JPH0578729A - Method for making ingot of low nitrogen steel containing rare earth element - Google Patents

Method for making ingot of low nitrogen steel containing rare earth element

Info

Publication number
JPH0578729A
JPH0578729A JP3268478A JP26847891A JPH0578729A JP H0578729 A JPH0578729 A JP H0578729A JP 3268478 A JP3268478 A JP 3268478A JP 26847891 A JP26847891 A JP 26847891A JP H0578729 A JPH0578729 A JP H0578729A
Authority
JP
Japan
Prior art keywords
rem
rare earth
steel
earth element
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3268478A
Other languages
Japanese (ja)
Other versions
JP3149476B2 (en
Inventor
Kiyotaka Takachio
清孝 高知尾
Shigeru Kihara
茂 木原
Junichi Nishida
純一 西田
Yasushi Yamane
康史 山根
Norimasa Uchida
憲正 内田
Hideki Nakamura
秀樹 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP26847891A priority Critical patent/JP3149476B2/en
Publication of JPH0578729A publication Critical patent/JPH0578729A/en
Application granted granted Critical
Publication of JP3149476B2 publication Critical patent/JP3149476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To produce low nitrogen steel contg. a rare earth metal effective for improving the grindability of high V high-speed tool steel, etc. CONSTITUTION:A consumable electrode optionally contg. a rare earth metal and having <1,000ppm nitrogen content is refined in a vacuum induction furnace on the 1st stage and subjected to electro-slag remelting with a flux contg. a rare earth metal on the 2nd stage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、希土類元素を含有し、
低い窒素量である工具鋼の造塊方法に関し、特に高硬度
の材料を切削する刃物、例えばタップ、エンドミル等に
使用され、刃物自体の研削による成形性が良好な高V高
速度工具鋼に最適な造塊方法に関するものである。
The present invention contains a rare earth element,
Concerning the method for ingot tool steel with low nitrogen content, it is especially suitable for high V high speed tool steel that is used for blades that cut high hardness materials such as taps and end mills, and has good formability by grinding the blades themselves. The present invention relates to a simple ingot making method.

【0002】[0002]

【従来の技術】近年、各種機械の高性能化に伴って、使
用する部材の高硬度化が図られている。そのような部材
を切削する工具である高速度工具鋼についても高性能化
が望まれている。一方、高速度工具鋼の強度耐摩耗性を
向上するためにV含有量を高めることが行なわれている
が、この場合VC炭化物の粗大化に伴う切削工具自体の
被研削性低下が伴いやすい。そこで、VC炭化物を微細
化して良好な被研削性を得るために、N,Ti,Nb, T
a含有量の規制(特開昭62−211354号)、希土類
元素(以後REMと略記)やZr,Hfの添加(特開昭62
−211354号、特開昭57−3742号、特開昭6
1−213350号)、Alの単独またはREMとの共
同添加(特開昭63−213641号)、Caの単独ま
たはAl,REMとの共同添加(特開平1−252号)、
REM添加効果を有効に活用するための含有Ti、N量
の規制(特開昭62−211354号、特開平1−14
2055号)、Alの単独またはREMとの共同添加効
果を有効に活用するための含有Ti、N量の規制(特開
平1−142056号)など、化学成分上の提案が数多
くなされている。これらを要約すると、V添加によって
強度、耐摩耗性を付与する高速度工具鋼のVC炭化物を
微細化して被研削性を改善し、工具への成形を容易にす
るためには、N,Ti,Nb,Ta等を規制して、REM,A
l,Ca,Zr,Hf等を添加することが効果的である。しか
し、本発明者らの経験によれば、規制すべき元素として
は、Nが、また添加すべき元素としてはREM,Alが特
に有効であり、この規制と添加の組合せによって飛躍的
な性能改善を図ることができる。
2. Description of the Related Art In recent years, as the performance of various machines has increased, the hardness of members used has been increased. High-performance tool steel, which is a tool for cutting such members, is also required to have high performance. On the other hand, the V content has been increased in order to improve the strength and wear resistance of the high speed tool steel, but in this case, the grindability of the cutting tool itself tends to be deteriorated due to the coarsening of VC carbide. Therefore, in order to obtain a fine grindability by finely dividing the VC carbide, N, Ti, Nb, T
Regulation of a content (JP-A-62-21354), addition of rare earth elements (hereinafter abbreviated as REM), Zr, and Hf (JP-A-62-62354)
-2111354, JP-A-57-3742, JP-A-6
1-213350), Al alone or jointly added with REM (JP-A-63-213641), Ca alone or jointly added with Al, REM (JP-A-1-252),
Regulation of Ti and N contents for effectively utilizing the effect of REM addition (Japanese Patent Laid-Open No. 62-21354, Japanese Patent Laid-Open No. 1-14)
2055), Al alone or in order to effectively utilize the effect of joint addition with REM, the content of Ti and the content of N are regulated (Japanese Patent Laid-Open No. 142056), and many proposals for chemical components have been made. To summarize these, in order to improve the grindability by refining the VC carbide of the high-speed tool steel that imparts strength and wear resistance by adding V, and to facilitate the forming into a tool, N, Ti, REM, A by controlling Nb, Ta, etc.
It is effective to add 1, Ca, Zr, Hf and the like. However, according to the experience of the present inventors, N is particularly effective as the element to be regulated, and REM and Al are particularly effective as the elements to be added, and the combination of the regulation and the addition significantly improves the performance. Can be planned.

【0003】一方、高速度工具鋼の溶解設備としては、
一般にアーク炉、高周波誘導炉が用いられているが、こ
れらはいずれも大気中で溶解するものであるために、N
のピックアップが避けられられない。特にV含有量を高
めた高速度工具鋼の場合、VとNの親和力が大きいため
にNのピックアップ量が大きい。さらに大気中での溶解
の弊害は、REMおよびAl含有量のコントロールにも
及び、特にREMは酸素との親和力が大きいために大気
中での溶解、鋳造では、他に何らかの方策を講じない限
り、REMの添加歩留が極端に低く、著しい場合は鋼塊
中のREM歩留残留量が疵跡程度になる。そこで、Nの
低減方法およびREMの添加方法については多くの提案
がなされている。V含有量を高めた工具鋼の溶解方法に
限って言えば、例えば、真空誘導・脱ガス溶解炉を使用
することが、特開昭61−213350号、特開昭62
−211354号等で提案されている。
On the other hand, as a melting facility for high speed tool steel,
Generally, an arc furnace and a high-frequency induction furnace are used, but since both of these melt in the atmosphere, N
I can't avoid picking up. Especially in the case of high-speed tool steel with a high V content, the amount of N picked up is large because the affinity between V and N is large. Further, the adverse effect of melting in the atmosphere also extends to the control of the REM and Al contents. Especially, since REM has a large affinity with oxygen, in melting in the atmosphere and casting, unless some other measures are taken, If the addition yield of REM is extremely low, and if it is significant, the residual amount of REM yield in the steel ingot will be about a flaw. Therefore, many proposals have been made for a method of reducing N and a method of adding REM. Speaking only of the melting method of tool steel having a high V content, for example, the use of a vacuum induction / degassing melting furnace is disclosed in JP-A-61-213350 and JP-A-62.
-2111354 and the like.

【0004】しかしながら、本発明者らの知見によれ
ば、真空誘導炉は脱ガス作用が大きいので、この炉を使
用することにより確かにNは容易に100ppm以下に低減で
きるが、REMを添加した場合、次の点で問題がある。
すなわち、REMは極めて反応性に富むために、真空誘
導炉であっても溶解雰囲気中のわずかな酸素と反応する
だけでなく、溶解炉の内張耐火物や鋳造系に使用する設
備の耐火物(通常活性元素の酸化物)を還元し、自身は
酸化物となって溶湯中に混入する。しかも、混入したR
EMの酸化物は比重が大きく(6以上)、溶湯からの浮上
分離が極めて緩慢である。したがって、REM添加から
鋳型への鋳造が完了するまでに、REM酸化物の凝集は
進むが、それが溶湯に懸濁した状態であるために、真空
誘導溶解で製造したREMを添加した、例えば高V系高
速度工具鋼は、大気溶解品に比較すれば清浄ではある
が、REMを添加しない場合に比べて清浄度が著しく劣
る。特に、鋼塊の外周部にREM酸化物が凝集した大型
の介在物が存在する場合には、該高V系高速度工具鋼の
主要な用途であるタップやエンドミルなどの切削工具が
外周部を使用することから、工具寿命を劣化させ、さら
に鋼塊の熱間加工時における表面疵発生の起点となり、
製造歩留をも著しく悪化させる。そこで、REM添加高
V系高速度工具鋼等の製造に際しては清浄度の改善が不
可欠の課題となる。
However, according to the knowledge of the present inventors, since the vacuum induction furnace has a large degassing action, although N can be easily reduced to 100 ppm or less by using this furnace, REM was added. If so, there is a problem in the following points.
That is, since REM is extremely reactive, it not only reacts with a small amount of oxygen in the melting atmosphere even in a vacuum induction furnace, but also the refractory of the lining refractory of the melting furnace and the equipment used for the casting system ( Normally, oxides of active elements) are reduced, and they themselves become oxides and are mixed in the molten metal. Moreover, mixed R
The oxide of EM has a large specific gravity (6 or more), and the floating separation from the molten metal is extremely slow. Therefore, although the aggregation of REM oxide progresses from the addition of REM to the completion of casting into the mold, since it is in a state of being suspended in the molten metal, REM produced by vacuum induction melting is added, for example, The V-based high speed tool steel is clean as compared with the air-melted product, but the cleanliness is remarkably inferior as compared with the case where REM is not added. In particular, when a large inclusion of REM oxide is present on the outer peripheral portion of the steel ingot, a cutting tool such as a tap or an end mill, which is a main application of the high V type high speed tool steel, covers the outer peripheral portion. Since it is used, it deteriorates the tool life and also becomes the starting point of surface defects during hot working of steel ingots.
It also significantly deteriorates the manufacturing yield. Therefore, improvement of cleanliness becomes an indispensable subject in the production of REM-added high V type high speed tool steel and the like.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前述の高V
系高速度工具鋼等の被研削性が高く、また、高い清浄性
を有する希土類元素含有低窒素鋼の造塊方法を提供する
ことを目的とする。なお、本発明が主要目標とする高V
系高速度工具鋼とは、例えば次の化学成分を有するもの
である。すなわち、重量比でC:0.9〜1.5%、Si:2%以
下、Cr:3〜6%、MoとWの1種または2種を2Mo+Wで
14〜25%、V 2〜5%、N:100ppm以下、希土類元素:0.005
〜0.2%、Al 0.002〜0.3%、またはさらにCo:15%以下を
含み、残部がFeおよび不可避的不純物からなるもので
ある。
The present invention is based on the above-mentioned high V
An object of the present invention is to provide a method for ingoting a rare earth element-containing low-nitrogen steel having high grindability such as a high-speed system tool steel and having high cleanability. The high V which is the main goal of the present invention
The high-speed tool steels have, for example, the following chemical components. That is, by weight ratio, C: 0.9 to 1.5%, Si: 2% or less, Cr: 3 to 6%, one or two of Mo and W at 2Mo + W.
14-25%, V2-5%, N: 100ppm or less, rare earth element: 0.005
.About.0.2%, Al 0.002 to 0.3%, or further Co: 15% or less, with the balance being Fe and inevitable impurities.

【0006】[0006]

【課題を解決するための手段】本発明は、真空誘導炉に
より、窒素含有量が100ppm未満である消耗電極を溶製す
る第1の工程と、該消耗電極を、希土類元素の化合物を
含有するフラックスを用いてエレクトロスラグ再溶解す
る第2の工程からなることを特徴とする希土類元素含有
低窒素鋼の造塊方法である。ここで、望ましくはエレク
トロスラグ再溶解のフラックス中に含有される希土類元
素化合物が少なくとも酸化物および弗化物のいずれかと
するものである。
According to the present invention, a vacuum induction furnace is used to melt a consumable electrode having a nitrogen content of less than 100 ppm, and the consumable electrode contains a compound of a rare earth element. It is a method for ingoting rare-earth element-containing low-nitrogen steel, characterized by comprising a second step of remelting electroslag using flux. Here, it is desirable that the rare earth element compound contained in the electroslag remelting flux is at least one of an oxide and a fluoride.

【0007】[0007]

【作用】本発明では、真空誘導炉による窒素、酸素など
の脱ガス効果と、エレクトロスラグ再溶解法(以下、E
SR法という)における清浄化およびそれに用いるフラ
ックスをREMの化合物とすることによるREM添加作
用、または添加歩留向上効果を組み合わせることによ
り、容易にN 100ppm以下で、REMを0.005〜0.2%含有
し、かつ清浄で熱間加工性にも優れた高V系高速度工具
鋼等のREM含有低窒素鋼を造塊することが可能とな
る。真空誘導炉により、低窒素鋼が容易に得られること
は既に述べた。本発明によれば、REMの添加は真空誘
導炉による溶解過程で行なわなくても、ESR中のフラ
ックスから添加できるが、正確なREMの添加量とする
ためには、電極の製造時にREMを添加しておく方が望
ましい。
In the present invention, the degassing effect of nitrogen, oxygen, etc. by the vacuum induction furnace and the electroslag remelting method (hereinafter referred to as E
(Hereinafter referred to as SR method), and by combining the REM addition effect by making the flux used for the cleaning and the flux used for it a compound of REM, or the addition yield improvement effect, easily containing N of 100 ppm or less and 0.005 to 0.2% of REM, Further, it becomes possible to ingot REM-containing low nitrogen steel such as high V type high speed tool steel which is clean and has excellent hot workability. It has already been stated that the vacuum induction furnace can easily obtain low nitrogen steel. According to the present invention, the REM can be added from the flux in the ESR without performing the REM addition in the melting process in the vacuum induction furnace. However, in order to obtain an accurate REM addition amount, the REM is added at the time of manufacturing the electrode. It is better to keep it.

【0008】鋼塊の清浄度を改善する方法の一つとして
ESR法が知られている。ESR法は、他の炉で溶製
し、作製した消耗電極の下部を水冷金属ルツボ中の溶融
スラグに浸漬して、消耗電極−溶融スラグ−鋼塊で構成
される回路に直流または交流電流を通電することによっ
て、溶融スラグのジュール熱で該消耗電極をその下部側
から溶解して融滴化させ、ルツボ内のスラグ中を滴下さ
せることによって鋼塊を製造するものである。ESR鋼
塊の一つの特徴は、積層凝固によって均一緻密な凝固組
織が得られることである。他の特徴は、溶融スラグによ
る精錬効果である。消耗電極下部が溶解してできた融滴
は消耗電極先端を離れて溶融スラグ中を沈降して、成長
しつつある鋼塊頭部の溶湯部分(プール)に滴下する。
この間溶湯は、溶融スラグによって大気から保護される
とともに、溶融スラグとの接触によって脱酸、脱硫など
の精錬効果を受け、また、介在物もスラグに吸収され
る。ESR溶解では消耗電極先端で溶湯のフィルムが形
成される段階で、表面張力により介在物の溶湯表面への
排出が促進されると考えられ、極めて容易に介在物の除
去が行なわれる。また、仮に介在物が融滴内部に包含さ
れたまま溶融スラグ中を沈降し、溶湯プールに至った場
合であっても、溶湯プール下部まで到達しないので浮上
による分離が容易である。したがって、ESR法を採用
することにより、REM添加高V系高速度工具鋼等の清
浄度改善が期待される。
The ESR method is known as one of the methods for improving the cleanliness of a steel ingot. In the ESR method, the consumable electrode produced by melting in another furnace is immersed in the molten slag in the water-cooled metal crucible, and a direct current or an alternating current is applied to a circuit composed of the consumable electrode, the molten slag, and the steel ingot. By energizing, the consumable electrode is melted from its lower side by the Joule heat of the molten slag to form a molten droplet, and the slag in the crucible is dropped to produce a steel ingot. One of the characteristics of the ESR steel ingot is that a uniform and dense solidified structure can be obtained by layered solidification. Another feature is the refining effect of molten slag. The molten droplets formed by melting the lower portion of the consumable electrode settles in the molten slag leaving the tip of the consumable electrode and drops on the molten metal portion (pool) of the growing steel ingot head.
During this time, the molten metal is protected from the atmosphere by the molten slag, is subjected to refining effects such as deoxidation and desulfurization by contact with the molten slag, and inclusions are also absorbed by the slag. In ESR melting, it is considered that the surface tension accelerates the discharge of inclusions to the surface of the molten metal when the molten metal film is formed at the tip of the consumable electrode, and thus the inclusions are extremely easily removed. Further, even if the inclusions settle in the molten slag while being contained in the melt droplets and reach the molten metal pool, they do not reach the lower part of the molten metal pool, and therefore separation by levitation is easy. Therefore, the adoption of the ESR method is expected to improve the cleanliness of REM-added high V type high speed tool steel and the like.

【0009】しかしながら、ESR法をREM添加高V
系高速度工具鋼等に適用するに際し、大きな問題は、通
常のESRで使用するCaF2,Al23,CaO等を配合
したスラグを用いたのでは、ESR鋼塊に均一にREM
を添加することが容易ではないことである。これは例え
ば消耗電極中にREMを含有していたとしても、上記の
通常のスラグを使用した時には、溶融スラグ中の酸素ポ
テンシャルが高く、REMの酸化消耗によりREMの添
加歩留が著しく低下するためである。これに対して、ス
ラグ中にREMの化合物(酸化物、弗化物等)を添加
し、直流電気によるESR溶解を実施して上記化合物の
電解還元により金属溶湯にREMを添加する方法(特公
昭46−36082号)や、スラグ中または消耗電極中
に1種または2種以上のREMを添加してESRを行な
う方法(特開昭59−23811号)が提案されてい
る。これらはいずれも、スラグ中にREMの化合物を配
合し、その電解還元により、またはさらにスラグ中の酸
素ポテンシャルを下げることにより、スラグや消耗電極
中のREMを有効に鋼塊中に合金化するものであり、前
者の公知例では直流溶解を推奨しているが、明細書中の
実施例にも見られる通り、交流溶解でもREM添加の効
果が得られる程度には鋼塊中にREMは添加され、さら
に鋼塊中のREMを高めたい場合には、後者の公知例の
如く、消耗電極中に予めREMを添加しておけばよく、
直流であると交流であるとに関わらず、効果の得られる
方法である。
However, the ESR method is applied to REM-added high V
Upon applying the system high-speed tool steel, a large problem, CaF 2, Al 2 O 3 for use in a normal ESR, than with a slag blended in like CaO, uniformly in ESR ingot REM
Is not easy to add. This is because even if the consumable electrode contains REM, when the above-mentioned ordinary slag is used, the oxygen potential in the molten slag is high, and the REM addition yield is significantly reduced due to the REM oxidation consumption. Is. On the other hand, a method in which a REM compound (oxide, fluoride, etc.) is added to the slag, ESR dissolution is performed by direct current electricity, and REM is added to the molten metal by electrolytic reduction of the compound (Japanese Patent Publication No. No. 3606083) or a method of performing ESR by adding one or more kinds of REM to the slag or the consumable electrode (JP-A-59-23811). In any of these, REM compounds are mixed in slag, and the REM in the slag or consumable electrode is effectively alloyed in the steel ingot by electrolytic reduction thereof or by further lowering the oxygen potential in the slag. In the former known example, DC melting is recommended, but as seen in the examples in the specification, REM is added to the steel ingot to the extent that the effect of REM addition can be obtained even with AC melting. If it is desired to further increase the REM in the steel ingot, it is sufficient to add REM to the consumable electrode in advance as in the latter known example.
This is an effective method regardless of whether it is direct current or alternating current.

【0010】しかしながら、上記提案の眼目は、あくま
でもESR法において、REMを鋼塊中に有効に添加す
ることであり、前述のようにREM添加高V系高速度工
具鋼等が高性能を発揮するもう一つの条件であるNの規
制については何ら解決するものではない。これはESR
法が大気中で溶解を行なうものであるため、何ら措置を
講じない場合には、鋼塊中のNは増加こそすれ減少する
ことはなく、特開昭59−23811号が示唆するよう
に、REM添加効率を向上するためにアルゴン等の不活
性ガスを用いてスラグ面をシールしたとしても、たかだ
かNの増加を抑制する効果しかないことから明らかであ
る。しかも、消耗電極を高速度工具鋼の溶製に通常使用
されるアーク炉や高周波誘導炉で溶製した場合には、前
述の如く使用原料をどんなに厳選したとしても200ppm以
下のN含有量を得ることは至難の技である。
However, the purpose of the above proposal is to effectively add REM to the steel ingot in the ESR method, and as described above, the REM-added high V type high speed tool steel and the like exert high performance. There is no solution to the other requirement, N regulation. This is ESR
Since the method involves melting in the atmosphere, if no measures are taken, N in the steel ingot will never increase or decrease, and as suggested by JP-A-59-23811, Even if the slag surface is sealed with an inert gas such as argon in order to improve the REM addition efficiency, it is clear that it has only an effect of suppressing the increase of N. Moreover, when the consumable electrode is melted in an arc furnace or a high-frequency induction furnace that is usually used for melting high-speed tool steel, no matter how carefully the raw materials used are selected, as described above, an N content of 200 ppm or less is obtained. That is a difficult technique.

【0011】以上述べたことからわかるように、本発明
は、真空誘導炉による脱ガス効果とESR法による清浄
化およびこれに用いるフラックスをREMの化合物を含
有するものとすることによるREM添加作用、または添
加歩留向上効果を併せて有し、これにより、容易にN 1
00ppm以下で、REMを0.005〜0.2%含有して被削性を向
上し、かつ清浄で工具寿命や熱間加工性にも優れたRE
M含有低N鋼を造塊することが可能となる。本発明の造
塊方法の手段を用いれば、それぞれ従来から知られてい
る真空誘導炉適用、およびESR法適用の作用の組合せ
では得られない作用効果が得られる。なぜなら、第一に
REMを含有し、窒素が100ppm以下という低Nである新
しい鋼の造塊法は今まで知られておらず、このニーズに
対応するためには従来の技術は、前述しているように、
せいぜい化学成分上の対策か、または単独の造塊法の中
での工夫に留まっていたのである。第二に、本発明が対
象とする新しい鋼の造塊法を達成するために、真空誘導
溶解は、ESR法では達成できない低N化と共にREM
の添加をも行なうことができ、ESR法でのN増加の危
険性やREMの歩留不安定性を補っている。一方、ES
R法は真空誘導溶解のみでは達成できない鋼中のREM
の均一分布と、狙い通りのREM添加量とするために、
通常は使用されないREM化合物を含有するフラックス
を用いて再溶解を行なうという特殊な手段を採用してい
る。このように本発明の造塊方法の手段は、各要素が相
互に相補うものであり、これにより初めてNが100ppm以
下でREMが0.005〜0.2%含有して被削性を向上し、か
つ清浄で熱間加工性にも優れたREM含有低N鋼を造塊
することが可能となり、これに圧延等の既存の工程を施
して製造された工具は、その寿命が飛躍的に向上するも
のである。
As can be seen from the above description, the present invention provides the degassing effect by the vacuum induction furnace, the cleaning by the ESR method, and the REM addition action by making the flux used therefor contain the compound of REM, Alternatively, it also has the effect of improving the yield of addition, which makes it easy to add N 1
RE that is 0.00ppm or less and contains 0.005 to 0.2% REM to improve machinability, and is clean and has excellent tool life and hot workability.
It is possible to ingot M-containing low N steel. When the means of the ingot making method of the present invention is used, it is possible to obtain operational effects that cannot be obtained by a combination of the operations of the conventionally known vacuum induction furnace application and ESR method application. This is because, first of all, no new steel ingot method that contains REM and has a low N of 100 ppm or less of nitrogen has not been known until now. Like
At best, it was limited to the chemical composition measures or to devise it in the single ingot making method. Secondly, in order to achieve the new steel ingot-making method targeted by the present invention, vacuum induction melting is performed with REM with a low N which cannot be achieved by the ESR method.
Can be added, which compensates for the risk of N increase in the ESR method and the yield instability of REM. On the other hand, ES
The R method cannot be achieved by vacuum induction melting alone.
In order to obtain a uniform distribution of
A special means is adopted in which redissolution is performed using a flux containing a REM compound which is not normally used. In this way, the means of the ingot making method of the present invention are such that the respective elements are mutually complementary, whereby N content is 100 ppm or less and REM content is 0.005 to 0.2% for the first time to improve machinability and cleanliness. It is possible to ingot REM-containing low N steel with excellent hot workability, and the tool produced by applying existing processes such as rolling has a dramatically improved life. is there.

【0012】[0012]

【作用】次に本発明の造塊法に適するREM含有低N鋼
の推奨合金成分範囲について述べる。Cは、Cr、W、
Mo、Vなどの炭化物生成元素と結合して炭化物を形成
し、焼入−焼もどし硬さを与え、耐摩耗性、耐熱性、耐
焼付性に寄与する。多すぎると靭性が低下し、また巨大
な炭化物を生じさせるので、Cr、W、Mo、V量とバラ
ンスさせて含有させ、0.9〜1.5%に限定するのが望まし
い。Siは主に脱酸を目的として2%以下添加するとよ
い。Crは、焼入性、耐摩耗性、耐酸化性、また適切な
含有量の設定により高温強度、焼もどし軟化抵抗を向上
させる。上記の目的により3%以上とするが、多すぎると
却って高温強度、焼もどし軟化抵抗を低下させ、また靭
性も下げるので6%以下とするのが望ましい。WおよびM
oは、Cと結合して特殊炭化物を形成し、耐摩耗性、耐
焼付性向上に寄与する。また焼もどしによる二次硬化作
用が大きく、高温強度に寄与する。以上の効果を得るた
めに、2Mo+W量が14〜25%を満たすように添加する。
W+2Mo量が14%未満では上記の効果が十分に得られ
ず、多すぎると靭性、熱間加工性を損うので、2Mo+W
25%以下とするのが望ましい。
Next, the recommended alloy composition range of the REM-containing low N steel suitable for the ingot making method of the present invention will be described. C is Cr, W,
It combines with carbide-forming elements such as Mo and V to form carbides, imparts quenching-tempering hardness, and contributes to wear resistance, heat resistance, and seizure resistance. If the amount is too large, the toughness is lowered and a huge carbide is generated. Therefore, it is desirable to contain the Cr in a balanced manner with the amounts of Cr, W, Mo and V, and to limit the content to 0.9 to 1.5%. Si is preferably added in an amount of 2% or less mainly for the purpose of deoxidation. Cr improves hardenability, wear resistance, oxidation resistance, and improves high temperature strength and temper softening resistance by setting an appropriate content. For the above purpose, it is set to 3% or more, but if it is too large, the high temperature strength and the tempering softening resistance are rather lowered, and the toughness is also lowered. W and M
O combines with C to form a special carbide, which contributes to the improvement of wear resistance and seizure resistance. In addition, the secondary hardening effect by tempering is large, which contributes to high temperature strength. In order to obtain the above effects, 2Mo + W is added so as to satisfy 14 to 25%.
If the amount of W + 2Mo is less than 14%, the above effect is not sufficiently obtained, and if it is too large, the toughness and hot workability are impaired, so 2Mo + W
It is desirable to be 25% or less.

【0013】VはCと結合して硬質の炭化物を形成し、
耐摩耗性向上に寄与する。ただし、この炭化物は、砥粒
よりも硬いため、研削砥石を早期に摩滅させる。特に、
粗大な炭化物が多数生じ、分布が一様でないと、被研削
性は著しく低下する。このため、従来被研削性を重視す
る場合、1.2%以下程度にとどめていた。しかし、本発明
は、REMを添加し、また低N化すると、多量にVを含
有しても粗大なVを主体としたMC型炭化物の発生を防
ぐことができることにより、用途に応じて、2.0〜5%の
範囲で適当な量を含有させるものである。5%を越えると
本発明の効果が小さくなるため5%以下とし、少なすぎる
と耐摩耗性に十分寄与しないため2.0%以上とするとよ
い。Nは本発明鋼の不純物である。N量が100ppmを越え
ると、REMの添加によるVC微細化効果を損なうため
に100ppm以下とした。REMはMC型炭化物の絶対量を
増やす効果、さらにVC炭化物を微細に晶出させる効果
がある。0.005%より少ないと、これらの効果が少なく、
0.2%を越えるとSやOと結合して介在物を作り、また鋳
造欠陥の原因となるため、0.02〜0.2%に限定するのがよ
い。Alは溶鋼中の酸素の活量を下げる作用があり、R
EMの酸化物の生成を抑制し、REMのVC微細化効果
を助長する。0.002%未満ではこの効果が少なく、0.3%を
越えるとAlの酸化物が増え清浄度を悪くする。Coは基
地に固溶して、本発明鋼の強度、耐熱性を向上させるも
ので本発明による炭化物形態制御、鋳造組織改善には直
接関与しないが、必要に応じて15%以下添加する。
V combines with C to form a hard carbide,
Contributes to improved wear resistance. However, since this carbide is harder than the abrasive grains, it causes the grinding wheel to wear early. In particular,
If a large number of coarse carbides are generated and the distribution is not uniform, the grindability is significantly reduced. For this reason, in the past, when importance was placed on grindability, it was limited to about 1.2% or less. However, according to the present invention, when REM is added and the N content is lowered, it is possible to prevent the generation of MC type carbide mainly composed of coarse V even if a large amount of V is contained. An appropriate amount is contained within the range of up to 5%. If it exceeds 5%, the effect of the present invention becomes small, so it is set to 5% or less, and if it is too small, it does not sufficiently contribute to wear resistance, so it is preferable to set it to 2.0% or more. N is an impurity in the steel of the present invention. When the amount of N exceeds 100 ppm, the effect of refining VC due to addition of REM is impaired, so the amount is set to 100 ppm or less. REM has the effect of increasing the absolute amount of MC type carbides and the effect of finely crystallizing VC carbides. If less than 0.005%, these effects are less,
If it exceeds 0.2%, it will combine with S and O to form inclusions and cause casting defects. Therefore, it is preferable to limit the content to 0.02 to 0.2%. Al has a function of lowering the activity of oxygen in molten steel, and R
It suppresses the generation of EM oxide and promotes the VC miniaturization effect of REM. If it is less than 0.002%, this effect is small, and if it exceeds 0.3%, Al oxides increase and the cleanliness deteriorates. Co dissolves in the matrix to improve the strength and heat resistance of the steel of the present invention and does not directly contribute to the control of the carbide morphology and the improvement of the cast structure according to the present invention, but is added in an amount of 15% or less if necessary.

【0014】[0014]

【実施例】公称6tonの真空誘導炉に原料を装入し、真空
中で溶解した(但し、No.4は大気誘導炉)。真空誘導炉
においてタンク内の圧力は、平衡論的に溶湯のN溶解度
が100ppm以下となるように維持した。REM以外の成分
調整が全て終了し、溶湯のN含有量が100ppm以下である
ことを確認した後、炉内にREM所要量を添加して取鍋
に出鋼した。さらに真空中(No.5は除く)で所定形状の
鋳型に鋳造して消耗電極を作製した(但し、No.5はイン
ゴットに鋳造)。それぞれ溶製した消耗電極の化学成分
を表1のNo.1,2,3,4,6,7の上段「電極」に示す。ここ
で真空誘導炉はVIFで表わしている。VIFによる消
耗電極中のREMは該表のREM(電極)欄に示すよう
に、0.04〜0.06%であり、Mの添加歩留は、REM歩留
(電極)欄に示すように59〜73%、Nは29〜39ppmの範囲
であった。上記消耗電極を交流式ESRを実施して鋼塊
とした。ESRにおけるフラックスの使用量は消耗電極
装入ton当り約50kgである。また、ESR時の大気から
の〔N〕混入を防止するため鋳型内をArガスで置換し
て溶解を行なった。なお、No.1,2は電極としてほぼ同
様の化学成分を有するものであり、No.6はNo.1,2に対
してCoを増量した例、No.7はNo.1,2に対してCoを除
くとともにW,V量を増量し、Moを減量した例であ
る。これら本発明の実施例においてはESR鋼塊中のR
EMは0.03〜0.05%であり、消耗電極中のREMに対す
る歩留は67〜83%であり、また、ESR鋼塊中のNは42
〜53ppmと十分低い範囲であった。
[Example] Raw materials were charged into a vacuum induction furnace having a nominal volume of 6 tons and melted in a vacuum (however, No. 4 is an atmospheric induction furnace). In the vacuum induction furnace, the pressure in the tank was maintained so that the N solubility of the molten metal would be 100 ppm or less in equilibrium theory. After all the components other than REM were adjusted and it was confirmed that the N content of the molten metal was 100 ppm or less, the required amount of REM was added to the furnace and the steel was tapped. Further, in a vacuum (excluding No. 5), a consumable electrode was produced by casting in a mold of a predetermined shape (however, No. 5 was cast in an ingot). The chemical components of the melted consumable electrodes are shown in Table 1, Nos. 1,2,3,4,6,7 above "electrodes". Here, the vacuum induction furnace is represented by VIF. The REM in the consumable electrode by VIF is 0.04 to 0.06% as shown in the REM (electrode) column of the table, and the addition rate of M is 59 to 73% as shown in the REM yield (electrode) column. , N was in the range of 29 to 39 ppm. The consumable electrode was subjected to AC ESR to obtain a steel ingot. The amount of flux used in ESR is approximately 50 kg per ton of charged consumable electrode. Further, in order to prevent the mixing of [N] from the atmosphere during ESR, the inside of the mold was replaced with Ar gas for dissolution. In addition, No. 1 and 2 have almost the same chemical composition as an electrode, No. 6 is an example in which Co is increased with respect to No. 1 and 2, No. 7 is against No. 1 and 2. Is an example in which Co is removed and W and V are increased, and Mo is decreased. In these examples of the present invention, R in the ESR steel ingot is
EM is 0.03 to 0.05%, the yield for REM in the consumable electrode is 67 to 83%, and N in the ESR steel ingot is 42.
It was a sufficiently low range of ~ 53ppm.

【0015】一方、表1のNo.3〜5は比較例であり、N
o.3はNo.1,2と同じ基本化学成分で真空誘導炉で消耗電
極を溶製し、フラックスにREM化合物を配合しないで
ESRを実施した場合、No.4は通常の大気中高周波誘
導炉で消耗電極を溶製し、ESRのフラックスにREM
化合物を配合した場合、No.5はESRを行なわずに真
空誘導炉で直接鋼塊とした場合である。化学成分を比較
すると、No.3では本発明例に比較して消耗電極のRE
Mは0.06%とほぼ同値であるにも関わらず、ESR後は
0.01%と非常に低く、ESRでのREM歩留は本発明例
が前記のように67〜83%であるのに対し、約17%であっ
た。No.4ではREMについては0.02%と本発明例に比較
的近い値になっているが、消耗電極、ESR鋼塊ともに
Nの値が200ppmに近い値であった。No.5は化学成分上
は本発明例と同等である。
On the other hand, Nos. 3 to 5 in Table 1 are comparative examples.
o.3 is the same basic chemical composition as No.1 and 2, when a consumable electrode is melted in a vacuum induction furnace and ESR is carried out without compounding the REM compound in the flux, No.4 is normal high frequency induction in the atmosphere. Melt the consumable electrode in the furnace and use REM as the ESR flux.
When the compound was compounded, No. 5 is a case where a steel ingot was directly formed in a vacuum induction furnace without performing ESR. Comparing the chemical components, in No.3, the RE of the consumable electrode was
Although M is 0.06%, which is almost the same value, after ESR,
It was extremely low at 0.01%, and the REM yield at ESR was about 17%, while the REM yield of the present invention was 67 to 83% as described above. In No. 4, the REM was 0.02%, which was a value relatively close to that of the present invention, but the value of N was close to 200 ppm for both the consumable electrode and the ESR steel ingot. No. 5 is equivalent to the example of the present invention in terms of chemical composition.

【0016】上記7例の鋼塊を熱間分塊鍛造により、10
0mm角のビレットに成形した。この時、鋼塊重量をWIk
g、押湯等鋼塊不要部分重量をWRkg、表面キズをグライ
ンダーで除去した後のビレット重量をWBkgとすると、
熱間加工歩留A(%)は次式で示される。 A={WB/(WI−WR)}×100 この熱間加工歩留を後述の表2に併せて示すが、ESR
鋼塊(No.5以外)が全て90%またはこれをやや下回る程
度であるのに対し、真空誘導炉(VIF)で直接鋼塊と
した場合(No.5)は、71%であった。なお、No.5のキズ
発生部分を詳細に調査したところ、REMのオキサイ
ド、オキシサルファイド等を主体とする非金属介在物が
多量に認められた。
The steel ingots of the above 7 examples were subjected to hot slab forging to obtain 10
It was molded into a 0 mm square billet. At this time, the weight of the steel ingot is set to W I k
g, riser like ingot wastepaper weight W R kg, when the billet weight after the removal of surface defects by a grinder and W B kg,
The hot working yield A (%) is expressed by the following equation. A = {W B / (W I -W R)} × 100 is shown in conjunction with this hot working yield in Table 2 below, ESR
All the steel ingots (other than No. 5) were 90% or slightly lower than this, whereas the ingots directly made in the vacuum induction furnace (VIF) (No. 5) were 71%. When the scratched portion of No. 5 was investigated in detail, a large amount of non-metallic inclusions mainly composed of REM oxide, oxysulfide, etc. were observed.

【0017】上記各ビレットを焼鈍した後、熱間線材圧
延と続いて焼鈍を行ない線材とした。さらに、これらの
素材を冷間引抜き、研削加工して、直径 6.23mmの棒鋼
とし各種材質特性を評価した。評価項目としては、介在
物品位、VC炭化物量、熱処理硬さ、微小部抗折強度お
よび工具自体の成形性に関する被研削性とを評価した。
また、実際に日本工業規格並目ねじ用等径ハンドタップ
に製作し、切削寿命の評価を行なった。なお、熱処理条
件は1220℃塩浴焼入れ後、560℃×1hrで3回焼もどしし
た。これらの評価結果を前述の熱間加工歩留とともに表
2にまとめて示す。各試料の介在物品位は、上記熱処理
を施した棒鋼をその軸線に平行な表層から素材径の8分
の1深さ付近までダイヤモンド砥石研磨した平面の中央
部について、日本工業規格に基づいてB+Cの介在物を
測定した。このうち、No.1,3〜5の試料の介在物検鏡
例を図1に示す。また、同様にして創成した平面中央部
を酸化クロム研磨し、VC炭化物を観察した。この組織
例を図2に同様にして示す。
After each of the above billets was annealed, hot wire rod rolling and subsequent annealing were carried out to obtain a wire rod. Furthermore, these materials were cold drawn and ground into bar steel with a diameter of 6.23 mm, and various material properties were evaluated. As the evaluation items, the intervening article position, the amount of VC carbide, the heat treatment hardness, the micro-part bending strength, and the grindability related to the formability of the tool itself were evaluated.
In addition, it was actually manufactured into a uniform diameter hand tap for Japanese Industrial Standard coarse thread and the cutting life was evaluated. The heat treatment conditions were 1220 ° C. salt bath quenching and then tempering three times at 560 ° C. × 1 hr. The results of these evaluations are summarized in Table 2 together with the above-mentioned hot working yield. The intervening article position of each sample is B + C based on the Japanese Industrial Standard for the center part of the flat surface of the steel bar that has been subjected to the above-mentioned heat treatment from the surface layer parallel to its axis to a depth of about 1/8 of the diameter of the material with a diamond grindstone. Inclusions were measured. Among these, examples of inclusion microscopy of samples No. 1 and 3 to 5 are shown in FIG. In addition, the center portion of the plane formed in the same manner was polished with chromium oxide, and VC carbides were observed. An example of this structure is similarly shown in FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】各試料のVC面積率の定量は、前記介在物
測定と同様にダイヤモンド砥石研磨後、10%硝酸アルコ
ールで腐食し、かつ村上試薬でさらに腐食を行なった表
面について、測定総視野面積94,000μm2中のVC炭化物
を測定した。各試料の熱処理硬さは、前記介在物測定と
同様にして得た平面で、ビッカース硬度計で30kgの荷重
で測定した。また、微小部抗折強度は、棒鋼の中心軸を
含むごとく、0.8mm厚さの薄板を研削削り出しにより採
取し、該薄板のうち素材での表層部から素材径の8分の
1付近の部分が破断面となるごとく荷重負荷して行なっ
た。被削性の評価は、熱処理した棒鋼から軸心を含むご
とく、厚さ 2mmの薄板を採取し、この薄板のうち素材で
の表層部から素材径の8分の1付近の部分について、P
A砥石を用いて平面研削盤により、湿式プランジ研削を
行ない、研削試験後の砥石摩耗量と試料の研削除去量と
の比として求めた。研削条件は表3に示す。
The quantification of the VC area ratio of each sample was carried out in the same manner as in the above-mentioned inclusion measurement, after polishing with a diamond wheel, corroded with 10% nitric acid alcohol, and further corroded with Murakami reagent. VC carbides in μm 2 were measured. The heat treatment hardness of each sample was measured with a Vickers hardness tester under a load of 30 kg on a plane obtained in the same manner as the inclusion measurement. Further, the micro-part bending strength is measured by grinding and cutting a 0.8 mm-thick thin plate, including the center axis of a steel bar, and measuring about 1/8 of the material diameter from the surface layer part of the thin plate. The load was applied so that the part became a fracture surface. The machinability was evaluated by taking a thin plate with a thickness of 2 mm from the heat-treated steel bar, including the shaft center, and measuring P from the surface part of the thin plate to about 1/8 of the material diameter.
Wet plunge grinding was performed with a surface grinder using the A grindstone, and the ratio was obtained as the ratio between the grindstone wear amount after the grinding test and the grind removal amount of the sample. The grinding conditions are shown in Table 3.

【0021】↓[0021] ↓

【表3】 [Table 3]

【0022】No.1,2,6,7の本発明例の介在物試験結果
は、VIFによるNo.5に比し、いずれも十分低い。ま
た、VC炭化物は、図2に示すように、5μm(×400 写
真上で2mm)以上のVC炭化物は非常に少なく、微細に分
布していた。図示は省略するが、No.7は本発明例中で
は、最もVC炭化物が多数で微細に分布していた。一
方、No.3はREMが0.01%とほとんど残っておらず、こ
のためVC炭化物の微細化が不十分である。No.4はN
量が高いため、VC炭化物が粗大に晶出している。No.
5はVC炭化物について微細な組織が得られた。しか
し、これは上記のように介在物品位が悪くやや大きめの
REMのオキシサルファイド等が多数認められた。熱処
理硬さは、いずれもHV880以上の硬さが得られ、Coをや
や多く添加したNo.6は、約HV910の高硬度が得られた。
微小抗折強度では、VC炭化物、介在物ともに微細な組
織が得られた本発明例のNo.1,2,6,7は、VC面積率が
高いNo.7がやや低い以外、いずれも250kgf/mm2程度ま
たはそれ以上の高強度が得られた。No.3〜5は、VC炭
化物あるいは介在物が、やや粗大であったためか、本発
明例と比べるとやや強度は低めである。被研削性につい
ては、5μm以上のVC炭化物量の多いNo.3,4は、砥石
摩耗量が大きく、研削比も小さいのに対し、その他の試
料は、10前後の研削比が得られ、この値はSKH55と
ほぼ同等の被研削性を有することを表わしている。各試
料のタップ切削試験は、被削材として、厚さ 12mmのS
45Cの板を用い、内径 5.0mmの下穴を開けて、切削試
験を行なった。表4にタップ切削試験条件を示す。切削
寿命は、タップが折損するか、あるいはめねじ精度が日
本工業規格で定められた許容差を越えるまでの切削穴数
で評価した。
The inclusion test results of Examples 1, 2, 6 and 7 of the present invention are sufficiently lower than those of No. 5 by VIF. In addition, as shown in FIG. 2, the VC carbides had very few VC carbides of 5 μm (2 mm on a × 400 photograph) or more and were finely distributed. Although illustration is omitted, in No. 7, the VC carbides were the most in the examples of the present invention and were finely distributed. On the other hand, No. 3 has almost no REM remaining of 0.01%, and therefore the VC carbides are not sufficiently refined. No.4 is N
Since the amount is high, VC carbides are coarsely crystallized. No.
For No. 5, a fine structure was obtained for VC carbide. However, as described above, a large number of REM oxysulfides and the like having a poor intervening article position were observed as described above. Regarding the heat treatment hardness, a hardness of HV880 or higher was obtained in all cases, and a high hardness of about HV910 was obtained in No. 6 to which a large amount of Co was added.
With respect to micro bending strength, No. 1,2,6,7 of the present invention in which both VC carbides and inclusions had a fine structure were 250 kgf except that the VC area ratio was high and No. 7 was slightly low. A high strength of about / mm 2 or more was obtained. In Nos. 3 to 5, the VC carbides or inclusions were rather coarse, and the strength was slightly lower than that of the examples of the present invention. Regarding grindability, No.3,4 with a large amount of VC carbide of 5 μm or more has a large grindstone wear amount and a small grinding ratio, while other samples have a grinding ratio of about 10 The value indicates that the grindability is almost equal to that of SKH55. In the tap cutting test of each sample, S
A 45 C plate was used to make a pilot hole with an inner diameter of 5.0 mm, and a cutting test was performed. Table 4 shows tap cutting test conditions. The cutting life was evaluated by the number of cutting holes until the tap was broken or the internal thread precision exceeded the tolerance defined by Japanese Industrial Standards.

【0023】↓[0023] ↓

【表4】 [Table 4]

【0024】一般市販のタップ切削寿命を凌篤するため
には、VC量が面積率で4%以上で、HV880以上の硬さが
得られ、耐刃欠け性改善のため、220kgf/mm2以上の微小
部抗折強度を有することが必要と思われる。本発明例
は、いずれもこの条件を十分に満足しており、比較例の
No.3〜5と比べると高寿命が得られた。
In order to surpass the cutting life of taps on the market, a VC content of 4% or more and a hardness of HV880 or more can be obtained, and 220 kgf / mm 2 or more for improving the chipping resistance. It seems necessary to have a micro-section bending strength. All of the examples of the present invention satisfied this condition sufficiently, and a longer life was obtained as compared with Nos. 3 to 5 of the comparative examples.

【0025】[0025]

【発明の効果】以上に述べた如く、本発明によれば、従
来の造塊方法では困難であったREMを含有し、かつ低
Nである鋼を清浄度良く製造することが可能になり、そ
の結果、被研削性や工具寿命が大幅に向上した。また、
真空誘導溶解法に比し、熱間加工歩留が大幅に向上し、
生産コストは二重溶解によるコストアップを補って余り
あるものである。
As described above, according to the present invention, it becomes possible to manufacture a steel containing REM and having a low N, which has been difficult by the conventional ingot-making method, with good cleanliness. As a result, the grindability and tool life have been greatly improved. Also,
Compared with the vacuum induction melting method, the hot working yield is significantly improved,
The production cost more than compensates for the cost increase due to double melting.

【図面の簡単な説明】[Brief description of drawings]

【図1】代表的な試料の介在物ミクロ組織を示す金属顕
微鏡組織写真である。
FIG. 1 is a metallographic micrograph showing inclusion microstructure of a representative sample.

【図2】代表的な試料のVC炭化物を示す金属顕微鏡組
織写真である。
FIG. 2 is a metallographic micrograph showing a VC carbide of a representative sample.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年11月5日[Submission date] November 5, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0009[Correction target item name] 0009

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0009】しかしながら、ESR法をREM添加高V
系高速度工具鋼等に適用するに際し、大きな問題は、通
常のESRで使用するCaF2,Al23,CaO等を配合
したスラグを用いたのでは、ESR鋼塊に均一にREM
を添加することが容易ではないことである。これは例え
ば消耗電極中にREMを含有していたとしても、上記の
通常のスラグを使用した時には、溶融スラグ中の酸素ポ
テンシャルが高く、REMの酸化消耗によりREMの添
加歩留が著しく低下するためである。これに対して、ス
ラグ中にREMの化合物(酸化物、弗化物等)を添加
し、直流電流によるESR溶解を実施して上記化合物の
電解還元により金属溶湯にREMを添加する方法(特公
昭46−36082号)や、スラグ中または消耗電極中
に1種または2種以上のREMを添加してESRを行な
う方法(特開昭59−23811号)が提案されてい
る。これらはいずれも、スラグ中にREMの化合物を配
合し、その電解還元により、またはさらにスラグ中の酸
素ポテンシャルを下げることにより、スラグや消耗電極
中のREMを有効に鋼塊中に合金化するものであり、前
者の公知例では直流溶解を推奨しているが、明細書中の
実施例にも見られる通り、交流溶解でもREM添加の効
果が得られる程度には鋼塊中にREMは添加され、さら
に鋼塊中のREMを高めたい場合には、後者の公知例の
如く、消耗電極中に予めREMを添加しておけばよく、
直流であると交流であるとに関わらず、効果の得られる
方法である。
However, the ESR method is applied to REM-added high V
Upon applying the system high-speed tool steel, a large problem, CaF 2, Al 2 O 3 for use in a normal ESR, than with a slag blended in like CaO, uniformly in ESR ingot REM
Is not easy to add. This is because even if the consumable electrode contains REM, when the above-mentioned ordinary slag is used, the oxygen potential in the molten slag is high, and the REM addition yield is significantly reduced due to the REM oxidation consumption. Is. On the other hand, a method in which a REM compound (oxide, fluoride, etc.) is added to the slag, ESR dissolution is performed by a direct current, and REM is added to the molten metal by electrolytic reduction of the compound (Japanese Patent Publication No. No. 3606083) or a method of performing ESR by adding one or more kinds of REM to the slag or the consumable electrode (JP-A-59-23811). In any of these, REM compounds are mixed in slag, and the REM in the slag or consumable electrode is effectively alloyed in the steel ingot by electrolytic reduction thereof or by further lowering the oxygen potential in the slag. In the former known example, DC melting is recommended, but as seen in the examples in the specification, REM is added to the steel ingot to the extent that the effect of REM addition can be obtained even with AC melting. If it is desired to further increase the REM in the steel ingot, it is sufficient to add REM to the consumable electrode in advance as in the latter known example.
This is an effective method regardless of whether it is direct current or alternating current.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】次に本発明の造塊法に適するREM含有低
N鋼の推奨合金成分範囲について述べる。Cは、Cr、
W、Mo、Vなどの炭化物生成元素と結合して炭化物を
形成し、焼入−焼もどし硬さを与え、耐摩耗性、耐熱
性、耐焼付性に寄与する。多すぎると靭性が低下し、ま
た巨大な炭化物を生じさせるので、Cr、W、Mo、V量
とバランスさせて含有させ、0.9〜1.5%に限定するのが
望ましい。Siは主に脱酸を目的として2%以下添加する
とよい。Crは、焼入性、耐摩耗性、耐酸化性、また適
切な含有量の設定により高温強度、焼もどし軟化抵抗を
向上させる。上記の目的により3%以上とするが、多すぎ
ると却って高温強度、焼もどし軟化抵抗を低下させ、ま
た靭性も下げるので6%以下とするのが望ましい。Wおよ
びMoは、Cと結合して特殊炭化物を形成し、耐摩耗
性、耐焼付性向上に寄与する。また焼もどしによる二次
硬化作用が大きく、高温強度に寄与する。以上の効果を
得るために、2Mo+W量が14〜25%を満たすように添加
する。2Mo+W量が14%未満では上記の効果が十分に得
られず、多すぎると靭性、熱間加工性を損うので、2Mo
+W 25%以下とするのが望ましい。
Next, the recommended alloy composition range of the REM-containing low N steel suitable for the ingot making method of the present invention will be described. C is Cr,
It combines with carbide-forming elements such as W, Mo, and V to form carbides, imparts quenching-tempering hardness, and contributes to wear resistance, heat resistance, and seizure resistance. If the amount is too large, the toughness is lowered and a huge carbide is generated. Therefore, it is desirable to contain the Cr in a balanced manner with the amounts of Cr, W, Mo and V, and to limit the content to 0.9 to 1.5%. Si is preferably added in an amount of 2% or less mainly for the purpose of deoxidation. Cr improves hardenability, wear resistance, oxidation resistance, and improves high temperature strength and temper softening resistance by setting an appropriate content. For the above purpose, it is set to 3% or more, but if it is too large, the high temperature strength and the tempering softening resistance are rather lowered, and the toughness is also lowered. W and Mo combine with C to form a special carbide, which contributes to the improvement of wear resistance and seizure resistance. In addition, the secondary hardening effect by tempering is large, which contributes to high temperature strength. In order to obtain the above effects, 2Mo + W is added so as to satisfy 14 to 25%. If the amount of 2Mo + W is less than 14%, the above effect is not sufficiently obtained, and if it is too much, the toughness and hot workability are impaired.
+ W 25% or less is desirable.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0013[Correction target item name] 0013

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0013】VはCと結合して硬質の炭化物を形成し、
耐摩耗性向上に寄与する。ただし、この炭化物は、砥粒
よりも硬いため、研削砥石を早期に摩滅させる。特に、
粗大な炭化物が多数生じ、分布が一様でないと、被研削
性は著しく低下する。このため、従来被研削性を重視す
る場合、1.2%以下程度にとどめていた。しかし、本発明
は、REMを添加し、また低N化すると、多量にVを含
有しても粗大なVを主体としたMC型炭化物の発生を防
ぐことができることにより、用途に応じて、2.0〜5%の
範囲で適当な量を含有させるものである。5%を越えると
本発明の効果が小さくなるため5%以下とし、少なすぎる
と耐摩耗性に十分寄与しないため2.0%以上とするとよ
い。Nは本発明方法の眼目となる不純物である。N量が
100ppmを越えると、REMの添加によるVC微細化効果
を損なうために100ppm以下とした。REMはMC型炭化
物の絶対量を増やす効果、さらにVC炭化物を微細に晶
出させる効果がある。0.005%より少ないと、これらの効
果が少なく、0.2%を越えるとSやOと結合して介在物を
作り、また鋳造欠陥の原因となるため、0.005〜0.2%に
限定するのがよい。Alは溶鋼中の酸素の活量を下げる
作用があり、REMの酸化物の生成を抑制し、REMの
VC微細化効果を助長する。0.002%未満ではこの効果が
少なく、0.3%を越えるとAlの酸化物が増え清浄度を悪
くする。Coは基地に固溶して、上記の強度、耐熱性を
向上させるもので本発明による炭化物形態制御、鋳造組
織改善には直接関与しないが、必要に応じて15%以下添
加する。
V combines with C to form a hard carbide,
Contributes to improved wear resistance. However, since this carbide is harder than the abrasive grains, it causes the grinding wheel to wear early. In particular,
If a large number of coarse carbides are generated and the distribution is not uniform, the grindability is significantly reduced. For this reason, in the past, when importance was placed on grindability, it was limited to about 1.2% or less. However, according to the present invention, when REM is added and the N content is lowered, it is possible to prevent the generation of MC type carbide mainly composed of coarse V even if a large amount of V is contained. An appropriate amount is contained within the range of up to 5%. If it exceeds 5%, the effect of the present invention becomes small, so it is set to 5% or less, and if it is too small, it does not sufficiently contribute to wear resistance, so it is preferable to set it to 2.0% or more. N is an important impurity in the method of the present invention. N amount
If it exceeds 100 ppm, it is set to 100 ppm or less in order to impair the VC miniaturization effect by the addition of REM. REM has the effect of increasing the absolute amount of MC type carbides and the effect of finely crystallizing VC carbides. If it is less than 0.005%, these effects are small, and if it exceeds 0.2%, it binds to S and O to form inclusions and causes a casting defect. Therefore, it is preferable to limit the content to 0.005 to 0.2%. Al has a function of lowering the activity of oxygen in molten steel, suppresses the formation of oxides of REM, and promotes the VC miniaturization effect of REM. If it is less than 0.002%, this effect is small, and if it exceeds 0.3%, the oxide of Al increases and the cleanliness deteriorates. Co is a solid solution in the matrix and improves the strength and heat resistance described above. It does not directly contribute to the control of the morphology of the carbide and the improvement of the cast structure according to the present invention, but if necessary, it is added in an amount of 15% or less.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0014[Correction target item name] 0014

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0014】[0014]

【実施例】公称6tonの真空誘導炉に原料を装入し、真空
中で溶解した(但し、表1、No.4は大気誘導炉)。真空
誘導炉においてタンク内の圧力は、平衡論的に溶湯のN
溶解度が100ppm以下となるように維持した。REM以外
の成分調整が全て終了し、溶湯のN含有量が100ppm以下
であることを確認した後、炉内にREM所要量を添加し
て取鍋に出鋼した。さらに真空中(No.4は除く)で所定
形状の鋳型に鋳造して消耗電極を作製した(但し、No.5
はインゴットに鋳造)。それぞれ溶製した消耗電極の化
学成分を表1のNo.1,2,3,4,6,7の上段「電極」に示
す。ここで真空誘導炉はVIFで表わしている。VIF
による消耗電極中のREMは該表のREM(電極)欄に
示すように、0.04〜0.06%であり、REMの添加歩留
は、REM歩留(電極)欄に示すように59〜73%、Nは2
9〜39ppmの範囲であった。上記消耗電極を交流式ESR
を実施して鋼塊とした。ESRにおけるフラックスの使
用量は消耗電極装入ton当り約50kgである。また、ES
R時の大気からの〔N〕混入を防止するため鋳型内をA
rガスで置換して溶解を行なった。なお、No.1,2は電極
としてほぼ同様の化学成分を有するものであり、No.6
はNo.1,2に対してCoを増量した例、No.7はNo.1,2に
対してCoを除くとともにW,V量を増量し、Moを減量
した例である。これら本発明の実施例においてはESR
鋼塊中のREMは0.03〜0.05%であり、消耗電極中のR
EMに対する歩留は67〜83%であり、また、ESR鋼塊
中のNは42〜53ppmと十分低い範囲であった。
[Example] A raw material was charged into a vacuum induction furnace having a nominal capacity of 6 tons and melted in a vacuum (however, Table 1, No. 4 is an atmospheric induction furnace). In the vacuum induction furnace, the pressure in the tank is equilibrium N
The solubility was maintained at 100 ppm or less. After all the components other than REM were adjusted and it was confirmed that the N content of the molten metal was 100 ppm or less, the required amount of REM was added to the furnace and the steel was tapped. Furthermore, in a vacuum (excluding No. 4), a consumable electrode was manufactured by casting in a mold of a predetermined shape (however, No. 5).
Is cast in the ingot). The chemical components of the melted consumable electrodes are shown in Table 1, Nos. 1,2,3,4,6,7 above "electrodes". Here, the vacuum induction furnace is represented by VIF. VIF
REM in the consumable electrode according to, as shown in the REM (electrode) column of the table, is 0.04 to 0.06%, the addition yield of REM is 59 to 73% as shown in the REM yield (electrode) column, N is 2
It was in the range of 9 to 39 ppm. AC electrode ESR for the consumable electrode
Was carried out to obtain a steel ingot. The amount of flux used in ESR is approximately 50 kg per ton of charged consumable electrode. Also, ES
In order to prevent the mixing of [N] from the atmosphere during R,
Dissolution was performed by replacing with r gas. Nos. 1 and 2 have almost the same chemical composition as electrodes.
Is an example in which the amount of Co is increased with respect to No. 1 and 2, and No. 7 is an example in which the amount of W and V is increased and the amount of Mo is decreased while removing Co with respect to No. 1 and 2. In these embodiments of the invention, ESR
REM in steel ingot is 0.03-0.05%, and R in consumable electrode is
The yield for EM was 67 to 83%, and the N in the ESR steel ingot was 42 to 53 ppm, which was a sufficiently low range.

【手続補正5】[Procedure Amendment 5]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Name of item to be corrected] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】[0019]

【表2】 [Table 2]

【手続補正6】[Procedure Amendment 6]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Correction target item name] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】一般市販のタップ切削寿命を凌駕するため
には、VC量が面積率で4%以上で、HV880以上の硬さが
得られ、耐刃欠け性改善のため、220kgf/mm2以上の微小
部抗折強度を有することが必要と思われる。本発明例
は、いずれもこの条件を十分に満足しており、比較例の
No.3〜5と比べると高寿命が得られた。
In order to exceed the cutting life of a tap on the market, a VC amount of 4% or more in area ratio, a hardness of HV880 or more can be obtained, and a minute amount of 220 kgf / mm 2 or more can be obtained to improve the resistance to chipping. It seems necessary to have partial bending strength. All of the examples of the present invention satisfied this condition sufficiently, and a longer life was obtained as compared with Nos. 3 to 5 of the comparative examples.

【手続補正7】[Procedure Amendment 7]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0025[Name of item to be corrected] 0025

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0025】[0025]

【発明の効果】以上に述べた如く、本発明によれば、従
来の造塊方法では困難であったREMを含有し、かつ低
Nである鋼を清浄度良く製造することが可能になり、そ
の結果、被研削性や工具寿命が大幅に向上した。また、
真空誘導溶解法に比し、熱間加工歩留が大幅に向上し、
生産コストの低減は二重溶解によるコストアップを補っ
て余りあるものである。
As described above, according to the present invention, it becomes possible to manufacture a steel containing REM and having a low N, which has been difficult by the conventional ingot-making method, with good cleanliness. As a result, the grindability and tool life have been greatly improved. Also,
Compared with the vacuum induction melting method, the hot working yield is significantly improved,
The reduction in production cost more than compensates for the increase in cost due to double melting.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C21C 7/00 B 7412−4K E 7412−4K C22B 9/18 9/187 // C22C 38/00 302 E 7217−4K 38/22 38/30 38/34 (72)発明者 山根 康史 島根県安来市安来町2107番地の2 日立金 属株式会社安来工場内 (72)発明者 内田 憲正 島根県安来市安来町2107番地の2 日立金 属株式会社安来工場内 (72)発明者 中村 秀樹 島根県安来市安来町2107番地の2 日立金 属株式会社安来工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location C21C 7/00 B 7412-4K E 7412-4K C22B 9/18 9/187 // C22C 38/00 302 E 7217-4K 38/22 38/30 38/34 (72) Inventor Yasufumi Yamane 2107-2 Yasugi-cho, Yasugi-shi, Shimane 2 Inside Hitachi Yasugi Factory (72) Inventor Kensei Uchida Yasugi-shi, Shimane Prefecture 2 2107 Yasugi-machi, Yasugi-machi, Yasugi Plant (72) Inventor Hideki Nakamura 2-2-2 Yasugi-cho, Yasugi-cho, Shimane Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 真空誘導炉により、窒素含有量が100ppm
未満である消耗電極を溶製する第1の工程と、該消耗電
極を、希土類元素の化合物を含有するフラックスを用い
てエレクトロスラグ再溶解する第2の工程からなること
を特徴とする希土類元素含有低窒素鋼の造塊方法。
1. Nitrogen content of 100ppm by vacuum induction furnace
Rare earth element containing, characterized in that it comprises a first step of melting the consumable electrode which is less than 1 and a second step of remelting the consumable electrode with a flux containing a compound of a rare earth element. Method for making low nitrogen steel.
【請求項2】 エレクトロスラグ再溶解のフラックス中
に含有される希土類元素化合物が少なくとも希土類元素
の酸化物および弗化物のいずれかであることを特徴とす
る請求項1の希土類元素含有低窒素鋼の造塊方法。
2. The rare earth element-containing low nitrogen steel according to claim 1, wherein the rare earth element compound contained in the electroslag remelting flux is at least one of an oxide and a fluoride of the rare earth element. Ingot method.
【請求項3】 希土類元素含有低窒素鋼が重量比で、
C:0.9〜1.5%、Si:2%以下、Cr:3〜6%、MoとWの1種
または2種を2Mo+Wで14〜25%、V 2〜5%、N:100ppm
以下、希土類元素:0.005〜0.2%、Al 0.002〜0.3%、ま
たはさらにCo:15%以下を含み、残部がFeおよび不可避
的不純物からなる被研削性の優れた高速度工具鋼である
ことを特徴とする請求項1または2の希土類元素含有低
窒素鋼の造塊方法。
3. A rare-earth element-containing low nitrogen steel in a weight ratio,
C: 0.9-1.5%, Si: 2% or less, Cr: 3-6%, 1 or 2 kinds of Mo and W are 2-25 Mo + W, 14-25%, V 2-5%, N: 100ppm
It is characterized by being a high-speed tool steel with excellent grindability, containing rare earth elements: 0.005 to 0.2%, Al 0.002 to 0.3%, or Co: 15% or less with the balance being Fe and inevitable impurities. The method for ingot of the rare earth element-containing low nitrogen steel according to claim 1 or 2.
JP26847891A 1991-09-19 1991-09-19 Ingot making method of rare earth element containing low nitrogen steel Expired - Fee Related JP3149476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26847891A JP3149476B2 (en) 1991-09-19 1991-09-19 Ingot making method of rare earth element containing low nitrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26847891A JP3149476B2 (en) 1991-09-19 1991-09-19 Ingot making method of rare earth element containing low nitrogen steel

Publications (2)

Publication Number Publication Date
JPH0578729A true JPH0578729A (en) 1993-03-30
JP3149476B2 JP3149476B2 (en) 2001-03-26

Family

ID=17459053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26847891A Expired - Fee Related JP3149476B2 (en) 1991-09-19 1991-09-19 Ingot making method of rare earth element containing low nitrogen steel

Country Status (1)

Country Link
JP (1) JP3149476B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127980B2 (en) 2003-05-21 2006-10-31 Aisin Seiki Kabushiki Kaisha Vane, valve timing control device, and sliding member
CN1295370C (en) * 2005-03-22 2007-01-17 江苏天工工具股份有限公司 High speed steel and its rare earth treating process
CN105603203A (en) * 2016-01-22 2016-05-25 东北大学 Method for improving hot-working performance of Mn18Cr18N steel
CN112442625A (en) * 2019-09-02 2021-03-05 江苏天工工具有限公司 High-speed steel processing and smelting method
CN114317994A (en) * 2021-12-27 2022-04-12 内蒙古北方重工业集团有限公司 Uniform TP316H austenitic stainless steel electroslag ingot component and organization process method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7127980B2 (en) 2003-05-21 2006-10-31 Aisin Seiki Kabushiki Kaisha Vane, valve timing control device, and sliding member
CN1295370C (en) * 2005-03-22 2007-01-17 江苏天工工具股份有限公司 High speed steel and its rare earth treating process
CN105603203A (en) * 2016-01-22 2016-05-25 东北大学 Method for improving hot-working performance of Mn18Cr18N steel
CN112442625A (en) * 2019-09-02 2021-03-05 江苏天工工具有限公司 High-speed steel processing and smelting method
CN114317994A (en) * 2021-12-27 2022-04-12 内蒙古北方重工业集团有限公司 Uniform TP316H austenitic stainless steel electroslag ingot component and organization process method
CN114317994B (en) * 2021-12-27 2024-01-30 内蒙古北方重工业集团有限公司 Uniform TP316H austenitic stainless steel electroslag ingot component and tissue process method

Also Published As

Publication number Publication date
JP3149476B2 (en) 2001-03-26

Similar Documents

Publication Publication Date Title
EP2322680B1 (en) Environmentally-friendly, pb-free free-machining steel, and manufacturing method for same
CN109988971B (en) Method for producing ultra-grade pure high-speed tool steel
CN102251197B (en) High-carbon chromium bearing steel and preparation method thereof
JP5266686B2 (en) Bearing steel and its manufacturing method
JP2021070838A (en) HIGH Ni ALLOY AND METHOD FOR PRODUCING HIGH Ni ALLOY
EP0452526B1 (en) High fatigue strength metal band saw backing material
JP3149476B2 (en) Ingot making method of rare earth element containing low nitrogen steel
EP2738281A1 (en) Method for producing high si-content austenitic stainless steel
JP2580186B2 (en) Mold material for plastic injection molding
CN115109980A (en) Titanium-containing steel with ultralow nitrogen content and preparation method thereof
WO2022145065A1 (en) Steel material
WO2022145067A1 (en) Steel material
WO2022145066A1 (en) Steel material
JP3574776B2 (en) High wear resistance, high toughness, high speed tool steel
JP5363827B2 (en) Steel for machine structure, manufacturing method thereof and machine structure parts
JP3573344B2 (en) Manufacturing method of highly clean maraging steel
JP3414855B2 (en) High speed tool steel for precision casting
JP6950071B2 (en) Ni-Cr-Mo-Nb alloy
JP2000345290A (en) Hot roll for copper and copper alloy
JPH04111962A (en) Production of high-speed tool steel
JP2938456B2 (en) Work roll for cold rolling and its manufacturing method
JP3419536B2 (en) Alloy tool steel members made of ingot material
JP2716441B2 (en) High speed tool steel
JPH08100223A (en) Production of high cleanliness steel
JPH0987807A (en) High speed tool steel for high toughness precision casting

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees