2016027187A (en) 2016-02-18
KR20160004194A (en) 2016-01-12
JP6504859B2 (en) 2019-04-24
KR20160004195A (en) 2016-01-12
TW201608036A (en) 2016-03-01
TWI655301B (en) 2019-04-01
TW201608037A (en) 2016-03-01
KR102360099B1 (en) 2022-02-08

Similar Documents

Publication Publication Date Title
JP6504859B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JP6656013B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JP2014516388A (en) Bainitic steel with high strength and elongation, and method for producing the bainitic steel
CN109280861A (en) Flat product and its production method with good resistance to ag(e)ing
US20180127858A1 (en) Martensitic stainless steel, method for the production of a semi-finished product from said steel, and cutting tool produced from the semi-finished product
JP6628902B2 (en) Low thermal expansion alloy
JP6188643B2 (en) Extremely low thermal expansion alloy and manufacturing method thereof
WO2019146743A1 (en) Thin martensitic stainless steel sheet, method for producing same, and method for producing thin component
JP2019044254A (en) Mold
CN105296846B (en) Low thermal expansion cast steel product and its manufacturing method
JP6793583B2 (en) Low thermal expansion alloy
KR20130053621A (en) Thick austenitic stainless steel and manufacturing method using the same
TWI617678B (en) High manganese 3rd generation advanced high strength steels
WO2015136766A1 (en) Low thermal expansion casting alloy and method for producing same
JP6949352B2 (en) Low thermal expansion alloy
JPS6321728B2 (en)
JP2020122180A (en) Low thermal expansion casting and method for manufacturing the same
JP6872786B2 (en) Low thermal expansion cast steel and forged steel with low anisotropy and little aging
JP2020056076A (en) Low thermal expansion cast
US11371123B2 (en) Low thermal expansion alloy
JP7246684B2 (en) Low thermal expansion alloy
JP2021123736A (en) Low thermal expansion casting
Çardaklı et al. Permanent Mould Thin Slab Casting and Heat Tretment of 8% Chromium Cold Work Tool Steel (AISI DC 53)
Kablov et al. Effect of high-gradient directional solidification on the structure and mechanical properties of high-strength VNS-72 and VKS-12 steels

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190326

R150 Certificate of patent or registration of utility model

Ref document number: 6504859

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250