JP4548263B2 - Manufacturing method of cast iron products with excellent wear resistance - Google Patents

Manufacturing method of cast iron products with excellent wear resistance Download PDF

Info

Publication number
JP4548263B2
JP4548263B2 JP2005221215A JP2005221215A JP4548263B2 JP 4548263 B2 JP4548263 B2 JP 4548263B2 JP 2005221215 A JP2005221215 A JP 2005221215A JP 2005221215 A JP2005221215 A JP 2005221215A JP 4548263 B2 JP4548263 B2 JP 4548263B2
Authority
JP
Japan
Prior art keywords
temperature
less
cast iron
molten metal
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005221215A
Other languages
Japanese (ja)
Other versions
JP2007030037A (en
Inventor
▲暁▼ 曽我部
健司 市野
浩光 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005221215A priority Critical patent/JP4548263B2/en
Publication of JP2007030037A publication Critical patent/JP2007030037A/en
Application granted granted Critical
Publication of JP4548263B2 publication Critical patent/JP4548263B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、鉱石、岩石等の粉砕用クラッシャー、粉砕用ミルや建設機械、あるいはレールや各種ライナー類等の耐摩耗性を要求される部材に用いて好適な鋳鉄品に係り、とくに鋳鉄品の耐摩耗性向上に関する。   The present invention relates to a cast iron product suitable for use in a crushing crusher for ore, rock, etc., a grinding mill, a construction machine, or a member that requires wear resistance such as a rail and various liners. It relates to improvement of wear resistance.

従来から、鉱石、岩石等の粉砕用クラッシャーやミル等の耐摩耗性を要求される部材には、耐摩耗性に優れた高マンガン鋳鋼や高クロム鋳鉄が使用されてきた。高マンガン鋳鋼は、通常、C:1.0〜1.4%、Mn:10〜14%を含み、水靭処理により、炭化物を固溶し完全オーステナイト組織とされて使用される。そのため、高マンガン鋳鋼は、優れた靭性を示すとともに、さらに繰返し打撃等により加工硬化を生じ表面硬度が上昇するため、優れた耐摩耗性を示す。しかし、高マンガン鋳鋼は、引張強さにくらべて降伏強さが低く変形しやすく、また、水靭処理を必須としているため変形が生じやすく、また加工硬化深度が浅いという問題もあった。   Conventionally, high manganese cast steel and high chromium cast iron having excellent wear resistance have been used for members that require wear resistance such as crushers for crushing ores such as ores and rocks, and mills. High manganese cast steel usually contains C: 1.0 to 1.4% and Mn: 10 to 14%, and is used by forming a complete austenite structure by dissolving carbides by water toughening. Therefore, the high manganese cast steel exhibits excellent toughness, and also exhibits excellent wear resistance because the surface hardness increases due to work hardening caused by repeated striking or the like. However, the high manganese cast steel has a problem that it has a low yield strength compared to the tensile strength and is easily deformed. Further, since it requires a water toughness treatment, it tends to be deformed and the depth of work hardening is shallow.

また、高クロム鋳鉄は、通常例えば、C:2〜3%、Cr:15〜35%程度含む鋳鉄であり、Cr含有量が高いことに起因して優れた耐食性、耐熱性および耐摩耗性を示す。しかし、高クロム鋳鉄は、靭性が低いうえ、とくに砂型鋳型を利用し冷却速度が低下する方法で製造される鋳物では、初晶として晶出するオーステナイト(γ)粒が粗大化し、その結果凝固末期に初晶粒の粒界に生成される共晶炭化物が粗大化するため、硬さや靭性、耐摩耗性も低下するという問題があった。   High chromium cast iron is usually cast iron containing, for example, about C: 2-3% and Cr: 15-35%, and has excellent corrosion resistance, heat resistance and wear resistance due to high Cr content. Show. However, high chromium cast iron has low toughness, and especially in castings manufactured by a method that uses a sand mold to reduce the cooling rate, austenite (γ) grains that crystallize as primary crystals become coarse, resulting in the end of solidification. In addition, the eutectic carbide produced at the grain boundaries of the primary crystal grains is coarsened, so that there is a problem that hardness, toughness, and wear resistance are also lowered.

このような問題に対し、例えば特許文献1には、高Cr系鋳鉄溶湯を、金属粒で構成された鋳型に注湯する高Cr系耐摩耗白鋳鉄鋳物の製造方法が提案されている。特許文献1に記載された技術によれば、共晶炭化物が微細に析出し、耐摩耗性が向上するとしている。しかし、特許文献1に記載された技術では、品質面において金型鋳造品を超えることができず、その上、鋳物表面の欠陥発生傾向が増大し、製造コストが増大するという問題があった。   For such a problem, for example, Patent Document 1 proposes a method for manufacturing a high Cr wear-resistant white cast iron casting in which a high Cr cast iron melt is poured into a mold made of metal particles. According to the technique described in Patent Document 1, eutectic carbide precipitates finely, and wear resistance is improved. However, the technique described in Patent Document 1 has a problem in that it cannot exceed the mold casting product in terms of quality, and further, the tendency of occurrence of defects on the casting surface increases and the manufacturing cost increases.

また、特許文献2には、白鋳鉄などの共晶合金系の合金鋳造方法が提案されている。特許文献2に記載された技術は、合金溶湯を液相線温度以上で鋳造鋳型への流れとして注湯する工程と、微粒子物質を合金溶湯の流れに添加して合金溶湯を液相線温度と固相線温度との間の一次相凝固温度範囲まで過冷却する工程からなる合金鋳造方法である。特許文献2に記載された技術によれば、微粒子物質の添加により、合金溶湯からの抜熱による急冷が可能となるとともに、微粒子物質が一次相の核として作用し、一次相の微細化を容易にするとしている。しかしながら、特許文献2に記載された技術では、注湯中に微粒子物質を添加する設備を必要とし、製造コストが増大するという問題に加えて、微粒子物質を均一に添加することが困難であるため、共晶炭化物の均一生成に問題を残していた。   Patent Document 2 proposes an eutectic alloy-based alloy casting method such as white cast iron. The technique described in Patent Document 2 includes a step of pouring the molten alloy as a flow into the casting mold at a temperature higher than the liquidus temperature, and adding a particulate material to the flow of the molten alloy to make the molten alloy a liquidus temperature. An alloy casting method comprising a step of supercooling to a primary phase solidification temperature range between a solidus temperature and a solidus temperature. According to the technique described in Patent Document 2, the addition of the particulate material enables rapid cooling by removing heat from the molten alloy, and the particulate material acts as a primary phase nucleus, facilitating the refinement of the primary phase. It is supposed to be. However, the technique described in Patent Document 2 requires a facility for adding the particulate material during the pouring, and in addition to the problem that the manufacturing cost increases, it is difficult to add the particulate material uniformly. This left a problem in the uniform formation of eutectic carbides.

また、特許文献3には、粗大炭化物のない高炭素合金鋼の製造方法が提案されている。特許文献3に記載された技術は、C:0.4〜1.5%を含有し、Cr、Mo、W及びVのうちから選んだ1種または2種以上の合計が1%以上を含む高炭素合金鋼の溶湯を,冷却下に攪拌を加えて半凝固スラリーとしたのち、鋳型に供給し鋳造する高炭素合金鋼の製造方法である。特許文献3に記載された技術によれば、非樹枝状の初晶粒(フェライト)が懸濁した固液混相の半凝固スラリーとすることにより、その後に初晶粒の粒界に生成する共晶炭化物の粗大化を防止できるとしている。しかし特許文献3に記載された技術では、初晶γの微細化により、残存融液中に晶出する炭化物を微細分散し、その後の熱処理における炭素の固溶・拡散を促進できるが、羽毛状炭化物を変形させることはできず、高温での圧延・鍛造等の処理を必要とし、製造コストが増大するという問題が残されている。
特開平2−55659号公報 特表平8−510298号公報 特開平7−278727号公報
Patent Document 3 proposes a method for producing a high carbon alloy steel free from coarse carbides. The technique described in Patent Document 3 contains C: 0.4 to 1.5%, and a high carbon alloy steel containing 1% or more in total of one or more selected from Cr, Mo, W and V This is a method for producing a high carbon alloy steel in which the molten metal is agitated under cooling to form a semi-solid slurry, which is then fed to a mold and cast. According to the technique described in Patent Document 3, by forming a solid-liquid mixed phase semi-solid slurry in which non-dendritic primary grains (ferrite) are suspended, a co-generation formed at the grain boundaries of the primary grains thereafter. It is said that coarsening of crystal carbide can be prevented. However, in the technique described in Patent Document 3, by refining the primary crystal γ, carbides crystallized in the remaining melt can be finely dispersed, and the solid solution / diffusion of carbon in the subsequent heat treatment can be promoted. The carbide cannot be deformed, and requires processing such as rolling and forging at a high temperature, resulting in an increase in manufacturing cost.
JP-A-2-55659 Japanese National Patent Publication No. 8-510298 JP 7-278727 A

これとは別に、鋳鉄品の更なる耐摩耗性向上のためには、V等を多量に添加し、VC等の炭化物を多量に分散させた鋳鉄材とすることが考えられる。このような鋳鉄材は、MC型炭化物を初晶として晶出する特徴を有し、VC等の硬質なMC型炭化物が多量に分散させることができるため、耐摩耗性が顕著に向上することが期待される。しかし、このような鋳鉄材を砂型鋳造した場合には、凝固過程で初晶であるMC型炭化物の浮上・沈降による、いわゆる重力偏析が顕著となるという問題があった。また、MC型炭化物量が増加すると、MC型炭化物が粗大化しやすく、さらに引け巣、ポロシティーなどの鋳造欠陥の発生傾向が大きくなり、さらには靭性が低下するという問題があった。   Apart from this, in order to further improve the wear resistance of the cast iron product, it is conceivable to add a large amount of V or the like to obtain a cast iron material in which a large amount of carbides such as VC are dispersed. Such cast iron material has the feature of crystallizing MC type carbides as primary crystals, and hard MC type carbides such as VC can be dispersed in a large amount, so that the wear resistance can be remarkably improved. Be expected. However, when such a cast iron material is cast in a sand mold, there is a problem that so-called gravity segregation due to levitation and settling of MC type carbide which is a primary crystal in the solidification process becomes remarkable. Further, when the amount of MC type carbide increases, the MC type carbide tends to be coarsened, and there is a problem that casting defects such as shrinkage cavities and porosity increase, and the toughness decreases.

本発明は、上記した従来技術の問題を有利に解決し、MC型炭化物の重力偏析、引け巣等の鋳造欠陥の発生等を低減でき、耐摩耗性に優れた鋳鉄品を安価でかつ容易に製造できる、耐摩耗性鋳鉄品の製造方法を提供することを目的とする。   The present invention advantageously solves the above-mentioned problems of the prior art, reduces the occurrence of casting defects such as gravity segregation and shrinkage of MC type carbide, and makes it possible to easily and inexpensively cast iron products with excellent wear resistance. An object of the present invention is to provide a method for producing a wear-resistant cast iron product that can be produced.

本発明者らは、上記した課題のうち、まず耐摩耗性を格段に向上させるために、鋳鉄品の組成を、高Cr系鋳鉄組成に加えてさらに、硬質な炭化物を形成するVあるいはさらにNb、W等を多量含有させたハイス系組成とすることに着目した。そして、ハイス系組成の鋳鉄品について、MC型炭化物の粗大化や、引け巣等の鋳造欠陥の発生、炭化物の重力偏析等に影響する各種要因について鋭意考究した。その結果、溶湯中に初晶MC型炭化物を晶出させて溶湯の見掛粘度を適正レベルに調整して、鋳型に注入し凝固させること、具体的には溶湯を好ましくは急冷して、溶湯の鋳込み温度(鋳型注入直前温度)T(℃)を所定温度範囲内に調整し、あるいはさらに該所定温度範囲内の温度で溶湯を攪拌したのち、鋳型に注入し凝固させることが、MC型炭化物の重力偏析の軽減、MC型炭化物の粗大化防止および引け巣発生の軽減に有効であることを見出した。   Among the above-mentioned problems, the present inventors firstly added V or Nb to form a hard carbide in addition to the composition of the cast iron product in addition to the high Cr-based cast iron composition in order to greatly improve the wear resistance. Attention was focused on a high-speed composition containing a large amount of W and W. In addition, for cast iron products with a high-speed composition, we have intensively studied various factors affecting the coarsening of MC-type carbides, the occurrence of casting defects such as shrinkage cavities, and the gravity segregation of carbides. As a result, primary MC type carbide is crystallized in the molten metal, the apparent viscosity of the molten metal is adjusted to an appropriate level, poured into a mold and solidified, specifically, the molten metal is preferably rapidly cooled, MC type carbide may be prepared by adjusting the casting temperature (temperature immediately before mold injection) T (° C.) within a predetermined temperature range, or stirring the molten metal at a temperature within the predetermined temperature range and then injecting it into a mold and solidifying it. It was found to be effective in reducing the segregation of gravity, preventing coarsening of MC type carbides, and reducing the formation of shrinkage cavities.

本発明は、上記した知見に基き、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次のとおりである The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows .

)質量%で、C:1.5〜5.5%、Si:1.5%以下、Mn:1.2%以下、Cr:4.0〜20%、Mo:2〜12%、V:3.0〜20%を含有し、残部Feおよび不可避的不純物からなる組成の溶湯を、鋳型注入直前温度T(℃)が、次(1)式
TA−0.5(TA−TS)< T < TMC ………(1)
(ここで、T:鋳型注入直前温度(℃)、TA:オーステナイト相の晶出開始温度(℃)、 TS:固相線温度(℃)、TMC:次(2)式で定義される温度(℃)、
TMC=1170+64.5C+24.6Si+5.0Mn−11.1Cr−1.4Mo+18.0V+60.0Nb ……(2)
(ここで、C、Si、Mn、Cr、Mo、V、Nb:各元素の含有量(質量%)))
を満足するように調整したのち、鋳型に注入し、凝固させることを特徴とする耐摩耗性鋳鉄品の製造方法。
( 1 ) By mass%, C: 1.5 to 5.5%, Si: 1.5% or less, Mn: 1.2% or less, Cr: 4.0 to 20%, Mo: 2 to 12%, V: 3.0 to 20%, The temperature of T (° C.) immediately before casting the mold of the melt composed of the balance Fe and inevitable impurities is expressed by the following formula (1)
TA-0.5 (TA-TS) <T <TMC (1)
(Where T: temperature immediately before casting the mold (° C.), TA: crystallization start temperature of the austenite phase (° C.), TS: solidus temperature (° C.), TMC: temperature defined by the following equation (2) ( ℃),
TMC = 1170 + 64.5C + 24.6Si + 5.0Mn-11.1Cr-1.4Mo + 18.0V + 60.0Nb (2)
(Here, C, Si, Mn, Cr, Mo, V, Nb: content of each element (mass%)))
The method for producing a wear-resistant cast iron product is characterized in that after adjusting to satisfy the above, it is poured into a mold and solidified.

)()において、前記溶湯の鋳型注入直前温度を調整するに当たり、前記溶湯の温度を前記TMC(℃)以上の温度にしたのち、該溶湯を10℃/min以上の冷却速度で冷却し、前記(1)式を満足する前記鋳型注入直前温度T(℃)に調整することを特徴とする耐摩耗性鋳鉄品の製造方法。
)()または()において、前記注入前に、前記(1)式を満足する範囲の温度で前記溶湯を攪拌することを特徴とする耐摩耗性鋳鉄品の製造方法。
( 2 ) In ( 1 ), in adjusting the temperature of the molten metal immediately before casting the mold, the molten metal temperature is set to the TMC (° C) or higher, and then the molten metal is cooled at a cooling rate of 10 ° C / min or higher. The temperature is adjusted to the temperature T (° C.) immediately before the mold injection satisfying the expression (1).
( 3 ) In ( 1 ) or ( 2 ), the molten metal is agitated at a temperature satisfying the formula (1) before the pouring, and the method for producing a wear-resistant cast iron product.

)(1)ないし()のいずれかにおいて、前記組成に加えてさらに、質量%で、Ni:5.5%以下、Co:10.0%以下、Cu:2.0%以下、W:1.0%以下、Nb:2.0%以下、Ti:2.0%以下、Zr:2.0%以下、B:0.1%以下のうちから選ばれた1種又は2種以上を含有する組成とすることを特徴とする耐摩耗性鋳鉄品の製造方法。 ( 4 ) In any one of (1) to ( 3 ), in addition to the above composition, in addition to mass, Ni: 5.5% or less, Co: 10.0% or less, Cu: 2.0% or less, W: 1.0% or less, Nb: 2.0% or less, Ti: 2.0% or less, Zr: 2.0% or less, B: A composition containing one or more selected from 0.1% or less Product manufacturing method.

本発明によれば、引け巣等の鋳造欠陥の発生もなく、炭化物の重力偏析が抑制できるとともに、硬質なMC型炭化物を微細に分散でき、耐摩耗性に優れた鋳鉄品を安価でかつ容易に製造でき、産業上格段の効果を奏する。また、本発明によれば、耐摩耗性に優れた薄肉鋳鉄品の製造も可能であるという効果もある。なお、本発明になる鋳鉄品は、ジョークラッシャー、製鉄用ライナー、建設機械等の耐摩耗部材用として好適である。   According to the present invention, there is no occurrence of casting defects such as shrinkage cavities, gravity segregation of carbides can be suppressed, hard MC type carbides can be finely dispersed, and cast iron products having excellent wear resistance are inexpensive and easy. It can be manufactured easily and has a remarkable industrial effect. Further, according to the present invention, there is an effect that it is possible to manufacture a thin cast iron product having excellent wear resistance. The cast iron product according to the present invention is suitable for wear resistant members such as jaw crushers, iron liners, and construction machines.

まず、本発明で使用する溶湯の組成限定理由について説明する。以下、組成における質量%は、単に%で記す。
C:1.5〜5.5%
Cは、耐摩耗性を向上させる硬質な炭化物を形成するための必須元素であり、本発明では1.5%以上の含有を必要とする。一方、5.5%を超える多量の含有は靭性を劣化させる。このため、Cは1.5〜5.5%の範囲に限定した。なお、好ましくは1.5%超4.5%以下、より好ましくは2.0〜3.5%である。
First, the reasons for limiting the composition of the molten metal used in the present invention will be described. Hereinafter, the mass% in the composition is simply expressed as%.
C: 1.5-5.5%
C is an essential element for forming a hard carbide that improves wear resistance. In the present invention, C is required to be contained in an amount of 1.5% or more. On the other hand, a large content exceeding 5.5% deteriorates toughness. For this reason, C was limited to the range of 1.5 to 5.5%. In addition, Preferably it is more than 1.5% and 4.5% or less, More preferably, it is 2.0 to 3.5%.

Si:1.5%以下
Siは、脱酸剤として作用するとともに、鋳造性を向上させる元素であり、0.1%以上含有することが望ましいが、1.5%を超えて含有しても効果が飽和し含有量に見合う効果が期待できないため、経済的に不利となる。このため、Siは1.5%以下に限定した。なお、好ましくは0.2〜0.5%である。
Si: 1.5% or less
Si is an element that acts as a deoxidizer and improves castability. It is desirable to contain 0.1% or more, but even if it exceeds 1.5%, the effect is saturated and an effect commensurate with the content is expected. Because it is not possible, it is economically disadvantageous. For this reason, Si was limited to 1.5% or less. In addition, Preferably it is 0.2 to 0.5%.

Mn:1.2%以下
Mnは、Siと同様の作用を有する元素であり、0.1%以上含有することが望ましいが、1.2%を超えて含有しても効果が飽和し含有量に見合う効果が期待できないため、経済的に不利となる。このため、Mnは1.2%以下に限定した。なお、好ましくは0.2〜0.5%である。
Cr:4.0〜20%
Crは、共晶炭化物を形成し、耐摩耗性を向上させるとともに、基地中に固溶して基地組織を強化し、さらに耐食性を向上させる重要な元素である。このような効果は4.0%以上の含有で顕著となるが、20%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Crは4.0〜20%の範囲に限定した。なお、好ましくは6〜15%である。
Mn: 1.2% or less
Mn is an element having the same action as Si, and it is desirable to contain 0.1% or more, but even if it exceeds 1.2%, the effect is saturated and an effect commensurate with the content cannot be expected, so economically It will be disadvantageous. For this reason, Mn was limited to 1.2% or less. In addition, Preferably it is 0.2 to 0.5%.
Cr: 4.0-20%
Cr is an important element that forms eutectic carbides, improves wear resistance, and dissolves in the matrix to strengthen the matrix structure and further improve corrosion resistance. Such an effect becomes remarkable when the content is 4.0% or more, but even if the content exceeds 20%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Cr was limited to the range of 4.0 to 20%. In addition, Preferably it is 6 to 15%.

Mo:2〜12%
Moは、Crと同様に,炭化物を形成して耐摩耗性の向上に有効に作用するとともに、炭化物中に固溶して炭化物を強化する作用を有する元素であり、本発明では2%以上の含有を必要とする。一方、12%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Moは2〜12%の範囲に限定した。なお、好ましくは3〜7%である。
Mo: 2-12%
Mo, like Cr, is an element that forms carbides and effectively works to improve wear resistance, and has the effect of strengthening the carbides by solid solution in carbides. In the present invention, Mo is 2% or more. Containing is required. On the other hand, if the content exceeds 12%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Mo was limited to the range of 2 to 12%. In addition, Preferably it is 3 to 7%.

V:3.0〜20%
Vは、硬質なMC型炭化物を形成し、耐摩耗性の向上に寄与する元素であり、このような効果は3.0%以上の含有で顕著となる。一方、20%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Vは3.0〜20%の範囲に限定した。なお、好ましくは4〜15%である。
V: 3.0-20%
V is an element that forms a hard MC type carbide and contributes to improvement of wear resistance. Such an effect becomes remarkable when the content is 3.0% or more. On the other hand, if the content exceeds 20%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, V was limited to the range of 3.0 to 20%. In addition, Preferably it is 4 to 15%.

本発明では、上記した組成を溶湯の基本組成とするが、必要に応じて、この基本組成に加えて、さらに、Ni:5.5%以下、Cu:2.0%以下、W:1.0%以下、Co:10.0%以下、Nb:2.0%以下、Ti:2.0%以下、Zr:2.0%以下、B:0.1%以下のうちから選ばれた1種または2種以上を含有することができる。
Ni、Cu、Wは、いずれも基地組織を強化する作用を有する元素であり、必要に応じ1種または2種以上を選択して含有できる。
In the present invention, the above composition is the basic composition of the molten metal. In addition to this basic composition, Ni: 5.5% or less, Cu: 2.0% or less, W: 1.0% or less, Co: One or more selected from 10.0% or less, Nb: 2.0% or less, Ti: 2.0% or less, Zr: 2.0% or less, B: 0.1% or less can be contained.
Ni, Cu, and W are all elements that have an action of strengthening the base structure, and can be selected from one or more as necessary.

Niは、焼入れ性の向上を介して基地組織の強化に寄与する元素であり、このような効果は0.5%以上の含有で顕著となる。一方、5.5%を超える含有は残留オーステナイト(γ)量が増加するなど不安定な組織が形成されやすくなる。このため、Niは5.5%以下に限定することが好ましい。
Coは、高温における組織を安定化させる作用を有する元素であり、必要に応じて含有できる。このようなCoの効果は0.1%以上の含有で顕著となるが、10.0%を超えて含有しても効果が飽和し,含有量に見合う効果が期待できなくなり経済的に不利となる。このため、Coは10.0%以下に限定することが好ましい。
Ni is an element that contributes to strengthening of the base structure through improvement of hardenability, and such an effect becomes remarkable when the content is 0.5% or more. On the other hand, if it exceeds 5.5%, an unstable structure such as an increase in the amount of retained austenite (γ) tends to be formed. For this reason, it is preferable to limit Ni to 5.5% or less.
Co is an element having an effect of stabilizing the structure at high temperature, and can be contained as necessary. The effect of Co becomes remarkable when the content is 0.1% or more. However, if the content exceeds 10.0%, the effect is saturated, and an effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, Co is preferably limited to 10.0% or less.

Nbは、Vと同様に,硬質なMC型炭化物を形成し,耐摩耗性を向上する作用を有する元素であり、必要に応じて含有できる。このようなNbの効果は、0.2%以上の含有で顕著となる。一方、2.0%を超える含有は、炭化物が粗大化する傾向が強くなり、所望の耐摩耗性向上が得られなくなる恐れがある。このため、Nbは2.0%以下に限定することが好ましい。   Nb, like V, is an element that forms a hard MC-type carbide and has an effect of improving wear resistance, and can be contained if necessary. Such an effect of Nb becomes remarkable when the content is 0.2% or more. On the other hand, if the content exceeds 2.0%, the tendency of the carbides to become coarse increases, and there is a possibility that the desired improvement in wear resistance cannot be obtained. For this reason, it is preferable to limit Nb to 2.0% or less.

Ti、Zr、Bはともに、粗大な共晶炭化物の形成を抑制し、耐摩耗性を向上させる作用を有する元素であり、必要に応じ1種または2種以上を選択して含有できる。このような効果は、Ti:0.01%以上、Zr:0.01%以上、B:0.01%以上の含有で顕著となる。一方、Ti:2.0%、Zr:2.0%を超える含有は、介在物が増加し材質を脆くするため、かえって耐摩耗性を低下させる。また、B:0.1%を超える含有は粒界への偏析が顕著になり靭性が低下する。このため、Ti:2.0%以下、Zr:2.0%以下、B:0.1%以下にそれぞれ限定することが好ましい。   Ti, Zr, and B are both elements that have the effect of suppressing the formation of coarse eutectic carbides and improving the wear resistance, and can be selected from one or more as required. Such an effect becomes remarkable when Ti: 0.01% or more, Zr: 0.01% or more, and B: 0.01% or more. On the other hand, if the content exceeds Ti: 2.0% and Zr: 2.0%, inclusions increase and the material becomes brittle, so the wear resistance is lowered. On the other hand, if the content exceeds B: 0.1%, segregation to the grain boundary becomes remarkable and the toughness decreases. For this reason, it is preferable to limit to Ti: 2.0% or less, Zr: 2.0% or less, and B: 0.1% or less, respectively.

なお、本発明では鋳造欠陥防止の観点から溶湯の流動性を確保するために、および、耐摩耗性を向上させる観点から所定値以上の基地硬さを確保するために、C、V、あるいはさらにNb含有量を上記した範囲内でさらに、下記式
0.6 < {C−0.24V−0.13Nb} < 2.0
(ここで、C、V、Nb:各元素の含有量(質量%))
を満足するように調整することが好ましい。なお、Nbを含有しない場合にはNbの項は零として計算するものとする。
In the present invention, in order to ensure the fluidity of the molten metal from the viewpoint of preventing casting defects, and in order to ensure the base hardness of a predetermined value or more from the viewpoint of improving the wear resistance, C, V, or further Within the above range of Nb content,
0.6 <{C-0.24V-0.13Nb} <2.0
(Here, C, V, Nb: content of each element (mass%))
It is preferable to adjust so as to satisfy the above. When Nb is not contained, the Nb term is calculated as zero.

上記した成分以外の溶湯の残部は、Feおよび不可避的不純物である。不可避的不純物としては、P:0.05%以下、S:0.03%以下が許容できる。
本発明では、上記した組成の溶湯を溶製し、所定の鋳型に注入(注湯)し、凝固させて、鋳鉄品とする。溶湯の溶製方法はとくに限定する必要はなく、公知の溶製法がいずれも適用できる。
The remainder of the molten metal other than the above components is Fe and inevitable impurities. As unavoidable impurities, P: 0.05% or less and S: 0.03% or less are acceptable.
In the present invention, the molten metal having the above composition is melted, poured into a predetermined mold (pouring), and solidified to obtain a cast iron product. The melting method of the molten metal is not particularly limited, and any known melting method can be applied.

本発明では、鋳型に注湯する直前の溶湯温度、すなわち鋳型注湯直前温度T(℃)を、次(1)式
TA−0.5(TA−TS)< T < TMC ………(1)
( ここで、T:鋳型注入直前温度(℃)、TA:γ相の晶出開始温度(℃)、TS:固相線温度(℃)、TMC:(2)式で定義される温度(℃))
を満足するように調整する。なお、(2)式は、
TMC=1170+64.5C+24.6Si+5.0Mn−11.1Cr−1.4Mo+18.0V+60.0Nb ……(2)
(ここで、C、Si、Mn、Cr、Mo、V、Nb:各元素の含有量(質量%))
である。
In the present invention, the melt temperature immediately before pouring into the mold, that is, the temperature T (° C.) just before the mold pouring is expressed by the following equation (1).
TA-0.5 (TA-TS) <T <TMC (1)
(Where T: temperature immediately before casting the mold (° C.), TA: crystallization start temperature of γ phase (° C.), TS: solidus temperature (° C.), TMC: temperature defined by the formula (2) (° C. ))
Adjust to satisfy. Note that equation (2) is
TMC = 1170 + 64.5C + 24.6Si + 5.0Mn-11.1Cr-1.4Mo + 18.0V + 60.0Nb (2)
(Here, C, Si, Mn, Cr, Mo, V, Nb: content of each element (mass%))
It is.

本発明で使用する溶湯組成では、初晶として晶出する炭化物はMC型炭化物であり、(1)式におけるTMCは、MC型炭化物が晶出することにより、溶湯の見掛粘度が適正範囲に増加する温度で、(2)式を用いて算出するものとする。なお、含有しない元素は零として計算するものとする。
TMC(℃)=1170+64.5C+24.6Si+5.0Mn−11.1Cr−1.4Mo+18.0V+60.0Nb……(2)
(ここで、C、Si、Mn、Cr、Mo、V、Nb:各元素の含有量(質量%))
また、(1)式におけるTAはγ相の晶出開始温度(℃)、TSは固相線温度(℃)であり、それぞれ次式を用いて算出するものとする。なお、含有しない元素は零として計算するものとする。
In the molten metal composition used in the present invention, the carbide crystallized as the primary crystal is MC type carbide, and the TMC in the formula (1) causes the apparent viscosity of the molten metal to fall within the proper range by crystallizing the MC type carbide. It is assumed that the temperature is increased by using equation (2). It should be noted that elements not contained are calculated as zero.
TMC (℃) = 1170 + 64.5C + 24.6Si + 5.0Mn-11.1Cr-1.4Mo + 18.0V + 60.0Nb …… (2)
(Here, C, Si, Mn, Cr, Mo, V, Nb: content of each element (mass%))
Further, TA in the equation (1) is the crystallization start temperature (° C.) of the γ phase, and TS is the solidus temperature (° C.), which are calculated using the following equations, respectively. It should be noted that elements not contained are calculated as zero.

TA(℃)=1055−61.5C−17.1Si−4.0Mn−0.7Cr−5.0Mo+11.4Nb−4.0Ni
TS(℃)=1099−12.7C+0.4Si−6.5Mn−5.1Cr+2.7Mo+8.6V+7.5Nb−4.3Ni
(ここで、C、Si、Mn、Cr、Mo、V、Nb、Ni:各元素の含有量(質量%))
鋳型注湯直前温度T(℃)を、(1)式を満足するような温度に調整することにより、注湯前の溶湯中に微細な初晶炭化物(MC型炭化物)が多数晶出し、溶湯の粘度が適正範囲内に増加した状態が得られ、鋳型注入時の自然攪拌と温度降下の過程で初晶であるMC型炭化物の浮上・沈降,すなわち重力偏析が抑制され、凝固後に炭化物が均一に分散した組織が得られ、耐摩耗性が向上するとともに、MC型炭化物の密度増加に伴う引け巣やミクロポロシティーなどの鋳造欠陥のない健全な鋳鉄品が得られる。一方、(1)式を満足せず、鋳型注湯直前温度T(℃)がTMC以上の高温である場合には、鋳型注入時の凝固過程で未凝固溶湯の温度上昇に伴う粘度の低下により、凝固界面近傍で晶出するMC型炭化物が容易に浮上しMC型炭化物の偏析が発生する。また、鋳型注湯直前温度T(℃)が、(1)式を満足しないような低温では、デンドライト状に成長するγ相の影響で溶湯の流動性が顕著に低下し、ミクロポロシティーや引け巣の発生など鋳造欠陥が多発する。このため本発明では、鋳型注湯直前温度T(℃)は、(1)式を満足するような温度に調整し、鋳型に注湯するものとする。
TA (° C) = 1055-61.5C-17.1Si-4.0Mn-0.7Cr-5.0Mo + 11.4Nb-4.0Ni
TS (° C) = 1099-12.7C + 0.4Si-6.5Mn-5.1Cr + 2.7Mo + 8.6V + 7.5Nb-4.3Ni
(Here, C, Si, Mn, Cr, Mo, V, Nb, Ni: content of each element (mass%))
By adjusting the temperature T (° C.) immediately before pouring the mold to a temperature that satisfies the formula (1), a large number of fine primary crystal carbides (MC type carbides) are crystallized in the melt before pouring. A state in which the viscosity has increased within the proper range is obtained, and the floating and settling of the MC type carbide, the primary crystal, that is, gravity segregation, is suppressed during the process of natural stirring and temperature drop during casting, and the carbide is uniform after solidification. A dispersed structure is obtained, wear resistance is improved, and a healthy cast iron product free from casting defects such as shrinkage cavities and microporosity accompanying the increase in the density of MC type carbide is obtained. On the other hand, if the formula (1) is not satisfied and the temperature T (° C) immediately before casting the mold is higher than TMC, the viscosity decreases due to the temperature rise of the unsolidified molten metal during the solidification process during casting. MC type carbides that crystallize in the vicinity of the solidification interface easily float and segregate MC type carbides. In addition, when the temperature T (° C.) immediately before casting the mold does not satisfy the formula (1), the fluidity of the molten metal is remarkably lowered due to the influence of the γ phase that grows in a dendritic form, and the microporosity and the shrinkage are reduced. Casting defects such as nests occur frequently. Therefore, in the present invention, the temperature T (° C.) immediately before casting the mold is adjusted to a temperature satisfying the expression (1) and poured into the casting mold.

鋳型注湯直前温度T(℃)を、(1)式を満足するような温度に調整する好ましい方法としては、溶湯の注入時に湯道(樋、タンディッシュ等)に冷却板等を配設して急冷する方法や、溶湯を水冷モールド内を通過させて急冷する方法や、微細な粒状又は板状の冷材を添加して溶解する方法等があるが、本発明ではこれらに限定されるものではない。
なお、溶湯を急冷する場合は、溶湯の温度がTMC(℃)以下に低下している場合には、一旦、溶湯をTMC(℃)以上の温度に昇温したのち、溶湯を10℃/min以上の冷却速度で、(1)式を満足する温度域まで、冷却することが好ましい。溶湯温度がTMCより高温の場合には、昇温することなく上記した冷却速度で急冷することができる。これにより、晶出したMC型炭化物の成長が抑制され、微細なMC型炭化物が生成・分散し、MC型炭化物の重力偏析が抑制され、引け巣等の鋳造欠陥の発生が防止できる。とくに、MC型炭化物が粗大化しやすい、Vが8%以上の場合に有効となる。なお、冷却速度が10℃/min未満では、冷却中にMC型炭化物が成長し、粗大化する恐れがある。冷却速度のより好ましい範囲は50℃/min以上である。
As a preferable method for adjusting the temperature T (° C.) immediately before casting the mold to a temperature that satisfies the formula (1), a cooling plate or the like is provided in the runner (such as a tub or tundish) when the molten metal is poured. There are a method of quenching and quenching, a method of quenching by passing the molten metal through a water-cooled mold, a method of melting by adding a fine granular or plate-like cold material, etc., but the invention is limited to these is not.
When the molten metal is rapidly cooled, if the temperature of the molten metal has dropped below TMC (° C), the molten metal is once heated to a temperature of TMC (° C) or higher, and then the molten metal is heated to 10 ° C / min. It is preferable to cool to the temperature range satisfying the expression (1) at the above cooling rate. When the molten metal temperature is higher than TMC, it can be rapidly cooled at the above cooling rate without increasing the temperature. Thereby, the growth of the crystallized MC type carbide is suppressed, the fine MC type carbide is generated and dispersed, the gravity segregation of the MC type carbide is suppressed, and the occurrence of casting defects such as shrinkage can be prevented. In particular, this is effective when MC type carbide is easily coarsened and V is 8% or more. If the cooling rate is less than 10 ° C./min, MC type carbides may grow during cooling and become coarse. A more preferable range of the cooling rate is 50 ° C./min or more.

また、(1)式を満足する温度域のうち、γ相の晶出開始温度であるTA以下の温度域まで急冷すると、MC型炭化物の微細化に加えて樹枝状のγ相をも微細化し、粒状化することができる。なお、溶湯を攪拌にないで、TA以下の温度まで冷却すると、溶湯の粘度が急激に増加し、鋳造性が低下する傾向となる。このため、溶湯をTA以下の温度まで冷却する場合には、攪拌を併用することが好ましい。攪拌を併用することにより、鋳造欠陥の発生を抑制することができる。   In addition, when quenching to a temperature range below TA, which is the crystallization start temperature of the γ phase, in the temperature range satisfying the formula (1), the dendritic γ phase is refined in addition to the refinement of MC type carbides. Can be granulated. If the molten metal is cooled to a temperature of TA or lower without stirring, the viscosity of the molten metal increases rapidly and the castability tends to decrease. For this reason, when cooling a molten metal to the temperature below TA, it is preferable to use stirring together. By using agitation together, the occurrence of casting defects can be suppressed.

また、鋳型に注入する前に、(1)式を満足する範囲の温度で溶湯を攪拌することが好ましい。(1)式を満足する温度で、溶湯を攪拌することにより、MC型炭化物が粒状化しやすく、これによりさらに鋳造性、靭性が向上する。なお、攪拌方法としては、インペラ−による機械的攪拌、ガスバブリングによる攪拌、あるいは電磁力を利用した攪拌など、公知の攪拌方法がいずれも適用可能である。   Moreover, before pouring into a casting_mold | template, it is preferable to stir a molten metal at the temperature of the range which satisfies Formula (1). By stirring the molten metal at a temperature satisfying the formula (1), the MC type carbide is easily granulated, thereby further improving castability and toughness. As the stirring method, any known stirring method such as mechanical stirring by an impeller, stirring by gas bubbling, or stirring using electromagnetic force can be applied.

また、使用する鋳型は金型とすることが好ましい。冷却速度が速い金型を使用することにより、凝固速度が加速され、MC型炭化物の更なる微細化や、共晶炭化物の微細化等が可能となる。
上記した製造方法で得られた鋳鉄品は、さらに適正な温度(例えば、固液共存域)に再加熱したのち、圧縮等の加工を施すと、共晶炭化物等が多い液相が表層に滲み出やすく、表層が炭化物相が濃縮した層となる一方、内層が炭化物相が少なく靭性に富む層となり、傾斜機能を有する鋳鉄品とすることができる。
The mold used is preferably a mold. By using a mold having a high cooling rate, the solidification rate is accelerated, and further miniaturization of MC type carbide, eutectic carbide, and the like are possible.
The cast iron product obtained by the above manufacturing method is reheated to an appropriate temperature (for example, a solid-liquid coexistence region) and then subjected to processing such as compression, so that a liquid phase containing a large amount of eutectic carbides oozes out on the surface layer. It is easy to come out, and the surface layer becomes a layer in which the carbide phase is concentrated, while the inner layer becomes a layer having little carbide phase and rich in toughness, and a cast iron product having a gradient function can be obtained.

上記した製造方法で得られた鋳鉄品は、上記した溶湯組成と略同じ組成を有し、さらに基地中に粒径:5〜30μmの粒状のMC型炭化物が面積率で5〜30%分散した組織を有する鋳鉄品となる。このような組織とすることにより、耐摩耗性、研削性、靭性等が顕著に向上する。
上記した製造方法で製造された鋳鉄品いずれも、所望の硬さに調整するため、必要に応じて調質処理を施してもよい。なお、調質処理としては、オーステナイト化したのち、ベイナイト変態開始温度以下でマルテンサイト変態開始温度以上の温度まで急冷し、その後保持または徐冷し、基地組織をベイナイト組織化する焼入れ処理と、ついで所定の適正硬さに調整する焼戻処理とを施す処理とすることが好ましい。
The cast iron product obtained by the above manufacturing method has substantially the same composition as the above-described molten metal composition, and further, granular MC type carbide having a particle size of 5 to 30 μm is dispersed in the matrix in an area ratio of 5 to 30%. It becomes a cast iron product having a structure. By setting it as such a structure | tissue, abrasion resistance, grindability, toughness, etc. improve notably.
Any of the cast iron products manufactured by the above-described manufacturing method may be subjected to a tempering treatment as necessary in order to adjust to a desired hardness. As the tempering treatment, after austenitizing, quenching treatment is performed by quenching to a temperature below the bainite transformation start temperature to a temperature above the martensite transformation start temperature, and then holding or gradually cooling to form a bainite texture in the base structure. It is preferable to perform a process of performing a tempering process for adjusting to a predetermined appropriate hardness.

表1に示す組成の溶湯を電気炉で溶製したのち、溶湯温度を表2に示す鋳型注湯直前温度に調整したのち、硅砂を用いた自硬性鋳型に注湯し、凝固させ、鋳鉄品(重さ:30kg、大きさ:60mmφ×150mm高さ)とした。鋳鉄品はついで、焼入れ温度:1000℃、焼戻温度:500℃で調質処理を施した。なお、一部では、注湯直前に、注湯部に冷却板付きの樋を設置して急冷、および/またはインペラによる攪拌を行った。   After the molten metal having the composition shown in Table 1 is melted in an electric furnace, the molten metal temperature is adjusted to the temperature immediately before casting the mold shown in Table 2, then poured into a self-hardening mold using dredged sand, solidified, and cast iron product. (Weight: 30 kg, size: 60 mmφ × 150 mm height). The cast iron product was then tempered at a quenching temperature of 1000 ° C and a tempering temperature of 500 ° C. In some cases, immediately before pouring, a bowl with a cooling plate was installed in the pouring part to perform rapid cooling and / or stirring with an impeller.

表1のTMA、TA、TSの各温度は前記した式を用いて算出した値である。
得られた鋳鉄品について、外観および断面観察試験、硬さ試験、耐摩耗性試験を実施した。試験方法はつぎの通りとした。
(1)外観および断面観察検査
得られた鋳鉄品について、目視観察により、引け巣等の表面欠陥、さらには得られた鋳鉄品の中央縦断面サンプルを採取し、該中央縦断面サンプルを全面研磨し、目視および光学顕微鏡(100倍)で、引け巣、ポロシティー等の鋳造欠陥の有無、およびMC型炭化物の重力偏析の有無を調査した。これら鋳造欠陥が無い場合を○、これら鋳造欠陥が軽微で光学顕微鏡によって認識可能な場合を△、これら鋳造欠陥が多量に存在し、目視で存在が確認できる場合を×とした。また、MC型炭化物の重力偏析が有る場合を×、無い場合を○として評価した。
Each temperature of TMA, TA, and TS in Table 1 is a value calculated using the above formula.
The resulting cast iron product was subjected to appearance and cross-section observation tests, hardness tests, and wear resistance tests. The test method was as follows.
(1) Appearance and cross-sectional observation inspection About the obtained cast iron product, surface defects such as shrinkage cavities and the like, and a central longitudinal section sample of the obtained cast iron product are collected, and the central longitudinal section sample is entirely polished. Then, the presence or absence of casting defects such as shrinkage cavities and porosity, and the presence or absence of gravity segregation of MC type carbide were examined visually and with an optical microscope (100 times). The case where there was no such casting defect was marked with ◯, the case where these casting defects were minor and could be recognized by an optical microscope, and the case where a large amount of these casting defects were present and could be visually confirmed were marked with x. Further, the case where gravity segregation of MC type carbide was present was evaluated as x, and the case where there was not gravity was evaluated as ◯.

(2)硬さ試験
得られた鋳鉄品から採取した中央縦断面サンプルについて、シヨア硬度計を用いて硬さHsを測定した。測定位置は、鋳鉄品の高さ方向中央とし、両表面(両側面)から中心方向に0、5、10、15、20mmの各点、計10点を測定し、それらの算術平均をその鋳鉄品の硬さとした。
(2) Hardness test About the central longitudinal cross-section sample extract | collected from the obtained cast iron article, hardness Hs was measured using the Shiore hardness meter. The measurement position is the center in the height direction of the cast iron product. Measure 10 points in total, 0, 5, 10, 15, 20mm from both surfaces (both sides) in the center direction, and calculate the arithmetic average of the cast iron. The hardness of the product.

(3)耐摩耗性試験
得られた鋳鉄品から採取した中央縦断面サンプルの高さ方向中央部の表面近傍から、10mmφ×50mm長さの丸棒状試験片を切り出し、回転式摩耗試験を実施した。回転式摩耗試験は、試験片を珪砂、珪石と水とを混合し泥状とした液中で回転摩耗(回転数:640rpm、試験片速度:10m/s)させる試験とし、試験時間:20時間後の試験片の摩耗減量を測定し,耐摩耗性を評価した。耐摩耗性は、高Cr鋳鉄(従来例)の摩耗減量を基準(1.00)とし、従来例の摩耗減量に対する比(試験材の摩耗減量/従来例の摩耗減量)で表示した。耐摩耗比が小さいほど、耐摩耗性が向上していることを表す。なお、鋳造性が劣化した比較例は耐摩耗性試験を実施しなかった。得られた結果を表3に示す。
(3) Abrasion resistance test A 10mmφ × 50mm length round bar-shaped test piece was cut out from the vicinity of the surface of the central part in the height direction of the center longitudinal section sample taken from the obtained cast iron product, and a rotary wear test was performed. . The rotary wear test is a test in which the test piece is subjected to rotary wear (rotation speed: 640 rpm, test piece speed: 10 m / s) in a mud mixed with silica sand, silica and water, and the test time is 20 hours. The wear loss of the test pieces was measured and the wear resistance was evaluated. The wear resistance was expressed as a ratio (wear loss of the test material / wear loss of the conventional example) to the wear loss of the conventional example based on the wear loss of the high Cr cast iron (conventional example) (1.00). The smaller the wear resistance ratio, the better the wear resistance. Note that the wear resistance test was not performed on the comparative example in which the castability deteriorated. The obtained results are shown in Table 3.

Figure 0004548263
Figure 0004548263

Figure 0004548263
Figure 0004548263

Figure 0004548263
本発明例はいずれも、鋳造欠陥もなく、MC型炭化物の重力偏析もなく、従来例に比べて耐摩耗性に優れた鋳鉄品となっている。一方、本発明の範囲を外れる比較例は鋳造欠陥が発生しているか、あるいはMC型炭化物の重力偏析が発生しているか、耐摩耗性が劣化している。
Figure 0004548263
In all of the examples of the present invention, there is no casting defect, gravity segregation of MC type carbides, and cast iron products having superior wear resistance as compared with the conventional examples. On the other hand, in comparative examples that are out of the scope of the present invention, casting defects have occurred, gravity segregation of MC type carbides has occurred, or wear resistance has deteriorated.

Claims (4)

質量%で、
C:1.5〜5.5%、 Si:1.5%以下、
Mn:1.2%以下、 Cr:4.0〜20%、
Mo:2〜12%、 V:3.0〜20%
を含有し、残部Feおよび不可避的不純物からなる組成の溶湯を、鋳型注入直前温度T(℃)が、下記(1)式を満足するように調整したのち、鋳型に注入し、凝固させることを特徴とする耐摩耗性鋳鉄品の製造方法。

TA−0.5(TA−TS)< T < TMC ………(1)
ここで、T:鋳型注入直前温度(℃)、
TA:オーステナイト相の晶出開始温度(℃)、
TS:固相線温度(℃)、
TMC:次(2)式で定義される温度(℃)
TMC=1170+64.5C+24.6Si+5.0Mn−11.1Cr−1.4Mo+18.0V+60.0Nb ……(2)
(ここで、C、Si、Mn、Cr、Mo、V、Nb:各元素の含有量(質量%))
% By mass
C: 1.5 to 5.5%, Si: 1.5% or less,
Mn: 1.2% or less, Cr: 4.0-20%,
Mo: 2-12%, V: 3.0-20%
The molten metal having a composition comprising the balance Fe and inevitable impurities is adjusted so that the temperature T (° C.) immediately before the mold injection satisfies the following formula (1), and then injected into the mold and solidified. A method for producing a wear-resistant cast iron product.
Record
TA-0.5 (TA-TS) <T <TMC (1)
Where T: temperature immediately before mold injection (° C.),
TA: Austenite phase crystallization start temperature (° C),
TS: Solidus temperature (° C),
TMC: Temperature (° C) defined by the following equation (2)
TMC = 1170 + 64.5C + 24.6Si + 5.0Mn-11.1Cr-1.4Mo + 18.0V + 60.0Nb (2)
(Here, C, Si, Mn, Cr, Mo, V, Nb: content of each element (mass%))
前記溶湯の鋳型注入直前温度を調整するに当たり、前記溶湯の温度を前記TMC(℃)以上の温度にしたのち、該溶湯を10℃/min以上の冷却速度で冷却し、前記(1)式を満足する前記鋳型注入直前温度T(℃)に調整することを特徴とする請求項に記載の耐摩耗性鋳鉄品の製造方法。 In adjusting the temperature of the molten metal immediately before mold injection, the molten metal temperature is set to the TMC (° C) or higher, and then the molten metal is cooled at a cooling rate of 10 ° C / min or higher. 2. The method for producing a wear-resistant cast iron product according to claim 1 , wherein the temperature is adjusted to a temperature T (° C.) immediately before the mold injection that satisfies the requirement. 前記注入前に、前記(1)式を満足する範囲の温度で前記溶湯を攪拌することを特徴とする請求項またはに記載の耐摩耗性鋳鉄品の製造方法。 The method for producing a wear-resistant cast iron product according to claim 1 or 2 , wherein the molten metal is stirred at a temperature satisfying the formula (1) before the injection. 前記組成に加えてさらに、質量%で、Ni:5.5%以下、Co:10.0%以下、Cu:2.0%以下、W:1.0%以下、Nb:2.0%以下、Ti:2.0%以下、Zr:2.0%以下、B:0.1%以下のうちから選ばれた1種又は2種以上を含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載の耐摩耗性鋳鉄品の製造方法。   In addition to the above composition, Ni: 5.5% or less, Co: 10.0% or less, Cu: 2.0% or less, W: 1.0% or less, Nb: 2.0% or less, Ti: 2.0% or less, Zr: 2.0 % Or less, B: It is set as the composition containing 1 type, or 2 or more types chosen from 0.1% or less, The manufacturing method of the wear-resistant cast iron product in any one of Claim 1 thru | or 3 characterized by the above-mentioned. .
JP2005221215A 2005-07-29 2005-07-29 Manufacturing method of cast iron products with excellent wear resistance Expired - Fee Related JP4548263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005221215A JP4548263B2 (en) 2005-07-29 2005-07-29 Manufacturing method of cast iron products with excellent wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005221215A JP4548263B2 (en) 2005-07-29 2005-07-29 Manufacturing method of cast iron products with excellent wear resistance

Publications (2)

Publication Number Publication Date
JP2007030037A JP2007030037A (en) 2007-02-08
JP4548263B2 true JP4548263B2 (en) 2010-09-22

Family

ID=37789919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005221215A Expired - Fee Related JP4548263B2 (en) 2005-07-29 2005-07-29 Manufacturing method of cast iron products with excellent wear resistance

Country Status (1)

Country Link
JP (1) JP4548263B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2481413C1 (en) * 2012-06-14 2013-05-10 Юлия Алексеевна Щепочкина Cast iron
CN103898395A (en) * 2014-04-01 2014-07-02 安庆市灵宝机械有限责任公司 Titanium-containing high-chromium cast ion type wear-resistant alloy
CN104087821B (en) * 2014-07-28 2016-01-20 宁国市南方耐磨材料有限公司 A kind of high-toughness wear-resistant ball
CN105018829A (en) * 2015-07-13 2015-11-04 江苏曜曜铸业有限公司 Alloy used for gearbox casing mould
EP3347501B8 (en) * 2015-09-08 2021-05-12 Oerlikon Metco (US) Inc. Non-magnetic, strong carbide forming alloys for powder manufacture
CN106086696A (en) * 2016-08-22 2016-11-09 合肥东方节能科技股份有限公司 A kind of energetic ion slitting wheel alloy material and preparation method thereof
CN106591689B (en) * 2016-11-15 2018-07-20 营口龙辰矿山车辆制造有限公司 A kind of hypereutectic high-chromium alloy white cast iron chute lining board and preparation method thereof
CN113714488A (en) * 2021-08-23 2021-11-30 昆明理工大学 Preparation method of ceramic particle cast-in reinforced metal-based wear-resistant composite plate
CN114717467A (en) * 2022-03-02 2022-07-08 宁波市圣盾机械制造有限公司 Hypereutectic high-chromium cast iron material, preparation method and application thereof
CN114855082B (en) * 2022-04-26 2023-06-20 包头钢铁(集团)有限责任公司 Manufacturing method for improving low-temperature toughness of hot-rolled U75V steel rail by rare earth elements
CN114807733B (en) * 2022-05-11 2023-06-23 长沙威尔保新材料有限公司 Method for connecting and fixing high-chromium white wear-resistant cast iron part and metal part
CN115323259A (en) * 2022-08-17 2022-11-11 承德燕北冶金材料有限公司 Casting lining plate and preparation method and application thereof
CN117512431A (en) * 2023-11-16 2024-02-06 唐县凯华金属制品有限公司 High-strength gray cast iron and production process and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288745A (en) * 1988-09-27 1990-03-28 Nippon Steel Corp Wear-resistant cast iron roll material
WO1991019824A1 (en) * 1990-06-13 1991-12-26 Nippon Steel Corporation Composite roll for use in rolling and manufacture thereof
JPH07278727A (en) * 1994-04-08 1995-10-24 Leotec:Kk Production of high-carbon alloy steel products free from coarse carbide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288745A (en) * 1988-09-27 1990-03-28 Nippon Steel Corp Wear-resistant cast iron roll material
WO1991019824A1 (en) * 1990-06-13 1991-12-26 Nippon Steel Corporation Composite roll for use in rolling and manufacture thereof
JPH07278727A (en) * 1994-04-08 1995-10-24 Leotec:Kk Production of high-carbon alloy steel products free from coarse carbide

Also Published As

Publication number Publication date
JP2007030037A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4548263B2 (en) Manufacturing method of cast iron products with excellent wear resistance
EP0701494B1 (en) Microstructurally refined multiphase castings
WO2013150950A1 (en) Centrifugally cast composite roller and method for manufacturing same
JP2010514917A (en) Hard alloy with dry composition
JP6787238B2 (en) Manufacturing method of steel for machine structure
JP2017185548A (en) Centrifugal casting hot-rolling compound roll
JP2007245217A (en) Composite rolling mill roll
JP5712560B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
Opapaiboon et al. Effect of chromium content on heat treatment behavior of multi-alloyed white cast iron for abrasive wear resistance
JP2009274092A (en) Method for manufacturing high-speed cutting cast iron product
JP6515957B2 (en) Roll outer layer material for rolling having excellent wear resistance and composite roll for rolling
JP3089882B2 (en) Abrasion-resistant steel having excellent surface properties and method for producing the same
KR102647292B1 (en) Composite roll for centrifugal casting and manufacturing method thereof
JP5712525B2 (en) Spheroidal graphite cast iron products with excellent wear resistance
CN115261713B (en) Preparation method of high-hardness high-toughness wear-resistant high-chromium cast iron
JP2010149129A (en) Holder for die-casting die, and method for producing the same
JP6518314B2 (en) Composite roll for rolling
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP6191781B1 (en) Spheroidal graphite cast iron with excellent gas defect resistance
JP6277040B2 (en) Composite roll for rolling
RU2765474C1 (en) Method for producing wear-resistant high-strength castings from iron
JP4596312B2 (en) Outer layer material for rolling roll excellent in wear resistance and heat crack resistance and rolling roll using the same
JP4650729B2 (en) Composite roll for rolling
KR100611201B1 (en) High speed steel compound roll for hot strip milling having excellent roughness-resistance
JP2007146276A (en) Composite roll for rolling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees