JPH11293413A - Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity - Google Patents

Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity

Info

Publication number
JPH11293413A
JPH11293413A JP10093798A JP10093798A JPH11293413A JP H11293413 A JPH11293413 A JP H11293413A JP 10093798 A JP10093798 A JP 10093798A JP 10093798 A JP10093798 A JP 10093798A JP H11293413 A JPH11293413 A JP H11293413A
Authority
JP
Japan
Prior art keywords
alloy steel
thermal expansion
less
modulus
young
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10093798A
Other languages
Japanese (ja)
Inventor
Takuo Handa
卓雄 半田
Kazuaki Nakajima
一明 中島
Yoshinobu Saito
吉信 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Nippon Chuzo Co Ltd
Original Assignee
Tohoku Tokushuko KK
Tohoku Steel Co Ltd
Nippon Chuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Tokushuko KK, Tohoku Steel Co Ltd, Nippon Chuzo Co Ltd filed Critical Tohoku Tokushuko KK
Priority to JP10093798A priority Critical patent/JPH11293413A/en
Publication of JPH11293413A publication Critical patent/JPH11293413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce the member for an ultraprecision equipment excellent in thermal shape stability and rigidity. SOLUTION: Alloy steel having a componental compsn. contg., by weight, <=0.1% C, 0.1 to 0.4% Si, 0.15 to 0.4% Mn, >2 to 4% Ti, <=1% Al, 30.7 to 43.0% Ni and <=14% Co, in which Ni and Co also satisfy the inequality of 37.7<=Ni+0.8×Co<=43, and the balance Fe with inevitable impurities, in which the thermal expansion coefficient in the temp. range of -40 to 100 deg.C is regulated to <=4×10<-6> / deg.C, and the Young's modulus is regulated to >=16,100 kgf/mm<2> is used to produce a member. The alloy steel is moreover incorporated with one or >= two kinds of components selected from the group of V, W, Nb and Mo by <=1% in total and/or is incorporated with one or >= two kinds of components selected from the group of S, Pb, Ca and Se by <=0.5% in total.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、エレクトロニク
ス機器、半導体関連機器、精密計測機器、精密工作機器
及び光学機器に関するものであって、熱的な形状安定性
のみならず剛性に優れた材料を用いて製作された、超精
密加工や超精密研磨時に用いる治工具やベース、露光装
置のアーム、精密機器のフレーム、及びその他の超精密
機器類の部品及び定盤類に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to electronic equipment, semiconductor-related equipment, precision measuring equipment, precision machine equipment, and optical equipment, and uses a material having excellent rigidity as well as thermal shape stability. The present invention relates to jigs and bases used for ultra-precision processing and ultra-precision polishing, arms of exposure equipment, frames of precision equipment, and parts and surface plates of other ultra-precision equipment.

【0002】[0002]

【従来の技術】近年、エレクトロニクスや半導体関連機
器、レーザー加工機、更には超精密加工機器の部品材料
として、熱的に安定なインバー合金が使用されており、
その需要量が著しく増加する傾向にある。これらの超精
密機器においては、熱変形の他に、微小な弾性変形が、
機器の高精度維持上問題となる。しかしながら、従来の
材料ではそのヤング率が、一般鋼材のおよそ3分の2と
小さい。そのために、例えば、センサー支柱のような長
尺品においては、機器の動作に伴って発生する振動振幅
が大きいという問題がある。
2. Description of the Related Art In recent years, thermally stable Invar alloy has been used as a component material for electronics, semiconductor-related equipment, laser processing machines, and even ultra-precision processing equipment.
Its demand tends to increase significantly. In these ultra-precision devices, in addition to thermal deformation, minute elastic deformation
This is a problem in maintaining high precision of the equipment. However, the Young's modulus of the conventional material is as small as about two-thirds of that of general steel. Therefore, for example, in a long product such as a sensor support, there is a problem that a vibration amplitude generated with the operation of the device is large.

【0003】上記問題に対して、従来、対象部品等の肉
厚を厚くする等、寸法諸元を大きくした高剛性化設計を
行っている。そのため、従来の材料では一般材料に比べ
て対象部品等の重量が増加し、機器の重量増加が避けら
れない。
[0003] In order to solve the above-mentioned problem, conventionally, high rigidity design has been performed in which the dimensions are increased, for example, by increasing the thickness of a target part or the like. Therefore, the weight of the target component and the like increases with the conventional material as compared with the general material, and the weight of the device cannot be avoided.

【0004】また、近年、これら超精密機器が更に大型
化される傾向にあり、その各部分に使用されるインバー
合金部品やスーパーインバー合金部品を大型化し、大単
重化せざるを得ない。こうして製作された機器の重量
は、これを収容したり昇降したりする建造物の床強度や
昇降設備能力等の設計限界にきている。
Further, in recent years, these ultra-precision devices tend to be further enlarged, and the invar alloy parts and super invar alloy parts used for the respective parts have to be increased in size to increase the unit weight. The weight of the device manufactured in such a manner has reached a design limit such as a floor strength of a building that accommodates the device or ascends and descends, and a capability of the elevating equipment.

【0005】一方、Niを約30〜40wt.%程度含有す
る高Niをベースとした、高ヤング率低熱膨張合金とし
て、ブラウン管用シャドウマスク材用材料において、
VとCr、Mo及びWの何れかとを添加した合金鋼材料
(特公平6−76646号公報、以下、「先行技術1」
という)、深冷処理によるマルテンサイト変態を応用
した合金鋳鉄材料(例えば、特開平6−179938号
公報、以下「先行技術2」という)、及び、Alと、
Ti、Nb及びTaの少なくとも1種とを添加し、時効
処理によりNi−Al系金属間化合物を析出させた合金
鋳鉄材料(特開平7−179984号公報、以下、「先
行技術3」という)等が知られている。
On the other hand, as a high Young's modulus low thermal expansion alloy based on high Ni containing about 30 to 40 wt.
Alloy steel material to which V and any of Cr, Mo and W are added (Japanese Patent Publication No. 6-76646, hereinafter referred to as “prior art 1”)
Alloy cast iron material to which martensitic transformation by cryogenic treatment is applied (for example, JP-A-6-179938, hereinafter referred to as "prior art 2"), and Al;
Alloy cast iron material obtained by adding at least one of Ti, Nb and Ta and precipitating a Ni-Al-based intermetallic compound by aging treatment (Japanese Patent Application Laid-Open No. Hei 7-179984, hereinafter referred to as "prior art 3") and the like It has been known.

【0006】一方、高強度材料としては、鉄基のマルテ
ンサイト系合金やニッケル基の時効析出合金(以下、
「先行技術4」という)等、多数存在するが、いずれも
熱膨張係数は14〜23×10-6/℃程度で十分には小
さくない。従って、高精度が要求される半導体関連機
器、レーザー加工機、更には超精密加工機器の部品材料
としては使用することはできない。
On the other hand, as high-strength materials, iron-based martensitic alloys and nickel-based aging-precipitated alloys (hereinafter, referred to as “alloys”)
Many of them exist, but the coefficient of thermal expansion is about 14 to 23 × 10 −6 / ° C., which is not sufficiently small. Therefore, it cannot be used as a component material for semiconductor-related equipment, laser processing machines, and even ultra-precision processing equipment that require high precision.

【0007】[0007]

【発明が解決しようとする課題】低熱膨張係数と高ヤン
グ率とを併せもつ合金材料を、超精密機器類の治工具並
びに部品及び定盤類の製造に使用することにより、超精
密機器類の軽量化を図り、こうして当該機器類の重量を
設置該当建造物の設計強度範囲内に安定して収めること
ができる。そこで、本発明者等は、この目的を達成する
ために、下記目標を設定した。
SUMMARY OF THE INVENTION By using an alloy material having both a low coefficient of thermal expansion and a high Young's modulus in the production of jigs and tools for ultra-precision instruments and parts and surface plates, the use of ultra-precision instruments The weight can be reduced, and the weight of the devices can be stably kept within the design strength range of the building corresponding to the installation. Then, the present inventors set the following targets in order to achieve this object.

【0008】先ず、熱膨張係数については、従来水準と
みなされる4×10-6/℃以下を安定的に確保し、そし
て、ヤング率については、従来水準とみなされる130
00kgf/mm2 弱を16100kgf/mm2 まで高めてこれを
確保し得る合金材料であって、且つ製造の容易な工程で
製造し、これを使用して超精密機器類の治工具並びに部
品及び定盤類を製造することにした。
First, the coefficient of thermal expansion is stably maintained at 4 × 10 −6 / ° C. or less, which is regarded as the conventional level, and the Young's modulus is regarded as the conventional level, 130.
The 00kgf / mm 2 just under an alloy material capable of ensuring this is increased to 16100kgf / mm 2, and was produced in an easy process of manufacturing, tooling and parts and constant ultraprecision equipment and used to I decided to manufacture boards.

【0009】上記観点から先行技術をみると、先行技術
1は、ブラウン管用シャドウマスクに限定されたもの
で、構造体としての利用は不可能であり、先行技術2に
おける深冷処理は、大単重材料の製造に操作上問題があ
り、先行技術3は、高ヤング率確保の点から十分ではな
く、且つ発明者等の実験によると、Cを多量に含有する
場合、後述のようにTiがCと結びつき、期待したよう
な向上は得られないという知見をもっている。また、先
行技術4は、低熱膨張係数確保の点から十分ではない。
Looking at the prior art from the above viewpoint, prior art 1 is limited to a shadow mask for a cathode ray tube and cannot be used as a structural body. There is an operational problem in the production of heavy materials, and the prior art 3 is not sufficient from the viewpoint of securing a high Young's modulus, and according to experiments by the inventors, when C is contained in a large amount, as described later, Ti It is linked to C and has the knowledge that the expected improvement cannot be obtained. Further, prior art 4 is not sufficient in terms of securing a low coefficient of thermal expansion.

【0010】従って、この発明の目的は、上述した問題
を解決して、低熱膨張性と高剛性という相反する両方の
特性に優れた材料を用いて製作された、超精密機器類の
治工具、並びに、部品及び定盤類を提供することにあ
る。
[0010] Accordingly, an object of the present invention is to solve the above-mentioned problems and to provide jigs and tools for ultra-precision equipment, which are manufactured using materials having both contradictory characteristics of low thermal expansion and high rigidity. Another object of the present invention is to provide parts and surface plates.

【0011】[0011]

【課題を解決するための手段】本発明者等は、上述した
観点から、熱的形状安定性及び剛性に優れた合金鋼を使
用した超精密機器の部材を開発すべく研究を重ねた。目
標とする合金鋼材料の製造工程としては、大単重材料を
使用した場合に製造操作性に劣る深冷処理工程は採用せ
ず、溶体化熱処理と析出時効熱処理との組み合わせ工程
を採用することにした。そして、この工程により結晶粒
内外に微細なNi3 (Ti,Al)を析出させて材料を
強化する、析出強化法について検討した。
SUMMARY OF THE INVENTION From the above-mentioned viewpoints, the present inventors have conducted studies to develop a member of an ultraprecision device using an alloy steel having excellent thermal shape stability and rigidity. As a target alloy steel material manufacturing process, use a combination of solution heat treatment and precipitation aging heat treatment instead of cryogenic treatment process, which is inferior in production operability when using large single weight materials. I made it. Then, a precipitation strengthening method for strengthening the material by precipitating fine Ni 3 (Ti, Al) inside and outside the crystal grains by this process was studied.

【0012】ところが、上記析出強化法の検討過程にお
いて、TiやAlを、Ni含有率約30wt.%でCo含有
率約5wt.%のスーパーインバー合金に添加すると、マル
テンサイト変態開始温度が上昇し、熱膨張係数が急激に
増大し、不利となることがわかった。そこで、本発明者
等はこの問題を解決すべく更に研究を重ねた結果、Ni
の添加量の調整とNi+0.8Coの適正域を見い出す
ことにより、所期の目的を有利に達成することができる
との知見を得た。
However, when Ti or Al is added to a superinvar alloy having a Ni content of about 30 wt.% And a Co content of about 5 wt. It was found that the coefficient of thermal expansion sharply increased, which was disadvantageous. Thus, the present inventors have conducted further studies to solve this problem, and as a result, Ni
It has been found that the intended purpose can be advantageously achieved by adjusting the amount of addition of Ni and finding an appropriate range of Ni + 0.8Co.

【0013】この発明は、上記知見に基づきなされたも
のである。請求項1記載の超精密機器の部材は、C:
0.1wt.%以下、Si:0.1 〜0.4wt.%、Mn:
0.15〜0.4wt.%、Ti:2超〜4wt.%、Al:1
wt.%以下、Ni:30.7〜43.0wt.%、及び、C
o:14wt.%以下を含み、且つ、前記Ni及びCoの含
有率が、下記(1)式: 37.7≦Ni+0.8×Co≦43 ----------------------(1) を満たし、残部Fe及び不可避不純物からなる成分組成
を有し、そして、−40℃〜100℃の温度範囲におけ
る熱膨張係数が、4×10-6/℃以下で、且つ、ヤング
率が、16100kgf/mm2 以上である、熱的形状安定性
及び剛性に優れた合金鋼を使用したことに特徴を有する
ものである。
The present invention has been made based on the above findings. The member of the ultra-precision device according to claim 1 is C:
0.1 wt.% Or less, Si: 0.1 to 0.4 wt.%, Mn:
0.15 to 0.4 wt.%, Ti: more than 2 to 4 wt.%, Al: 1
wt.% or less, Ni: 30.7 to 43.0 wt.%, and C
o: 14 wt.% or less, and the content of Ni and Co is less than the following formula (1): 37.7 ≦ Ni + 0.8 × Co ≦ 43 --------- Satisfies (1), has a component composition consisting of the balance of Fe and inevitable impurities, and has a thermal expansion coefficient of 4 × 10 −6 in a temperature range of −40 ° C. to 100 ° C. / ° C. or less and a Young's modulus of 16100 kgf / mm 2 or more, which is characterized by using an alloy steel excellent in thermal shape stability and rigidity.

【0014】請求項2記載の超精密機器の部材は、請求
項1記載の発明における熱的形状安定性及び剛性に優れ
た合金鋼が、更に、V、W、Nb及びMoからなる群か
ら選ばれた1種又は2種以上の成分を、合計で1wt.%以
下含有することに特徴を有するものである。
According to a second aspect of the present invention, there is provided a member for an ultra-precision device, wherein the alloy steel having excellent thermal shape stability and rigidity according to the first aspect is further selected from the group consisting of V, W, Nb and Mo. It is characterized in that one or more of the above-mentioned components are contained in a total of 1 wt.% Or less.

【0015】請求項3記載の超精密機器の部材は、請求
項1記載の発明における熱的形状安定性及び剛性に優れ
た合金鋼が、更に、S、Pb、Ca及びSeからなる群
から選ばれた1種又は2種以上の成分を、合計で0.5
wt.%以下含有することに特徴を有するものである。
According to a third aspect of the present invention, there is provided a member of an ultra-precision device, wherein the alloy steel having excellent thermal shape stability and rigidity according to the first aspect of the invention is further selected from the group consisting of S, Pb, Ca and Se. One or more of the components
It is characterized by containing less than wt.%.

【0016】請求項4記載の超精密機器の部材は、請求
項1記載の発明における熱的形状安定性及び剛性に優れ
た合金鋼が、更に、V、W、Nb及びMoからなる群か
ら選ばれた1種又は2種以上の成分を合計で1wt.%以
下、並びに、S、Pb、Ca及びSeからなる群から選
ばれた1種又は2種以上の成分を合計で0.5wt.%以下
を含有することに特徴を有するものである。
According to a fourth aspect of the present invention, there is provided a member for an ultra-precision device, wherein the alloy steel having excellent thermal shape stability and rigidity according to the first aspect of the invention is further selected from the group consisting of V, W, Nb and Mo. 1 wt.% Or less of a total of 1 wt.% Or less of one or more components selected from the group consisting of S, Pb, Ca and Se. It is characterized by containing the following.

【0017】[0017]

【発明の実施の形態】次に、この発明を具体的に説明す
る。この発明は、下記化学成分組成で特定される合金鋼
を使用して製造された、超精密機器の部材である。ここ
で、超精密機器の部材とは、具体的には、ポリッシン
グマシンや露光装置用の定盤類及びフレーム類、非接
触板厚測定機用フレーム、精密研削盤用のベース、コ
ラム及びスピンドル類、レーザー発振器用ベース、
CFRP用金型、望遠鏡・顕微鏡用フレーム及びレン
ズ支持台等である。
Next, the present invention will be specifically described. The present invention is a member of an ultra-precision device manufactured using an alloy steel specified by the following chemical composition. Here, the members of the ultra-precision equipment include, specifically, surface plates and frames for a polishing machine and an exposure apparatus, frames for a non-contact thickness measuring machine, bases, columns and spindles for a precision grinding machine. , Laser oscillator base,
These are a CFRP mold, a telescope / microscope frame, and a lens support.

【0018】次に、上記の通り合金鋼の成分組成を限定
した理由について説明する。 (1)C:0.1wt.%以下 Cは、オーステナイトに溶け込んで、マトリックスの強
化に寄与し、またTiと結合して炭化物TiCを形成す
ることにより強度を向上させる作用を有する。しかしな
がら、Cが多量に含有されると、熱膨張係数が大きくな
る。更に、Cが多量に含有されると、この発明において
極めて重要な後述する析出時効熱処理においてNi
3 (Ti,Al)の析出に必要なTiがCとの結合に多
量に消費されて、この析出物が十分に生成されなくな
る。その結果、この発明材料の重要な特性であるヤング
率の低下をもたらす。Cの上限が0.1wt.%超では、T
iCの形成によりヤング率の向上が小さくなり、且つ、
延性低下が顕著となる。上記観点より、Cがその効果を
十分に発揮し、且つ上記弊害をもたらさない範囲とし
て、0.1wt.%以下に限定する。
Next, the reason why the composition of the alloy steel is limited as described above will be described. (1) C: 0.1 wt.% Or less C has the effect of dissolving in austenite, contributing to the strengthening of the matrix, and improving the strength by combining with Ti to form carbide TiC. However, when C is contained in a large amount, the thermal expansion coefficient increases. Furthermore, when C is contained in a large amount, Ni is not significantly reduced in the precipitation aging heat treatment, which is extremely important in the present invention.
3 Ti required for the precipitation of (Ti, Al) is consumed in a large amount for bonding with C, and this precipitate is not sufficiently generated. As a result, the Young's modulus, which is an important property of the material of the present invention, is reduced. If the upper limit of C exceeds 0.1 wt.%, T
The formation of iC reduces the improvement in Young's modulus, and
The ductility decreases significantly. From the above point of view, the content is limited to 0.1 wt.% Or less as a range in which C exerts its effect sufficiently and does not cause the above-mentioned adverse effects.

【0019】(2)Si:0.1〜0.4wt.% Siは、溶製時の脱酸剤として有効であり、その効果を
発揮させるためには、0.1wt.%以上の含有を必要とす
る。しかしながら、Si含有率が0.4wt.%を超える
と、キューリー点が低温側に移行して熱膨張係数が大き
くなる。
(2) Si: 0.1-0.4 wt.% Si is effective as a deoxidizing agent at the time of melting, and in order to exhibit its effect, the content of 0.1% by weight or more is required. I need. However, when the Si content exceeds 0.4 wt.%, The Curie point shifts to a lower temperature side, and the thermal expansion coefficient increases.

【0020】従って、Si含有率は、0.1〜0.4w
t.%の範囲内に限定する。 (3)Mn:0.15〜0.4wt.% Mnは、Si同様に脱酸剤として有効に作用し、その効
果を発揮させるためには、0.15wt.%以上の含有を必
要とする。しかしながら、Mn含有率が0.4wt.%を超
えると、熱膨張係数が大きくなる。
Therefore, the Si content is 0.1 to 0.4 w
Limited to the range of t.%. (3) Mn: 0.15 to 0.4 wt.% Mn effectively acts as a deoxidizing agent similarly to Si, and in order to exert its effect, the content of 0.15 wt.% Or more is required. . However, when the Mn content exceeds 0.4 wt.%, The coefficient of thermal expansion increases.

【0021】従って、Mn含有率は、0.15〜0.4
wt.%の範囲内に限定する。 (4)Ti:2超〜4wt.% Tiは、溶体化熱処理後の析出時効熱処理によって、N
i−Ti系の金属間化合物を結晶粒内外に微細に均一に
析出分布させることにより、この発明材料のヤング率を
向上させる重要な元素である。しかしながら、TiはC
との結合によるTiCの生成にも消費される。従って、
Ti含有率は2wt.%以下では上記効果が十分に発揮され
ない。一方、Ti含有率は4wt.%を超えると、キューリ
ー点が極端に低温側に移行して熱膨張係数が大きくな
る。
Therefore, the Mn content is 0.15 to 0.4.
Limited to the range of wt.%. (4) Ti: more than 2 to 4 wt.% Ti is converted into N by precipitation aging heat treatment after solution heat treatment.
It is an important element for improving the Young's modulus of the material of the present invention by precipitating and distributing the i-Ti intermetallic compound finely and uniformly inside and outside the crystal grains. However, Ti is C
It is also consumed in the generation of TiC due to the bonding with the Ti. Therefore,
If the Ti content is 2 wt.% Or less, the above effect cannot be sufficiently exhibited. On the other hand, if the Ti content exceeds 4 wt.%, The Curie point shifts extremely to a low temperature side, and the thermal expansion coefficient increases.

【0022】従って、Ti含有率は、2超え〜4wt.%の
範囲内に限定する。 (5)Al:1wt.%以下 Alは、Tiと共存させることにより、析出時効熱処理
によってNi−(Ti,Al)の金属間化合物を結晶粒
内外に微細に均一に析出分布させ、時効後のヤング率を
向上させる重要な元素である。しかしながら、Al含有
率が1wt.%を超えると、キューリー点が低温側に移行し
て熱膨張係数が大きくなる。また、溶製時にAl2 3
介在物が多量に生成し、鋳造作業性を悪くする。
Therefore, the content of Ti is limited to the range of more than 2 to 4 wt.%. (5) Al: 1 wt.% Or less Al coexists with Ti, thereby precipitating and distributing the intermetallic compound of Ni- (Ti, Al) finely and uniformly inside and outside the crystal grains by precipitation aging heat treatment. It is an important element for improving the Young's modulus. However, when the Al content exceeds 1 wt.%, The Curie point shifts to a lower temperature side, and the thermal expansion coefficient increases. In addition, Al 2 O 3
A large amount of inclusions is formed, and the casting workability is deteriorated.

【0023】従って、Al含有率は、1wt.%以下に限定
する。 (6)Ni:30.7〜43.0wt.% Niは、析出時効熱処理によってNi−(Ti,Al)
の金属間化合物を結晶粒内外に微細に均一に析出分布さ
せ、時効後のヤング率を向上させる。しかしながら、そ
の含有率が30.7wt.%未満であると、マルテンサイト
変態によって熱膨張係数の急激な上昇を招き、熱膨張係
数を、4×10-6/℃以下に抑えることができない。一
方、Ni含有率が43.0wt.%を超えると、自発体積磁
歪の減少により、熱膨張係数が大きくなる。従って、N
i含有率は、30.7〜43.0wt.%の範囲内でなけれ
ばならない。
Therefore, the Al content is limited to 1 wt.% Or less. (6) Ni: 30.7-43.0 wt.% Ni is Ni- (Ti, Al) by precipitation aging heat treatment.
Is finely and uniformly precipitated and distributed inside and outside the crystal grains to improve the Young's modulus after aging. However, when the content is less than 30.7 wt.%, The thermal expansion coefficient sharply increases due to martensite transformation, and the thermal expansion coefficient cannot be suppressed to 4 × 10 −6 / ° C. or less. On the other hand, if the Ni content exceeds 43.0 wt.%, The coefficient of thermal expansion increases due to a decrease in spontaneous volume magnetostriction. Therefore, N
The i content must be in the range of 30.7-43.0 wt.%.

【0024】更に、この発明の最も重要な特徴である、
TiやAlを添加してヤング率を向上させても、熱膨張
係数を増大させないようにするために、Ni含有率の一
部をCo添加で置換する操作を行なう。このNiに対す
るCoの置換効果を発揮させるためには、Ni含有率を
Co含有率との間に、前記(1)式:37.7≦Ni+
0.8×Co≦43を満たすようにしなければならな
い。
Further, the most important feature of the present invention is
In order to prevent the coefficient of thermal expansion from increasing even if the Young's modulus is improved by adding Ti or Al, an operation of replacing a part of the Ni content with the addition of Co is performed. In order to exert the effect of replacing Co with Ni, the Ni content and the Co content must be set between the above formula (1): 37.7 ≦ Ni +
0.8 × Co ≦ 43 must be satisfied.

【0025】(7)Co:14wt.%以下 この発明において、Coは特に重要な作用をし、Niの
一部をCoで置換することによって、熱膨張係数を効果
的に小さくすることができる。特に、常温近辺において
熱膨張係数が最小水準となるのは、Co含有率が14w
t.%以下の場合である。特に、好適な範囲は、Coが
2.0〜10wt.%の範囲内にある場合である。
(7) Co: 14 wt.% Or less In the present invention, Co plays a particularly important role, and by partially replacing Ni with Co, the thermal expansion coefficient can be effectively reduced. In particular, the coefficient of thermal expansion reaches a minimum level near normal temperature when the Co content is 14w.
It is the case of t.% or less. A particularly preferred range is where Co is in the range of 2.0 to 10 wt.%.

【0026】この発明においては、CoでNiの一部を
置換することにより、TiやAlを添加してヤング率を
向上させても、熱膨張係数が増加することがないので、
熱膨張係数を効果的に小さくすることができる。上記N
iに対するCoの置換効果を発揮させるためには、Co
含有率が、Ni含有率との間に、下記関係を満たすこと
が必要である。
In the present invention, by replacing a part of Ni with Co, even if Ti or Al is added to improve the Young's modulus, the coefficient of thermal expansion does not increase.
The coefficient of thermal expansion can be effectively reduced. N above
In order to exert the substitution effect of Co on i,
The content must satisfy the following relationship with the Ni content.

【0027】 (8)37.7≦Ni+0.8×Co≦43 前述した通り、Niはヤング率の向上効果を、そしてC
oは熱膨張係数の低減効果を奏する。しかしながら、熱
膨張係数を効果的に低減させるためには、NiとCo含
有率との間に一定の範囲内の制限を必要とする。
(8) 37.7 ≦ Ni + 0.8 × Co ≦ 43 As described above, Ni has an effect of improving the Young's modulus and
o has the effect of reducing the coefficient of thermal expansion. However, in order to effectively reduce the coefficient of thermal expansion, it is necessary to limit the Ni and Co contents within a certain range.

【0028】図1に、熱膨張係数αに及ぼすNiとCo
含有率との影響についての試験結果を示す。 同図において、斜線部で示したNiとCo含有率との
領域が、熱膨張係数α≦4×10-6/℃が得られた好適
領域である。
FIG. 1 shows the effect of Ni and Co on the coefficient of thermal expansion α.
The test result about the influence with a content rate is shown. In the figure, the region of the Ni and Co contents indicated by the hatched portions is a preferable region where the thermal expansion coefficient α ≦ 4 × 10 −6 / ° C. is obtained.

【0029】これに対して、Ni+0.8×Co>4
3である領域Aでは、Ni及びCoが多量に含有される
ため自発体積磁歪の減少により、熱膨張係数αが4×1
-6/℃より急激に大きくなった。
On the other hand, Ni + 0.8 × Co> 4
In the region A, which is 3, a large amount of Ni and Co is contained, and the spontaneous volume magnetostriction is reduced, so that the coefficient of thermal expansion α is 4 × 1.
It rapidly increased from 0 -6 / ° C.

【0030】また、Ni+0.8×Co<37.7で
ある領域Bでは、マルテンサイト変態開始温度が急激に
上昇するため、熱膨張係数αが4×10-6/℃より大き
くなった。
In the region B where Ni + 0.8 × Co <37.7, the martensitic transformation start temperature sharply rises, so that the coefficient of thermal expansion α was larger than 4 × 10 −6 / ° C.

【0031】上記斜線領域の外部の内、領域A及びB
を除く領域Cでは、常温近辺での熱膨張係数を効果的に
減少させ得るほどの自発体積磁歪を与えるNi量が確保
されていないため、また、一部はマルテンサイト変態も
生じるため、熱膨張係数αは4×10-6/℃より大きく
なった。
Areas A and B outside the shaded area
In the region C excluding the above, the amount of Ni that provides the spontaneous volume magnetostriction enough to effectively reduce the coefficient of thermal expansion near room temperature is not secured, and in part, martensitic transformation occurs. The coefficient α became larger than 4 × 10 −6 / ° C.

【0032】基本成分組成の限定理由は以上の通りであ
る。この発明では、材料のヤング率の一層の向上を目的
として、上記成分組成に更に、V、W、Nb及びMoの
内から1種又は2種以上を、また、被削性の改善を目的
として、S、Pb、Ca及びSeの内から1種又は2種
以上を、それぞれ所要量だけ添加すれば一層望ましい材
料を得ることができる。次に、これらの選択成分組成の
限定理由について説明する。
The reasons for limiting the basic component composition are as described above. In the present invention, for the purpose of further improving the Young's modulus of the material, one or more of V, W, Nb and Mo are further added to the above-mentioned component composition, and for the purpose of improving machinability. , S, Pb, Ca and Se, one or more of them are added in required amounts, respectively, to obtain a more desirable material. Next, the reasons for limiting the composition of these selected components will be described.

【0033】(9)V、W、Nb及びMoの内、1種又
は2種以上を合計で1wt.%以下 V、W、Nb及びMoはいずれも、遊離のCと結合して
炭化物を形成し、ヤング率の向上に有効に寄与する。し
かしながら、それらの合計含有率が1wt.%を超えると熱
膨張係数が大きくなるので、1wt.%以下に限定する。
(9) One, two or more of V, W, Nb and Mo are 1 wt.% Or less in total. V, W, Nb and Mo all combine with free C to form a carbide. And contributes effectively to the improvement of the Young's modulus. However, if their total content exceeds 1 wt.%, The coefficient of thermal expansion increases, so the content is limited to 1 wt.% Or less.

【0034】(10)S、Pb、Ca及びSeの内、1
種又は2種以上を合計で0.5wt.%以下 S、Pb、Ca及びSeはいずれも、材料の切削性を向
上させるのに有用な元素であり、単独添加又は併用添加
して効果が発揮される。しかしながら、これらの合計含
有率が0.5wt.%を超えると、熱間加工性及び鋳造性が
害される。従って、これらは合計含有率を0.5wt.%以
下に限定する。
(10) Of S, Pb, Ca and Se, 1
0.5 wt.% Or less in total of two or more species S, Pb, Ca and Se are all useful elements for improving the machinability of the material, and are effective when added alone or in combination. Is done. However, if the total content exceeds 0.5 wt.%, Hot workability and castability are impaired. Therefore, they limit the total content to 0.5 wt.% Or less.

【0035】[0035]

【実施例】次に、この発明を、実施例によって更に詳細
に説明する。表1に示す各種の成分組成を有する30k
gの溶湯を、高周波誘導炉により溶解し、鋳造した。イ
ンゴットの直径は65mmである。
Next, the present invention will be described in more detail with reference to examples. 30k having various component compositions shown in Table 1
g of molten metal was melted in a high frequency induction furnace and cast. The diameter of the ingot is 65 mm.

【0036】[0036]

【表1】 [Table 1]

【0037】本発明の範囲内の成分組成を有する鋼種N
o.1〜14のインゴットの内、鋼種No.1〜9は基本成
分組成のもの、鋼種No.10はヤング率向上のための選
択元素を添加したもの、鋼種No.11は被削性向上のた
めの選択元素を添加したもの、そして、鋼種No.12〜
14はヤング率向上のための選択元素と被削性向上のた
めの選択元素との両方を添加したものである。
Steel type N having a component composition within the scope of the present invention
Of the ingots of o.1 to 14, steel types No.1 to 9 have the basic component composition, steel type No.10 added a selective element for improving Young's modulus, and steel type No.11 improved machinability. With the addition of selected elements for
Numeral 14 is an element to which both a selective element for improving Young's modulus and a selective element for improving machinability are added.

【0038】一方、本発明の範囲外の成分組成を有する
鋼種No.15〜26の内、鋼種No.25及び26はそれ
ぞれ従来鋼としてのいわゆるインバー合金及びスーパー
インバー合金である。
On the other hand, among the steel types Nos. 15 to 26 having a component composition outside the scope of the present invention, the steel types Nos. 25 and 26 are so-called invar alloys and superinvar alloys as conventional steels, respectively.

【0039】上記インゴットを用いて下記試験を行なっ
た。なお、鋼種No.1〜14のインゴットを用いて作成
された試験片はいずれも、本発明の範囲内の超精密機器
の部材を対象とした試験であり、それぞれを実施例1〜
14とよぶ。一方、鋼種No.15〜26のインゴットを
用いて作成された試験片はいずれも、本発明の範囲外の
超精密機器の部材を対象とした試験であり、それぞれを
実施例1〜12とよぶ。
The following tests were performed using the above ingots. In addition, all the test pieces prepared using the ingots of steel types Nos. 1 to 14 are tests for members of ultra-precision equipment within the scope of the present invention.
Called 14. On the other hand, the test pieces prepared using ingots of steel types Nos. 15 to 26 are all tests for members of ultra-precision equipment outside the scope of the present invention, and are called Examples 1 to 12, respectively. .

【0040】直径65mmの各インゴットを、1050
〜1100℃の範囲内の温度で熱間鍛造して、直径13
mmの丸棒に加工した。但し、実施例14及び比較例1
0のインゴットのみは、当該インゴットを熱間鍛造せ
ず、直接、直径13mmの丸棒に切削加工した。
Each ingot having a diameter of 65 mm was placed in 1050
Hot forging at a temperature within the range of
It was processed into a round bar of mm. However, Example 14 and Comparative Example 1
Only the ingot of 0 was directly cut into a round bar having a diameter of 13 mm without hot forging the ingot.

【0041】次いで、上記丸棒を所定の長さに切断した
後、1100℃×1hrの溶体化処理を施し、そして7
00℃×4hrの時効処理を施した。こうして調製され
た試験材から、ヤング率測定試験片、熱膨張係数測定試
験片、硬度試験片及び引張試験片を作製した。但し、比
較例11及び12(インバー合金及びスーパーインバー
合金)の丸棒は、析出強化をねらうTi及びAlを含有
しないので、上記溶体化処理及び時効処理を施すことな
く、上記各試験片を作製した。
Next, after cutting the above-mentioned round bar into a predetermined length, a solution treatment at 1100 ° C. × 1 hr was performed.
An aging treatment of 00 ° C. × 4 hr was performed. From the test materials thus prepared, a Young's modulus measurement test piece, a thermal expansion coefficient measurement test piece, a hardness test piece, and a tensile test piece were produced. However, since the round bars of Comparative Examples 11 and 12 (Invar alloy and Super Invar alloy) do not contain Ti and Al for the purpose of precipitation strengthening, the test pieces were prepared without performing the solution treatment and the aging treatment. did.

【0042】ヤング率は、21mmφ×10mm厚さの
試験片を用い、超音波パルス法により測定した。熱膨張
係数は、8mmφ×50mm長さの試験片を用い、−4
0〜100℃の間を昇温速度:1℃/minにおいて測
定した。上記試験結果を表2に示す。
The Young's modulus was measured by an ultrasonic pulse method using a test piece having a diameter of 21 mm × 10 mm. The coefficient of thermal expansion used a test piece of 8 mmφ × 50 mm length,
The temperature was measured between 0 and 100 ° C. at a heating rate of 1 ° C./min. Table 2 shows the test results.

【0043】[0043]

【表2】 [Table 2]

【0044】本発明の範囲内にある実施例についての試
験結果はいずれも良好である。実施例1〜9は、基本成
分で構成された合金鋼である。いずれにおいても、熱膨
張係数は4×10-6/℃以下と低く、しかもヤング率は
16500kgf/mm2 と大きく、いずれも目標を達成して
いる。
The test results for the examples within the scope of the present invention are all good. Examples 1 to 9 are alloy steels composed of basic components. In each case, the coefficient of thermal expansion was as low as 4 × 10 −6 / ° C. or less, and the Young's modulus was as large as 16500 kgf / mm 2, and all achieved the targets.

【0045】実施例10は、基本成分の合金鋼よりもヤ
ング率が一層優れた材料をねらって、基本成分に更に、
W、Nb及びMoの合計量を本発明の範囲内で添加した
ものである。熱膨張係数は目標値4×10-6/℃以下を
達成すると共に、ヤング率は18800kgf/mm2 と一層
優れている。
Example 10 aimed at a material having a higher Young's modulus than the alloy steel of the basic component.
The total amount of W, Nb and Mo is added within the scope of the present invention. The thermal expansion coefficient achieves the target value of 4 × 10 −6 / ° C. or less, and the Young's modulus is more excellent at 18800 kgf / mm 2 .

【0046】実施例11は、基本成分の合金鋼よりも被
削性が一層優れた材料をねらって、基本成分に更に、S
を本発明の範囲内で添加したものである。熱膨張係数は
目標値4×10-6/℃以下を達成すると共に、工具寿命
は340secと一層優れている。
Example 11 aimed at a material having more excellent machinability than the alloy steel of the basic component.
Is added within the scope of the present invention. The thermal expansion coefficient achieves the target value of 4 × 10 −6 / ° C. or less, and the tool life is more excellent at 340 sec.

【0047】実施例12〜14は、基本成分の合金鋼よ
りもヤング率及び被削性共に一層優れた材料をねらっ
て、V、W、Nb及びMoからなる群、並びに、S、P
b、Ca及びSeからなる群の両群の成分をそれぞれ、
本発明の範囲内において添加したものである。いずれの
実施例においても、熱膨張係数は目標値4×10-6/℃
以下を達成し、且つ、基本成分の合金鋼である実施例1
〜7よりも、ヤング率及び被削性共に大幅に向上してい
る。なお、鋳造品(実施例14)も鍛造品(実施例12
及び13)と同様、熱膨張係数、ヤング率及び被削性が
良好である。
In Examples 12 to 14, the group consisting of V, W, Nb and Mo, as well as S, P, were aimed at a material having both higher Young's modulus and machinability than the alloy steel of the basic component.
b, the components of both groups of the group consisting of Ca and Se, respectively
It is added within the scope of the present invention. In each of the examples, the coefficient of thermal expansion was set to a target value of 4 × 10 −6 / ° C.
Example 1 which achieves the following and is an alloy steel as a basic component
The Young's modulus and machinability are significantly improved as compared with Nos. To 7. Incidentally, the cast product (Example 14) is also a forged product (Example 12).
And 13) have good thermal expansion coefficient, Young's modulus and machinability.

【0048】これに対して、本発明の範囲外にある比較
例は、いずれも、熱膨張係数又はヤング率において目標
が達成されていない。比較例1は、Ni+0.8×Co
値が本発明の範囲の下限よりも小さく、図1の領域Bに
属するため、マルテンサイト変態が生じて熱膨張係数が
9.6×10 -6/℃と大きくなり、逆に比較例2は、N
i+0.8×Co値が本発明の範囲の上限よりも大き
く、領域Aに属するため、自発体積磁歪の減少により、
常温近辺の熱膨張係数は5.7×10-6/℃と大きな値
を示した。一方、比較例3は、Ni+0.8×Co値が
本発明の範囲である37.7〜43の範囲内にあるが、
Ni含有率が30.01wt.%と本発明の範囲よりも低
く、領域Cに属するために、熱膨張係数は8.8×10
-6/℃と目標上限値よりも大きい。
In contrast, comparisons outside the scope of the present invention
All examples show targets for thermal expansion coefficient or Young's modulus.
Has not been achieved. Comparative Example 1 was Ni + 0.8 × Co
The value is smaller than the lower limit of the range of the present invention.
Belongs to, the martensitic transformation occurs and the thermal expansion coefficient
9.6 × 10 -6/ ° C, and in Comparative Example 2
i + 0.8 × Co value is larger than the upper limit of the range of the present invention.
And belongs to the region A, so that the spontaneous volume magnetostriction decreases,
Thermal expansion coefficient around normal temperature is 5.7 × 10-6/ ℃ and large value
showed that. On the other hand, in Comparative Example 3, the Ni + 0.8 × Co value was
Within the scope of the present invention, 37.7-43,
Ni content is 30.01 wt.%, Which is lower than the range of the present invention.
And belongs to the region C, the thermal expansion coefficient is 8.8 × 10
-6/ ° C, which is larger than the target upper limit.

【0049】比較例4は、C含有率が本発明の上限値よ
りも高すぎ、マルテンサイト変態が−40℃以上で生じ
るため、熱膨張係数が7.6×10-6/℃と目標上限値
よりも大きく不可である。
In Comparative Example 4, since the C content was too high than the upper limit of the present invention and the martensitic transformation occurred at -40 ° C. or higher, the thermal expansion coefficient was 7.6 × 10 −6 / ° C., which is the target upper limit. It cannot be larger than the value.

【0050】比較例5及び6はいずれも、Ni+0.8
×Coの値が本発明の範囲よりも大きいために、熱膨張
係数はそれぞれ4.5×10-6/℃及び4.6×10-6
/℃と目標上限値よりも大きい。
In Comparative Examples 5 and 6, both Ni + 0.8
Since the value of × Co is larger than the range of the present invention, the thermal expansion coefficients are 4.5 × 10 −6 / ° C. and 4.6 × 10 −6, respectively.
/ ° C, which is larger than the target upper limit.

【0051】比較例7は、Co含有率及びNi+0.8
×Coの値がいずれも本発明の範囲よりも高いため、熱
膨張係数は4.2×10-6/℃と目標上限値よりも僅か
に大きい。
Comparative Example 7 shows that Co content and Ni + 0.8
Since the values of × Co are all higher than the range of the present invention, the coefficient of thermal expansion is 4.2 × 10 −6 / ° C., which is slightly larger than the target upper limit.

【0052】比較例8は、W+Mo含有率が本発明の上
限値1.0wt.%よりも高く、更にAl含有率が本発明の
上限値よりも高いので、ヤング率は目標値16100kg
f/mm 2 よりも十分に大きく良好であるが、熱膨張係数は
5.3×10-6/℃と目標上限値よりも大きく不可であ
る。
In Comparative Example 8, the content of W + Mo was higher than that of the present invention.
Limit of 1.0 wt.%, And the Al content of the present invention
Because it is higher than the upper limit, the Young's modulus is 16100kg
f / mm Two Good enough, but the coefficient of thermal expansion is
5.3 × 10-6/ ° C and not higher than the target upper limit
You.

【0053】比較例9は、V+Nb含有率が本発明の上
限値1wt.%よりも高いので、ヤング率は目標値1610
0kgf/mm2 よりも十分に大きく良好であるが、熱膨張係
数は5.8×10-6/℃と目標上限値よりも大きく不可
である。
In Comparative Example 9, the V + Nb content was higher than the upper limit of 1 wt.
Although it is sufficiently larger than 0 kgf / mm 2 and good, the thermal expansion coefficient is 5.8 × 10 −6 / ° C., which is larger than the target upper limit and cannot be achieved.

【0054】比較例10は、鋳造組織の試験材に時効熱
処理を施し、析出強化したものである。Ti含有率が本
発明の上限値4wt.%よりも高いので、ヤング率は目標値
16100kgf/mm2 よりも十分に大きく良好であるが、
熱膨張係数は6.8×10-6/℃と目標上限値よりも大
きく不可である。なお、S、Pb、Ca及びSeを合計
で0.77wt.%含有するので被削性は良好で工具寿命が
長い。但し、鋳造性が悪かった。
In Comparative Example 10, a test material having a cast structure was subjected to aging heat treatment to precipitate and strengthen it. Since the Ti content is higher than the upper limit of 4 wt.% Of the present invention, the Young's modulus is sufficiently larger than the target value of 16100 kgf / mm 2 and is good.
The thermal expansion coefficient is 6.8 × 10 −6 / ° C., which is larger than the target upper limit and cannot be achieved. Since the total content of S, Pb, Ca and Se is 0.77 wt.%, The machinability is good and the tool life is long. However, castability was poor.

【0055】比較例11及び12はいずれも、Al及び
Ti共に含まないもののため、時効熱処理を施さなかっ
た。いずれも熱膨張係数は小さく優れているが、ヤング
率が14000kgf/mm2 と小さく目標値16100kgf/
mm2 を達成していない。
In each of Comparative Examples 11 and 12, since neither Al nor Ti was contained, the aging heat treatment was not performed. Both have small thermal expansion coefficients and are excellent, but have a small Young's modulus of 14000 kgf / mm 2 and a target value of 16100 kgf / mm 2.
mm 2 has not been achieved.

【0056】なお、実施例15として、500kg高周
波誘導炉により、表1の鋼種No.19の組成の溶鋼を鋳
造してセンサー支柱を製造した。製品本体のヤング率を
測定したところ、17400kgf/mm2 であった。
In Example 15, a sensor column was manufactured by casting molten steel having a composition of steel type No. 19 in Table 1 using a 500 kg high frequency induction furnace. When the Young's modulus of the product itself was measured, it was 17,400 kgf / mm 2 .

【0057】[0057]

【発明の効果】以上述べたように、この発明によれば、
熱膨張係数が小さいだけでなく、ヤング率の大きい合金
鋼が得られ、これを使用した超精密機器の部材を提供す
ることができる。従って、上記機器部材は熱的な形状安
定性のみならず剛性にも優れているので軽量化すること
ができ、これを収容する建造物の強度設計や搬入設備等
の変更を行なう必要がない。このような超精密機器類の
部材を提供することができ、工業上有用な効果がもたら
される。
As described above, according to the present invention,
An alloy steel having not only a small coefficient of thermal expansion but also a large Young's modulus can be obtained, and a member of an ultra-precision device using the same can be provided. Therefore, since the above-mentioned equipment members are excellent in rigidity as well as thermal shape stability, they can be reduced in weight, and there is no need to change the strength design of the building accommodating the equipment members or the loading equipment. It is possible to provide such a member of ultra-precision equipment, and an industrially useful effect is obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱膨張係数αに及ぼすNiとCo含有率との影
響についての試験結果を示すグラフである。
FIG. 1 is a graph showing test results on the effects of Ni and Co contents on thermal expansion coefficient α.

フロントページの続き (72)発明者 斎藤 吉信 宮城県柴田郡村田町大字村田字西ケ丘23 東北特殊鋼株式会社内Continued on the front page (72) Inventor Yoshinobu Saito 23, Nishigaoka, Murata-machi, Shibata-gun, Miyagi Prefecture Tohoku Special Steel Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】C :0.1wt.%以下、 Si:0.1 〜0.4wt.%、 Mn:0.15〜0.4wt.%、 Ti:2超 〜4wt.%、 Al:1wt.%以下、 Ni:30.7〜43.0wt.%、及び、 Co:14wt.%以下 を含み、且つ、前記Ni及びCoの含有率が、下記
(1)式: 37.7≦Ni+0.8×Co≦43 ----------------------(1) を満たし、残部Fe及び不可避不純物からなる成分組成
を有し、そして、−40℃〜100℃の温度範囲におけ
る熱膨張係数が、4×10-6/℃以下で、且つ、ヤング
率が、16100kgf/mm2 以上である、熱的形状安定性
及び剛性に優れた合金鋼を使用した超精密機器の部材。
1. C: 0.1 wt.% Or less, Si: 0.1 to 0.4 wt.%, Mn: 0.15 to 0.4 wt.%, Ti: more than 2 to 4 wt.%, Al: 1 wt.% % Or less, Ni: 30.7 to 43.0 wt.%, And Co: 14 wt.% Or less, and the content of Ni and Co is expressed by the following formula (1): 37.7 ≦ Ni + 0. 8 × Co ≦ 43 satisfies (1), has a component composition consisting of the balance of Fe and inevitable impurities, and -40 An alloy steel having a thermal expansion coefficient in a temperature range of 4 ° C. to 100 ° C. of 4 × 10 −6 / ° C. or less and a Young's modulus of 16100 kgf / mm 2 or more and having excellent thermal shape stability and rigidity. Ultra-precision equipment components used.
【請求項2】 前記合金鋼は、更に、V、W、Nb及び
Moからなる群から選ばれた1種又は2種以上の成分
を、合計で1wt.%以下含有することを特徴とする、請求
項1記載の熱的形状安定性及び剛性に優れた合金鋼を使
用した超精密機器の部材。
2. The alloy steel further comprises one or more components selected from the group consisting of V, W, Nb and Mo in a total of 1 wt.% Or less, A member of an ultra-precision device using the alloy steel having excellent thermal shape stability and rigidity according to claim 1.
【請求項3】 前記合金鋼は、更に、S、Pb、Ca及
びSeからなる群から選ばれた1種又は2種以上の成分
を、合計で0.5wt.%以下含有することを特徴とする、
請求項1記載の熱的形状安定性及び剛性に優れた合金鋼
を使用した超精密機器の部材。
3. The alloy steel further comprises one or more components selected from the group consisting of S, Pb, Ca and Se in a total amount of 0.5 wt.% Or less. Do
A member of an ultra-precision device using the alloy steel having excellent thermal shape stability and rigidity according to claim 1.
【請求項4】 前記合金鋼は、更に、V、W、Nb及び
Moからなる群から選ばれた1種又は2種以上の成分を
合計で1wt.%以下、並びに、S、Pb、Ca及びSeか
らなる群から選ばれた1種又は2種以上の成分を合計で
0.5wt.%以下を含有することを特徴とする、請求項1
記載の熱的形状安定性及び剛性に優れた合金鋼を使用し
た超精密機器の部材。
4. The alloy steel further comprises one or more components selected from the group consisting of V, W, Nb and Mo in a total of 1 wt.% Or less, and S, Pb, Ca and 2. The composition according to claim 1, wherein one or more components selected from the group consisting of Se are contained in a total of 0.5 wt.% Or less.
A member of an ultra-precision device using an alloy steel having excellent thermal shape stability and rigidity as described above.
JP10093798A 1998-04-13 1998-04-13 Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity Pending JPH11293413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10093798A JPH11293413A (en) 1998-04-13 1998-04-13 Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10093798A JPH11293413A (en) 1998-04-13 1998-04-13 Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity

Publications (1)

Publication Number Publication Date
JPH11293413A true JPH11293413A (en) 1999-10-26

Family

ID=14287275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10093798A Pending JPH11293413A (en) 1998-04-13 1998-04-13 Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity

Country Status (1)

Country Link
JP (1) JPH11293413A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002972A (en) * 2003-03-17 2004-01-08 Kiyohito Ishida Free-cutting alloy material
WO2007087785A1 (en) * 2006-02-02 2007-08-09 Thyssenkrupp Vdm Gmbh Iron-nickel alloy
JP2013039640A (en) * 2011-08-17 2013-02-28 Fanuc Ltd Wire electric discharge machine having positioning accuracy compensation function
KR20160004195A (en) 2014-07-02 2016-01-12 신호코쿠 세이테츠 가부시키가이샤 High stiffness low thermal expansion castings and method for producing the same
JP2016117924A (en) * 2014-12-19 2016-06-30 日本鋳造株式会社 High young modulus low thermal expansion cast alloy for plastic working or casting and method of producing the same
WO2021220352A1 (en) 2020-04-27 2021-11-04 新報国マテリアル株式会社 Low-thermal-expansion casting and production method for same
WO2022014544A1 (en) 2020-07-17 2022-01-20 新報国マテリアル株式会社 Low thermal expansion casting and method for producing same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004002972A (en) * 2003-03-17 2004-01-08 Kiyohito Ishida Free-cutting alloy material
WO2007087785A1 (en) * 2006-02-02 2007-08-09 Thyssenkrupp Vdm Gmbh Iron-nickel alloy
JP2009525399A (en) * 2006-02-02 2009-07-09 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Iron-nickel-alloy
US8808475B2 (en) 2006-02-02 2014-08-19 Outokumpu Vdm Gmbh Iron-nickel alloy
JP2013039640A (en) * 2011-08-17 2013-02-28 Fanuc Ltd Wire electric discharge machine having positioning accuracy compensation function
US8822871B2 (en) 2011-08-17 2014-09-02 Fanuc Corporation Wire electric discharge machine having positioning accuracy compensation function
KR20160004195A (en) 2014-07-02 2016-01-12 신호코쿠 세이테츠 가부시키가이샤 High stiffness low thermal expansion castings and method for producing the same
JP2016117924A (en) * 2014-12-19 2016-06-30 日本鋳造株式会社 High young modulus low thermal expansion cast alloy for plastic working or casting and method of producing the same
WO2021220352A1 (en) 2020-04-27 2021-11-04 新報国マテリアル株式会社 Low-thermal-expansion casting and production method for same
WO2022014544A1 (en) 2020-07-17 2022-01-20 新報国マテリアル株式会社 Low thermal expansion casting and method for producing same

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP5412851B2 (en) Steel for plastic molds and plastic molds
EP0327053A1 (en) Duplex stainless steel with high manganese
US4302248A (en) High manganese non-magnetic steel with excellent weldability and machinability
JPH11293413A (en) Member of ultraprecision equipment using alloy steel excellent in thermal shape stability and rigidity
JP2636816B2 (en) Alloy tool steel
EP0446188B1 (en) Stainless steel
JP2001152246A (en) Method for producing steel for plastic molding die excellent in toughness, mirror finishing property and machinability
JPH02115353A (en) Metal band saw body material having high fatigue strength
JP3730360B2 (en) High strength low thermal expansion alloy
JPH108189A (en) Steel for induction hardening excellent in bendability and induction hardened part excellent in bendability using the same steel
JPS59170244A (en) Strong and tough co-free maraging steel
WO1994013847A1 (en) Method of manufacturing cast iron of high strength and low expansion
JP2001003134A (en) Hypo-eutectic spheroidal graphite cast iron
JP3149476B2 (en) Ingot making method of rare earth element containing low nitrogen steel
KR100342672B1 (en) Abrasion resistant alloy and manufacturing method of the alloy
JP2001107194A (en) Precipitation hardening type stainless steel and method for producing product therefrom
JP2005154850A (en) High strength beta-type titanium alloy
JP6504807B2 (en) High Young&#39;s modulus low thermal expansion alloy for plastic working or casting and method for producing the same
JPH07310144A (en) Stainless steel excellent in cryogenic strength and toughness after superconducting material forming heat treatment
JP3396372B2 (en) Low Cr ferritic steel with excellent high temperature strength and weldability
JPH04280948A (en) Ferritic stainless steel excellent in tougness and corrosion resistance
JPS61194153A (en) Steel sheet for pressure vessel having high strength and high toughness
JP2002327252A (en) Iron-based alloy and manufacturing method therefor
JPH07179984A (en) Cast iron of high strength and low expansion and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A977 Report on retrieval

Effective date: 20070129

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Effective date: 20080909

Free format text: JAPANESE INTERMEDIATE CODE: A02