JPH108210A - Wear resistant high manganese cast steel - Google Patents
Wear resistant high manganese cast steelInfo
- Publication number
- JPH108210A JPH108210A JP8181241A JP18124196A JPH108210A JP H108210 A JPH108210 A JP H108210A JP 8181241 A JP8181241 A JP 8181241A JP 18124196 A JP18124196 A JP 18124196A JP H108210 A JPH108210 A JP H108210A
- Authority
- JP
- Japan
- Prior art keywords
- concentration
- cast steel
- ductility
- wear
- wear resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crushing And Grinding (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、重衝撃を受ける耐
摩耗部材、特に岩石を破砕するコーンクラッシャやジョ
ークラッシャ等の破砕機のライナー材に用いられ、優れ
た耐摩耗性を有する高Mn鋳鋼に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high Mn cast steel having excellent wear resistance, which is used for a liner material of a crusher such as a cone crusher or a jaw crusher for crushing rock, which is used for crushing rocks. It is about.
【0002】[0002]
【従来の技術】高Mn鋳鋼は、本来良好な加工硬化特性
と靭性を合わせ持った材料であり、その特性を利用して
これまでにも重衝撃を受ける耐摩耗部材、例えば岩石を
破砕するコーンクラッシャやジョークラッシャ等の破砕
機のライナー材として多用されてきた。ところが近年、
破砕機等に対し、特に産業廃棄物や岩石用の破砕機等に
対して処理能力の向上が求められるようになり、破砕機
等の大型化,高破砕比化が進められている。これに伴
い、破砕機等に使用される耐摩耗部材の摩耗状況は今後
一層過酷になる傾向にあり、より耐摩耗性に優れた高M
n鋼の開発が急がれている。2. Description of the Related Art High-Mn cast steel is a material originally having good work hardening characteristics and toughness, and utilizing such characteristics, abrasion-resistant members which have hitherto been subjected to heavy impact, for example, cones for crushing rocks It has been widely used as a liner material for crushers such as crushers and jaw crushers. However, in recent years,
With regard to crushers and the like, in particular, crushers for industrial wastes and rocks have been required to have improved processing capacity, and crushers and the like have been increased in size and crushing ratio has been increased. Along with this, the wear conditions of wear-resistant members used in crushers and the like tend to become more severe in the future, and high-M
The development of n steel is urgent.
【0003】これまでにも、高Mn鋳鋼の耐摩耗性を改
善しようとする試みが種々なされてきた。例えば、特公
昭57−17937号,特公昭63−8181号,特公
昭1−14303号,特開昭62−139855号,特
開平1−142058号公報には、JIS規格の高Mn
鋼組成よりC濃度を高めて耐摩耗性を向上させた合金例
が記載されている。There have been various attempts to improve the wear resistance of high Mn cast steel. For example, JP-B-57-17937, JP-B-63-8181, JP-B-1-14303, JP-A-62-139855, and JP-A-1-142958 disclose a high Mn of JIS standard.
An example of an alloy in which the wear resistance is improved by increasing the C concentration from the steel composition is described.
【0004】[0004]
【発明が解決しようとする課題】しかし、上記の各公報
に記載の合金材料で肉厚の大きい破砕機のライナー材を
実際に製作し使用した場合、延性の低下が予想以上に著
しいため、耐摩耗性を高めるはずである「C濃度の増
加」という手段を直ちに採用できず、現在に至ってい
る。本発明者等も、C濃度を高くすることによって、耐
摩耗性を顕著に向上できる点に着目する一方、上記の延
性低下の現象にも着目し、その延性低下の原因を見極め
れば、「C濃度を高める」手段が真に耐摩耗性の向上に
とって有効な手段となりうるはずとの考えに立ち、その
ような延性低下の原因の究明を目指して実験を開始し、
以下の知見を得ることができた。However, when a liner material for a crusher having a large thickness is actually manufactured and used with the alloy materials described in the above-mentioned publications, the ductility is significantly reduced more than expected. The means of "increase in C concentration", which should enhance abrasion, cannot be immediately adopted, and has been achieved up to the present. The present inventors have also focused on the fact that the wear resistance can be significantly improved by increasing the C concentration. On the other hand, focusing on the above-described phenomenon of reduced ductility and examining the cause of the reduced ductility, the inventors found that “C Based on the belief that the means of `` enhancing the concentration '' could be truly an effective means for improving wear resistance, experiments were started with the aim of clarifying the cause of such a decrease in ductility,
The following findings were obtained.
【0005】通常、高Mn鋳鋼はスクラップを配合して
溶製されるため、また溶解原料であるフェロマンガンに
数1/10%のPが含まれていることもあって、現在使
用されている高Mn鋳鋼はPを0.02〜0.07%程
度含んでおり、このPが、溶製時にデンドライトアーム
間、特に結晶粒界に偏析し、その後の水靭処理時に溶体
化温度域で図1に示すようなFe−C−Pの共晶化合物
を形成し、これが延性を低下させる原因であることが判
明した。次に、本発明者等は、そのようなFe−C−P
の共晶化合物の生成を避けるために水靭処理時の溶体化
温度をその共晶化合物の生成温度以下に設定して実験し
たところ、今度は炭化物(M3 C)を固溶しきれずに、
この炭化物の存在により同じく延性が低下することも判
明した。そこで、本発明者等は、Fe−C−Pの共晶化
合物の生成因子の一つであるP濃度が大きく影響してい
ることを予想し、P濃度そのものやP濃度とC濃度との
相関関係が延性に及ぼす影響を見極めることに解決の糸
口があるはずとの考えに到達した。[0005] Normally, high Mn cast steel is currently used because it is melted by blending scrap, and because ferromanganese, which is the raw material for melting, contains several 1/10% of P. High Mn cast steel contains about 0.02 to 0.07% of P, and this P segregates between dendrite arms during smelting, particularly at the crystal grain boundaries, and becomes large in the solution temperature range during the subsequent water toughening treatment. It was found that a eutectic compound of Fe-CP as shown in FIG. 1 was formed, and this was the cause of lowering ductility. Next, the present inventors have proposed such Fe-CP
In order to avoid the formation of the eutectic compound, the solution temperature during the water toughening treatment was set to be equal to or lower than the formation temperature of the eutectic compound, and this time, the carbide (M 3 C) was not completely dissolved.
It was also found that the presence of this carbide also reduced ductility. Therefore, the present inventors anticipate that the P concentration, which is one of the factors for forming the eutectic compound of Fe-CP, has a large effect, and consider the P concentration itself and the correlation between the P concentration and the C concentration. We arrived at the idea that there should be a clue to how to determine the effects of relationships on ductility.
【0006】本発明は、こうした状況の下になされたも
のであって、その目的は、高Mn鋳鋼の耐摩耗性を向上
させ、より長寿命の耐摩耗部材を提供することにある。The present invention has been made under such circumstances, and an object thereof is to improve the wear resistance of a high Mn cast steel and provide a wear-resistant member having a longer life.
【0007】[0007]
【課題を解決するための手段】上記目的を達成し得た本
発明のうち、請求項1記載の発明は、重量%でC:1.
3〜1.7%,Si:0.3〜1.0%,Mn10〜3
5%,Cr:5%以下,Mo:2%以下,不純物元素で
あるP濃度が0.01%以下で且つ〔%C〕・〔%P〕
≦0.015とし、残部がFeおよび不可避不純物であ
ることを特徴とする耐摩耗高Mn鋳鋼である。また、請
求項2記載の発明は、上記構成元素に加えて、Ti,A
lのいずれか一方又は両方を0.01〜0.6%含有す
る耐摩耗高Mn鋳鋼であり、また、請求項3記載の発明
は、その上さらにV,Nb,B,Ta,Zrのうち1種
又は2種以上を合計で0.01〜3.0%含有する耐摩
耗高Mn鋳鋼である。Means for Solving the Problems Among the present invention which has achieved the above object, the invention according to claim 1 is characterized in that:
3 to 1.7%, Si: 0.3 to 1.0%, Mn 10 to 3
5%, Cr: 5% or less, Mo: 2% or less, P concentration as an impurity element is 0.01% or less, and [% C]. [% P]
≦ 0.015, the balance being Fe and unavoidable impurities. The invention according to claim 2 provides Ti, A in addition to the above constituent elements.
1 is a wear-resistant high Mn cast steel containing one or both of 0.01 and 0.6%, and the invention according to claim 3 further includes V, Nb, B, Ta, and Zr. It is a wear-resistant high Mn cast steel containing one or two or more kinds in total of 0.01 to 3.0%.
【0008】本発明は、以下に詳細に述べるように全く
新たな知見に基づいてなされたものである。即ち、従
来、Pは不純物元素であり、少ない方が好ましいとはさ
れているものの、特公平2−15623号公報や鉄鋼便
覧(1962)P1456等に記載されているように、
高Mn鋳鋼においてはP濃度が0.07%を超えなけれ
ば延性は確保できるとされていた。このため、製造上の
コストを上昇させてまでP濃度を大きく低減させようと
する試みはほとんどなされていない。特に本発明のよう
に、P濃度を0.01%より低い範囲に抑えて延性,耐
摩耗性との関係で一定の技術上の効果を発揮させようと
する試みについては、全く検討されてこなかった。The present invention has been made based on completely new findings as described in detail below. That is, conventionally, P is an impurity element, and although it is said that a smaller amount is preferable, as described in JP-B-2-15623 and the Iron and Steel Handbook (1962) P1456,
It has been considered that ductility can be ensured unless the P concentration exceeds 0.07% in high Mn cast steel. For this reason, almost no attempt has been made to greatly reduce the P concentration until the manufacturing cost is increased. In particular, no attempt has been made at all to attempt to exert a certain technical effect in relation to ductility and abrasion resistance by suppressing the P concentration to a range lower than 0.01% as in the present invention. Was.
【0009】これまでにも、機械的性質に及ぼすP濃度
の影響については、2,3の研究報告例が存在する。例
えば、Trans Int Conf Struct Mech React Technol,11t
h,G2(1991)P93 〜98,Izv Vyssh Uchebn Zaved ChernMet
all,3(1989)P109 〜113,Litejnoe Proizvod,11(1988)P8
〜9 に記載がある。しかし、これらの記載例でも、P濃
度が0.02%以上の範囲についてのみ言及されている
にすぎない。そこで、本発明者等は、P濃度0.02%
以下の範囲も含めて延性に及ぼすP濃度の影響を明らか
にすべく、さらに実験研究を進めてきた。その結果、P
濃度を0.01%以下にすると共に、その条件を満たし
つつさらにC濃度に対するP濃度(相対的濃度)を一定
範囲に収まるようにすることによって、延性が飛躍的に
向上し、耐摩耗性に優れた高Mn鋳鋼が実現できること
を見い出し、本発明を完成したものである。There have been a few research reports on the effect of P concentration on mechanical properties. For example, Trans Int Conf Struct Mech React Technol, 11t
h, G2 (1991) P93 ~ 98, Izv Vyssh Uchebn Zaved ChernMet
all, 3 (1989) P109-113, Litejnoe Proizvod, 11 (1988) P8
~ 9. However, even in these descriptions, only the range where the P concentration is 0.02% or more is mentioned. Then, the present inventors set the P concentration to 0.02%.
Further experimental studies have been conducted to clarify the effect of P concentration on ductility, including the following ranges. As a result, P
By making the concentration 0.01% or less and satisfying the conditions and further keeping the P concentration (relative concentration) relative to the C concentration within a certain range, the ductility is dramatically improved, and the wear resistance is improved. It has been found that excellent high Mn cast steel can be realized, and the present invention has been completed.
【0010】即ち、不純物であるPの濃度を0.01%
以下でかつ〔%C〕・〔%P〕≦0.015とすること
によって、肉厚が100mmを超えるライナー材に対し
て、C濃度が1.3%以上であっても高い延性を確保で
き、C濃度を現用高Mn鋳鋼の1.0〜1.3%から最
大1.7%まで増加させることが可能となり、耐摩耗性
を飛躍的に向上させることに成功したものである。そこ
で、まず、本発明の高Mn鋳鋼の成分範囲限定理由を説
明する。That is, the concentration of P as an impurity is set to 0.01%.
By setting [% C] · [% P] ≦ 0.015, high ductility can be ensured even when the C concentration is 1.3% or more with respect to the liner material having a thickness of more than 100 mm. , C concentration can be increased from 1.0 to 1.3% of the current high Mn cast steel to a maximum of 1.7%, and the wear resistance has been drastically improved. Therefore, first, the reasons for limiting the component range of the high Mn cast steel of the present invention will be described.
【0011】(イ)C:1.3〜1.7% C濃度が1.3%未満では、従来の高Mn鋼材と同等の
耐摩耗性しか得られず、一方C濃度が1.7%を超える
と、P濃度を0.01%に抑えても延性,靭性が低下
し、耐摩耗性部材の製造時又は使用時に割れを生じる。
従って、C濃度は1.3〜1.7%の範囲に限定した。(A) C: 1.3 to 1.7% When the C concentration is less than 1.3%, only the wear resistance equivalent to that of the conventional high Mn steel material is obtained, while the C concentration is 1.7%. When the P content exceeds 0.01%, the ductility and toughness are reduced even when the P concentration is suppressed to 0.01%, and cracks occur during the production or use of the wear-resistant member.
Therefore, the C concentration was limited to the range of 1.3 to 1.7%.
【0012】(ロ)Si:0.3%〜1.0% 溶解時の溶湯の脱酸及び流動性確保のために、Siを
0.3%以上添加する必要があるが、1%を超えると、
炭化物の結晶粒界への析出が促進され、靭性が低下す
る。(B) Si: 0.3% to 1.0% In order to deoxidize the molten metal at the time of melting and ensure fluidity, it is necessary to add 0.3% or more of Si, but more than 1%. When,
Precipitation of carbides at crystal grain boundaries is promoted, and toughness is reduced.
【0013】(ハ)Mn:10〜35% Mnはオーステナイト組織を得るために必要な元素であ
り、またCの固溶限を増大させて水靭処理の冷却過程で
の炭化物析出を抑制して延性向上に寄与する。そのため
にはMnを10%以上添加する必要があるが、Mnが3
5%を超えると、鋳放し状態での炭化物析出量が多くな
り、鋳造時の割れ発生の原因となる。(C) Mn: 10 to 35% Mn is an element necessary for obtaining an austenite structure, and increases the solid solubility limit of C to suppress carbide precipitation in the cooling process of the water toughness treatment. Contributes to improved ductility. For this purpose, it is necessary to add Mn at 10% or more.
If it exceeds 5%, the amount of carbide precipitation in an as-cast state increases, which causes cracking during casting.
【0014】(ニ)Cr:5%以下 Crは加工硬化特性を向上させる有効な元素であるが、
5%を超えると、鋳造時及び水靭処理の冷却過程での炭
化物析出が顕著となり、延性が低下する。よって、5%
以下の範囲で必要に応じて添加する。(D) Cr: 5% or less Cr is an effective element for improving work hardening characteristics.
If it exceeds 5%, carbide precipitation during casting and in the cooling process of the water toughness treatment becomes remarkable, and the ductility decreases. Therefore, 5%
Add as necessary within the following range.
【0015】(ホ)Mo:2%以下 Moは水靭処理冷却過程の炭化物析出を抑制し延性を向
上させる効果を有するが、2%を超えて添加すると、そ
の効果が失われる。(E) Mo: 2% or less Mo has the effect of suppressing the precipitation of carbides in the cooling process of the water toughness treatment and improving the ductility. However, if added over 2%, the effect is lost.
【0016】(ヘ)不純物元素であるP濃度が0.01
%以下で且つ〔%C〕・〔%P〕≦0.015 不純物であるPの濃度を0.01%以下でかつ〔%C〕
・〔%P〕≦0.015とすることによって、肉厚が1
00mmを超えるライナー材に対して、C濃度が1.3
%以上であっても高い延性を確保でき、C濃度を現用高
Mn鋳鋼の1.0〜1.3%から最大1.7%まで増加
させることが可能となり、耐摩耗性を飛躍的に向上させ
ることができる。一方、P濃度が0.01%を超える
か、〔%C〕・〔%P〕が0.15を超える条件では、
Fe−C−Pの共晶化合物の生成が促進され、延性が低
下する。(F) The P concentration as an impurity element is 0.01
% Or less and [% C] · [% P] ≦ 0.015 The concentration of the impurity P is 0.01% or less and [% C]
・ By setting [% P] ≦ 0.015, the wall thickness becomes 1
For a liner material exceeding 00 mm, the C concentration is 1.3.
% Or more, high ductility can be ensured, and the C concentration can be increased from 1.0 to 1.3% of the current high Mn cast steel to a maximum of 1.7%, and the wear resistance is dramatically improved. Can be done. On the other hand, under conditions where the P concentration exceeds 0.01% or [% C] · [% P] exceeds 0.15,
The formation of the Fe-CP eutectic compound is promoted, and the ductility is reduced.
【0017】本発明の高Mn鋳鋼は、C,Si,Mn,
Cr,Moを基本成分とし、不純物元素であるP濃度が
0.01%以下で且つ〔%C〕・〔%P〕≦0.015
とし、残部がFeおよび不可避不純物よりなるものであ
るが、必要によってTi,Al,V,Nb,B,Ta,
Zrの元素を所定量含有させても良い。これらの元素を
含有させるときの成分範囲限定理由は下記の通りであ
る。The high Mn cast steel of the present invention comprises C, Si, Mn,
Cr and Mo as basic components, P concentration as an impurity element is 0.01% or less, and [% C]. [% P] ≦ 0.015
And the balance is composed of Fe and unavoidable impurities, but if necessary, Ti, Al, V, Nb, B, Ta,
A predetermined amount of the element of Zr may be contained. The reasons for limiting the component ranges when these elements are contained are as follows.
【0018】Ti,Al:いずれか一方又は両方で0.
01〜0.6% Ti及びAlの添加は、酸化物又は窒化物を溶湯中に形
成し、結晶粒を微細化するのに有効である。Ti,Al
のいずれか一方又は両方の添加量が0.01以上で効果
があり、0.6%を超えると、粗大な介在物を生成する
ため、延性,靭性が低下する。また、大気溶解におい
て、Alは脱酸材として添加する。また、Moと同様に
Tiの添加は、水靭処理冷却過程の炭化物析出を抑制す
る効果を有する。Ti, Al: 0.1 or more in either one or both.
Addition of 01 to 0.6% Ti and Al is effective for forming oxides or nitrides in the molten metal and refining crystal grains. Ti, Al
When one or both of the addition amounts are 0.01 or more, there is an effect, and when it exceeds 0.6%, coarse inclusions are formed, so that ductility and toughness decrease. In addition, in dissolving in the air, Al is added as a deoxidizing material. Further, similarly to Mo, the addition of Ti has an effect of suppressing carbide precipitation during the cooling process of the water toughness treatment.
【0019】V,Nb,B,Ta,Zr:これらのうち
1種又は2種以上の合計で0.01〜3.0% V,Nb,B,Ta,Zrは炭化物析出により、加工硬
化特性の向上及び結晶粒の微細化に寄与するが、0.0
1%以上の添加量で効果があり、添加量が3.0%を超
えると、延性,靭性が低下する。V, Nb, B, Ta, Zr: 0.01 to 3.0% in total of one or more of these V, Nb, B, Ta, Zr are work hardening characteristics due to precipitation of carbides. Contributes to the improvement of
The effect is obtained at an addition amount of 1% or more, and when the addition amount exceeds 3.0%, ductility and toughness are reduced.
【0020】ところで、本発明に係る高Mn鋳鋼を得る
ためには、現在使用されている高Mn鋳鋼中のP濃度
(0.02〜0.07%程度)を低下させる、即ち、脱
Pする必要があるが、その具体的方法としては、主に以
下(1)〜(3)の3つの方法を挙げることができる。 (1)精錬時にBa0系及びNa4 Si04 系フラック
スを使用して酸化脱Pする。 (2)精錬時にCaC2 −CaF2 系フラックスを使用
して還元脱Pする。 (3)溶解原料としてフェロマンガンを使用せず、Mn
を含有しない溶鋼に金属Mnを添加する。 特にP濃度を0.01%以下にするには、フェロマンガ
ンの使用をなるべく減らすことが不可欠である。Incidentally, in order to obtain the high Mn cast steel according to the present invention, the P concentration (about 0.02 to 0.07%) in the currently used high Mn cast steel is reduced, that is, P is removed. Although it is necessary, the specific methods mainly include the following three methods (1) to (3). (1) oxidative de P using Ba0 system and Na 4 Si0 4 based flux during refining. (2) At the time of refining, P is reduced and removed using a CaC 2 -CaF 2 flux. (3) Mn without using ferromanganese as a melting raw material
Mn is added to molten steel containing no. In particular, in order to reduce the P concentration to 0.01% or less, it is essential to reduce the use of ferromanganese as much as possible.
【0021】[0021]
【実施例】表1に示す化学組成の高Mn鋳鋼を高周波誘
導加熱溶解炉を用いて溶製した。EXAMPLE A high Mn cast steel having the chemical composition shown in Table 1 was melted using a high-frequency induction heating melting furnace.
【0022】[0022]
【表1】 [Table 1]
【0023】図2に示す鋳塊形状の砂型で、実際のライ
ナー材を想定して鋳塊肉厚を約100mmとした。鋳込
温度は、各組成における液相線温度より100±5°C
高い温度とした。溶製した鋳塊は、1100°C×6h
の溶体化処理後水冷する水靭処理を施した。水靭処理
後、引張試験によって延性評価を行うと共に、圧縮試験
によって加工硬化の特性評価を行った。いずれの場合も
試験片は、鋳塊の肉厚(約100mm)に対して中央部
から試験片を採取し、以下の各試験条件で行った(図2
参照)。 (1)引張試験:JIS4号A型の試験片を10-3/s
のひずみ速度で行い、破断時の伸びから延性を評価し
た。 (2)圧縮試験:8φ×12hmmの試験片を10-3/
sのひずみ速度で行い、ひずみ50%時の変形抵抗から
加工硬化量を評価した。In the ingot-shaped sand mold shown in FIG. 2, the thickness of the ingot was set to about 100 mm assuming an actual liner material. The casting temperature is 100 ± 5 ° C from the liquidus temperature of each composition.
High temperature. Melted ingot is 1100 ° C × 6h
Was subjected to a water toughness treatment of cooling with water after the solution treatment. After the water toughness treatment, ductility was evaluated by a tensile test, and work hardening characteristics were evaluated by a compression test. In each case, the test piece was taken from the center with respect to the thickness of the ingot (about 100 mm), and the test piece was performed under the following test conditions (FIG. 2).
reference). (1) Tensile test: A test piece of JIS No. A type A was 10 −3 / s
And the ductility was evaluated from the elongation at break. (2) Compression test: A test piece of 8φ × 12 hmm was subjected to 10 −3 /
The rate of work hardening was evaluated from the deformation resistance at a strain of 50% at a strain rate of s.
【0024】なお、高Mn鋼は、加工硬化をすることに
よって優れた耐摩耗性を示す材質であるため、また、図
3に示すように、加工硬化量と実機ライナーの摩耗寿命
との間には良い相関が得られることがわかっているの
で、加工硬化の程度を調べることで、耐摩耗性,摩耗寿
命といった特性の良否を知ることができるのである。試
験結果を表2に示し、さらにP濃度と伸び(延性)との
関係を図4に示す。なお、右肩に*印を添えた数字のN
o.が本発明の要件を満足する実施例であり、評価は、
伸び>20%で加工硬化量>350kgf/mm2 のも
のを合格(○)とした。Since high-Mn steel is a material that exhibits excellent wear resistance due to work hardening, as shown in FIG. 3, the work-hardening amount and the wear life of the actual machine liner are reduced. Since it is known that a good correlation can be obtained, by examining the degree of work hardening, it is possible to know the quality of properties such as wear resistance and wear life. The test results are shown in Table 2, and the relationship between P concentration and elongation (ductility) is shown in FIG. In addition, the number N with asterisks attached to the right shoulder
o. Is an example satisfying the requirements of the present invention, the evaluation is
Those having an elongation of> 20% and a work hardening amount of> 350 kgf / mm 2 were judged as acceptable (O).
【0025】[0025]
【表2】 [Table 2]
【0026】表1,表2によれば、P濃度が低くなるほ
ど、伸び(延性)及び加工硬化量(耐摩耗性)が向上す
る傾向があるが、特にP濃度が0.01%以下になる
と、伸びが顕著に向上していることが分かる(実施例N
o.2* ,3* ,4* ,6* ,7* ,8* ,9* ,13
* ,14* ,15* ,17* ,18* )。C濃度が高い
場合には、特にP濃度を下げる必要があり(比較例N
o.19)、逆にC濃度が低い場合には、P濃度が高く
ても延性は良いが、加工硬化量が小さく摩耗寿命に問題
がある(比較例No.1)。また、伸びが約10%以下
になると、圧縮試験において高ひずみで割れが発生し、
加工硬化量が顕著に低下する(比較例No.10,1
1,12,16,19,20)。上記結果から、P濃度
を0.01%以下で且つ〔%C〕・〔%P〕≦0.01
5とすることによって、鋳塊肉厚が100mm以上でも
必要な延性を確保しつつ、加工硬化量を向上させ、耐摩
耗性を画期的に向上させることが可能となることが理解
できる。According to Tables 1 and 2, the lower the P concentration, the more the elongation (ductility) and the amount of work hardening (abrasion resistance) tend to be improved. It can be seen that the elongation is significantly improved (Example N
o. 2 * , 3 * , 4 * , 6 * , 7 * , 8 * , 9 * , 13
* , 14 * , 15 * , 17 * , 18 * ). When the C concentration is high, it is particularly necessary to lower the P concentration (Comparative Example N
o. 19) Conversely, when the C concentration is low, the ductility is good even when the P concentration is high, but the work hardening amount is small and there is a problem in the wear life (Comparative Example No. 1). Also, when the elongation is about 10% or less, cracks occur with high strain in the compression test,
The amount of work hardening is significantly reduced (Comparative Examples No. 10, 1
1, 12, 16, 19, 20). From the above results, the P concentration was 0.01% or less and [% C]. [% P] ≦ 0.01.
By setting it to 5, it can be understood that it is possible to improve the amount of work hardening and remarkably improve wear resistance while securing necessary ductility even when the thickness of the ingot is 100 mm or more.
【0027】また、延性の向上にはTi及びMoの添加
が有効であり(実施例No.7* ,13* ,14* )、
加工硬化量の向上にはTi及び炭化物形成元素(V,N
b,Ta,B)の添加が有効である(実施例No.
7* ,15* )。この加工硬化量の向上は、主に結晶粒
の微細化効果によるものである。但し、炭化物形成元素
が3%を超えると、多量の炭化物の析出によって延性低
下を招く(比較例No.16)。Further, addition of Ti and Mo is effective for improving ductility (Examples No. 7 * , 13 * , 14 * ).
In order to improve the amount of work hardening, Ti and carbide forming elements (V, N
b, Ta, B) is effective (Example No. 1).
7 * , 15 * ). This improvement in the amount of work hardening is mainly due to the effect of refining crystal grains. However, when the carbide-forming element exceeds 3%, a large amount of carbide precipitates to lower ductility (Comparative Example No. 16).
【0028】[0028]
【発明の効果】以上説明したように、本発明のうち請求
項1記載の発明は、重量%でC:1.3〜1.7%,S
i:0.3〜1.0%,Mn:10〜35%,Cr:5
%以下,Mo:2%以下,不純物元素であるP濃度が
0.01%以下で且つ〔%C〕・〔%P〕≦0.015
とし、残部がFeおよび不可避不純物であることを特徴
とする耐摩耗高Mn鋳鋼である。特に、P濃度を0.0
1%以下で且つ〔%C〕・〔%P〕≦0.015とする
ことによって、延性が向上し、肉厚が100mm前後、
あるいはそれ以上の部材に対してもC濃度を1.3%以
上にして加工硬化特性を向上させることができ、高Mn
鋼製耐摩耗ライナー材の摩耗寿命を画期的に向上させる
ことが可能となった。As described above, according to the first aspect of the present invention, C: 1.3 to 1.7% by weight, S:
i: 0.3 to 1.0%, Mn: 10 to 35%, Cr: 5
%, Mo: 2% or less, P concentration as an impurity element is 0.01% or less, and [% C]. [% P] ≦ 0.015
Wherein the balance is Fe and unavoidable impurities. In particular, when the P concentration is 0.0
By being 1% or less and [% C] · [% P] ≦ 0.015, ductility is improved, and the thickness is about 100 mm.
Alternatively, the work hardening characteristics can be improved by increasing the C concentration to 1.3% or more for even higher members, and high Mn
It has become possible to dramatically improve the wear life of the steel wear-resistant liner material.
【0029】また、請求項2記載の発明は、請求項1記
載の発明の構成に、Ti,Alのいずれか一方又は両方
を0.01〜0.6%加えたものであり、請求項1記載
の発明の効果に加えて、さらに延性の面で優れた高Mn
鋳鋼を提供することができる。さらに、請求項3記載の
発明は、請求項2記載の発明の構成に、V,Nb,B,
Ta,Zrのうち1種又は2種以上を合計で0.01〜
3.0%加えたものであり、請求項2記載の発明の効果
に加えて、さらに加工硬化特性(耐摩耗性)の面で優れ
た高Mn鋳鋼を提供することができる。According to a second aspect of the present invention, one or both of Ti and Al are added to the structure of the first aspect of the invention in an amount of 0.01 to 0.6%. In addition to the effects of the described invention, high Mn which is more excellent in ductility
Cast steel can be provided. Further, the invention according to claim 3 has a configuration in which V, Nb, B,
One or more of Ta and Zr are used in total of 0.01 to
3.0% is added, and in addition to the effect of the invention described in claim 2, a high Mn cast steel excellent in work hardening characteristics (wear resistance) can be provided.
【図1】水靭処理後の現用高Mn鋼の結晶粒界に形成さ
れるFe−C−Pの共晶化合物を示す顕微鏡写真であ
る。FIG. 1 is a micrograph showing a Fe-CP eutectic compound formed at a crystal grain boundary of a working high Mn steel after a water toughness treatment.
【図2】実施例に供した鋳塊の形状,肉厚と引張試験片
及び圧縮試験片の採取位置との関係を示す図である。FIG. 2 is a diagram showing the relationship between the shape and thickness of an ingot used in Examples and the positions at which a tensile test piece and a compression test piece are sampled.
【図3】加工硬化量と実機コーンクラッシャライナー材
寿命との関係を示す図である。FIG. 3 is a diagram showing the relationship between the amount of work hardening and the life of the actual cone crusher liner material.
【図4】P濃度と伸び(延性)との関係を示す図であ
る。FIG. 4 is a diagram showing a relationship between P concentration and elongation (ductility).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 皆川 耕児 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 増本 健 鳥取県米子市富益町88番地1 米子製鋼株 式会社内 (72)発明者 中井 寿直 鳥取県米子市富益町88番地1 米子製鋼株 式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Koji Minagawa 2-3-1, Shinhama, Araimachi, Takasago-shi, Hyogo Inside Kobe Steel, Ltd. Takasago Mfg. Co., Ltd. 1 Yonago Steel Corporation (72) Inventor Toshinao Nakai 88-1 Fuminmachi, Yonago City, Tottori Prefecture 1 Yonago Steel Corporation
Claims (3)
0.3〜1.0%,Mn:10〜35%,Cr:5%以
下,Mo:2%以下,不純物元素であるP濃度が0.0
1%以下で且つ〔%C〕・〔%P〕≦0.015とし、
残部がFeおよび不可避不純物であることを特徴とする
耐摩耗高Mn鋳鋼。C. 1.3 to 1.7% by weight of C, Si:
0.3 to 1.0%, Mn: 10 to 35%, Cr: 5% or less, Mo: 2% or less, P concentration as an impurity element is 0.0
1% or less and [% C] · [% P] ≦ 0.015,
A wear-resistant high Mn cast steel characterized in that the balance is Fe and inevitable impurities.
方を0.01〜0.6%含有するものである請求項1に
記載の耐摩耗高Mn鋳鋼。2. The wear-resistant high Mn cast steel according to claim 1, further comprising 0.01 to 0.6% of one or both of Ti and Al.
1種又は2種以上を合計で0.01〜3.0%含有する
ものである請求項2に記載の耐摩耗高Mn鋳鋼。3. The high wear resistance Mn according to claim 2, further comprising one or more of V, Nb, B, Ta, and Zr in a total amount of 0.01 to 3.0%. Cast steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18124196A JP3589797B2 (en) | 1996-06-21 | 1996-06-21 | Wear resistant high Mn cast steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18124196A JP3589797B2 (en) | 1996-06-21 | 1996-06-21 | Wear resistant high Mn cast steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH108210A true JPH108210A (en) | 1998-01-13 |
JP3589797B2 JP3589797B2 (en) | 2004-11-17 |
Family
ID=16097270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18124196A Expired - Lifetime JP3589797B2 (en) | 1996-06-21 | 1996-06-21 | Wear resistant high Mn cast steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3589797B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100475631B1 (en) * | 2002-06-14 | 2005-03-10 | 이두찬 | Braker chisel with improved were-resistance and crushing-ability, manufacturing apparatus and method, and high-manganese steel thereof |
KR100634100B1 (en) | 2004-12-22 | 2006-10-16 | 현대제철 주식회사 | High manganese steel having improved abrasion resistance and impact resistance and method for manufacturing the same |
CN101892427A (en) * | 2010-06-21 | 2010-11-24 | 桃江县正茂福利铸造有限公司 | High manganese steel and manufacturing method |
CN104884661A (en) * | 2012-12-26 | 2015-09-02 | Posco公司 | High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor |
CN104911504A (en) * | 2015-06-15 | 2015-09-16 | 三明市毅君机械铸造有限公司 | High-strength high-wear-resistance steel casting for super-huge type crusher and production process of steel casting |
CN111440997A (en) * | 2020-04-07 | 2020-07-24 | 洛阳中重铸锻有限责任公司 | Ultrahigh manganese cast steel |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10227681B2 (en) | 2015-10-21 | 2019-03-12 | Caterpillar Inc. | High manganese steel with enhanced wear and impact characteristics |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4936088B1 (en) * | 1965-11-19 | 1974-09-27 | ||
JPS5623259A (en) * | 1979-08-03 | 1981-03-05 | Sumitomo Metal Ind Ltd | Nickel-free high manganese cast steel for low temperature use |
JPS62139855A (en) * | 1985-12-11 | 1987-06-23 | Kurimoto Iron Works Ltd | Shock and wear resistant austenitic cast steel |
JPH01142058A (en) * | 1987-11-30 | 1989-06-02 | Furukawa Co Ltd | Austenitic impact-resistant and wear-resistant cast steel |
JPH02310337A (en) * | 1989-05-24 | 1990-12-26 | Yonago Seiko Kk | Impact wear-resistant high manganese cast steel |
JPH05263194A (en) * | 1992-03-19 | 1993-10-12 | Sumitomo Metal Ind Ltd | Wear resistant double-layered steel tube for boiler and its manufacture |
JPH06500825A (en) * | 1990-09-12 | 1994-01-27 | ロコモ オーイユー | Austenitic wear-resistant steel and its heat treatment method |
JPH08100243A (en) * | 1994-08-05 | 1996-04-16 | Toyota Motor Corp | Highly heat resistant iron-bas alloy |
-
1996
- 1996-06-21 JP JP18124196A patent/JP3589797B2/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4936088B1 (en) * | 1965-11-19 | 1974-09-27 | ||
JPS5623259A (en) * | 1979-08-03 | 1981-03-05 | Sumitomo Metal Ind Ltd | Nickel-free high manganese cast steel for low temperature use |
JPS62139855A (en) * | 1985-12-11 | 1987-06-23 | Kurimoto Iron Works Ltd | Shock and wear resistant austenitic cast steel |
JPH01142058A (en) * | 1987-11-30 | 1989-06-02 | Furukawa Co Ltd | Austenitic impact-resistant and wear-resistant cast steel |
JPH02310337A (en) * | 1989-05-24 | 1990-12-26 | Yonago Seiko Kk | Impact wear-resistant high manganese cast steel |
JPH06500825A (en) * | 1990-09-12 | 1994-01-27 | ロコモ オーイユー | Austenitic wear-resistant steel and its heat treatment method |
JPH05263194A (en) * | 1992-03-19 | 1993-10-12 | Sumitomo Metal Ind Ltd | Wear resistant double-layered steel tube for boiler and its manufacture |
JPH08100243A (en) * | 1994-08-05 | 1996-04-16 | Toyota Motor Corp | Highly heat resistant iron-bas alloy |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100475631B1 (en) * | 2002-06-14 | 2005-03-10 | 이두찬 | Braker chisel with improved were-resistance and crushing-ability, manufacturing apparatus and method, and high-manganese steel thereof |
KR100634100B1 (en) | 2004-12-22 | 2006-10-16 | 현대제철 주식회사 | High manganese steel having improved abrasion resistance and impact resistance and method for manufacturing the same |
CN101892427A (en) * | 2010-06-21 | 2010-11-24 | 桃江县正茂福利铸造有限公司 | High manganese steel and manufacturing method |
CN104884661A (en) * | 2012-12-26 | 2015-09-02 | Posco公司 | High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor |
JP2016507648A (en) * | 2012-12-26 | 2016-03-10 | ポスコ | High-strength austenitic steel material with excellent toughness of weld heat-affected zone and method for producing the same |
EP2940173A4 (en) * | 2012-12-26 | 2016-08-10 | Posco | High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor |
CN104884661B (en) * | 2012-12-26 | 2017-05-31 | Posco公司 | Excellent high intensity austenitic type steel of welding heat influence area toughness and preparation method thereof |
US10041156B2 (en) | 2012-12-26 | 2018-08-07 | Posco | High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor |
CN104911504A (en) * | 2015-06-15 | 2015-09-16 | 三明市毅君机械铸造有限公司 | High-strength high-wear-resistance steel casting for super-huge type crusher and production process of steel casting |
CN111440997A (en) * | 2020-04-07 | 2020-07-24 | 洛阳中重铸锻有限责任公司 | Ultrahigh manganese cast steel |
Also Published As
Publication number | Publication date |
---|---|
JP3589797B2 (en) | 2004-11-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7226493B2 (en) | Method for grain refining of steel, grain refining alloy for steel and method for producing grain refining alloy | |
US6572713B2 (en) | Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing | |
AU2002211409A1 (en) | Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing | |
JP3706560B2 (en) | Mechanical structural steel with excellent chip control and mechanical properties | |
US20120055288A1 (en) | Method of Making a High Strength, High Toughness, Fatigue Resistant, Precipitation Hardenable Stainless Steel and Product Made Therefrom | |
CN113462991A (en) | Forging or rolling process of alloyed high manganese steel frog | |
CA1121187A (en) | Bismuth-containing steel | |
CN115896634A (en) | High-temperature-resistant non-ferrous metal die-casting forming die steel material and preparation method thereof | |
JPH11343543A (en) | High toughness super-abrasion resistant cast steel and its production | |
JPH108210A (en) | Wear resistant high manganese cast steel | |
JP2000319750A (en) | High tensile strength steel for large heat input welding excellent in toughness of heat-affected zone | |
JP4523230B2 (en) | Strengthened durable tool steel, method for producing the same, method for producing a member made of the steel, and member obtained | |
US6355089B2 (en) | Process for the manufacture of carbon or low-alloy steel with improved machinability | |
JPH093590A (en) | Oxide dispersion strengthened ferritic heat resistant steel sheet and its production | |
JP3403293B2 (en) | Steel sheet with excellent toughness of weld heat affected zone | |
CN105803322A (en) | High-manganese steel and preparation method thereof | |
CN110938775A (en) | High-strength cast steel and manufacturing method thereof | |
JP3245039B2 (en) | High wear resistant high Mn cast steel and method for producing the same | |
JPH08225820A (en) | Production of high carbon silicon killed steel | |
JPH08100223A (en) | Production of high cleanliness steel | |
JP7530447B2 (en) | Precipitation hardening martensitic stainless steel with excellent fatigue resistance | |
JP2003183766A (en) | Tool material for hot working | |
JP3573344B2 (en) | Manufacturing method of highly clean maraging steel | |
JP3225788B2 (en) | Method for producing steel with excellent toughness in weld heat affected zone | |
JP3217427B2 (en) | Lump-resistant mineral wear material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040615 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040818 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080827 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090827 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090827 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100827 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110827 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110827 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120827 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120827 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130827 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140827 Year of fee payment: 10 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |