JPH08100223A - Production of high cleanliness steel - Google Patents

Production of high cleanliness steel

Info

Publication number
JPH08100223A
JPH08100223A JP6238794A JP23879494A JPH08100223A JP H08100223 A JPH08100223 A JP H08100223A JP 6238794 A JP6238794 A JP 6238794A JP 23879494 A JP23879494 A JP 23879494A JP H08100223 A JPH08100223 A JP H08100223A
Authority
JP
Japan
Prior art keywords
steel
esr
cleanliness
ladle refining
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6238794A
Other languages
Japanese (ja)
Inventor
Yasuhisa Onda
靖久 恩田
Takashi Mukai
孝 向井
Shigeru Kihara
茂 木原
Kiyotaka Takachio
清孝 高知尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP6238794A priority Critical patent/JPH08100223A/en
Publication of JPH08100223A publication Critical patent/JPH08100223A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE: To produce a high cleanliness steel, such as cold die steel, steel for cutting tool, and high grade bearing steel, forming large amounts of carbide, having high hardness, reduced in oxygen content, and particularly reduced in oxide inclusions. CONSTITUTION: A molten steel, after Al deoxidation in an electric furnace or in a ladle refining furnace, is subjected to ladle refining and then formed into a cast electrode, and electroslag remelting is done by using this electrode, by which a high C and high Cr steel ingot of <=30ppm oxygen content is obtained. The desirable composition of the high C and high Cr steel ingot consists of, by weight, 0.5-1.6% C, <=1.0% Si, <=1.5% Mn, 10-18% Cr, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非金属介在物(以下、
介在物と記す)を低減させた高清浄鋼の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to non-metallic inclusions (hereinafter referred to as
The present invention relates to a method for producing highly clean steel with reduced inclusions.

【0002】[0002]

【従来の技術】エレクトロスラグ再溶解法(以下、ES
Rと記す)は、通常の溶製法である溶解後にインゴット
ケース内に鋳込む造塊法のものに比較して、スラグ精錬
による脱硫、介在物の低減、積層凝固による偏析の低
減、鋼塊組織の緻密化が可能になるといった多くの特徴
があるために、高い信頼性が要求される製品へ適用され
ている。ESRに用いる消耗電極は、従来から電気炉、
誘導炉などで溶解した後に鋳造を行なったものを用い、
これをESR法により再溶解を行なうことにより良質の
鋼塊が得られてきた。このような製品の利点があること
から、工具鋼の分野においてもESRによる溶解法が多
用されるようになってきた。とりわけ、ESR法の適用
は、冷間ダイス鋼、刃物鋼、高級軸受鋼など炭化物が多
く形成され、しかも硬度が高い高C,高Cr系の鋼の偏
析を低減し、これらの鋼に特有の炭化物を均一分散させ
る効果が大きいことから、靭性を高める手段として極め
て有効な溶解方法として注目されている。
2. Description of the Related Art Electroslag remelting method (hereinafter referred to as ES
R) is desulfurization by slag refining, reduction of inclusions, reduction of segregation by layered solidification, reduction of segregation of steel ingot, as compared with a method of ingot casting which is a normal melting method in which it is cast in an ingot case after melting. It has been applied to products that require high reliability because it has many features such as enabling the densification. The consumable electrode used for ESR has conventionally been an electric furnace,
Using what was cast after melting in an induction furnace,
Good quality steel ingots have been obtained by remelting this by the ESR method. Due to the advantages of such products, the melting method by ESR has been widely used in the field of tool steel. In particular, the application of the ESR method reduces the segregation of high-C and high-Cr steels, which have a large amount of carbides such as cold die steel, blade steel, and high-grade bearing steel, and are unique to these steels. Since it has a large effect of uniformly dispersing the carbide, it has attracted attention as an extremely effective melting method as a means for increasing toughness.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来のES
R法により製造した高C,高Cr系鋼の製品の廃却材に
ついて、その寿命を調査した結果、必ずしも寿命原因が
炭化物に起因するだけでなく、酸化物系の介在物を起点
とする清浄度に係わる要因が少なからずあることが認め
られた。上記酸化物系の介在物、すなわち清浄度を減少
させる方法について検討した結果、ESR後の清浄度に
影響を及ぼす因子としては、大きく分けて、(1)ES
R条件、(2)消耗電極の清浄度、の二つが挙げられ
る。このうち、(2)については、ESRは例えば真空
アーク再溶解法(VAR)などと比較して消耗電極によ
る効果の良し悪しの差が小さいと言われているが、特に
Al23系介在物等の酸化物系の介在物に係わる消耗電
極の清浄度は、ESR後の清浄度に対して非常に大きな
影響を与える。
However, the conventional ES
As a result of investigating the life of the waste materials of the high C and high Cr steel products manufactured by the R method, it is found that not only the cause of the life is not caused by the carbide, but the cleaning is initiated by the oxide-based inclusions. It was recognized that there are many factors related to the degree. As a result of examining the above oxide-based inclusions, that is, a method of reducing cleanliness, factors that affect cleanliness after ESR are roughly classified into (1) ES
R condition and (2) cleanliness of consumable electrode are two. Of these, with regard to (2), it is said that ESR has a small difference between the goodness and badness of the effect of the consumable electrode, as compared with, for example, the vacuum arc remelting method (VAR), but especially the Al 2 O 3 system intervenes. The cleanliness of the consumable electrode associated with oxide-based inclusions such as substances has a very large effect on the cleanliness after ESR.

【0004】従来から行なわれてきた電気炉のみで溶
解、精錬を行なって鋳造した消耗電極を、ESR法によ
り再溶解を行なった場合、再溶解後の酸素レベルは高
く、清浄度が非常に低い問題があった。一方、従来のE
SR溶解の改良方法としてESRの消耗電極を溶製する
際、取鍋精錬を行なうことにより、高速度工具鋼あるい
は塑性加工用金型鋼のSを低減するのに有効であること
が特開平4−111962号、特開平4−111963
号に記載されている。しかし、これらの方法は、硫化物
系の清浄度は低下させることができても、硬くて脆い酸
化物系の清浄度を高めることができない欠点があった。
When a consumable electrode that has been melted and refined and cast only in an electric furnace, which has been conventionally used, is remelted by the ESR method, the oxygen level after remelting is high and the cleanliness is very low. There was a problem. On the other hand, conventional E
As a method of improving SR melting, it is effective to reduce S in high-speed tool steel or mold steel for plastic working by ladle refining when melting consumable electrodes of ESR. 111962, JP-A-4-111963.
No. However, these methods have a drawback that the cleanliness of sulfides can be reduced, but the cleanliness of hard and brittle oxides cannot be increased.

【0005】本発明の目的は、上記のような冷間ダイス
鋼、刃物鋼、高級軸受鋼など炭化物を多く形成し、しか
も硬度が高い鋼に関し、酸素含有量が低く、とりわけ酸
化物系の介在物の少ない高清浄鋼の製造方法を提供する
ことである。
An object of the present invention relates to a steel having a large amount of carbides such as cold die steel, blade steel, and high-grade bearing steel as described above, and having a high hardness, and having a low oxygen content, especially an oxide-based inclusion. It is an object of the present invention to provide a method for producing high-purity steel with few substances.

【0006】[0006]

【課題を解決するための手段】発明者がESR法によっ
て得られる鋼塊の清浄度、特に酸化物系の介在物を減少
させるには、取鍋精錬炉前の電気炉での精錬時点または
電気炉で精錬の終了した溶鋼を取鍋精錬炉に注湯した後
にAlを添加してAl脱酸させて消耗電極を製造するこ
と、特に酸化物系介在物の清浄度を高めるだけでなく、
経済的にも極めて有効であることを見出した。
Means for Solving the Problems In order to reduce the cleanliness of steel ingots obtained by the ESR method, in particular, oxide-based inclusions, the inventor has to do so at the time of refining in an electric furnace before a ladle refining furnace or at an electric furnace. In order to manufacture consumable electrodes by pouring molten steel that has been smelted in a furnace into a ladle smelting furnace and then deoxidizing it by adding Al, in particular not only increasing the cleanliness of oxide inclusions,
It was found to be extremely effective economically.

【0007】すなわち、本発明は電気炉または取鍋精錬
炉でAl脱酸した溶鋼を取鍋精錬した後に鋳造電極と
し、前記電極を用いてエレクトロスラグ再溶解を行なっ
て酸素含有量が30ppm以下からなる高C,高Cr系
の鋼塊を得ることを特徴とする高清浄鋼の製造方法であ
る。前記鋼塊の組成は、重量%で、C 0.5〜1.6
%、Si 1.0%以下、Mn 1.5%以下、Cr 1
0〜18%を含有し、残部Feおよび不可避的不純物か
らなる鋼、また上記の一部を選択添加元素としてMo,
Wのそれぞれを0〜0.2%で1種または2種と0〜
2.0%のVのうちから1元素ないし3元素で置換した
鋼が望ましい効果が得られる。
That is, according to the present invention, molten steel deoxidized with Al in an electric furnace or a ladle refining furnace is smelted to be a casting electrode, and electroslag remelting is performed using the electrode to reduce the oxygen content from 30 ppm or less. Is a high-C, high-Cr steel ingot. The composition of the steel ingot is C 0.5-1.6% by weight.
%, Si 1.0% or less, Mn 1.5% or less, Cr 1
Steel containing 0 to 18% and the balance Fe and unavoidable impurities, and a part of the above as Mo as a selective addition element,
Each of W is 0 to 0.2% and one or two kinds and 0
A steel obtained by substituting 1 element or 3 elements out of V of 2.0% can obtain a desired effect.

【0008】[0008]

【作用】以下に本発明の高清浄鋼の製造に関する作用に
ついて述べる。本発明の高清浄鋼の製造方法における特
徴は、消耗電極を(1)電気炉内でAl脱酸するか、ま
たは電気炉内の溶鋼を取鍋精錬炉内に注湯した直後にA
lを添加してAl脱酸させること、(2)脱酸された溶
鋼を取鍋精錬すること、の二点である。このように本発
明の高清浄鋼の製造方法は、鋼を電気炉で精錬する段階
または溶解後の溶鋼を取鍋精錬炉内に注湯した初期の段
階でAl脱酸した鋼を、引き続き取鍋精錬炉内で精錬し
て、それをESRの電極に用いることを必須要件として
いる。これは、以下の実験的事実に基づくものである。
The operation relating to the production of the highly clean steel of the present invention will be described below. The features of the method for producing high-purity steel of the present invention are (1) Al deoxidizing a consumable electrode in an electric furnace or A immediately after pouring molten steel in an electric furnace into a ladle refining furnace.
Two points are to add 1 to deoxidize Al, and (2) to smelt deoxidized molten steel in a ladle. As described above, the method for producing high-purity steel of the present invention continuously removes Al-deoxidized steel at the stage of refining steel in an electric furnace or at the initial stage of pouring molten steel after melting into a ladle refining furnace. It is indispensable to refine it in a pot refining furnace and use it for an ESR electrode. This is based on the following experimental facts.

【0009】すなわち、Al脱酸を行なっていない溶鋼
を取鍋精錬した後、ESRを行なった場合、取鍋精錬を
行なわない場合と比較して、ESR鋼塊の清浄度に大き
な差が見られないのに対して、実施例で後述するよう
に、Al脱酸を行なった溶鋼を取鍋精錬後ESRを行な
うとESR鋼塊の清浄度が向上することを見出した。こ
れらの事実は、Al脱酸を行なって溶存酸素レベルを下
げ、さらに取鍋精錬炉で脱酸生成物であるAl23を除
去することにより消耗電極の清浄度が向上し、ESRで
の更なる精錬効果と相まって、再溶解後の清浄度が大き
く向上するものである。Alの添加時期は、電気炉で精
錬した最終段階か取鍋精錬の初期の段階が望ましい。
[0009] That is, when ESR is performed after ladle refining of molten steel that has not undergone Al deoxidation, a large difference is observed in the cleanliness of the ESR steel ingot as compared with the case where ladle refining is not performed. On the other hand, as described later in Examples, it was found that the cleanliness of the ESR steel ingot was improved by performing ESR after ladle refining the molten steel deoxidized with Al. These facts show that cleanliness of the consumable electrode is improved by performing Al deoxidation to lower the dissolved oxygen level and further removing the deoxidation product Al 2 O 3 in the ladle refining furnace, and Combined with the further refining effect, the cleanliness after re-melting is greatly improved. The timing of adding Al is preferably the final stage of refining in an electric furnace or the initial stage of ladle refining.

【0010】取鍋精錬を完了した電極での酸素含有量
は、30ppm以下、望ましくは25ppm以下とする
のがよい。なぜなら、ESR過程では酸化物の形態は、
微細に制御できるが、酸素含有量そのものは減少させる
のは困難だからである。この条件を満足させることで、
本発明のESR後の酸素量を30ppm以下にすること
が容易となる。このようにして製造された高C,高Cr
系の鋼塊は、特にJIS G 4404(1972改訂
版)で規定されるSKD11,12やその改良鋼として
市販されている鋼、Crを10.0〜14%含有する刃
物鋼、Crを10.0〜18.0%程度含有し、C%の
レベルが0.5〜1.5%である軸受鋼、ピストンリン
グ材など炭化物を多量に形成し、高い硬さに熱処理され
る製品に特に有効である。
The oxygen content in the electrode that has completed the ladle refining is preferably 30 ppm or less, and more preferably 25 ppm or less. Because in the ESR process, the oxide morphology is
Although it can be finely controlled, it is difficult to reduce the oxygen content itself. By satisfying this condition,
It becomes easy to reduce the amount of oxygen after ESR of the present invention to 30 ppm or less. High C and high Cr produced in this way
The steel ingots of the series are, in particular, SKD11, 12 specified by JIS G 4404 (revised 1972) and steels commercially available as improved steels thereof, blade steel containing 10.0 to 14% of Cr, and 10. It is particularly effective for products that contain 0 to 18.0% and have a C% level of 0.5 to 1.5%, such as bearing steel and piston ring materials, that form a large amount of carbide and are heat treated to a high hardness. Is.

【0011】望ましい組成の限定理由について以下に述
べる。Cはマルテンサイト系ステンレス鋼の硬さを得る
上で、有効な元素の一つである。また、Crの他、M
o,W,V,Nbなどと炭化物を作り、耐摩耗性の向上
に寄与する。本発明の鋼の高強度を得るためには、最低
0.5%以上必要であるが、1.6%を越えると共晶炭
化物が粗大化して靭性が低下するため、Cの範囲を0.
5〜1.6%にするのがよい。Siは、鋼の脱酸元素と
して必要な添加元素である。しかし、過度の過度のSi
の添加は、靭性の低下が著しくなるため、1.0%以下
とするのがよい。MnはSiと同じく脱酸剤として用い
られるが、Mnの含有量が多くなると、焼入れ時に残留
オーステナイトが過多となって硬さが低下するため、上
限を1.5%とするのがよい。
The reasons for limiting the desirable composition will be described below. C is one of the effective elements for obtaining the hardness of martensitic stainless steel. In addition to Cr, M
It forms carbides with o, W, V, Nb, etc., and contributes to the improvement of wear resistance. In order to obtain the high strength of the steel of the present invention, at least 0.5% or more is required, but if it exceeds 1.6%, the eutectic carbide becomes coarse and the toughness decreases, so the C range is set to 0.
It is recommended to be 5 to 1.6%. Si is an additional element necessary as a deoxidizing element for steel. However, excessive Si
Since the toughness is remarkably deteriorated, the addition of Al is preferably 1.0% or less. Mn, like Si, is used as a deoxidizing agent, but if the Mn content increases, the retained austenite becomes excessive during quenching and the hardness decreases, so the upper limit is preferably made 1.5%.

【0012】Crは、一部は基地中に固溶して焼戻し軟
化抵抗を高め、またCと結び付いて硬質のCr系炭化物
を作り、耐摩耗性を向上させる効果がある。上記効果を
得るためには10%以上含有するのがよい。しかし、C
rが多過ぎると共晶炭化物が粗大化して靭性あるいは転
動疲労特性などを低下させる原因となるためCrの範囲
を10〜18%とするのがよい。これらの高C,高Cr
系鋼は、上記の望ましい組成や鋼種の他、使用目的に応
じて以下の元素を適宜添加することができる。Mo:5
%以下、W:2.5%、V:2%以下、Nb:1%以
下、Ni:2%以下、Co:3%以下、このうち、M
o,W,V,Nbはいずれも炭素と炭化物を形成し、耐
摩耗性を向上させる元素として、特に有効であるので、
Feに置換して添加するのがよい。
[0012] A part of Cr has the effect of forming a solid solution in the matrix to increase the resistance to temper softening, and is also combined with C to form a hard Cr-based carbide, which has the effect of improving wear resistance. In order to obtain the above effect, it is preferable to contain 10% or more. But C
If the amount of r is too large, the eutectic carbide becomes coarse and causes deterioration of toughness, rolling contact fatigue property, etc. Therefore, it is preferable to set the range of Cr to 10 to 18%. These high C and high Cr
In addition to the above desirable composition and steel type, the following elements can be appropriately added to the base steel depending on the purpose of use. Mo: 5
% Or less, W: 2.5%, V: 2% or less, Nb: 1% or less, Ni: 2% or less, Co: 3% or less, of which M
All of o, W, V, and Nb are particularly effective as elements that form carbides with carbon and improve wear resistance.
It is preferable to replace with Fe and add.

【0013】最も望ましい鋼は、C 0.65〜0.7
0%、Si 0.20〜0.50%、Mn 0.6〜0.
8%、Cr 12〜13%のもの、C 1.40〜1.6
0%、Si 0.50%以下、Mn 0.6%以下、Cr
11〜13%、Mo 0.8〜1.2%、V 0.2〜
0.5%のものなどが挙げられる。
The most desirable steel is C 0.65-0.7.
0%, Si 0.20 to 0.50%, Mn 0.6 to 0.
8%, Cr 12 to 13%, C 1.40 to 1.6
0%, Si 0.50% or less, Mn 0.6% or less, Cr
11-13%, Mo 0.8-1.2%, V 0.2-
Examples include 0.5%.

【0014】[0014]

【実施例】以下に本発明を実施例に基づいて説明する。
表1に示す組成範囲の鋼を電気溶解(EF)した。この
うち、本発明方法については、EF溶解時にAlを添加
してAl脱酸を行なって取鍋精錬炉(ASEA)に注湯
し、精錬後消耗電極を得た。一方、比較方法であるEF
後、直ちに消耗電極としたものについてはAl脱酸は実
施しなかった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments.
Steel having a composition range shown in Table 1 was electromelted (EF). Among these, in the method of the present invention, Al was added at the time of EF dissolution to deoxidize Al, and was poured into a ladle refining furnace (ASEA) to obtain a consumable electrode after refining. On the other hand, the comparison method EF
Immediately thereafter, Al deoxidation was not carried out for the consumable electrode.

【0015】[0015]

【表1】 [Table 1]

【0016】図1は各製造工程で製造した材料の清浄度
比較を示しており、清浄度は介在物個数の指数で表して
いる。但し、いずれの場合もESRにおける諸条件は一
定である。EF−ASEA−ESR後の方がEF−ES
R後と比較して総じて介在物が少なく、特に10μm以
下の比較的小さな大きさの介在物においてその傾向が強
い。介在物は主として球状のAl23系介在物であるこ
とをEPMAで確認している。消耗電極溶製の際に取鍋
精錬を行なうことにより消耗電極の清浄度が向上し、そ
の結果としてESR後の清浄度が向上していると考えら
れる。これを確かめるために、ESR前の消耗電極の清
浄度の比較を行なった結果が図2であり、消耗電極溶製
の時点で、清浄度には大きな差があることがわかる。し
たがって、消耗電極の清浄度の差が、ESR後の清浄度
に大きく影響を及ぼしていることが明らかである。
FIG. 1 shows a comparison of cleanliness of materials manufactured in each manufacturing process, and the cleanliness is represented by an index of the number of inclusions. However, in any case, various conditions in ESR are constant. EF-ES after EF-ASEA-ESR
Compared to after R, inclusions were generally small, and the tendency was strong especially for inclusions having a relatively small size of 10 μm or less. It has been confirmed by EPMA that the inclusions are mainly spherical Al 2 O 3 -based inclusions. It is considered that the cleanliness of the consumable electrode is improved by performing ladle refining during the melting of the consumable electrode, and as a result, the cleanliness after ESR is improved. In order to confirm this, FIG. 2 shows a result of comparison of cleanliness of the consumable electrode before ESR, and it can be seen that there is a large difference in cleanliness at the time of melting the consumable electrode. Therefore, it is clear that the difference in cleanliness of the consumable electrode has a great influence on the cleanliness after ESR.

【0017】次に図3はESR後の酸素量と介在物分布
との関係を示しているが、ESR後の清浄度は酸素量と
相関があり、酸素量の増加とともに清浄度は悪化してい
る。特に、取鍋精錬を行なっていないEF−ESRにお
いてその傾向が強い。ESRでの脱酸挙動を把握するた
めに、ESR前後での酸素量変化を示したものが図4で
ある。EF−ESRの場合、脱酸率は比較的高いもの
の、元々の消耗電極の酸素レベルが高いために、ESR
後の酸素レベルも高く、清浄度へ悪影響を及ぼしてい
る。また、EF−ESRの方が酸素レベルのバラツキも
大きいことがわかる。
Next, FIG. 3 shows the relationship between the oxygen content after ESR and the distribution of inclusions. The cleanliness after ESR correlates with the oxygen content, and the cleanliness deteriorates as the oxygen content increases. There is. This tendency is particularly strong in EF-ESR that is not ladle refined. FIG. 4 shows changes in oxygen content before and after ESR in order to understand deoxidation behavior in ESR. In the case of EF-ESR, although the deoxidation rate is relatively high, the oxygen level of the original consumable electrode is high,
The subsequent oxygen level is also high, which adversely affects cleanliness. Further, it can be seen that the EF-ESR has a larger variation in oxygen level.

【0018】[0018]

【発明の効果】本発明の方法によって得られる鋼塊は、
低酸素化により、一段と高清浄化が可能になり、とりわ
けAl23などの硬くて脆い酸化物系の介在物が減少す
る。その結果、冷間ダイス、刃物、高級軸受鋼など炭化
物を多く形成し、基地自身の硬さが高い高C,高Cr系
の製品に用いた場合、欠けや大割れの起点となる要因が
大幅に解消され、その効果は著しく大きい。
The steel ingot obtained by the method of the present invention is
By lowering the oxygen content, a higher degree of cleaning can be achieved, and in particular, hard and brittle oxide-based inclusions such as Al 2 O 3 are reduced. As a result, when a large amount of carbides such as cold dies, blades, and high-grade bearing steel are formed, and when used in high C and high Cr type products where the hardness of the base itself is high, the cause of chipping and large cracks is a major factor. The effect is remarkably large.

【図面の簡単な説明】[Brief description of drawings]

【図1】製造工程と介在物分布の関係を示した図であ
る。
FIG. 1 is a diagram showing a relationship between a manufacturing process and distribution of inclusions.

【図2】消耗電極の介在物分布の関係を示した図であ
る。
FIG. 2 is a diagram showing a relationship of distribution of inclusions of consumable electrodes.

【図3】ESR後の酸素量と介在物分布の関係を示した
図である。
FIG. 3 is a diagram showing the relationship between the amount of oxygen and distribution of inclusions after ESR.

【図4】ESR前後での酸素量変化を示した図である。FIG. 4 is a diagram showing changes in oxygen content before and after ESR.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C22C 38/24 (72)発明者 高知尾 清孝 島根県安来市安来町2107番地の2 日立金 属株式会社安来工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Internal reference number FI Technical indication C22C 38/24 (72) Inventor Kiyotaka Kochio 2107 Yasugi-cho, Yasugi-shi, Shimane Prefecture 2 Hitachi Metals Shares Company Yasugi factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電気炉または取鍋精錬炉でAl脱酸した
溶鋼を取鍋精錬した後に鋳造電極とし、前記電極を用い
てエレクトロスラグ再溶解を行なって酸素含有量が30
ppm以下からなる高C,高Cr系の鋼塊を得ることを
特徴とする高清浄鋼の製造方法。
1. A molten steel, which has been deoxidized with Al in an electric furnace or a ladle refining furnace, is subjected to ladle refining and then used as a casting electrode, and electroslag remelting is performed using the electrode to obtain an oxygen content of 30.
A method for producing highly clean steel, which comprises obtaining a steel ingot of high C and high Cr content of not more than ppm.
【請求項2】 高C,高Cr系の鋼塊が重量%で、C
0.5〜1.6%、Si 1.0%以下、Mn 1.5%
以下、Cr 10〜18%を含有し、残部Feおよび不
可避的不純物からなる鋼、または上記Feの一部を選択
添加元素としてMo,Wのそれぞれを0〜0.2%で1
種または2種と0〜2.0%のVのうちから1元素ない
し3元素で置換した鋼である請求項1に記載の高清浄鋼
の製造方法。
2. A high-C, high-Cr steel ingot, in% by weight, containing C
0.5-1.6%, Si 1.0% or less, Mn 1.5%
Hereinafter, steel containing Cr of 10 to 18% and the balance of Fe and unavoidable impurities, or Mo and W of 0 to 0.2% each with a part of Fe as a selective additive element
The method for producing a highly clean steel according to claim 1, wherein the steel is a steel obtained by substituting 1 element or 3 elements from among 2 kinds or 2 kinds and V of 0 to 2.0%.
JP6238794A 1994-10-03 1994-10-03 Production of high cleanliness steel Pending JPH08100223A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6238794A JPH08100223A (en) 1994-10-03 1994-10-03 Production of high cleanliness steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6238794A JPH08100223A (en) 1994-10-03 1994-10-03 Production of high cleanliness steel

Publications (1)

Publication Number Publication Date
JPH08100223A true JPH08100223A (en) 1996-04-16

Family

ID=17035387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6238794A Pending JPH08100223A (en) 1994-10-03 1994-10-03 Production of high cleanliness steel

Country Status (1)

Country Link
JP (1) JPH08100223A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507530A (en) * 2009-10-12 2013-03-04 スネクマ Homogenization of martensitic stainless steel after remelting under slag layer
CN115558836A (en) * 2022-10-28 2023-01-03 辽宁北祥重工机械制造有限公司 Process method for producing novel martensite precipitation hardening acid-resistant heat-resistant stainless steel FV520 (B) steel ingot
WO2023085137A1 (en) * 2021-11-09 2023-05-19 日本高周波鋼業株式会社 Die steel having excellent mirror finish properties

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013507530A (en) * 2009-10-12 2013-03-04 スネクマ Homogenization of martensitic stainless steel after remelting under slag layer
US8911527B2 (en) 2009-10-12 2014-12-16 Snecma Homogenization of martensitic stainless steel after remelting under a layer of slag
WO2023085137A1 (en) * 2021-11-09 2023-05-19 日本高周波鋼業株式会社 Die steel having excellent mirror finish properties
JP2023070594A (en) * 2021-11-09 2023-05-19 日本高周波鋼業株式会社 Die steel having excellent mirror finish properties
CN115558836A (en) * 2022-10-28 2023-01-03 辽宁北祥重工机械制造有限公司 Process method for producing novel martensite precipitation hardening acid-resistant heat-resistant stainless steel FV520 (B) steel ingot

Similar Documents

Publication Publication Date Title
CN109988971B (en) Method for producing ultra-grade pure high-speed tool steel
JPS60194047A (en) High quality bearing steel and its production
JP3929035B2 (en) Sulfur-containing free-cutting machine structural steel
CN105779867A (en) Free-cutting wear-resisting steel plate and manufacturing method thereof
JP3570712B2 (en) Pre-hardened steel for die casting mold
CN109536840B (en) Continuous casting high-quality die steel improved by micro-magnesium treatment and preparation method thereof
JP4523230B2 (en) Strengthened durable tool steel, method for producing the same, method for producing a member made of the steel, and member obtained
JPH08100223A (en) Production of high cleanliness steel
CN115747619A (en) Preparation method of tin-containing free-cutting steel and tin-containing free-cutting steel
JPH093604A (en) High speed tool steel for precision casting
JP6776469B1 (en) Duplex stainless steel and its manufacturing method
CN103589958A (en) High-performance high-speed tool steel for tap manufacture and preparation technology thereof
JPH108210A (en) Wear resistant high manganese cast steel
JPS62274052A (en) Case-hardening steel for bearing
CN112391581A (en) Hot-work shield steel and preparation method thereof
JPH08225820A (en) Production of high carbon silicon killed steel
JPH04111962A (en) Production of high-speed tool steel
JPH09202938A (en) Chromium-molybdenum cast steel excellent in machinability
CN115852272B (en) Tellurium-containing high-speed steel and preparation method thereof
JPH0578729A (en) Method for making ingot of low nitrogen steel containing rare earth element
JPH09227990A (en) Hot tool steel excellent in high temperature strength and fracture toughness
CN115896634B (en) High-temperature-resistant nonferrous metal die-casting forming die steel material and preparation method thereof
JP3200148B2 (en) Method for producing austenitic stainless steel excellent in workability and resistance to time cracking
CN115927950B (en) Carbon-nitrogen-containing high-chromium ferrite stainless steel and manufacturing method thereof
JPH09217147A (en) Hot tool steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051118