JP3245039B2 - High wear resistant high Mn cast steel and method for producing the same - Google Patents

High wear resistant high Mn cast steel and method for producing the same

Info

Publication number
JP3245039B2
JP3245039B2 JP02989296A JP2989296A JP3245039B2 JP 3245039 B2 JP3245039 B2 JP 3245039B2 JP 02989296 A JP02989296 A JP 02989296A JP 2989296 A JP2989296 A JP 2989296A JP 3245039 B2 JP3245039 B2 JP 3245039B2
Authority
JP
Japan
Prior art keywords
cast steel
wear
resistant
grain size
work hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02989296A
Other languages
Japanese (ja)
Other versions
JPH09202941A (en
Inventor
昌吾 村上
博幸 内田
耕児 皆川
健 増本
寿直 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP02989296A priority Critical patent/JP3245039B2/en
Publication of JPH09202941A publication Critical patent/JPH09202941A/en
Application granted granted Critical
Publication of JP3245039B2 publication Critical patent/JP3245039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、衝撃を受ける耐摩
耗部材に用いられる高耐摩耗高Mn鋳鋼およびその製造
方法に関する、特にコ−ンクラッシャやジョ−クラッシ
ャなどの破砕機用ライナ−材に用いられる高耐摩耗高M
n鋳鋼およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high wear resistant and high Mn cast steel used for a wear resistant member subjected to impact and a method for producing the same, and particularly to a liner material for a crusher such as a cone crusher or a jaw crusher. High wear resistance used M
The present invention relates to an n cast steel and a method for producing the same.

【0002】[0002]

【従来の技術】高Mn鋳鋼は加工硬化特性と靭性を合わ
せ持ち、衝撃を受ける耐摩耗部材に使用されてきた。高
Mn鋳鋼は耐摩耗性に優れているため、破砕機の耐摩耗
部材に多用されている。この破砕機の処理能力の向上が
求められ、破砕機の大型化、破砕圧力の高圧化が進めら
れている。このため、破砕機に使用される耐摩耗部材に
おいて、過酷な使用条件に耐える性能を有する高Mn鋳
鋼が要求されている。同様に、他の衝撃を受ける耐摩耗
部材にも、使用条件の過酷化に対応できる高Mn鋳鋼の
要求が大きい。
2. Description of the Related Art High Mn cast steels have both work hardening characteristics and toughness and have been used as wear-resistant members subjected to impact. Since high Mn cast steel has excellent wear resistance, it is frequently used as a wear-resistant member of a crusher. Improvement of the processing capacity of the crusher is required, and the size of the crusher is increased and the crushing pressure is increased. For this reason, a high-Mn cast steel having a performance that can withstand severe use conditions is required for a wear-resistant member used in a crusher. Similarly, there is a great demand for high-Mn cast steel capable of coping with severer use conditions for other wear-resistant members subjected to impact.

【0003】高Mn鋳鋼の性能向上の手段として、機械
的特性の改善が検討されてきた。その結果、機械的特性
を向上させるために、結晶粒の微細化が有効であること
が報告されている。例えば、I.Henych; Giesserei、第
60巻(1973)P453〜P457、武藤ら;鉄と
鋼、第42巻(1956)P873〜P874、郡ら;
電気製鋼,第33巻4号(1962)P248〜P26
9等の報告がある。これらの報告は、0.9〜1.3%
C、11〜14%Mn組成の鋼種(JIS G5131
相当)において、高Mn鋳鋼の結晶粒の微細化を行い、
高Mn鋳鋼の機械的特性が改善させるものである。この
結晶粒の微細化は鋳込温度を下げたり、冷却速度を早く
することにより実施された。しかし、これらの方法では
高Mn鋳鋼の耐摩耗性の改善までいたらなかった。
[0003] As a means of improving the performance of high Mn cast steel, improvement of mechanical properties has been studied. As a result, it has been reported that refinement of crystal grains is effective for improving mechanical properties. For example, I. Henych; Giesserei, Vol. 60 (1973) P453-P457, Muto et al .; Iron and Steel, Vol. 42 (1956) P873-P874;
Electric Steelmaking, Vol. 33, No. 4, (1962) P248-P26
There are 9 mag reports. These reports are 0.9-1.3%
C, a steel grade having a composition of 11 to 14% Mn (JIS G5131
Equivalent), refine the crystal grains of high Mn cast steel,
This improves the mechanical properties of the high Mn cast steel. The grain refinement was performed by lowering the casting temperature or increasing the cooling rate. However, these methods did not improve the wear resistance of the high Mn cast steel.

【0004】そこで、耐摩耗性の向上のため、前記JI
S G5131相当の高Mn鋳鋼より、C量を高め、適
量のMn量が調整された16〜32%Mn鋳鋼が開発さ
れた。さらに、Cr、Mo、V等の炭化物形成元素を添
加することにより耐摩耗性を向上させた高Mn鋳鋼も開
発されてきた。例えば、特公昭57−17937、特公
昭63−8181、特公平1−14303、特公平2−
15623、特開昭62−139855、特開平1−1
42058号公報等である。
Therefore, in order to improve the wear resistance, the aforementioned JI
A 16-32% Mn cast steel in which the amount of C is increased and an appropriate amount of Mn is adjusted from a high Mn cast steel equivalent to SG5131 has been developed. Further, high Mn cast steels having improved wear resistance by adding carbide forming elements such as Cr, Mo, and V have been developed. For example, Japanese Patent Publication Nos. 57-17937, 63-8181, 1-14303, and 2-
15623, JP-A-62-139855, JP-A-1-1-1
No. 42058, and the like.

【0005】破砕機ライナ−材(例えば、鋳塊の最大肉
厚部が40〜150mm)に使用されるJIS G51
31相当の11〜14%Mn鋳鋼の結晶粒径はlmm前
後の粗大な結晶粒径である。高合金の16〜32%Mn
鋳鋼の結晶粒径は、JISG5131相当の11〜14
%Mn鋳鋼の結晶粒径より、さらに大きくなる傾向があ
る。結晶粒の微細化のためには鋳込温度を低くすること
が有効ということが知られているが、製造上(生産性、
取鍋のメンテナンス等)の問題で鋳込温度を低くするの
が困難である。
[0005] JIS G51 used for crusher liner materials (for example, the maximum thickness of the ingot is 40 to 150 mm)
The crystal grain size of 11 to 14% Mn cast steel equivalent to 31 is a coarse grain size of about 1 mm. 16-32% Mn of high alloy
The crystal grain size of the cast steel is 11-14 corresponding to JIS G 5131.
% Mn tends to be larger than the grain size of cast steel. It is known that lowering the casting temperature is effective for refining crystal grains.
It is difficult to lower the casting temperature due to problems such as ladle maintenance).

【0006】特公平1−14303公報の1.0〜2.
0%C−16〜25%Mn鋼、実質的には1.6〜1.
9%C−19〜22%Mn鋼の鋳込温度は1390〜1
460℃の間が適切であると、記載されている。この鋳
込温度はMn鋼の合金組成と鋳型によって変化させ、鋳
込温度は実際上できるかぎり低くする方がよいと記述さ
れている。この合金組成での液相線温度は、1235〜
1385℃の間と推定される。鋳込温度と液相線温度の
最低値と、鋳込温度と液相線温度の最高値とを比較する
と、いずれも、鋳込温度と液相線温度との温度差は70
℃を越えている。さらに、特公平1−14303公報の
実質的な合金である1.6〜1.9%C−19〜22%
Mn鋼での液相線温度は、約1250〜1320℃の間
と推定され、この場合は、下限の鋳込温度でも、液相線
温度をより70℃を越えたものと推定される。本発明の
鋳込温度より高いものとなっている。
[0006] 1.0 to 2.
0% C-16 to 25% Mn steel, substantially 1.6 to 1.
Casting temperature of 9% C-19-22% Mn steel is 1390-1
It is stated that between 460 ° C. is suitable. It is described that the casting temperature is varied depending on the alloy composition of the Mn steel and the mold, and the casting temperature should be as low as practical. The liquidus temperature for this alloy composition is 1235-
It is estimated to be between 1385 ° C. When the casting temperature and the minimum value of the liquidus temperature are compared with the maximum value of the casting temperature and the liquidus temperature, the temperature difference between the casting temperature and the liquidus temperature is 70%.
℃ is exceeded. Furthermore, 1.6 to 1.9%, which is a substantial alloy disclosed in Japanese Patent Publication No. 1-14303, C-19 to 22%
The liquidus temperature of the Mn steel is estimated to be between about 1250 to 1320 ° C., and in this case, it is estimated that the liquidus temperature exceeds 70 ° C. even at the lower casting temperature. It is higher than the casting temperature of the present invention.

【0007】これら16〜32%Mn鋳鋼は、高合金化
による機械的特性の低下や製造方法の困難さを最小限に
するために、前述の鋳込温度を下げる手段以外の結晶粒
の微細化法が検討されてきた。Ti、V、Nb、Zr、
B等の微粒化元素の添加による結晶粒の微細化法が検討
され、実施されてきた。この方法により、耐摩耗性が改
善された高Mn鋳鋼は、衝撃を受ける耐摩耗部材に実用
化された。特に、破砕機等の耐摩耗部材に使用すること
により、破砕機等の性能の向上がはかられた。
[0007] These 16-32% Mn cast steels have a fine grain size other than the above-mentioned means for lowering the casting temperature in order to minimize the deterioration of mechanical properties and the difficulty of the production method due to the high alloying. The law has been considered. Ti, V, Nb, Zr,
A method for refining crystal grains by adding a refining element such as B has been studied and implemented. By this method, a high Mn cast steel having improved wear resistance has been put to practical use as a wear-resistant member subjected to impact. In particular, the performance of the crusher and the like has been improved by using it for wear-resistant members such as the crusher.

【0008】[0008]

【発明を解決しようとする課題】しかしながら、これら
の高Mn鋳鋼を破砕機等の耐摩耗部材に使用しても、耐
摩耗部材の寿命は満足できるものでなかった。近年、破
砕機の処理能力の向上の要求が益々過酷になり、特に、
耐摩耗性の要求が強く、十分な耐摩耗性を有する高Mn
鋳鋼が得られていないのが現状である。他の衝撃を受け
る耐摩耗部材の分野でも同様である。そこで本発明は、
高Mn鋳鋼の耐摩耗性を従来材より向上させ、高長寿命
となる耐摩耗部材用の高耐摩耗高Mn鋳鋼を提供するこ
とを目的としたものである。さらに、耐摩耗性の優れた
高耐摩耗高Mn鋳鋼の製造方法を提供するものである。
However, even if these high Mn cast steels are used for wear-resistant members such as crushers, the life of wear-resistant members has not been satisfactory. In recent years, the demand for improving the processing capacity of crushers has become increasingly severe,
High Mn with strong wear resistance and sufficient wear resistance
At present, cast steel has not been obtained. The same applies to the field of wear-resistant members that receive other impacts. Therefore, the present invention
It is an object of the present invention to improve the wear resistance of a high Mn cast steel compared with conventional materials and to provide a high wear resistant high Mn cast steel for wear resistant members having a long life. Further, the present invention provides a method for producing a high wear resistant and high Mn cast steel having excellent wear resistance.

【0009】[0009]

【課題を解決するための手段】高Mn鋳鋼の耐摩耗性向
上を達成するために、高Mn鋳鋼のCおよびMn量を変
化させて、高Mn鋳鋼の加工硬化量、耐摩耗性および結
晶粒径との関係を調査した。さらに、Si、Cr、T
i、Al等の添加の影響も合わせて研究した。これらの
研究結果により、加工硬化量と耐摩耗性との間に、良好
な相関関係があることを見い出した。さらに、高Mn鋳
鋼は結晶粒を微細化することにより、加工硬化量が増加
することを見い出した。特に、C量が1.1〜1.6
%、Mn量が15.0〜35.0%の範囲の高Mn鋳鋼
の結晶粒径を500μm以下にすると、著しく加工硬化
量が増加し、この結果、耐摩耗性が著しく向上できるこ
とが判明した。あわせて、Si、Cr、Ti、Al、等
の添加により、1.1〜1.6%C−15.0〜35.
0%Mn鋳鋼の結晶粒を微細化し、耐摩耗性を向上させ
ることを見い出した。
In order to improve the wear resistance of a high Mn cast steel, the amount of work hardening, wear resistance and crystal grain of the high Mn cast steel are changed by changing the amounts of C and Mn of the high Mn cast steel. The relationship with the diameter was investigated. Furthermore, Si, Cr, T
The effects of the addition of i, Al, etc. were also studied. From these research results, it has been found that there is a good correlation between the amount of work hardening and wear resistance. Furthermore, it has been found that the high Mn cast steel increases the amount of work hardening by refining crystal grains. In particular, the amount of C is 1.1 to 1.6.
%, When the crystal grain size of the high Mn cast steel having a Mn content of 15.0 to 35.0% is 500 μm or less, the work hardening amount is significantly increased, and as a result, it has been found that the wear resistance can be significantly improved. . In addition, by adding Si, Cr, Ti, Al, etc. , 1.1-1.6% C-15.0-35.
It has been found that the grains of 0% Mn cast steel are refined to improve wear resistance.

【0010】このような加工硬化特性に及ぼす粒径依存
性は、まったく新しい知見である。一般に、高Mn鋳鋼
は結晶粒径を微細化することにより、機械的特性が向上
することが知られているが、加工硬化特性が向上するこ
とは今まで知られていなかった。
The particle size dependence on the work hardening characteristics is a completely new finding. In general, high Mn cast steel is known to improve mechanical properties by reducing the crystal grain size, but it has not been known until now that work hardening properties are improved.

【0011】この発明のうちで請求項1の発明は上記知
見に基づくものである。すなわち、請求項1記載の発明
は、重量%で、C:1.1〜1.6%、Si:0.3〜
1.0%、Mn:15.0〜35.0%、Cr:5.0
%以下(0%を含まない)からなり、さらにTi、Al
のいずか一方又は両方を、0.01〜0.6%含み、
部がFeおよび不可避不純物元素である高耐摩耗高Mn
鋳鋼であって、平均結晶粒径が50〜500μmである
ことを特徴とするものである。高耐摩耗高Mn鋳鋼の平
均結晶粒径を50〜500μmにすることによって、加
工硬化特性が向上し、耐摩耗性が改善することができ
る。平均結晶粒径が50μm未満の高耐摩耗高Mn鋳鋼
では耐アブレッシブ摩耗性が著しく低下する。さらに、
優れた耐摩耗性を得るために、高耐摩耗高Mn鋳鋼の平
均結晶粒径を100〜300μmにすることは好まし
い。また、Ti、Alを添加することにより、高耐摩耗
高Mn鋳鋼の結晶粒を微細化し、耐摩耗性をさらに向上
できる。
The invention of claim 1 is based on the above findings. That is, in the invention according to claim 1, C: 1.1-1.6% and Si: 0.3-% by weight%.
1.0%, Mn: 15.0 to 35.0%, Cr: 5.0
% Or less (not including 0%), and Ti, Al
High wear resistance high Mn containing 0.01 to 0.6% of one or both of the above, and the balance being Fe and inevitable impurity elements.
Cast steel, characterized in that the average crystal grain size is 50 to 500 μm. By setting the average crystal grain size of the high wear-resistant high Mn cast steel to 50 to 500 μm, the work hardening characteristics are improved, and the wear resistance can be improved. In a high wear resistant and high Mn cast steel having an average crystal grain size of less than 50 μm, the abrasive wear resistance is significantly reduced. further,
In order to obtain excellent wear resistance, it is preferable that the average grain size of the high wear resistant and high Mn cast steel be 100 to 300 μm. Also, by adding Ti and Al, high wear resistance
Fine grain of high Mn cast steel, further improving wear resistance
it can.

【0012】以下に本発明の高耐摩耗高Mn鋳鋼の成分
範囲の限定理由を述べる。 (イ)C:l.1〜1.6% C量の増加とともに、変形時に、積層欠陥より変形双晶
の発生頻度が増加し、加工硬化特性に対する結晶粒径依
存性が大きくなる。このため、C量が1.1%未満では
結晶粒径を500μm以下にしても必要な加工硬化特性
が得られない。さらに、耐摩耗性の低下も著じるしい。
また、C量が1.6%越えると靭性が低下して、耐摩耗
部材の製造または使用時の割れを生じ、製造が困難にな
る。また、耐摩耗部材への割れの発生により、加工硬化
特性が向上しない。
The reasons for limiting the component range of the high wear-resistant and high-Mn cast steel of the present invention will be described below. (A) C: l. With an increase in the C content of 1 to 1.6%, the frequency of occurrence of deformation twins due to stacking faults during deformation increases, and the crystal grain size dependence on work hardening characteristics increases. Therefore, if the C content is less than 1.1%, the required work hardening characteristics cannot be obtained even if the crystal grain size is 500 μm or less. Furthermore, the abrasion resistance is significantly reduced.
On the other hand, if the C content exceeds 1.6%, the toughness decreases, and cracks occur during the manufacture or use of the wear-resistant member, making the manufacture difficult. In addition, work hardening characteristics are not improved due to the occurrence of cracks in the wear-resistant member.

【0013】 (ロ)Si:0.3〜1.0% 溶解時の溶湯の脱酸および流動性確保のために、Siを
0.3%以上添加する必要がある。また、Si量が1.
0%を越えると、炭化物の結晶粒界への析出が促進さ
れ、靭性が低下する。
(B) Si: 0.3 to 1.0% In order to deoxidize the molten metal at the time of melting and ensure fluidity, it is necessary to add 0.3% or more of Si. Further, when the amount of Si is 1.
If it exceeds 0%, precipitation of carbides at crystal grain boundaries is promoted, and toughness decreases.

【0014】 (ハ)Mn:15.0〜35.0% MnはCの固溶限を増大させ、水靱処理冷却過程での炭
化物析出を抑制し、必要な延性を確保する。また、Mn
量の増加とともに、変形時に、積層欠陥より変形双晶の
発生頻度が増加し、加工硬化特性に対する結晶粒径依存
性が大きくなる。このため、Mn量が15.0%未満で
は結晶粒径を500μm以下にしても必要な加工硬化特
性が得られない。さらに、耐摩耗部材に必要な耐摩耗性
を得ることができない。また、Mn量が35.0%越え
ると靭性が低下するとともに、鋳放し状態での炭化物析
出量が多くなり、鋳造割れが生じる。
(C) Mn: 15.0-35.0% Mn increases the solid solubility limit of C, suppresses carbide precipitation in the cooling process of the water toughness treatment, and secures necessary ductility. Also, Mn
As the amount increases, the frequency of occurrence of deformation twins increases due to stacking faults during deformation, and the crystal grain size dependence on work hardening characteristics increases. Therefore, if the Mn content is less than 15.0%, the required work hardening characteristics cannot be obtained even if the crystal grain size is 500 μm or less. Furthermore, the wear resistance required for the wear-resistant member cannot be obtained. On the other hand, if the Mn content exceeds 35.0%, the toughness decreases, and the amount of carbide precipitation in the as-cast state increases, resulting in casting cracks.

【0015】 (ニ)Cr:5.0%以下(0%を含まない) Crは加工硬化特性を向上させるとともに、耐摩耗性を
向上させるのに有効な元素であり、Crを添加すること
は好ましい。Cr量が5.0%を越えると鋳造時および
水靭処理の冷却過程での炭化物析出が顕著となり、靭性
の低下が著しい。
(D) Cr: 5.0% or less (excluding 0%) Cr is an element effective for improving work hardening characteristics and abrasion resistance. preferable. If the Cr content exceeds 5.0%, carbide precipitation during casting and in the cooling process of the water toughness treatment becomes remarkable, and the toughness is significantly reduced.

【0016】 (へ)Ti、Alのいずか一方又は両方:0.01〜
0.6% TiおよびAlの添加は酸化物、炭化物または窒化物を
溶湯中に形成し、結晶粒を微細化するのに有効であり、
さらに、水靭処理の冷却過程の炭化物析出を抑制する効
果を有する。Ti、Alのいずか一方又は両方の添加量
が0.01%以上で効果があり、0.6%を越えると、
粗大な介在物が生成し、靭性が低下する。
(F) Either or both of Ti and Al: 0.01 to
The addition of 0.6% Ti and Al is effective for forming oxides, carbides or nitrides in the molten metal and refining crystal grains,
Further, it has the effect of suppressing carbide precipitation during the cooling process of the water toughness treatment. When one or both of Ti and Al are added in an amount of 0.01% or more, the effect is obtained.
Coarse inclusions are formed and toughness is reduced.

【0017】次に、結晶粒と加工硬化特性に関する本発
明の知見を得るに至った過程を説明し、さらに、本発明
を詳しく説明する。図3は現用のJIS規格材(SCM
nH11:0.9〜1.3%C−11〜14%Mn鋼)
を用いたコ−ンクラッシャライナ−材の使用寿命と加工
硬化量との関係を示したものである。耐摩耗材の寿命比
は、加工硬化量が約300kgf/mm2のコ−ンクラッシャ
ライナ−材の使用寿命を1としたときの倍数で示してい
る。使用寿命はコ−ンクラッシャライナ−材の摩耗量か
ら判断した。加工硬化量が増加するとともに、コ−ンク
ラッシャライナ−材の寿命が向上し、加工硬化量が約3
80kgf/mm2 では、使用寿命は2倍となることを示して
いる。加工硬化量の増加とともに、耐摩耗部材の使用寿
命が向上する。このように加工硬化により、耐摩耗部材
の耐摩耗性が向上することを確認できた。予想していた
以上に、加工硬化量と耐摩耗部材の使用寿命との相関関
係が高いことが判明した。
Next, the process which led to the knowledge of the present invention relating to crystal grains and work hardening characteristics will be described, and the present invention will be further described in detail. Fig. 3 shows the current JIS standard materials (SCM
nH11: 0.9 to 1.3% C-11 to 14% Mn steel)
1 shows the relationship between the service life of a cone crusher liner material and the amount of work hardening. The life ratio of the wear-resistant material is shown as a multiple of the service life of the cone crusher liner material having a work hardening amount of about 300 kgf / mm 2 assuming that the service life thereof is 1. The service life was determined from the wear of the cone crusher liner material. As the amount of work hardening increases, the life of the cone crusher liner improves, and the amount of work hardening decreases by about 3
At 80 kgf / mm 2 , the service life is doubled. As the amount of work hardening increases, the service life of the wear-resistant member improves. Thus, it was confirmed that the work hardening improves the wear resistance of the wear-resistant member. It was found that the correlation between the amount of work hardening and the service life of the wear-resistant member was higher than expected.

【0018】高Mn鋳鋼の加工硬化量は、コ−ンクラッ
シャ、ジョ−クラッシャ等の破砕機の耐摩耗部材の摩耗
による使用寿命の評価に有効である。さらに、破砕機用
の耐摩耗部材だけでなく、衝撃が加わる耐摩耗用部材、
例えば、建設機械用耐摩耗部材として、ドラッグチェ−
ン、バケット、バケットチィ−ス、キャタピラ、レ−ル
クロッシング等、高炉用耐摩耗部材として、ア−マ−プ
レ−ト、ベル等の摩耗量を評価にも用いられるものであ
る。今までは、実機の耐摩耗部材の寿命の推定するため
に、使用する高Mn鋳鋼の耐力やー定変形後の硬さ等の
測定結果や実験室レべルの各種摩耗試験結果により行っ
てきた。しかしながら、これらの試験結果と実際の耐摩
耗部材の使用寿命とはかならずしも一致せず、測定や試
験結果との相関がいまだ不明確である。実機の試験結果
とかならずしも一致しないのが現状であった。
The amount of work hardening of the high Mn cast steel is effective for evaluating the service life due to wear of wear-resistant members of crushers such as cone crushers and jaw crushers. Furthermore, not only wear-resistant members for crushers, but also wear-resistant members to which impact is applied,
For example, drag chains are used as wear-resistant members for construction machinery.
As wear-resistant members for blast furnaces such as blades, buckets, bucket teeth, caterpillars, rail crossings, etc., they are also used to evaluate the wear amount of armature plates, bells and the like. Until now, in order to estimate the life of the wear-resistant members of the actual machine, the results were measured based on the measurement results of the proof stress and hardness after constant deformation of the high Mn cast steel used and the results of various wear tests at the laboratory level. Was. However, these test results do not always agree with the actual service life of the wear-resistant member, and the correlation between the measurement and the test results is still unclear. At present, it does not always agree with the test results of the actual machine.

【0019】次に、加工硬化特性に及ぼす高Mn鋳鋼の
合金成分(特にCとMn量)と結晶粒径との影響を詳細
に調査した。試験材は表1に示す化学組成の鋼種を真空
溶解し、表2に示す鋳込温度で、約10kgf の鋳塊(8
5φ×90φ×140h)に溶製した。その後、110
0℃で6hrの溶体化処理を行い、次いで水靭処理を行
った。得られた試験材の結晶粒径を表2に示す。
Next, the effects of the alloy components (particularly, the amounts of C and Mn) and the crystal grain size of the high Mn cast steel on the work hardening characteristics were investigated in detail. As a test material, a steel type having a chemical composition shown in Table 1 was melted in a vacuum, and at a casting temperature shown in Table 2, an ingot of about 10 kgf (8
(5φ × 90φ × 140h). Then 110
A solution treatment was performed at 0 ° C. for 6 hours, followed by a water toughness treatment. Table 2 shows the crystal grain size of the obtained test material.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】図1に各試料の結晶粒径と加工硬化量との
関係を示す。図1の黒塗り点で示す試料B、DおよびE
は、結晶粒径が500μm以下になると、加工硬化量が
著しく増加する。特に、結晶粒径が300μm以下での
加工硬化量の増加が顕著である。なお、試料B、Dおよ
びEはMn量が20〜24%の高Mn鋳鋼である。一
方、白抜きの点で示す試料AとCは、結晶粒径の減少と
ともに加工硬化量は増加しているが、ほんの僅かであ
る。なお、試料Aは1.2%C−12%Mn鋳鋼であ
り、試料Cは1.7%C−32%Mn鋳鋼である。
FIG. 1 shows the relationship between the crystal grain size of each sample and the amount of work hardening. Samples B, D and E indicated by black dots in FIG.
When the crystal grain size is 500 μm or less, the amount of work hardening remarkably increases. In particular, the amount of work hardening is remarkable when the crystal grain size is 300 μm or less. Samples B, D and E are high Mn cast steels having an Mn content of 20 to 24%. On the other hand, in Samples A and C indicated by white dots, the amount of work hardening increases as the crystal grain size decreases, but it is only slight. The sample A is a 1.2% C-12% Mn cast steel, and the sample C is a 1.7% C-32% Mn cast steel.

【0023】JIS G5131相当の12%Mnの高
Mn鋳鋼にCおよびMnをさらに加えた、20〜24%
Mnの高Mn鋳鋼は結晶粒径の500μm以下にするこ
とにより、加工硬化特性を著しく向上できる。この結
果、高Mn鋳鋼の耐摩耗性を改善でき、衝撃が加わる耐
摩耗部材の使用寿命を向上させることが可能になった。
さらに、この結果と後述する試験結果(実施例参照)よ
り、高Mn鋳鋼のMn量が15.0〜35.0%の範囲
であれば、前記高Mn鋳鋼の結晶粒径が500μm以下
にすることによって、加工硬化量を著しく増加すること
を確認した。
C and Mn are further added to a 12% Mn high Mn cast steel corresponding to JIS G5131, 20 to 24%
Work hardening characteristics can be remarkably improved by setting the crystal grain size of the Mn high Mn cast steel to 500 μm or less. As a result, the wear resistance of the high Mn cast steel can be improved, and the service life of the wear-resistant member to which an impact is applied can be improved.
Further, from this result and the test results (see Examples) described later, if the Mn content of the high Mn cast steel is in the range of 15.0 to 35.0%, the crystal grain size of the high Mn cast steel is set to 500 μm or less. As a result, it was confirmed that the work hardening amount was significantly increased.

【0024】Mn量が32%の試料Cが、十分な加工硬
化量が得られなかったのは、C量が1.7%と靭性が低
いために、試験片に割れが発生するために、加工硬化量
が増加しなかったものである。この結果、高Mn鋳鋼の
C量は1.6%以下が好ましいことが判明した。
The sample C having an Mn content of 32% could not obtain a sufficient work hardening amount because the C content was low at 1.7% and the test piece was cracked. The amount of work hardening did not increase. As a result, it was found that the C content of the high Mn cast steel is preferably 1.6% or less.

【0025】本研究から、JIS G5131相当の1
1〜14%Mn鋳鋼は結晶粒径の微細化による加工硬化
特性の向上は期待できないことが判明した。一方、15
〜35%Mnの高Mn鋳鋼は結晶粒径を500μm以下
にすることにより、常に高い加工硬化量を示すことが判
明した。
From the present study, it was found that one equivalent to JIS G5131
It has been found that 1 to 14% Mn cast steel cannot be expected to improve the work hardening characteristics due to the refinement of the crystal grain size. On the other hand, 15
It has been found that a high Mn cast steel of up to 35% Mn always shows a high work hardening amount by setting the crystal grain size to 500 μm or less.

【0026】この原因として、以下のことが考えられ
る。低Mn組成のMn鋳鋼の変形に伴う加工硬化は積層
欠陥の生成によるもので、一方、高Mn組成のMn鋳鋼
の加工硬化は変形双晶によって生じると考えられる。こ
の変形双晶は結晶粒径を微細に、特に500μm以下に
すると、変形によって非常に多量に形成される傾向があ
る。この結果、高Mn組成のMn鋳鋼は加工硬化特性が
高いと推察される。従って、平均結晶粒径が500μm
以下である本発明は加工硬化量がが高く、耐摩耗部材と
して使用した場合、寿命も長くなることがわかる。請求
項2に記載の発明は上記知見に基づくものである。
The following can be considered as the cause. It is considered that the work hardening accompanying deformation of the Mn cast steel having a low Mn composition is caused by generation of stacking faults, while the work hardening of the Mn cast steel having a high Mn composition is caused by deformation twinning. When the crystal grain size is made fine, particularly 500 μm or less, this deformation twin tends to be formed in a very large amount by deformation. As a result, it is presumed that Mn cast steel having a high Mn composition has high work hardening characteristics. Therefore, the average crystal grain size is 500 μm
The present invention, which has the following, has a high work hardening amount, and has a wear resistant
It can be seen that the service life is prolonged when the battery is used. Claim
The invention described in Item 2 is based on the above findings.

【0027】さらに、発明者らは、1.1〜1.6%C
−15.0〜35.0%Mnを主成分とする高耐摩耗高
Mn鋳鋼の結晶粒径を500μm以下にする方法を鋭意
検討した。この高耐摩耗高Mn鋳鋼の液相線温度+70
℃の温度以下で鋳造することにより、結晶粒径が急激に
小さくすることができ、結晶粒径を500μm以下にす
ることを見い出した。液相線温度+70℃以下の鋳込温
度を採用するために、鋳造欠陥発生防止方法を実施す
ることが有効であることを確認した。鋳造欠陥の防止方
法の1つとして、押湯、湯道、鋳型等の最適化設計を実
施して、下注ぎ法により鋳造を行った。
Further, the present inventors have found that 1.1 to 1.6% C
A method for reducing the crystal grain size of the high wear-resistant and high-Mn cast steel containing -15.0 to 35.0% Mn as a main component to 500 µm or less was studied. The liquidus temperature of this high wear resistant high Mn cast steel +70
It has been found that by casting at a temperature of not more than ℃, the crystal grain size can be rapidly reduced, and the crystal grain size can be reduced to 500 μm or less. To adopt the liquidus temperature + 70 ℃ below pouring temperature, be carried out prevention method of casting defects were confirmed to be effective. As one of the methods for preventing casting defects, an optimization design of a riser, a runner, a mold, and the like was performed, and the casting was performed by a downward pouring method.

【0028】請求項記載の発明は上記知見に基づくも
のである。1.1〜1.6%C−15.0〜35.0%
Mn鋳鋼の製造方法において、前記高耐摩耗高Mn鋳鋼
の溶湯の鋳込温度を、前記高耐摩耗高Mn鋳鋼の液相線
温度より10〜70℃高い温度範囲にすることを特徴と
するものである。
The invention according to claim 3 is based on the above findings. 1.1 to 1.6% C-15.0 to 35.0%
In the method for producing a Mn cast steel, the casting temperature of the molten metal of the high wear-resistant high Mn cast steel is set to a temperature range higher by 10 to 70 ° C. than the liquidus temperature of the high wear-resistant high Mn cast steel. It is.

【0029】次に、本発明の至った研究過程を説明す
る。前述したように、製造上の問題(生産性、取鍋のメ
ンテナンス等)を重視して、液相線温度+70℃より高
い鋳込温度が、通常採用されている。鋳込温度を下げる
と、鋳造欠陥が生じやすくなり、溶湯の湯流れ性も悪く
なるため、液相線温度+70℃より高い鋳込温度が採用
されている。
Next, the research process which led to the present invention will be described. As described above, a casting temperature higher than the liquidus temperature + 70 ° C. is usually adopted with emphasis on manufacturing problems (productivity, ladle maintenance, etc.). If the casting temperature is lowered, casting defects are likely to occur, and the flowability of the molten metal also deteriorates. Therefore, a casting temperature higher than the liquidus temperature + 70 ° C is adopted.

【0030】鋳造欠陥を防止する方策を実施することに
より、高合金の15〜35%Mn鋳鋼の鋳込温度の下限
値は溶湯の湯流れ性の悪くなる温度が極限値となると考
えた。すなわち、鋳造欠陥を防止する方策を実施すれ
ば、鋳込温度を前記溶湯の湯流れ性の悪くなる温度まで
下げることが可能となる。
By implementing measures to prevent casting defects, it was considered that the lower limit of the casting temperature of the high-alloy 15-35% Mn cast steel would be the temperature at which the flow of the molten metal becomes poor. In other words, if measures are taken to prevent casting defects, it becomes possible to lower the casting temperature to a temperature at which the flow of the molten metal becomes poor.

【0031】高Mn鋳鋼の結晶粒径と鋳込温度の関係を
表2および図2に示す。図2は高Mn鋳鋼の液相線温度
により鋳込温度を整理し、高Mn鋳鋼の結晶粒径と、鋳
込温度と液相線温度の温度差との関係を示したものであ
る。液相線温度+70℃以下で鋳造することにより、高
Mn鋳鋼の結晶粒は著しく微細化することを見い出し
た。また、前記高耐摩耗高Mn鋳鋼の液相線温度より1
0℃未満の鋳込温度では、溶湯の湯流れ性が極端に悪く
なることを確認した。このように、鋳造欠陥の防止方策
を実施することにより、高Mn鋳鋼の溶湯の鋳込温度
を、前記高Mn鋳鋼の液相線温度より10〜70℃高い
温度範囲に設定することが可能となった。
The relationship between the crystal grain size of the high Mn cast steel and the casting temperature is shown in Table 2 and FIG. FIG. 2 shows the relationship between the crystal grain size of the high Mn cast steel and the temperature difference between the casting temperature and the liquidus temperature, in which the casting temperature is arranged according to the liquidus temperature of the high Mn cast steel. It has been found that by casting at a liquidus temperature of + 70 ° C. or lower, the crystal grains of the high Mn cast steel are remarkably refined. In addition, the liquidus temperature of the high wear resistant high Mn cast steel is 1
At a casting temperature of less than 0 ° C., it was confirmed that the flowability of the molten metal was extremely deteriorated. As described above, by implementing the measures for preventing casting defects, it is possible to set the casting temperature of the molten metal of the high Mn cast steel to a temperature range higher by 10 to 70 ° C. than the liquidus temperature of the high Mn cast steel. became.

【0032】本発明の高耐摩耗高Mn鋳鋼は、重衝撃を
受けかつ摩耗が厳しい耐摩耗部材、例えば岩石を破砕す
るコ−ンクラッシャやジョ−クラッシャなどの破砕機の
ライナ−材に適用することにより、その使用寿命を画期
的に延長することができる。通常、これら破砕機の耐摩
耗部材の鋳塊の最大肉厚部は40〜150mmである。
このような鋳塊の結晶粒径を500μm以下にするため
に、前記高耐摩耗高Mn鋳鋼の液相線温度より10〜7
0℃高い温度範囲で鋳造することにより可能となる。
The high wear resistant and high Mn cast steel of the present invention is applied to a wear resistant member subjected to heavy impact and severe wear, for example, a liner material of a crusher such as a cone crusher or a jaw crusher for crushing rock. This can dramatically extend the service life. Usually, the maximum thickness of the ingot of the wear-resistant member of these crushers is 40 to 150 mm.
In order to reduce the crystal grain size of such an ingot to 500 μm or less, the liquidus temperature of the high wear-resistant and high-Mn cast steel is set to 10-7
This is made possible by casting at a higher temperature range of 0 ° C.

【0033】[0033]

【実施例】表3に示す化学組成の鋼種を真空溶解し、表
3に示す鋳込温度で、破砕機用ライナ−を溶製した。
料Iの化学組成及び鋳込温度は本発明に該当する。その
鋳込温度は液相線温度より約20〜50℃高い温度範囲
内にある。試料A1、B1、B2、F、G、Hは、比較
例である。試料B2、F、G、Hは、本発明と化学組成
は異なるが、鋳込温度が各鋼種の液相線温度より約20
〜50℃高い温度範囲内にある。試料A1、B1は、本
発明と化学組成及び鋳込温度も異なる。その鋳込温度
は、各鋼種の液相線温度より約80℃高い温度を採用し
た。その後、1100℃で6hrの溶体化処理をし、次
いで水靭処理を行った。これら試料の結晶粒径および加
工硬化量の測定をおこなった。
EXAMPLE A steel type having a chemical composition shown in Table 3 was melted in vacuum, and a liner for a crusher was produced at a casting temperature shown in Table 3. Trial
The chemical composition and casting temperature of the material I correspond to the present invention. That
The casting temperature is in the range of about 20 to 50 ° C higher than the liquidus temperature.
Is within. Samples A1, B1, B2, F, G, H were compared
It is an example. Samples B2, F, G, and H correspond to the present invention and the chemical composition.
The casting temperature is about 20 degrees below the liquidus temperature of each steel type.
温度 50 ° C. higher temperature range. Samples A1 and B1
The invention also differs in chemical composition and casting temperature. Its casting temperature
Adopts a temperature about 80 ° C higher than the liquidus temperature of each steel type.
Was. Thereafter, a solution treatment was performed at 1100 ° C. for 6 hours, and then a water toughness treatment was performed. The crystal grain size and work hardening amount of these samples were measured.

【0034】[0034]

【表3】 [Table 3]

【0035】結晶粒径測定用試験片、加工硬化特性調査
用の圧縮試験片は、それぞれの鋳塊から採収した。試験
片の採取位置は、鋳塊の肉厚が最大となる箇所で、その
肉厚中央から肉厚の1/4の長さに入る範囲である。結
晶粒径の測定は切断法(JIS:G0552を参照)に
より測定した。この方法は試験片を研摩後、研摩面を顕
微鏡観察により、測定したものである。顕微鏡のレンズ
に格子が描かれておりこの格子の線分が切断した結晶粒
の個数を数えて測定するものである。
Test pieces for measuring the crystal grain size and compression test pieces for investigating the work hardening characteristics were collected from the respective ingots. The sampling position of the test piece is a position where the thickness of the ingot is maximum, and is within a range of 1 / of the thickness from the center of the thickness. The crystal grain size was measured by a cutting method (see JIS: G0552). In this method, a test piece is polished, and the polished surface is measured by microscopic observation. A lattice is drawn on the lens of the microscope, and the line segment of the lattice is measured by counting the number of cut crystal grains.

【0036】加工硬化量は、室温で、8φ×12hの試
験片を、10-3/sのひずみ速度により圧縮試験を行
い、測定した。加工硬化量は圧縮試験における一定のひ
ずみ量の時の変形抵抗で評価した。ひずみ量が50%の
時点での試験片硬さが、実機のコ−ンクラッシャライナ
−材における摩耗面の硬さに対応することにより、測定
は50%のひずみ量で実施した。
The amount of work hardening was measured at room temperature by performing a compression test on a test piece of 8φ × 12 h at a strain rate of 10 −3 / s. The amount of work hardening was evaluated by the deformation resistance at a constant strain amount in the compression test. Since the hardness of the test piece at the time when the strain amount was 50% corresponded to the hardness of the wear surface of the cone crusher liner material of the actual machine, the measurement was performed at the strain amount of 50%.

【0037】結晶粒径および加工硬化量の測定結果を表
4に示す。液相線温度+70℃を越えるような鋳込温度
の高い試料A1、B1の結晶粒径は1mm近くになって
いる。一方、鋳込温度が液相線温度+70℃以下である
試料B2、F、G、HおよびIの結晶粒径は500μm
以下である。液相線温度+70℃以下の鋳込温度を採用
することにより、破砕機用ライナ−の結晶粒径は500
μm以下にできた。試料A1、B1の加工硬化量は約3
10kgf/mm2 に対し、試料B2、F、G、HおよびIの
加工硬化量は約360kgf/mm2 以上である。
Table 4 shows the measurement results of the crystal grain size and the work hardening amount. The crystal grain size of the samples A1 and B1 having a high casting temperature exceeding the liquidus temperature + 70 ° C. is close to 1 mm. On the other hand, the crystal grain sizes of samples B2, F, G, H and I whose casting temperature is equal to or lower than the liquidus temperature + 70 ° C. are 500 μm.
It is as follows. By adopting a casting temperature of liquidus temperature + 70 ° C. or less, the crystal grain size of the liner for the crusher is 500
μm or less. The amount of work hardening of samples A1 and B1 is about 3
The amount of work hardening of samples B2, F, G, H and I is about 360 kgf / mm 2 or more with respect to 10 kgf / mm 2 .

【0038】[0038]

【表4】 [Table 4]

【0039】上記試料のライナ−を用い、コ−ンクラッ
シャによる、岩石の粉砕試験をおこなった。コ−ンクラ
ッシャによる試験結果を表4に示す。岩石の粉砕料はJ
ISG5131相当の試料A1において、4.1万トン
であった。本発明の試料Iのコ−ンクラッシャ用ライナ
ー材の使用寿命はJIS G5131相当の試料A1の
2.5倍である。また、平均結晶粒径は、本発明と同じ
0〜500μmの範囲にあるが、本発明と化学組成が
異なる試料B2、F、G、Hも本発明の試料Iに比べる
と使用寿命が短い。
Using the liner of the above sample, a rock crushing test was conducted by a cone crusher. Table 4 shows the test results obtained by the cone crusher. Rock crushing charge is J
In sample A1 corresponding to ISG5131, the amount was 41,000 tons. Sample I Liner for Cone Crusher of Sample I
-The service life of the material is the same as that of sample A1 corresponding to JIS G5131.
2.5 times. The average crystal grain size is the same as in the present invention.
Although it is in the range of 50 to 500 μm, the present invention and the chemical composition
The different samples B2, F, G and H are also compared with the sample I of the present invention.
And the service life is short.

【0040】[0040]

【発明の効果】以上説明したように、本発明のうち請求
項1記載の発明は、重量%で、C:1.1〜1.6%、
Si:0.3〜1.0%、Mn:15.0〜35.0
%、Cr:5.0%以下(0%を含まない)からなり、
更に、Ti、Alのいずか一方又は両方を、重量%で、
0.01〜0.6%を加えた高耐摩耗高Mn鋳鋼の平均
結晶粒径を50〜500μmにすることにより、前記高
耐摩耗高Mn鋳鋼の加工硬化特性を向上させることがで
き、耐摩耗性の改善が可能となるものである。前記高耐
摩耗高Mn鋳鋼を使用した耐摩耗部材の使用寿命を向上
させることが可能となるものである。また、前記高耐摩
耗高Mn鋳鋼の平均結晶粒径を50〜500μmにする
ことにより、従来開発されてきた高Mn鋳鋼のように、
合金元素を多量に添加することなく、安価でかつ耐摩耗
性に優れた高耐摩耗高Mn鋳鋼を得ることが可能となる
ものである。更に、Ti、Al等の元素を添加すること
により、前記高耐摩耗高Mn鋳鋼の結晶粒を微細化さ
せ、加工硬化特性を向上させるとともに、耐摩耗性を向
上させることが可能となるものである
As described above, according to the first aspect of the present invention , C: 1.1 to 1.6% by weight,
Si: 0.3 to 1.0%, Mn: 15.0 to 35.0
%, Cr: not more than 5.0% (not including 0%),
Further, one or both of Ti and Al are contained in% by weight.
By setting the average grain size of the high wear-resistant high Mn cast steel to 0.01 to 0.6% to 50 to 500 μm, the work hardening characteristics of the high wear-resistant high Mn cast steel can be improved, Abrasion can be improved. The service life of the wear-resistant member using the high wear-resistant high Mn cast steel can be improved. In addition, by setting the average grain size of the high wear-resistant high Mn cast steel to 50 to 500 μm, as in the conventionally developed high Mn cast steel,
It is possible to obtain a high wear-resistant and high-Mn cast steel which is inexpensive and has excellent wear resistance without adding a large amount of alloying elements. Further, adding elements such as Ti and Al
By this, the crystal grains of the high wear resistant and high Mn cast steel are refined.
To improve work hardening characteristics and improve wear resistance.
It is possible to make it rise .

【0041】また請求項記載の発明は、前記高耐摩耗
高Mn鋳鋼を、重衝撃を受けかつ摩耗が厳しい耐摩耗部
材、例えば岩石を破砕するコ−ンクラッシャやジョ−ク
ラッシャなどの破砕機のライナ−材に適用することによ
り、その使用寿命を画期的に延長することが可能となる
ものである。
According to a second aspect of the present invention, there is provided a crusher such as a cone crusher or a jaw crusher for crushing the high wear-resistant high Mn cast steel, which is subjected to heavy impact and severe wear, such as rock. By applying the present invention to the liner material, it is possible to dramatically extend the service life thereof.

【0042】また請求項記載の発明は、前記高耐摩耗
高Mn鋳鋼の製造方法において、前記高耐摩耗高Mn鋳
鋼の溶湯の鋳込温度が、前記高耐摩耗高Mn鋳鋼の液相
線温度より10〜70℃高い温度範囲にすることによ
り、平均結晶粒径が50〜500μmの前記高耐摩耗高
Mn鋳鋼を製造することが可能となるものである。
According to a third aspect of the present invention, in the method for producing a high wear-resistant high Mn cast steel, the casting temperature of the molten metal of the high wear-resistant high Mn cast steel is a liquidus line of the high wear-resistant high Mn cast steel. By setting the temperature range 10 to 70 ° C. higher than the temperature, it becomes possible to produce the high wear-resistant and high-Mn cast steel having an average crystal grain size of 50 to 500 μm.

【0043】また請求項記載の発明は、前記高耐摩耗
高Mn鋳鋼の鋳塊の最大肉厚部を40〜150mmにす
ることにより、破砕機等の耐摩耗部材に用いられる高耐
摩耗高Mn鋳鋼を製造することが可能となるものであ
る。
The invention according to claim 4 is characterized in that the maximum thickness of the ingot of the high wear resistant and high Mn cast steel is set to 40 to 150 mm so that the high wear resistant high used for a wear resistant member such as a crusher. It is possible to produce Mn cast steel.

【図面の簡単な説明】[Brief description of the drawings]

【図1】平均結晶粒径と加工硬化量との関係を示す図で
ある。
FIG. 1 is a diagram showing a relationship between an average crystal grain size and a work hardening amount.

【図2】平均結晶粒径に及ぼす鋳込温度と液相温度との
温度差の影響を示す図である。
FIG. 2 is a diagram showing the effect of the temperature difference between the casting temperature and the liquidus temperature on the average crystal grain size.

【図3】コ−ンクラッシャライナ−材の使用寿命と加工
硬化量との関係を示す図である。
FIG. 3 is a diagram showing the relationship between the service life of a cone crusher liner material and the amount of work hardening.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 博幸 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 皆川 耕児 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所 高砂製作所内 (72)発明者 増本 健 鳥取県米子市富益町88番地1 米子製鋼 株式会社内 (72)発明者 中井 寿直 鳥取県米子市富益町88番地1 米子製鋼 株式会社内 (56)参考文献 特開 平2−310337(JP,A) 特開 平1−142058(JP,A) 特開 昭62−139855(JP,A) 特開 昭60−77962(JP,A) 特開 昭57−39158(JP,A) 特開 昭54−104418(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hiroyuki Uchida 1-5-5 Takatsukadai, Nishi-ku, Kobe City, Hyogo Prefecture Inside Kobe Steel, Ltd.Kobe Research Institute (72) Inventor Koji Minagawa Takasago City, Hyogo Prefecture 2-3-1, Niihama, Arai-cho Kobe Steel, Ltd.Takasago Works (72) Inventor Takeshi Takeshi 88-81, Fuminashi-cho, Yonago-shi, Tottori Prefecture Yonago Steel Co., Ltd. (72) Inventor Toshinao Nakai Tomitori-cho, Yonago-shi, Tottori 88-1 Yonago Steel Co., Ltd. (56) References JP-A-2-310337 (JP, A) JP-A-1-142058 (JP, A) JP-A-62-139855 (JP, A) JP-A-60 -77962 (JP, A) JP-A-57-39158 (JP, A) JP-A-54-104418 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00- 38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、C:1.1〜1.6%、S
i:0.3〜1.0%、Mn:15.0〜35.0%、
Cr:5.0%以下(0%を含まない)からなり、さら
にTi、Alのいずか一方又は両方を、0.01〜0.
6%含み、残部がFeおよび不可避不純物元素である高
耐摩耗高Mn鋳鋼であって、平均結晶粒径が50〜50
0μmであることを特徴とする高耐摩耗高Mn鋳鋼。
C .: 1.1 to 1.6% by weight, S:
i: 0.3 to 1.0%, Mn: 15.0 to 35.0%,
Cr: 5.0% or less (excluding 0%), and further, one or both of Ti and Al are contained in an amount of 0.01 to 0.1%.
A high wear resistant and high Mn cast steel containing 6%, with the balance being Fe and unavoidable impurity elements, having an average crystal grain size of 50 to 50
High wear resistant and high Mn cast steel characterized by being 0 μm.
【請求項2】 破砕機等の耐摩耗部材に用いられること
を特徴とする請求項1に記載の高耐摩耗高Mn鋳鋼。
2. The high wear resistant and high Mn cast steel according to claim 1, which is used for a wear resistant member such as a crusher.
【請求項3】 請求項1に記載の高耐摩耗高Mn鋳鋼の
製造方法において、前記高耐摩耗高Mn鋳鋼の溶湯の鋳
型への鋳込温度が、前記高耐摩耗高Mn鋳鋼の液相線温
度より10〜70℃高い温度範囲であることを特徴とす
る高耐摩耗高Mn鋳鋼の製造方法。
3. The method for producing a high wear-resistant, high Mn cast steel according to claim 1 , wherein the casting temperature of the molten metal of the high wear-resistant, high Mn cast steel into a mold is a liquid phase of the high wear-resistant, high Mn cast steel. A method for producing a high wear resistant and high Mn cast steel, wherein the temperature range is 10 to 70 ° C. higher than the linear temperature.
【請求項4】 請求項3に記載の高耐摩耗高Mn鋳鋼の
製造方法であって、前記高耐摩耗高Mn鋳鋼の鋳塊の最
大肉厚部を40〜150mmにすることを特徴とする破
砕機等の耐摩耗部材に用いられる高耐摩耗高Mn鋳鋼の
製造方法。
4. The method for producing a high wear-resistant high Mn cast steel according to claim 3 , wherein a maximum thickness portion of the ingot of the high wear-resistant high Mn cast steel is set to 40 to 150 mm. A method for producing a high wear resistant and high Mn cast steel used for wear resistant members such as crushers.
JP02989296A 1996-01-23 1996-01-23 High wear resistant high Mn cast steel and method for producing the same Expired - Lifetime JP3245039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02989296A JP3245039B2 (en) 1996-01-23 1996-01-23 High wear resistant high Mn cast steel and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02989296A JP3245039B2 (en) 1996-01-23 1996-01-23 High wear resistant high Mn cast steel and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09202941A JPH09202941A (en) 1997-08-05
JP3245039B2 true JP3245039B2 (en) 2002-01-07

Family

ID=12288630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02989296A Expired - Lifetime JP3245039B2 (en) 1996-01-23 1996-01-23 High wear resistant high Mn cast steel and method for producing the same

Country Status (1)

Country Link
JP (1) JP3245039B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2896534C (en) 2012-12-26 2021-11-09 Posco High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor
CN109338233A (en) * 2018-12-12 2019-02-15 国家电投集团黄河上游水电开发有限责任公司 A kind of alloy material for the quiet reamer of aluminium cathode kneading machine
CN111440997A (en) * 2020-04-07 2020-07-24 洛阳中重铸锻有限责任公司 Ultrahigh manganese cast steel

Also Published As

Publication number Publication date
JPH09202941A (en) 1997-08-05

Similar Documents

Publication Publication Date Title
JP5477522B1 (en) Centrifugal cast composite roll and manufacturing method thereof
JP4548263B2 (en) Manufacturing method of cast iron products with excellent wear resistance
JP6304466B1 (en) Roll outer layer material for rolling and composite roll for rolling
Moghaddam et al. Impact–abrasion wear characteristics of in-situ VC-reinforced austenitic steel matrix composite
JPH0873977A (en) Production of outer layer material for roll for hot rolling and roll for hot rolling
JP2007154295A (en) Wear resistant cast steel and its production method
JP3089882B2 (en) Abrasion-resistant steel having excellent surface properties and method for producing the same
JPH11343543A (en) High toughness super-abrasion resistant cast steel and its production
JP3245039B2 (en) High wear resistant high Mn cast steel and method for producing the same
Balogun et al. Effect of melting temperature on the wear characteristics of austenitic manganese steel
JP2018039047A (en) Rolling roll outer layer material with high abrasion resistance and rolling compound roll
CN103484777A (en) Austenitic manganese steel and preparation method of same
JP3589797B2 (en) Wear resistant high Mn cast steel
JP3844935B2 (en) Wear resistant high Cr cast iron
JP4123903B2 (en) Hot roll outer layer material and hot roll composite roll
JP2902328B2 (en) Roll for hot rolling, outer layer material of roll, and method for manufacturing roll for hot rolling
CN110468343B (en) TiC precipitation reinforced high manganese steel base composite material and preparation process thereof
JP6518314B2 (en) Composite roll for rolling
EP0205869B1 (en) Manganese steel
JP2022085966A (en) Roll outer layer material for rolling and composite roll for rolling
JP7081096B2 (en) Precipitation hardening Ni alloy
JP5379651B2 (en) Cold-working steel, its manufacturing method, and cold-worked parts
JP3110733B1 (en) Maraging steel sheet excellent in fatigue characteristics and method for producing the same
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141026

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term