JP3149476B2 - Ingot making method of rare earth element containing low nitrogen steel - Google Patents

Ingot making method of rare earth element containing low nitrogen steel

Info

Publication number
JP3149476B2
JP3149476B2 JP26847891A JP26847891A JP3149476B2 JP 3149476 B2 JP3149476 B2 JP 3149476B2 JP 26847891 A JP26847891 A JP 26847891A JP 26847891 A JP26847891 A JP 26847891A JP 3149476 B2 JP3149476 B2 JP 3149476B2
Authority
JP
Japan
Prior art keywords
rem
steel
earth element
ingot
esr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26847891A
Other languages
Japanese (ja)
Other versions
JPH0578729A (en
Inventor
清孝 高知尾
茂 木原
純一 西田
康史 山根
憲正 内田
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP26847891A priority Critical patent/JP3149476B2/en
Publication of JPH0578729A publication Critical patent/JPH0578729A/en
Application granted granted Critical
Publication of JP3149476B2 publication Critical patent/JP3149476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希土類元素を含有し、
低い窒素量である工具鋼の造塊方法に関し、特に高硬度
の材料を切削する刃物、例えばタップ、エンドミル等に
使用され、刃物自体の研削による成形性が良好な高V高
速度工具鋼に最適な造塊方法に関するものである。
The present invention relates to a rare earth element containing
Suitable for ingot method of tool steel with low nitrogen content, especially for high V high speed tool steel which is used for cutting tools for cutting hard materials such as taps and end mills and has good formability by grinding the cutting tool itself. It relates to a simple ingot making method.

【0002】[0002]

【従来の技術】近年、各種機械の高性能化に伴って、使
用する部材の高硬度化が図られている。そのような部材
を切削する工具である高速度工具鋼についても高性能化
が望まれている。一方、高速度工具鋼の強度耐摩耗性を
向上するためにV含有量を高めることが行なわれている
が、この場合VC炭化物の粗大化に伴う切削工具自体の
被研削性低下が伴いやすい。そこで、VC炭化物を微細
化して良好な被研削性を得るために、N,Ti,Nb, T
a含有量の規制(特開昭62−211354号)、希土類
元素(以後REMと略記)やZr,Hfの添加(特開昭62
−211354号、特開昭57−3742号、特開昭6
1−213350号)、Alの単独またはREMとの共
同添加(特開昭63−213641号)、Caの単独ま
たはAl,REMとの共同添加(特開平1−252号)、
REM添加効果を有効に活用するための含有Ti、N量
の規制(特開昭62−211354号、特開平1−14
2055号)、Alの単独またはREMとの共同添加効
果を有効に活用するための含有Ti、N量の規制(特開
平1−142056号)など、化学成分上の提案が数多
くなされている。これらを要約すると、V添加によって
強度、耐摩耗性を付与する高速度工具鋼のVC炭化物を
微細化して被研削性を改善し、工具への成形を容易にす
るためには、N,Ti,Nb,Ta等を規制して、REM,A
l,Ca,Zr,Hf等を添加することが効果的である。しか
し、本発明者らの経験によれば、規制すべき元素として
は、Nが、また添加すべき元素としてはREM,Alが特
に有効であり、この規制と添加の組合せによって飛躍的
な性能改善を図ることができる。
2. Description of the Related Art In recent years, with the advancement of the performance of various machines, the hardness of members used has been increased. High-performance tool steel, which is a tool for cutting such members, is also required to have high performance. On the other hand, in order to improve the strength and wear resistance of high-speed tool steel, the V content is increased. However, in this case, the grindability of the cutting tool itself tends to be reduced due to the coarsening of the VC carbide. Therefore, in order to refine the VC carbide and obtain good grindability, N, Ti, Nb, T
a) Regulation of content (JP-A-62-111354), addition of rare earth elements (hereinafter abbreviated as REM) and addition of Zr and Hf (JP-A-62-1621).
-21354, JP-A-57-3742, JP-A-6
1-213350), Al alone or co-addition with REM (JP-A-63-213641), Ca alone or co-addition with Al, REM (JP-A-1-252),
Regulations on Ti and N content to effectively utilize the effect of adding REM (Japanese Patent Laid-Open No. 62-21354, Japanese Patent Laid-Open No. 1-14)
Many proposals on chemical components have been made, such as regulation of the content of Ti and N in order to effectively utilize the effect of adding Al alone or jointly with REM (Japanese Patent Application Laid-Open No. 1-142056). In summary, in order to improve the grindability by refining the VC carbide of high-speed tool steel, which imparts strength and wear resistance by adding V, to improve the grindability, and to facilitate forming into tools, N, Ti, Regulating Nb, Ta, etc., REM, A
It is effective to add l, Ca, Zr, Hf and the like. However, according to the experience of the present inventors, N is particularly effective as the element to be regulated, and REM, Al is particularly effective as the element to be added. Can be achieved.

【0003】一方、高速度工具鋼の溶解設備としては、
一般にアーク炉、高周波誘導炉が用いられているが、こ
れらはいずれも大気中で溶解するものであるために、N
のピックアップが避けられられない。特にV含有量を高
めた高速度工具鋼の場合、VとNの親和力が大きいため
にNのピックアップ量が大きい。さらに大気中での溶解
の弊害は、REMおよびAl含有量のコントロールにも
及び、特にREMは酸素との親和力が大きいために大気
中での溶解、鋳造では、他に何らかの方策を講じない限
り、REMの添加歩留が極端に低く、著しい場合は鋼塊
中のREM歩留残留量が疵跡程度になる。そこで、Nの
低減方法およびREMの添加方法については多くの提案
がなされている。V含有量を高めた工具鋼の溶解方法に
限って言えば、例えば、真空誘導・脱ガス溶解炉を使用
することが、特開昭61−213350号、特開昭62
−211354号等で提案されている。
On the other hand, as equipment for melting high-speed tool steel,
Generally, an arc furnace and a high-frequency induction furnace are used, but since these are both dissolved in the atmosphere, N
Pickup is inevitable. In particular, in the case of a high-speed tool steel with an increased V content, the pick-up amount of N is large because the affinity between V and N is large. Furthermore, the adverse effects of dissolution in the atmosphere also extend to the control of REM and Al content. In particular, because REM has a high affinity for oxygen, in dissolution and casting in the atmosphere, unless other measures are taken. The addition yield of REM is extremely low, and if it is remarkable, the residual amount of REM in the steel ingot becomes about a mark. Therefore, many proposals have been made for a method for reducing N and a method for adding REM. Speaking of the method of melting tool steel having an increased V content, for example, use of a vacuum induction / degassing melting furnace is disclosed in Japanese Patent Application Laid-Open Nos.
No. -21354.

【0004】しかしながら、本発明者らの知見によれ
ば、真空誘導炉は脱ガス作用が大きいので、この炉を使
用することにより確かにNは容易に100ppm以下に低減で
きるが、REMを添加した場合、次の点で問題がある。
すなわち、REMは極めて反応性に富むために、真空誘
導炉であっても溶解雰囲気中のわずかな酸素と反応する
だけでなく、溶解炉の内張耐火物や鋳造系に使用する設
備の耐火物(通常活性元素の酸化物)を還元し、自身は
酸化物となって溶湯中に混入する。しかも、混入したR
EMの酸化物は比重が大きく(6以上)、溶湯からの浮上
分離が極めて緩慢である。したがって、REM添加から
鋳型への鋳造が完了するまでに、REM酸化物の凝集は
進むが、それが溶湯に懸濁した状態であるために、真空
誘導溶解で製造したREMを添加した、例えば高V系高
速度工具鋼は、大気溶解品に比較すれば清浄ではある
が、REMを添加しない場合に比べて清浄度が著しく劣
る。特に、鋼塊の外周部にREM酸化物が凝集した大型
の介在物が存在する場合には、該高V系高速度工具鋼の
主要な用途であるタップやエンドミルなどの切削工具が
外周部を使用することから、工具寿命を劣化させ、さら
に鋼塊の熱間加工時における表面疵発生の起点となり、
製造歩留をも著しく悪化させる。そこで、REM添加高
V系高速度工具鋼等の製造に際しては清浄度の改善が不
可欠の課題となる。
However, according to the findings of the present inventors, since the vacuum induction furnace has a large degassing effect, N can be easily reduced to 100 ppm or less by using this furnace, but REM was added. In this case, there are problems in the following points.
That is, since REM is extremely reactive, even in a vacuum induction furnace, not only does it react with a small amount of oxygen in the melting atmosphere, but also the refractory of the lining of the melting furnace and the equipment used for the casting system ( Usually, the active element oxide) is reduced and becomes itself an oxide to be mixed into the molten metal. Moreover, the mixed R
The oxide of EM has a large specific gravity (6 or more), and the floating separation from the molten metal is extremely slow. Therefore, from the REM addition to the completion of casting into a mold, REM oxides proceed to agglomerate, but since they are suspended in the molten metal, REM produced by vacuum induction melting is added. The V-based high-speed tool steel is clean as compared with the air-melted product, but is significantly inferior in cleanliness as compared with the case where no REM is added. In particular, when there are large inclusions in which the REM oxides are agglomerated on the outer periphery of the steel ingot, cutting tools such as taps and end mills, which are the main applications of the high-V high-speed tool steel, are used to cover the outer periphery. Since it is used, it shortens the tool life and further becomes the starting point of surface flaws during hot working of steel ingots,
Manufacturing yields also suffer significantly. Therefore, when manufacturing REM-added high-V high-speed tool steel or the like, improvement of cleanliness is an essential issue.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前述の高V
系高速度工具鋼等の被研削性が高く、また、高い清浄性
を有する希土類元素含有低窒素鋼の造塊方法を提供する
ことを目的とする。なお、本発明が主要目標とする高V
系高速度工具鋼とは、例えば次の化学成分を有するもの
である。すなわち、重量比でC:0.9〜1.5%、Si:2%以
下、Cr:3〜6%、MoとWの1種または2種を2Mo+Wで
14〜25%、V 2〜5%、N:100ppm以下、希土類元素:0.005
〜0.2%、Al 0.002〜0.3%、またはさらにCo:15%以下を
含み、残部がFeおよび不可避的不純物からなるもので
ある。
SUMMARY OF THE INVENTION The present invention relates to the above-mentioned high V
It is an object of the present invention to provide a method for ingot of a rare earth element-containing low nitrogen steel having high grindability and high cleanliness, such as high-speed tool steel. It should be noted that the high V which is the main target of the present invention
The system high-speed tool steel has, for example, the following chemical components. That is, in terms of weight ratio, C: 0.9 to 1.5%, Si: 2% or less, Cr: 3 to 6%, one or two of Mo and W are 2Mo + W.
14-25%, V 2-5%, N: 100 ppm or less, rare earth element: 0.005
0.20.2%, Al 0.002〜0.3%, or Co: 15% or less, with the balance being Fe and unavoidable impurities.

【0006】[0006]

【課題を解決するための手段】本発明は、真空誘導炉に
より、窒素含有量が100ppm未満である消耗電極を溶製す
る第1の工程と、該消耗電極を、希土類元素の化合物を
含有するフラックスを用いてエレクトロスラグ再溶解す
る第2の工程からなることを特徴とする希土類元素含有
低窒素鋼の造塊方法である。ここで、望ましくはエレク
トロスラグ再溶解のフラックス中に含有される希土類元
素化合物が少なくとも酸化物および弗化物のいずれかと
するものである。
According to the present invention, there is provided a first step in which a consumable electrode having a nitrogen content of less than 100 ppm is melted by a vacuum induction furnace, and the consumable electrode contains a rare earth element compound. A method of ingot-making a rare earth element-containing low nitrogen steel, comprising a second step of remelting electroslag using a flux. Here, it is desirable that the rare earth element compound contained in the electroslag re-melting flux is at least one of an oxide and a fluoride.

【0007】[0007]

【作用】本発明では、真空誘導炉による窒素、酸素など
の脱ガス効果と、エレクトロスラグ再溶解法(以下、E
SR法という)における清浄化およびそれに用いるフラ
ックスをREMの化合物とすることによるREM添加作
用、または添加歩留向上効果を組み合わせることによ
り、容易にN 100ppm以下で、REMを0.005〜0.2%含有
し、かつ清浄で熱間加工性にも優れた高V系高速度工具
鋼等のREM含有低窒素鋼を造塊することが可能とな
る。真空誘導炉により、低窒素鋼が容易に得られること
は既に述べた。本発明によれば、REMの添加は真空誘
導炉による溶解過程で行なわなくても、ESR中のフラ
ックスから添加できるが、正確なREMの添加量とする
ためには、電極の製造時にREMを添加しておく方が望
ましい。
According to the present invention, the effect of degassing nitrogen and oxygen by a vacuum induction furnace and the electroslag remelting method (hereinafter referred to as E
By combining the cleaning in the SR method) and the REM addition effect by using a REM compound as the flux used for the REM compound, or the effect of improving the addition yield, N is easily reduced to 100 ppm or less, and 0.005 to 0.2% of REM is contained. In addition, it is possible to ingot REM-containing low-nitrogen steel such as high-V high-speed tool steel that is clean and excellent in hot workability. It has already been mentioned that a vacuum induction furnace can easily obtain low nitrogen steel. According to the present invention, the REM can be added from the flux in the ESR without performing the melting in a vacuum induction furnace. However, in order to obtain an accurate amount of the REM, the REM must be added during the production of the electrode. It is better to keep it.

【0008】鋼塊の清浄度を改善する方法の一つとして
ESR法が知られている。ESR法は、他の炉で溶製
し、作製した消耗電極の下部を水冷金属ルツボ中の溶融
スラグに浸漬して、消耗電極−溶融スラグ−鋼塊で構成
される回路に直流または交流電流を通電することによっ
て、溶融スラグのジュール熱で該消耗電極をその下部側
から溶解して融滴化させ、ルツボ内のスラグ中を滴下さ
せることによって鋼塊を製造するものである。ESR鋼
塊の一つの特徴は、積層凝固によって均一緻密な凝固組
織が得られることである。他の特徴は、溶融スラグによ
る精錬効果である。消耗電極下部が溶解してできた融滴
は消耗電極先端を離れて溶融スラグ中を沈降して、成長
しつつある鋼塊頭部の溶湯部分(プール)に滴下する。
この間溶湯は、溶融スラグによって大気から保護される
とともに、溶融スラグとの接触によって脱酸、脱硫など
の精錬効果を受け、また、介在物もスラグに吸収され
る。ESR溶解では消耗電極先端で溶湯のフィルムが形
成される段階で、表面張力により介在物の溶湯表面への
排出が促進されると考えられ、極めて容易に介在物の除
去が行なわれる。また、仮に介在物が融滴内部に包含さ
れたまま溶融スラグ中を沈降し、溶湯プールに至った場
合であっても、溶湯プール下部まで到達しないので浮上
による分離が容易である。したがって、ESR法を採用
することにより、REM添加高V系高速度工具鋼等の清
浄度改善が期待される。
An ESR method is known as one of the methods for improving the cleanness of a steel ingot. In the ESR method, a lower part of a consumable electrode produced by melting in another furnace is immersed in a molten slag in a water-cooled metal crucible, and a DC or AC current is supplied to a circuit composed of a consumable electrode, a molten slag and a steel ingot. By supplying electricity, the consumable electrode is melted from the lower side by the Joule heat of the molten slag to be melted and dropped into the slag in the crucible to produce a steel ingot. One feature of the ESR ingot is that a uniform and dense solidified structure is obtained by lamination solidification. Another feature is the refining effect of the molten slag. The molten droplet formed by dissolving the lower part of the consumable electrode leaves the tip of the consumable electrode, settles in the molten slag, and drops onto the molten metal part (pool) at the head of the growing steel ingot.
During this time, the molten metal is protected from the atmosphere by the molten slag, is subjected to refining effects such as deoxidation and desulfurization by contact with the molten slag, and inclusions are also absorbed by the slag. In the ESR melting, it is considered that the surface tension promotes the discharge of inclusions to the surface of the molten metal at the stage of forming the molten metal film at the tip of the consumable electrode, and the inclusions can be removed very easily. Further, even if the inclusions are settled in the molten slag while being contained in the inside of the molten droplet and reach the molten pool, separation by floating is easy because the molten material does not reach the lower portion of the molten pool. Therefore, by adopting the ESR method, it is expected to improve the cleanliness of the REM-added high-V high-speed tool steel and the like.

【0009】しかしながら、ESR法をREM添加高V
系高速度工具鋼等に適用するに際し、大きな問題は、通
常のESRで使用するCaF2,Al23,CaO等を配合
したスラグを用いたのでは、ESR鋼塊に均一にREM
を添加することが容易ではないことである。これは例え
ば消耗電極中にREMを含有していたとしても、上記の
通常のスラグを使用した時には、溶融スラグ中の酸素ポ
テンシャルが高く、REMの酸化消耗によりREMの添
加歩留が著しく低下するためである。これに対して、ス
ラグ中にREMの化合物(酸化物、弗化物等)を添加
し、直流電流によるESR溶解を実施して上記化合物の
電解還元により金属溶湯にREMを添加する方法(特公
昭46−36082号)や、スラグ中または消耗電極中
に1種または2種以上のREMを添加してESRを行な
う方法(特開昭59−23811号)が提案されてい
る。これらはいずれも、スラグ中にREMの化合物を配
合し、その電解還元により、またはさらにスラグ中の酸
素ポテンシャルを下げることにより、スラグや消耗電極
中のREMを有効に鋼塊中に合金化するものであり、前
者の公知例では直流溶解を推奨しているが、明細書中の
実施例にも見られる通り、交流溶解でもREM添加の効
果が得られる程度には鋼塊中にREMは添加され、さら
に鋼塊中のREMを高めたい場合には、後者の公知例の
如く、消耗電極中に予めREMを添加しておけばよく、
直流であると交流であるとに関わらず、効果の得られる
方法である。
However, when the ESR method is applied to the high V
A major problem in application to high-speed tool steels is that if slag mixed with CaF 2 , Al 2 O 3 , CaO, etc., used in normal ESR, is used, REM is uniformly applied to the ESR steel ingot.
Is not easy to add. This is because, for example, even if REM is contained in the consumable electrode, when the above-mentioned ordinary slag is used, the oxygen potential in the molten slag is high, and the addition yield of REM is significantly reduced due to oxidative consumption of REM. It is. On the other hand, a method of adding REM compounds (oxides, fluorides, etc.) to the slag, performing ESR dissolution by direct current, and adding REM to the molten metal by electrolytic reduction of the above compounds (Japanese Patent Publication No. Sho 46) (JP-A-36082) and a method of adding one or more REMs to a slag or a consumable electrode to perform ESR (JP-A-59-23811). In any of these, the REM compound in the slag and the consumable electrode are effectively alloyed into the steel ingot by blending the REM compound in the slag and reducing the oxygen potential in the slag by electrolytic reduction or further. In the former known example, DC melting is recommended, but as seen in the examples in the specification, REM is added to the steel ingot to such an extent that the effect of REM addition can be obtained even with AC melting. If it is desired to further increase the REM in the steel ingot, the REM may be added in advance to the consumable electrode as in the latter known example,
This is an effective method regardless of whether it is direct current or alternating current.

【0010】しかしながら、上記提案の眼目は、あくま
でもESR法において、REMを鋼塊中に有効に添加す
ることであり、前述のようにREM添加高V系高速度工
具鋼等が高性能を発揮するもう一つの条件であるNの規
制については何ら解決するものではない。これはESR
法が大気中で溶解を行なうものであるため、何ら措置を
講じない場合には、鋼塊中のNは増加こそすれ減少する
ことはなく、特開昭59−23811号が示唆するよう
に、REM添加効率を向上するためにアルゴン等の不活
性ガスを用いてスラグ面をシールしたとしても、たかだ
かNの増加を抑制する効果しかないことから明らかであ
る。しかも、消耗電極を高速度工具鋼の溶製に通常使用
されるアーク炉や高周波誘導炉で溶製した場合には、前
述の如く使用原料をどんなに厳選したとしても200ppm以
下のN含有量を得ることは至難の技である。
However, the main point of the above proposal is to effectively add REM to the steel ingot in the ESR method, and as described above, REM-added high-V high-speed tool steels and the like exhibit high performance. The other condition, the regulation of N, cannot be solved at all. This is ESR
Since the method dissolves in the atmosphere, if no measures are taken, the N in the steel ingot does not decrease as it increases, as suggested in JP-A-59-23811. Even if the slag surface is sealed with an inert gas such as argon in order to improve the REM addition efficiency, it is apparent from the fact that it has only an effect of suppressing the increase of N at most. Moreover, when the consumable electrode is melted in an arc furnace or a high-frequency induction furnace that is usually used for melting high-speed tool steel, an N content of 200 ppm or less is obtained no matter how carefully selected raw materials are used as described above. That is an extremely difficult task.

【0011】以上述べたことからわかるように、本発明
は、真空誘導炉による脱ガス効果とESR法による清浄
化およびこれに用いるフラックスをREMの化合物を含
有するものとすることによるREM添加作用、または添
加歩留向上効果を併せて有し、これにより、容易にN 1
00ppm以下で、REMを0.005〜0.2%含有して被削性を向
上し、かつ清浄で工具寿命や熱間加工性にも優れたRE
M含有低N鋼を造塊することが可能となる。本発明の造
塊方法の手段を用いれば、それぞれ従来から知られてい
る真空誘導炉適用、およびESR法適用の作用の組合せ
では得られない作用効果が得られる。なぜなら、第一に
REMを含有し、窒素が100ppm以下という低Nである新
しい鋼の造塊法は今まで知られておらず、このニーズに
対応するためには従来の技術は、前述しているように、
せいぜい化学成分上の対策か、または単独の造塊法の中
での工夫に留まっていたのである。第二に、本発明が対
象とする新しい鋼の造塊法を達成するために、真空誘導
溶解は、ESR法では達成できない低N化と共にREM
の添加をも行なうことができ、ESR法でのN増加の危
険性やREMの歩留不安定性を補っている。一方、ES
R法は真空誘導溶解のみでは達成できない鋼中のREM
の均一分布と、狙い通りのREM添加量とするために、
通常は使用されないREM化合物を含有するフラックス
を用いて再溶解を行なうという特殊な手段を採用してい
る。このように本発明の造塊方法の手段は、各要素が相
互に相補うものであり、これにより初めてNが100ppm以
下でREMが0.005〜0.2%含有して被削性を向上し、か
つ清浄で熱間加工性にも優れたREM含有低N鋼を造塊
することが可能となり、これに圧延等の既存の工程を施
して製造された工具は、その寿命が飛躍的に向上するも
のである。
As can be seen from the above description, the present invention provides a degassing effect by a vacuum induction furnace, a cleaning by an ESR method, and a REM adding action by using a flux used for the purpose of containing a REM compound. Alternatively, it also has the effect of improving the yield of addition, thereby easily adding N 1
RE is 0.00ppm or less, contains 0.005 to 0.2% REM, improves machinability, is clean, and has excellent tool life and hot workability.
It becomes possible to ingot M-containing low N steel. When the means of the ingot making method of the present invention is used, an operation and effect that cannot be obtained by a combination of operations of applying a vacuum induction furnace and applying an ESR method, which are conventionally known, can be obtained. This is because, firstly, a new steel ingot method containing REM and having a low N of 100 ppm or less of nitrogen has not been known so far, and in order to meet this need, the conventional technology is described in the above. Like
At best, it was a countermeasure on chemical composition or a device in a single agglomeration method. Secondly, in order to achieve the new steel ingot casting method targeted by the present invention, vacuum induction melting is used to reduce the NEM, which cannot be achieved by the ESR method, together with REM.
Can be added to compensate for the risk of N increase in the ESR method and the yield instability of REM. On the other hand, ES
R method in steel cannot be achieved only by vacuum induction melting
In order to obtain a uniform distribution of
A special means of re-dissolving using a flux containing a REM compound which is not usually used is employed. As described above, the means of the ingot making method of the present invention is such that each element is complementary to each other, and for the first time, N is 100 ppm or less and REM content is 0.005 to 0.2%, thereby improving machinability and improving cleanability. It is possible to ingot REM-containing low N steel which is also excellent in hot workability, and the tool manufactured by applying existing processes such as rolling to the tool has a dramatically improved life. is there.

【0012】次に本発明の造塊法に適するREM含有低
N鋼の推奨合金成分範囲について述べる。Cは、Cr、
W、Mo、Vなどの炭化物生成元素と結合して炭化物を
形成し、焼入−焼もどし硬さを与え、耐摩耗性、耐熱
性、耐焼付性に寄与する。多すぎると靭性が低下し、ま
た巨大な炭化物を生じさせるので、Cr、W、Mo、V量
とバランスさせて含有させ、0.9〜1.5%に限定するのが
望ましい。Siは主に脱酸を目的として2%以下添加する
とよい。Crは、焼入性、耐摩耗性、耐酸化性、また適
切な含有量の設定により高温強度、焼もどし軟化抵抗を
向上させる。上記の目的により3%以上とするが、多すぎ
ると却って高温強度、焼もどし軟化抵抗を低下させ、ま
た靭性も下げるので6%以下とするのが望ましい。Wおよ
びMoは、Cと結合して特殊炭化物を形成し、耐摩耗
性、耐焼付性向上に寄与する。また焼もどしによる二次
硬化作用が大きく、高温強度に寄与する。以上の効果を
得るために、2Mo+W量が14〜25%を満たすように添加
する。2Mo+W量が14%未満では上記の効果が十分に得
られず、多すぎると靭性、熱間加工性を損うので、2Mo
+W 25%以下とするのが望ましい。
Next, the recommended alloy composition range of the REM-containing low-N steel suitable for the ingot-making method of the present invention will be described. C is Cr,
It combines with carbide-forming elements such as W, Mo, and V to form carbides, imparts quenching-tempering hardness, and contributes to wear resistance, heat resistance, and seizure resistance. If the content is too large, the toughness is reduced and a large carbide is generated. Therefore, it is desirable to contain the Cr, W, Mo, and V in a balanced amount, and to limit the content to 0.9 to 1.5%. Si is preferably added at 2% or less mainly for the purpose of deoxidation. Cr improves the high-temperature strength and the tempering softening resistance by setting the hardenability, the wear resistance, the oxidation resistance, and the appropriate content. Although it is set to 3% or more for the above purpose, if it is too large, the high-temperature strength and the tempering softening resistance are reduced, and the toughness is also reduced. W and Mo combine with C to form a special carbide and contribute to improvement of wear resistance and seizure resistance. In addition, the secondary hardening effect by tempering is large, and contributes to high-temperature strength. In order to obtain the above-mentioned effects, it is added so that the amount of 2Mo + W satisfies 14 to 25%. If the amount of 2Mo + W is less than 14%, the above effects cannot be sufficiently obtained. If the amount is too large, toughness and hot workability are impaired.
+ W 25% or less is desirable.

【0013】VはCと結合して硬質の炭化物を形成し、
耐摩耗性向上に寄与する。ただし、この炭化物は、砥粒
よりも硬いため、研削砥石を早期に摩滅させる。特に、
粗大な炭化物が多数生じ、分布が一様でないと、被研削
性は著しく低下する。このため、従来被研削性を重視す
る場合、1.2%以下程度にとどめていた。しかし、本発明
は、REMを添加し、また低N化すると、多量にVを含
有しても粗大なVを主体としたMC型炭化物の発生を防
ぐことができることにより、用途に応じて、2.0〜5%の
範囲で適当な量を含有させるものである。5%を越えると
本発明の効果が小さくなるため5%以下とし、少なすぎる
と耐摩耗性に十分寄与しないため2.0%以上とするとよ
い。Nは本発明方法の眼目となる不純物である。N量が
100ppmを越えると、REMの添加によるVC微細化効果
を損なうために100ppm以下とした。REMはMC型炭化
物の絶対量を増やす効果、さらにVC炭化物を微細に晶
出させる効果がある。0.005%より少ないと、これらの効
果が少なく、0.2%を越えるとSやOと結合して介在物を
作り、また鋳造欠陥の原因となるため、0.005〜0.2%に
限定するのがよい。Alは溶鋼中の酸素の活量を下げる
作用があり、REMの酸化物の生成を抑制し、REMの
VC微細化効果を助長する。0.002%未満ではこの効果が
少なく、0.3%を越えるとAlの酸化物が増え清浄度を悪
くする。Coは基地に固溶して、上記の強度、耐熱性を
向上させるもので本発明による炭化物形態制御、鋳造組
織改善には直接関与しないが、必要に応じて15%以下添
加する。
V combines with C to form a hard carbide,
Contributes to improved wear resistance. However, since the carbide is harder than the abrasive grains, it causes the grinding wheel to be worn out early. In particular,
If a large number of coarse carbides are generated and the distribution is not uniform, the grindability will be significantly reduced. For this reason, conventionally, when the grindability was emphasized, it was limited to about 1.2% or less. However, according to the present invention, the addition of REM and the reduction of N can prevent the generation of MC type carbide mainly composed of coarse V even if a large amount of V is contained. An appropriate amount is contained in the range of ~ 5%. If it exceeds 5%, the effect of the present invention is reduced, so that the content is set to 5% or less, and if it is too small, it does not sufficiently contribute to wear resistance, so it is good to set it to 2.0% or more. N is an impurity which becomes an eye of the method of the present invention. N amount
If it exceeds 100 ppm, it is set to 100 ppm or less to impair the VC miniaturization effect due to the addition of REM. REM has the effect of increasing the absolute amount of MC type carbide and the effect of crystallizing VC carbide finely. If it is less than 0.005%, these effects are small, and if it exceeds 0.2%, it combines with S and O to form inclusions and causes casting defects. Therefore, the content is preferably limited to 0.005 to 0.2%. Al has the effect of reducing the activity of oxygen in molten steel, suppresses the formation of oxides of REM, and promotes the VC refining effect of REM. If it is less than 0.002%, this effect is small, and if it exceeds 0.3%, Al oxides increase to deteriorate the cleanliness. Co forms a solid solution in the matrix to improve the above strength and heat resistance and does not directly contribute to the control of the carbide morphology and the improvement of the cast structure according to the present invention, but is added at 15% or less as necessary.

【0014】[0014]

【実施例】公称6tonの真空誘導炉に原料を装入し、真空
中で溶解した(但し、表1、No.4は大気誘導炉)。真空
誘導炉においてタンク内の圧力は、平衡論的に溶湯のN
溶解度が100ppm以下となるように維持した。REM以外
の成分調整が全て終了し、溶湯のN含有量が100ppm以下
であることを確認した後、炉内にREM所要量を添加し
て取鍋に出鋼した。さらに真空中(No.4は除く)で所定
形状の鋳型に鋳造して消耗電極を作製した(但し、No.5
はインゴットに鋳造)。それぞれ溶製した消耗電極の化
学成分を表1のNo.1,2,3,4,6,7の上段「電極」に示
す。ここで真空誘導炉はVIFで表わしている。VIF
による消耗電極中のREMは該表のREM(電極)欄に
示すように、0.04〜0.06%であり、REMの添加歩留
は、REM歩留(電極)欄に示すように59〜73%、Nは2
9〜39ppmの範囲であった。上記消耗電極を交流式ESR
を実施して鋼塊とした。ESRにおけるフラックスの使
用量は消耗電極装入ton当り約50kgである。また、ES
R時の大気からの〔N〕混入を防止するため鋳型内をA
rガスで置換して溶解を行なった。なお、No.1,2は電極
としてほぼ同様の化学成分を有するものであり、No.6
はNo.1,2に対してCoを増量した例、No.7はNo.1,2に
対してCoを除くとともにW,V量を増量し、Moを減量
した例である。これら本発明の実施例においてはESR
鋼塊中のREMは0.03〜0.05%であり、消耗電極中のR
EMに対する歩留は67〜83%であり、また、ESR鋼塊
中のNは42〜53ppmと十分低い範囲であった。
EXAMPLE The raw materials were charged into a 6-ton nominal vacuum induction furnace and melted in a vacuum (however, Table 1, No. 4 is an atmospheric induction furnace). In a vacuum induction furnace, the pressure in the tank is
The solubility was maintained at 100 ppm or less. After all the component adjustments other than the REM were completed and it was confirmed that the N content of the molten metal was 100 ppm or less, the required amount of the REM was added into the furnace, and the steel was tapped into a ladle. Further, a consumable electrode was produced by casting in a mold having a predetermined shape in a vacuum (excluding No. 4) (however, No. 5).
Is cast into ingot). The chemical components of the consumable electrodes thus produced are shown in Table 1, No. 1, 2, 3, 4, 6, 7 in the upper "electrode". Here, the vacuum induction furnace is represented by VIF. VIF
REM in the consumable electrode is 0.04 to 0.06% as shown in the REM (electrode) column of the table, and the addition yield of REM is 59 to 73% as shown in the REM yield (electrode) column. N is 2
It was in the range of 9-39 ppm. Use the above consumable electrode with AC ESR
Was carried out to obtain a steel ingot. The amount of flux used in ESR is about 50 kg per ton of consumable electrode charged. Also, ES
In order to prevent [N] contamination from the atmosphere during R
Dissolution was performed by replacing with r gas. Nos. 1 and 2 have almost the same chemical components as the electrodes.
No. 7 is an example in which Co is increased with respect to Nos. 1, 2, and No. 7 is an example in which Co is excluded from Nos. 1, 2 with an increase in the amount of W and V and a decrease in Mo. In these embodiments of the present invention, the ESR
The REM in the steel ingot is 0.03-0.05%, and the REM in the consumable electrode is
The yield to EM was 67 to 83%, and N in the ESR ingot was in a sufficiently low range of 42 to 53 ppm.

【0015】一方、表1のNo.3〜5は比較例であり、N
o.3はNo.1,2と同じ基本化学成分で真空誘導炉で消耗電
極を溶製し、フラックスにREM化合物を配合しないで
ESRを実施した場合、No.4は通常の大気中高周波誘
導炉で消耗電極を溶製し、ESRのフラックスにREM
化合物を配合した場合、No.5はESRを行なわずに真
空誘導炉で直接鋼塊とした場合である。化学成分を比較
すると、No.3では本発明例に比較して消耗電極のRE
Mは0.06%とほぼ同値であるにも関わらず、ESR後は
0.01%と非常に低く、ESRでのREM歩留は本発明例
が前記のように67〜83%であるのに対し、約17%であっ
た。No.4ではREMについては0.02%と本発明例に比較
的近い値になっているが、消耗電極、ESR鋼塊ともに
Nの値が200ppmに近い値であった。No.5は化学成分上
は本発明例と同等である。
On the other hand, Nos. 3 to 5 in Table 1 are comparative examples.
No.3 is the same basic chemical composition as No.1 and No.2, when the consumable electrode is melted in a vacuum induction furnace and ESR is performed without blending the REM compound into the flux. Melting consumable electrodes in a furnace and applying REM to ESR flux
In the case where the compound was blended, No. 5 is a case where the steel ingot was directly formed in a vacuum induction furnace without performing ESR. Comparing the chemical components, in No. 3, the RE of the consumable electrode was lower than that of the present invention.
Although M is almost the same as 0.06%, after ESR
As low as 0.01%, the REM yield in the ESR was about 17%, compared to 67-83% for the present invention example as described above. In No. 4, the REM was 0.02%, which is relatively close to the value of the present invention, but the N value was close to 200 ppm for both the consumable electrode and the ESR ingot. No. 5 is equivalent in chemical composition to the present invention.

【0016】上記7例の鋼塊を熱間分塊鍛造により、10
0mm角のビレットに成形した。この時、鋼塊重量をWIk
g、押湯等鋼塊不要部分重量をWRkg、表面キズをグライ
ンダーで除去した後のビレット重量をWBkgとすると、
熱間加工歩留A(%)は次式で示される。 A={WB/(WI−WR)}×100 この熱間加工歩留を後述の表2に併せて示すが、ESR
鋼塊(No.5以外)が全て90%またはこれをやや下回る程
度であるのに対し、真空誘導炉(VIF)で直接鋼塊と
した場合(No.5)は、71%であった。なお、No.5のキズ
発生部分を詳細に調査したところ、REMのオキサイ
ド、オキシサルファイド等を主体とする非金属介在物が
多量に認められた。
[0016] The above seven steel ingots were subjected to hot ingot forging to obtain 10 ingots.
It was formed into a billet of 0 mm square. At this time, the steel ingot weight W I k
g, riser like ingot wastepaper weight W R kg, when the billet weight after the removal of surface defects by a grinder and W B kg,
The hot working yield A (%) is represented by the following equation. A = {W B / (W I -W R)} × 100 is shown in conjunction with this hot working yield in Table 2 below, ESR
The ingots (except No. 5) all accounted for 90% or slightly below this, whereas those obtained directly in a vacuum induction furnace (VIF) (No. 5) accounted for 71%. In addition, when the scratched portion of No. 5 was examined in detail, a large amount of nonmetallic inclusions mainly composed of oxides, oxysulfides, etc. of REM were found.

【0017】上記各ビレットを焼鈍した後、熱間線材圧
延と続いて焼鈍を行ない線材とした。さらに、これらの
素材を冷間引抜き、研削加工して、直径 6.23mmの棒鋼
とし各種材質特性を評価した。評価項目としては、介在
物品位、VC炭化物量、熱処理硬さ、微小部抗折強度お
よび工具自体の成形性に関する被研削性とを評価した。
また、実際に日本工業規格並目ねじ用等径ハンドタップ
に製作し、切削寿命の評価を行なった。なお、熱処理条
件は1220℃塩浴焼入れ後、560℃×1hrで3回焼もどしし
た。これらの評価結果を前述の熱間加工歩留とともに表
2にまとめて示す。各試料の介在物品位は、上記熱処理
を施した棒鋼をその軸線に平行な表層から素材径の8分
の1深さ付近までダイヤモンド砥石研磨した平面の中央
部について、日本工業規格に基づいてB+Cの介在物を
測定した。このうち、No.1,3〜5の試料の介在物検鏡
例を図1に示す。また、同様にして創成した平面中央部
を酸化クロム研磨し、VC炭化物を観察した。この組織
例を図2に同様にして示す。
After annealing each billet, hot wire rolling was performed, followed by annealing to obtain a wire. Furthermore, these materials were cold-drawn and ground to form steel bars with a diameter of 6.23 mm, and various material properties were evaluated. As the evaluation items, the interposition article position, the amount of VC carbide, the heat treatment hardness, the micro bending strength, and the grindability with respect to the moldability of the tool itself were evaluated.
In addition, a tap was actually manufactured into an equal diameter hand tap for Japanese Industrial Standard Coarse Thread, and the cutting life was evaluated. The heat treatment was performed at 560 ° C. for 1 hour after quenching a salt bath at 1220 ° C. for three times. The results of these evaluations are shown in Table 2 together with the hot working yield described above. The interposed article position of each sample was determined as follows: B + C, based on Japanese Industrial Standards, for the center of a flat surface of a bar that had been subjected to the above heat treatment and polished with a diamond grindstone from the surface layer parallel to the axis to a depth of about 1/8 of the material diameter. Of inclusions were measured. FIG. 1 shows an example of inclusion microscopy of samples Nos. 1 and 3 to 5 among them. Further, the central portion of the plane created in the same manner was polished with chromium oxide, and VC carbide was observed. An example of this organization is shown in FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】各試料のVC面積率の定量は、前記介在物
測定と同様にダイヤモンド砥石研磨後、10%硝酸アルコ
ールで腐食し、かつ村上試薬でさらに腐食を行なった表
面について、測定総視野面積94,000μm2中のVC炭化物
を測定した。各試料の熱処理硬さは、前記介在物測定と
同様にして得た平面で、ビッカース硬度計で30kgの荷重
で測定した。また、微小部抗折強度は、棒鋼の中心軸を
含むごとく、0.8mm厚さの薄板を研削削り出しにより採
取し、該薄板のうち素材での表層部から素材径の8分の
1付近の部分が破断面となるごとく荷重負荷して行なっ
た。被削性の評価は、熱処理した棒鋼から軸心を含むご
とく、厚さ 2mmの薄板を採取し、この薄板のうち素材で
の表層部から素材径の8分の1付近の部分について、P
A砥石を用いて平面研削盤により、湿式プランジ研削を
行ない、研削試験後の砥石摩耗量と試料の研削除去量と
の比として求めた。研削条件は表3に示す。
The VC area ratio of each sample was determined in the same manner as in the above-described inclusion measurement, by polishing a diamond whetstone, corroding with 10% nitric alcohol and further corroding with Murakami reagent, and measuring the total visual field area of 94,000. The VC carbide in μm 2 was measured. The heat treatment hardness of each sample was measured with a Vickers hardness meter at a load of 30 kg on a plane obtained in the same manner as the above-described inclusion measurement. In addition, the micro-section bending strength is obtained by grinding and cutting a 0.8 mm thick thin plate, including the central axis of the steel bar, and measuring about 1/8 of the material diameter from the surface layer of the material in the thin plate. The load was applied so that the portion became a fracture surface. The machinability was evaluated by taking a thin plate of 2 mm thickness, including the axis, from the heat-treated steel bar. From the surface layer of the material, a portion near one-eighth of the material diameter was measured.
Wet plunge grinding was performed with a surface grinder using a grinding wheel A, and the ratio was determined as the ratio between the amount of grinding wheel wear after the grinding test and the amount of grinding removal of the sample. Table 3 shows the grinding conditions.

【0021】↓[0021] ↓

【表3】 [Table 3]

【0022】No.1,2,6,7の本発明例の介在物試験結果
は、VIFによるNo.5に比し、いずれも十分低い。ま
た、VC炭化物は、図2に示すように、5μm(×400 写
真上で2mm)以上のVC炭化物は非常に少なく、微細に分
布していた。図示は省略するが、No.7は本発明例中で
は、最もVC炭化物が多数で微細に分布していた。一
方、No.3はREMが0.01%とほとんど残っておらず、こ
のためVC炭化物の微細化が不十分である。No.4はN
量が高いため、VC炭化物が粗大に晶出している。No.
5はVC炭化物について微細な組織が得られた。しか
し、これは上記のように介在物品位が悪くやや大きめの
REMのオキシサルファイド等が多数認められた。熱処
理硬さは、いずれもHV880以上の硬さが得られ、Coをや
や多く添加したNo.6は、約HV910の高硬度が得られた。
微小抗折強度では、VC炭化物、介在物ともに微細な組
織が得られた本発明例のNo.1,2,6,7は、VC面積率が
高いNo.7がやや低い以外、いずれも250kgf/mm2程度ま
たはそれ以上の高強度が得られた。No.3〜5は、VC炭
化物あるいは介在物が、やや粗大であったためか、本発
明例と比べるとやや強度は低めである。被研削性につい
ては、5μm以上のVC炭化物量の多いNo.3,4は、砥石
摩耗量が大きく、研削比も小さいのに対し、その他の試
料は、10前後の研削比が得られ、この値はSKH55と
ほぼ同等の被研削性を有することを表わしている。各試
料のタップ切削試験は、被削材として、厚さ 12mmのS
45Cの板を用い、内径 5.0mmの下穴を開けて、切削試
験を行なった。表4にタップ切削試験条件を示す。切削
寿命は、タップが折損するか、あるいはめねじ精度が日
本工業規格で定められた許容差を越えるまでの切削穴数
で評価した。
The results of the inclusion tests of the inventive examples of Nos. 1, 2, 6, and 7 are all sufficiently lower than that of No. 5 by VIF. Further, as shown in FIG. 2, the VC carbides having a size of 5 μm or more (2 mm in the photograph of × 400) were very small and finely distributed. Although not shown, No. 7 had the largest number of VC carbides and was finely distributed in the examples of the present invention. On the other hand, in the case of No. 3, almost no REM remains at 0.01%, so that the VC carbide is not sufficiently refined. No. 4 is N
Since the amount is high, VC carbides are coarsely crystallized. No.
In No. 5, a fine structure was obtained for VC carbide. However, as described above, a large number of REM oxysulfides and the like were found in which the position of the intervening article was poor and somewhat large. As for the heat treatment hardness, a hardness of HV880 or more was obtained in all cases, and a high hardness of about HV910 was obtained in No. 6 to which a little Co was added.
In the micro bending strength, the VC carbides and inclusions of Nos. 1, 2, 6, and 7 of the present invention in which a fine structure was obtained were all 250 kgf except that the high VC area ratio No. 7 was slightly lower. High strength of about / mm 2 or more was obtained. In Nos. 3 to 5, the strength was slightly lower than that of the examples of the present invention, probably because the VC carbides or inclusions were slightly coarse. Regarding the grindability, No. 3, 4 with a large amount of VC carbide of 5 μm or more has a large grinding wheel wear amount and a small grinding ratio, while the other samples have a grinding ratio of about 10, which is obtained. The value indicates that the grindability is almost the same as SKH55. The tap cutting test for each sample was performed using a 12mm thick S
A cutting test was performed using a 45C plate by drilling a pilot hole with an inner diameter of 5.0 mm. Table 4 shows the tap cutting test conditions. The cutting life was evaluated by the number of cut holes until the tap was broken or the internal thread precision exceeded the tolerance set by Japanese Industrial Standards.

【0023】↓[0023] ↓

【表4】 [Table 4]

【0024】一般市販のタップ切削寿命を凌駕するため
には、VC量が面積率で4%以上で、HV880以上の硬さが
得られ、耐刃欠け性改善のため、220kgf/mm2以上の微小
部抗折強度を有することが必要と思われる。本発明例
は、いずれもこの条件を十分に満足しており、比較例の
No.3〜5と比べると高寿命が得られた。
[0024] To overcome the general commercial tap tool life is 4% or more VC weight area ratio, HV880 or more hardness is obtained, for耐刃chipping improvement, 220 kgf / mm 2 or more micro It is necessary to have a transverse rupture strength. All of the examples of the present invention sufficiently satisfied this condition, and a longer life was obtained as compared with Nos. 3 to 5 of the comparative examples.

【0025】[0025]

【発明の効果】以上に述べた如く、本発明によれば、従
来の造塊方法では困難であったREMを含有し、かつ低
Nである鋼を清浄度良く製造することが可能になり、そ
の結果、被研削性や工具寿命が大幅に向上した。また、
真空誘導溶解法に比し、熱間加工歩留が大幅に向上し、
生産コストの低減は二重溶解によるコストアップを補っ
て余りあるものである。
As described above, according to the present invention, it is possible to produce a steel containing REM and having a low N with a high degree of cleanliness, which has been difficult with the conventional ingot making method. As a result, the grindability and tool life were greatly improved. Also,
Compared with the vacuum induction melting method, the hot working yield is greatly improved,
The reduction in production cost more than compensates for the cost increase due to double melting.

【図面の簡単な説明】[Brief description of the drawings]

【図1】代表的な試料の介在物ミクロ組織を示す金属顕
微鏡組織写真である。
FIG. 1 is a metallographic micrograph showing the microstructure of inclusions of a representative sample.

【図2】代表的な試料のVC炭化物を示す金属顕微鏡組
織写真である。
FIG. 2 is a metallographic micrograph showing a VC carbide of a representative sample.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22B 9/18 C22C 38/00 302E 9/187 38/22 C22C 38/00 302 38/30 38/22 38/34 38/30 C22B 9/18 A 38/34 F (72)発明者 内田 憲正 島根県安来市安来町2107番地の2 日立 金属株式会社安来工場内 (72)発明者 中村 秀樹 島根県安来市安来町2107番地の2 日立 金属株式会社安来工場内 審査官 深坂 俊司 (56)参考文献 特開 昭62−44535(JP,A) 特開 平3−146624(JP,A) 特開 昭61−213350(JP,A) 鉄と鋼、72〔4〕(1986)p.226 (58)調査した分野(Int.Cl.7,DB名) C21C 5/52,7/00 B22D 23/10 C22B 9/18,9/187 C22C 38/00,38/22 C22C 38/30,38/34 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C22B 9/18 C22C 38/00 302E 9/187 38/22 C22C 38/00 302 38/30 38/22 38/34 38/30 C22B 9/18 A 38/34 F (72) Inventor Norimasa Uchida 2107-2, Yasugi-cho, Yasugi-shi, Shimane Hitachi Metals, Ltd. Yasugi Plant (72) Inventor Hideki Nakamura 2107-2, Yasugi-cho, Yasugi-shi, Shimane Inspector, Hitachi Metals, Ltd. Yasugi Plant Shunji Fukasaka (56) References JP-A-62-44535 (JP, A) JP-A-3-146624 (JP, A) JP-A-61-213350 (JP, A) Iron And steel, 72 [4] (1986) p. 226 (58) Field surveyed (Int.Cl. 7 , DB name) C21C 5 / 52,7 / 00 B22D 23/10 C22B 9 / 18,9 / 187 C22C 38 / 00,38 / 22 C22C 38/30, 38/34 JICST File (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 真空誘導炉により、窒素含有量が100ppm
未満である消耗電極を溶製する第1の工程と、該消耗電
極を、希土類元素の化合物を含有するフラックスを用い
てエレクトロスラグ再溶解する第2の工程からなること
を特徴とする希土類元素含有低窒素鋼の造塊方法。
1. The nitrogen content is 100 ppm by a vacuum induction furnace.
A rare earth element-containing consumable electrode, and a second step of electrodissolving the consumable electrode using a flux containing a compound of a rare earth element. Ingot making method for low nitrogen steel.
【請求項2】 エレクトロスラグ再溶解のフラックス中
に含有される希土類元素化合物が少なくとも希土類元素
の酸化物および弗化物のいずれかであることを特徴とす
る請求項1の希土類元素含有低窒素鋼の造塊方法。
2. The rare-earth element-containing low-nitrogen steel according to claim 1, wherein the rare-earth element compound contained in the electroslag remelting flux is at least one of an oxide and a fluoride of the rare-earth element. Ingot making method.
【請求項3】 希土類元素含有低窒素鋼が重量比で、
C:0.9〜1.5%、Si:2%以下、Cr:3〜6%、MoとWの1種
または2種を2Mo+Wで14〜25%、V 2〜5%、N:100ppm
以下、希土類元素:0.005〜0.2%、Al 0.002〜0.3%、ま
たはさらにCo:15%以下を含み、残部がFeおよび不可避
的不純物からなる被研削性の優れた高速度工具鋼である
ことを特徴とする請求項1または2の希土類元素含有低
窒素鋼の造塊方法。
3. The rare-earth-element-containing low-nitrogen steel in weight ratio,
C: 0.9 to 1.5%, Si: 2% or less, Cr: 3 to 6%, one or two of Mo and W at 2 Mo + W 14 to 25%, V 2 to 5%, N: 100 ppm
Hereinafter, rare earth elements: 0.005 to 0.2%, Al 0.002 to 0.3%, or Co: 15% or less, and the balance is Fe and inevitable impurities. The ingot making method for rare earth element-containing low nitrogen steel according to claim 1 or 2.
JP26847891A 1991-09-19 1991-09-19 Ingot making method of rare earth element containing low nitrogen steel Expired - Fee Related JP3149476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26847891A JP3149476B2 (en) 1991-09-19 1991-09-19 Ingot making method of rare earth element containing low nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26847891A JP3149476B2 (en) 1991-09-19 1991-09-19 Ingot making method of rare earth element containing low nitrogen steel

Publications (2)

Publication Number Publication Date
JPH0578729A JPH0578729A (en) 1993-03-30
JP3149476B2 true JP3149476B2 (en) 2001-03-26

Family

ID=17459053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26847891A Expired - Fee Related JP3149476B2 (en) 1991-09-19 1991-09-19 Ingot making method of rare earth element containing low nitrogen steel

Country Status (1)

Country Link
JP (1) JP3149476B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004346788A (en) 2003-05-21 2004-12-09 Aisin Seiki Co Ltd Vane, valve timing control device and sliding material
CN1295370C (en) * 2005-03-22 2007-01-17 江苏天工工具股份有限公司 High speed steel and its rare earth treating process
CN105603203B (en) * 2016-01-22 2017-12-01 东北大学 A kind of method of raising Mn18Cr18N steel hot-working characters
CN112442625A (en) * 2019-09-02 2021-03-05 江苏天工工具有限公司 High-speed steel processing and smelting method
CN114317994B (en) * 2021-12-27 2024-01-30 内蒙古北方重工业集团有限公司 Uniform TP316H austenitic stainless steel electroslag ingot component and tissue process method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
鉄と鋼、72〔4〕(1986)p.226

Also Published As

Publication number Publication date
JPH0578729A (en) 1993-03-30

Similar Documents

Publication Publication Date Title
EP2322680B1 (en) Environmentally-friendly, pb-free free-machining steel, and manufacturing method for same
CN101798660A (en) Method for refining, metamorphosing and casting cold roll steel by casting instead of forging
JP2018535316A (en) Steel, product made from said steel, and manufacturing method thereof
JPH01168848A (en) Universal free cutting steel for automobile parts and its production
JP3149476B2 (en) Ingot making method of rare earth element containing low nitrogen steel
JP2005082814A (en) Prehardened steel for plastic molding die
JP6683075B2 (en) Steel for carburizing, carburized steel parts and method for manufacturing carburized steel parts
CN107130176A (en) A kind of novel high speed Steel material and its preparation technology
EP2738281A1 (en) Method for producing high si-content austenitic stainless steel
JP2005082813A (en) Prehardened steel for plastic molding die
WO2022145065A1 (en) Steel material
JP2006501368A (en) Ferritic steel alloy
JP2580186B2 (en) Mold material for plastic injection molding
WO2022145067A1 (en) Steel material
CN115109980A (en) Titanium-containing steel with ultralow nitrogen content and preparation method thereof
WO2022145066A1 (en) Steel material
JPH08325673A (en) Composite roll for rolling excellent in wear resistance, surface roughening resistance and the like
JPS62274052A (en) Case-hardening steel for bearing
JP2005307241A (en) High-sulfur free-cutting steel
JPH0791579B2 (en) Method for manufacturing case-hardening steel in which crystal grains do not coarsen during carburizing heat treatment
JP2010024549A (en) Steel for machine structure
JP5363827B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP2938456B2 (en) Work roll for cold rolling and its manufacturing method
JP3573344B2 (en) Manufacturing method of highly clean maraging steel
JP2564534B2 (en) High speed tool steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees