JP2010149129A - Holder for die-casting die, and method for producing the same - Google Patents

Holder for die-casting die, and method for producing the same Download PDF

Info

Publication number
JP2010149129A
JP2010149129A JP2008327256A JP2008327256A JP2010149129A JP 2010149129 A JP2010149129 A JP 2010149129A JP 2008327256 A JP2008327256 A JP 2008327256A JP 2008327256 A JP2008327256 A JP 2008327256A JP 2010149129 A JP2010149129 A JP 2010149129A
Authority
JP
Japan
Prior art keywords
die
casting
holder
strength
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008327256A
Other languages
Japanese (ja)
Inventor
Hideto Takasugi
英登 高杉
Shigenori Tojitani
繁則 唐治谷
Morio Suzuki
盛男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Pipe Fitting Mfg Co Ltd
Original Assignee
JFE Pipe Fitting Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Pipe Fitting Mfg Co Ltd filed Critical JFE Pipe Fitting Mfg Co Ltd
Priority to JP2008327256A priority Critical patent/JP2010149129A/en
Publication of JP2010149129A publication Critical patent/JP2010149129A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a holder for a die-casting die in which the reduction of strength does not occur even if thickness increases, so as to stably secure the strength of the substance. <P>SOLUTION: When a casting product as a holder for a die casting die with a shape having a part with a thickness of ≥50 mm is produced, the molten metal of spheroidal graphite cast iron having a composition containing, by weight, 3.0 to 4.0% C, 2.0 to 2.7% Si, ≤0.6% Mn, ≤0.03% P, ≤0.03% S, 0.02 to 0.06% Mg, 1.8 to 3.5% Cu, 0.01 to 0.05% Sn and 0.003 to 0.01% Bi, and the balance Fe with inevitable impurities is poured into the die of a sand die directly disposed with a cooling metal having a volume of ≥30% of the casting volume. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、肉厚50mm以上の部分を有する形状のダイカスト金型用ホルダー及びその製造方法に関する。   The present invention relates to a die casting mold holder having a portion having a thickness of 50 mm or more and a method for manufacturing the same.

従来、ダイカスト金型用ホルダーは鋳鋼(JIS SCMn2A等)で製造されてきたが、鋳鋼品は球状黒鉛鋳鉄品に比べ製造上、溶解温度が200〜300℃高いため耐火物の損耗が大きく、また昇温のためエネルギーも多く、資源を余分に使うためコスト高である。また、納期がかかることも問題となっている。   Conventionally, die-cast mold holders have been manufactured from cast steel (JIS SCMn2A, etc.). However, cast steel products have a higher melting temperature of 200 to 300 ° C. compared to spheroidal graphite cast iron products, and wear of refractories is large. There is a lot of energy to raise the temperature, and the cost is high because extra resources are used. Another problem is that delivery time is required.

このため、近年では、球状黒鉛鋳鉄の採用も試みられているが(例えば、特許文献1〜4参照)、通常の砂型鋳物では冷却が遅いために黒鉛の球状化が崩れ、また黒鉛が粗大成長を起こし、緻密な組織にならないため、実体鋳物では強度が出ず、伸びが低下する。また、肉厚中心部付近の最終凝固部には「チャンキー黒鉛」といわれる、形状の崩れた黒鉛が生成し、著しく強度を阻害する。このため、冷却を高めるため多くの努力が払われており、例えば、砂の代わりに鉄粒を使い、鋳型の熱伝導率を上げて冷却を早める方法が行われているが、100mm以上に肉厚が増せば、強度低下やチャンキー黒鉛が生じ、問題解決には至っていない。   For this reason, in recent years, attempts have been made to use spheroidal graphite cast iron (see, for example, Patent Documents 1 to 4). However, in ordinary sand castings, since the cooling is slow, the spheroidization of the graphite collapses and the graphite grows coarsely. Therefore, the solid casting does not have strength and the elongation decreases. In addition, graphite having a broken shape called “chunky graphite” is formed in the final solidified portion in the vicinity of the thickness center portion, which significantly impairs the strength. For this reason, many efforts have been made to increase cooling. For example, iron particles are used instead of sand, and the heat conductivity of the mold is increased to accelerate the cooling. If the thickness is increased, the strength is reduced and chunky graphite is produced, and the problem has not been solved.

一方、強度を上げる点から球状黒鉛鋳鉄に合金元素を添加して解決を図る試みも行われており(例えば、特許文献5参照)、Ni、Cr、Moなどが添加され、ある程度の効果が認められることもあるが安定しない。また、製造コストの上昇となるため実用的でない。   On the other hand, attempts have been made to solve the problem by adding alloy elements to spheroidal graphite cast iron from the viewpoint of increasing the strength (see, for example, Patent Document 5), and Ni, Cr, Mo, etc. are added, and a certain degree of effect is recognized. Sometimes it is not stable. In addition, the manufacturing cost is increased, which is not practical.

特開2005−256088号公報(段落[0014]等)Japanese Patent Laying-Open No. 2005-256088 (paragraph [0014] etc.) 特開2001−321917号公報(段落[0004]〜[0007])JP 2001-321917 A (paragraphs [0004] to [0007]) 特開2001−240934号公報(段落[0002]〜[0005])JP 2001-240934 A (paragraphs [0002] to [0005]) 特開平06−108199号公報Japanese Patent Laid-Open No. 06-108199 特開平10−99960号公報JP-A-10-99960

本発明は、以上のような問題を解決するためになされたものであって、肉厚が増えても強度の低下が起こらず、安定的に実体の強度を確保することのできるダイカスト金型用ホルダー及びその製造方法を提供することを目的とするものである。   The present invention has been made to solve the above problems, and does not cause a decrease in strength even when the wall thickness increases, and can be used for die casting molds that can stably secure the strength of the substance. It is an object to provide a holder and a manufacturing method thereof.

本発明に係るダイカスト金型用ホルダーは、請求項1に記載のように、肉厚50mm以上の部分を有する形状のダイカスト金型用ホルダーであって、重量%で、C:3.0〜4.0%、Si:2.0〜2.7%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02〜0.06%、Cu:1.8〜3.5%、Sn:0.01〜0.05%、Bi:0.003%〜0.01%を含有し、残部Fe及び不可避的不純物からなることに特徴を有するものである。   The die-casting mold holder according to the present invention is a die-casting mold holder having a portion having a thickness of 50 mm or more as described in claim 1, wherein C: 3.0 to 4 in weight%. 0.0%, Si: 2.0 to 2.7%, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% or less, Mg: 0.02 to 0.06%, It contains Cu: 1.8-3.5%, Sn: 0.01-0.05%, Bi: 0.003% -0.01%, and is characterized by being composed of the balance Fe and inevitable impurities. Is.

上記ダイカスト金型用ホルダーの合金成分として添加したCu、Sn、Biについては、各添加元素に独特の特性があると同時に各元素の相互作用もあるので、これらを考慮した合金設計が重要である。
本発明者らが、まず着目したのがCuの影響である。Cuはパーライト促進元素で、黒鉛形状を良くし、生地を強化することが知られている。そこで、この事項の確認のため、次なる実験を行った。
2,000Kg容量の低周波誘導炉を用い、鋼屑及び戻し材を使用してFCD450相当の溶湯とし、これにCuを1.3%〜2.8%と変化させて添加した後、市販のFe−Si−Mg−Ca−REM合金添加のサンドウィッチ法による黒鉛球状化処理を実施し、注湯取鍋移し換え時に接種、CO2鋳型のJIS G5502 Y型B号(25t×215l)に鋳込んだ。その結果を図1に示す。これより、Cu添加量が1.8〜3.5%、より好ましくは2.4%〜3.3%の範囲で引張強さと伸びのバランスがよくなることを見出した。
Regarding Cu, Sn, and Bi added as alloy components of the above die casting mold holder, each additive element has unique characteristics and there is also an interaction of each element. Therefore, an alloy design considering these is important. .
The inventors first focused on the influence of Cu. Cu is a pearlite-promoting element and is known to improve the graphite shape and strengthen the dough. Therefore, the following experiment was conducted to confirm this matter.
Using a low-frequency induction furnace with a capacity of 2,000 kg, using steel scrap and return material to make a molten metal equivalent to FCD450, and adding Cu to 1.3% to 2.8%, and then adding commercially available Fe-Si-Mg-Ca-REM alloy added sandwich spheroidizing process by sandwich method, inoculated at the time of transferring hot water ladle, cast into JIS G5502 Y type B (25t x 215l) of CO 2 mold It is. The result is shown in FIG. From this, it has been found that the balance between tensile strength and elongation is improved when the amount of Cu added is in the range of 1.8 to 3.5%, more preferably in the range of 2.4% to 3.3%.

次に、Snについては、0.01%未満ではCuとの相乗効果や黒鉛形状の改善の効果はなく、上限を0.05%としたのは、これ以上では脆化作用が強く、機械的性質が大幅に低下するためである。
Biは、鋳鉄材に添加すると、球状化剤を消費してしまうだけでなく、オーステナイトの粒界に偏析して、液相の溝を形成し、これに沿って黒鉛が成長し易くなり、黒鉛晶出が阻害され、球状化も阻害されることから、一般的にはダクタイル鋳鉄材において好ましい元素ではい。しかしながら、本発明者らはCuを1.8%〜3.5%、Snを0.01%〜0.05%含有させたダクタイル鋳鉄において、微量のBiを添加すると、黒鉛晶出が阻害される等の悪影響もなく、冷却速度が遅い内部においても黒鉛を均一微細分散化することが出来ることを見出した。Biを過量に添加すると、均一微細分散効果よりも、黒鉛量が減少し、鋳鉄の脆化をもたらす傾向が顕著に現れる。従って、Biは0.003%〜0.01%の範囲にした。従って、表層部と内部で差が生じない鋳物を目指す本発明では、成分として、Bi含有量を決める事が必要である。以上のことより、肉厚50〜300mmの範囲ではBi含有量を0.003〜0.005%程度に、また300mm以上ではBi含有量を0.007〜0.01%程度にすれば表層部とほぼ同程度の強度及び伸びが確保できる。
Next, with respect to Sn, if less than 0.01%, there is no synergistic effect with Cu or the effect of improving the graphite shape, and the upper limit is set to 0.05% because the embrittlement action is strong above this and mechanical This is because the properties are greatly deteriorated.
When Bi is added to the cast iron material, it not only consumes the spheroidizing agent, but also segregates at the austenite grain boundaries to form liquid-phase grooves, along which graphite easily grows. Since crystallization is inhibited and spheroidization is also inhibited, it is generally not a preferable element in a ductile cast iron material. However, in the ductile cast iron containing Cu of 1.8% to 3.5% and Sn of 0.01% to 0.05%, the present inventors inhibited graphite crystallization. It has been found that the graphite can be uniformly and finely dispersed even in the interior where the cooling rate is slow. When Bi is added in an excessive amount, the amount of graphite decreases and the tendency to cause embrittlement of cast iron appears more remarkably than the uniform fine dispersion effect. Therefore, Bi is set in the range of 0.003% to 0.01%. Therefore, in the present invention aiming at a casting in which there is no difference between the surface layer portion and the inside, it is necessary to determine the Bi content as a component. From the above, if the Bi content is about 0.003 to 0.005% in the thickness range of 50 to 300 mm, and the Bi content is about 0.007 to 0.01% at 300 mm or more, the surface layer portion And almost the same strength and elongation can be secured.

その他の成分であるMnは0.6%を超えると、共晶セル境界に強く偏析すると共に、セメンタイトをつくり延性を著しく低下させ、被削性を悪くするため上限を設けるものである。
Pは0.03%を超えると、ステダイトの影響で伸びが低下し、又、表面焼入れした時の焼割れを防止するために上限を求めるものである。
Sは、Mg消費型の球状化阻害元素であり、0.03%以下とした。C、Si、Mgは一般的な球状黒鉛鋳鉄の範囲である。すなわち、Cは3.0〜4.0%、Siは2.0〜2.7%、Mgは0.02〜0.06%とした。
When Mn, which is another component, exceeds 0.6%, it segregates strongly at the eutectic cell boundary, and forms cementite, significantly lowers the ductility, and lowers the machinability, thereby providing an upper limit.
When P exceeds 0.03%, the elongation decreases due to the influence of steadite, and the upper limit is obtained in order to prevent quench cracking when the surface is quenched.
S is an Mg consuming spheroidizing inhibiting element, and is set to 0.03% or less. C, Si and Mg are in the range of general spheroidal graphite cast iron. That is, C was 3.0 to 4.0%, Si was 2.0 to 2.7%, and Mg was 0.02 to 0.06%.

本発明に係るダイカスト金型用ホルダーの製造方法は、請求項2に記載のように、肉厚50mm以上の部分を有する形状のダイカスト金型用ホルダーである鋳物製品を製造するに際し、鋳物体積の30%以上の直接冷やし金を配置した砂型の鋳型内に、重量%で、C:3.0〜4.0%、Si:2.0〜2.7%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02〜0.06%、Cu:1.8〜3.5%、Sn:0.01〜0.05%、Bi:0.003%〜0.01%を含有し、残部Fe及び不可避的不純物からなる球状黒鉛鋳鉄溶湯を注入して製造することに特徴を有するものである。   According to the method for manufacturing a die casting mold holder according to the present invention, when manufacturing a casting product which is a die casting mold holder having a shape having a thickness of 50 mm or more, the casting volume of In a sand mold where 30% or more of direct cooling metal is arranged, C: 3.0 to 4.0%, Si: 2.0 to 2.7%, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% or less, Mg: 0.02-0.06%, Cu: 1.8-3.5%, Sn: 0.01-0.05%, Bi : It contains 0.003% to 0.01%, and is characterized in that it is manufactured by injecting molten spheroidal graphite cast iron consisting of the remainder Fe and inevitable impurities.

厚肉鋳物で冷却を早くするためには直接冷やし金法が鋳鋼などでは良く知られているが、これを使用する時量的なものが不明確で、鋳型の体積にも限界があることより、本発明者らは熱除去の観点から最適値を見いだした。即ち、鋳型内に注入された溶湯の熱を直接冷やし金で除去する。通常使われる冷やし金として使用される鋳鉄材(JIS FC250など)は、鋳型を構成している砂粒子に比べ格段に熱伝導率がよいため、早く冷却を促進する。ところが、この冷やし金自体、鋳物熱を除去する代わりに温度が上昇するので、鋳物の冷却に応じて鋳物との温度差が減少し、熱の流れも減少するので無制限に冷却能があるわけではない。鋳物の凝固点を約1470℃とすると常温に設置された冷やし金がこの温度まで上昇するための熱容量は冷やし金を鋳鉄材とした場合、約120kcal/kgとなる。一方、鋳物が凝固点で液体から固体に相転換するため熱量は凝固潜熱という物性値で知られており、球状黒鉛鋳鉄の場合約50kcal/kgであるため、冷やし金との熱容量の比をとると約2.4になる。即ち、鋳物の体積に対して、冷やし金の体積が1/2.4あれば、鋳物の凝固点での熱量を冷やし金の顕熱とバランスすることを示している。鋳型内に注湯された溶湯の材質(黒鉛の大きさや黒鉛の形態)が決まるのは凝固するまでの間であり、これ以降の冷却はさほど影響がないため、必要最低限の冷やし金の量もほぼこの考え方に見合う。実際には鋳物の形状や、冷やし金を取り囲む砂の熱容量などもあるため、必要最低限の冷やし金の体積を鋳物体積の30%以上が望ましい。   The direct cooling method is well known for cast steel, etc., in order to speed up the cooling in thick castings, but the amount of time to use this is unclear and the volume of the mold is limited. The present inventors have found an optimum value from the viewpoint of heat removal. That is, the heat of the molten metal injected into the mold is directly cooled and removed with gold. A cast iron material (JIS FC250, etc.) used as a commonly used chiller has a much better thermal conductivity than sand particles constituting the mold, and therefore accelerates cooling quickly. However, since the temperature rises instead of removing the casting heat, the cooling metal itself has a cooling capacity unlimitedly because the temperature difference with the casting decreases as the casting cools and the heat flow also decreases. Absent. If the freezing point of the casting is about 1470 ° C., the heat capacity for the chiller installed at room temperature to rise to this temperature is about 120 kcal / kg when the chiller is made of cast iron. On the other hand, since the casting is phase-converted from a liquid to a solid at the freezing point, the amount of heat is known as a physical property value of latent heat of solidification, and in the case of spheroidal graphite cast iron, it is about 50 kcal / kg. It becomes about 2.4. That is, if the volume of the cooling metal is 1 / 2.4 relative to the volume of the casting, this indicates that the amount of heat at the freezing point of the casting is balanced with the sensible heat of the cooling metal. The material of the molten metal poured into the mold (the size of the graphite and the form of the graphite) is determined until it solidifies, and the subsequent cooling has little effect, so the minimum amount of cooling metal required Is almost commensurate with this idea. Actually, there are the shape of the casting and the heat capacity of the sand surrounding the chill metal. Therefore, the minimum chill metal volume is preferably 30% or more of the casting volume.

Cu、Sn、Biの合金成分や、Mn、P、C、Si、Mgについては、既述したとおりである。   The alloy components of Cu, Sn, and Bi, and Mn, P, C, Si, and Mg are as described above.

本発明のダイカスト金型用ホルダーによれば、合金成分として、Biを添加し、かつこのBi量を鋳物肉厚に応じて最低値を決め、強度に影響を与えるCuとSnを科学的な根拠に基づき算定することにより、肉厚が増えても強度や伸びの低下が起こらず、安定的に実体の強度・伸びを確保することができるに至った。   According to the die casting mold holder of the present invention, Bi is added as an alloy component, and the minimum amount of Bi is determined according to the thickness of the casting, and Cu and Sn affecting the strength are scientifically grounded. As a result, the strength and elongation did not decrease even when the wall thickness increased, and the strength and elongation of the substance could be secured stably.

本発明のダイカスト金型用ホルダーの製造方法によれば、通常の砂型鋳物に比べ冷却を早めるために直接冷やし金を設置し、しかもこの量として鋳物体積の30%以上の冷やし金を使用し、合金成分として、Biを添加し、かつこのBi量を鋳物肉厚に応じて最低値を決め、強度に影響を与えるCuとSnを科学的な根拠に基づき算定することにより、肉厚が増えても強度や伸びの低下が起こらず、安定的に実体の強度・伸びを確保することができるに至った。   According to the method for manufacturing a die-casting mold holder of the present invention, a cooling metal is installed directly in order to accelerate cooling compared to a normal sand casting, and a cooling metal of 30% or more of the casting volume is used as this amount. By adding Bi as an alloy component and determining the minimum value of this Bi amount according to the cast wall thickness, and calculating Cu and Sn affecting the strength based on scientific grounds, the wall thickness increases. However, strength and elongation did not decrease, and the strength and elongation of the substance could be stably secured.

図2の鋳造方案の模式図を参考に本発明の実施形態を説明する。図2において、1は鋳物(ダイカスト金型用ホルダー)、2は鋳鉄製の冷やし金、3はフラン砂で充填した鋳型、4は湯口を示し、dは鋳物1の肉厚を示す。因みに鋳物1の高さは約500mm、巾は800mmに設定されている。この鋳型を使用して、5トン高周波誘導炉で成分調整し、溶解した溶湯を出湯時にMg処理し、その後取り鍋内で接種した溶湯を用いて、図2の鋳型3に鋳込み、同時に別取り試験片(JIS G5502)を採取した。その後、鋳物1は強度低下が一番明確な中心部付近からJIS4号試験片(JIS Z2201)を採取し、引張試験を実施した。このように、鋳型条件及び溶湯成分を変化させて、今までの論拠の確認の実験を行い、最適値を抽出した。   The embodiment of the present invention will be described with reference to the schematic diagram of the casting method of FIG. In FIG. 2, 1 is a cast (die casting mold holder), 2 is a cast iron cooling metal, 3 is a mold filled with furan sand, 4 is a gate, and d is the thickness of the cast 1. Incidentally, the height of the casting 1 is set to about 500 mm and the width is set to 800 mm. Using this mold, the components were adjusted in a 5-ton high-frequency induction furnace, the molten metal was treated with Mg at the time of pouring, and then poured into the mold 3 in FIG. 2 using the molten metal inoculated in the ladle. A test piece (JIS G5502) was collected. Thereafter, JIS No. 4 test piece (JIS Z2201) was sampled from the vicinity of the center where casting strength was most clearly reduced, and a tensile test was performed. In this way, experiments for confirming the rationale so far were conducted by changing the mold conditions and the molten metal components, and the optimum values were extracted.

冷やし金の効果を確認するため、まず下記表1(化学成分分析結果(重量%))の化学成分並びに鋳込温度にて冷やし金の条件を変えた鋳型を製作し、鋳込みを行った。鋳物1が冷却後、鋳物1の中心部付近からJIS4号引張試験片を切り出し、引張試験を行った。その結果を図3に示す。図3より、冷やし金/鋳物体積比(冷やし金比率)を0.3以上にすれば、強度は所定の600MPaレベルを確保できることが解る。しかしながら、この伸び値は0〜3%で、いずれも規格値以下であった。


In order to confirm the effect of the chilling metal, first, casting molds were manufactured by changing the conditions of the chilling metal according to the chemical composition and casting temperature shown in Table 1 below (chemical component analysis result (% by weight)). After the casting 1 was cooled, a JIS No. 4 tensile test piece was cut out from the vicinity of the center of the casting 1 and a tensile test was performed. The result is shown in FIG. It can be seen from FIG. 3 that the strength can be maintained at a predetermined 600 MPa level if the chill metal / casting volume ratio (cool metal ratio) is 0.3 or more. However, this elongation value was 0 to 3%, and all were below the standard value.


Figure 2010149129
Figure 2010149129

鋳物肉厚が増加し、凝固までの時間が増えると黒鉛が粗大化し、この現象を冷やし金だけでは解決できないことがわかったので、合金元素の影響を試験した。上記表1の実験で冷やし金比率を0.3以上にすれば、図3のように強度低下が防げることが確認されたので、この点を考慮して、下記表2(化学成分分析結果(重量%))のようにBi含有量を変えて成分の影響を試験した。その結果を図4に示すように、今回の試験ではいずれの試験片も引張強さは600MPa以上で合格したものの(図には省略)、肉厚50〜300mmではBi含有量0.003〜0.005%で、300mm以上ではBi含有量を0.007〜0.01%にすれば伸びの低下が防げ、実体強度と伸びがバランスよく発揮されることが確認できた。   As the cast wall thickness increased and the time until solidification increased, the graphite became coarse, and it was found that this phenomenon could not be solved by cooling metal alone, so the effect of alloying elements was tested. In the experiment of Table 1 above, it was confirmed that the strength reduction could be prevented as shown in FIG. 3 by setting the chilling metal ratio to 0.3 or more. The effect of the components was tested by changing the Bi content as in weight%)). As shown in FIG. 4, the test results show that all specimens passed with a tensile strength of 600 MPa or more (not shown in the figure), but with a thickness of 50 to 300 mm, the Bi content was 0.003 to 0. It was confirmed that when the Bi content was 0.007 to 0.01% at 0.005% and 300 mm or more, the decrease in elongation could be prevented and the substantial strength and elongation were exhibited in a well-balanced manner.

Figure 2010149129
Figure 2010149129

以上の点を踏まえて各成分の影響を試験した。下記表3(化学成分分析結果(重量%))にその結果を示すが、強度を出すためにはCuやSnの存在も重要であり、Bi、Cu、Snのバランスよい配合が重要である。   Based on the above points, the effect of each component was tested. The results are shown in the following Table 3 (chemical component analysis results (% by weight)). The presence of Cu and Sn is also important for increasing the strength, and a well-balanced blend of Bi, Cu, and Sn is important.

Figure 2010149129
Figure 2010149129

本発明における引張試験結果を示す図表である。It is a graph which shows the tension test result in this invention. 本発明における鋳造方案模式図である。It is a casting plan schematic diagram in the present invention. 本発明における冷やし金/鋳物比と張り強さを比較した図である。It is the figure which compared the chill metal / casting ratio and tensile strength in this invention. 本発明における鋳物肉厚と伸びを比較した図である。It is the figure which compared cast wall thickness and elongation in this invention.

符号の説明Explanation of symbols

1 鋳物(ダイカスト金型用ホルダー)
2 冷やし金
3 鋳型
d 鋳物の肉厚
1 Casting (Die-casting die holder)
2 Cooling metal 3 Mold d Cast wall thickness

Claims (2)

肉厚50mm以上の部分を有する形状のダイカスト金型用ホルダーであって、重量%で、C:3.0〜4.0%、Si:2.0〜2.7%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02〜0.06%、Cu:1.8〜3.5%、Sn:0.01〜0.05%、Bi:0.003%〜0.01%を含有し、残部Fe及び不可避的不純物からなることを特徴とするダイカスト金型用ホルダー。   A die-casting die holder having a shape having a thickness of 50 mm or more, and by weight, C: 3.0 to 4.0%, Si: 2.0 to 2.7%, Mn: 0.6 % Or less, P: 0.03% or less, S: 0.03% or less, Mg: 0.02 to 0.06%, Cu: 1.8 to 3.5%, Sn: 0.01 to 0.05 %, Bi: 0.003% to 0.01%, the balance being Fe and unavoidable impurities, a die-cast mold holder. 肉厚50mm以上の部分を有する形状のダイカスト金型用ホルダーである鋳物製品を製造するに際し、鋳物体積の30%以上の直接冷やし金を配置した砂型の鋳型内に、重量%で、C:3.0〜4.0%、Si:2.0〜2.7%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02〜0.06%、Cu:1.8〜3.5%、Sn:0.01〜0.05%、Bi:0.003%〜0.01%を含有し、残部Fe及び不可避的不純物からなる球状黒鉛鋳鉄溶湯を注入して製造することを特徴とするダイカスト金型用ホルダーの製造方法。   When manufacturing a cast product which is a die casting mold holder having a shape having a thickness of 50 mm or more, in a sand mold in which a direct cooling metal of 30% or more of the casting volume is disposed, C: 3 0.0 to 4.0%, Si: 2.0 to 2.7%, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% or less, Mg: 0.02 to 0 0.06%, Cu: 1.8 to 3.5%, Sn: 0.01 to 0.05%, Bi: 0.003% to 0.01%, and the balance consisting of Fe and unavoidable impurities A method for producing a die-cast mold holder, characterized by injecting molten graphite cast iron.
JP2008327256A 2008-12-24 2008-12-24 Holder for die-casting die, and method for producing the same Pending JP2010149129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008327256A JP2010149129A (en) 2008-12-24 2008-12-24 Holder for die-casting die, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008327256A JP2010149129A (en) 2008-12-24 2008-12-24 Holder for die-casting die, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2010149129A true JP2010149129A (en) 2010-07-08

Family

ID=42568814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008327256A Pending JP2010149129A (en) 2008-12-24 2008-12-24 Holder for die-casting die, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2010149129A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140061165A (en) * 2012-11-13 2014-05-21 현대모비스 주식회사 Nodular graphite cast iron with high strength and high toughness and parts of an automobile manufactured from the same
CN104233048A (en) * 2014-09-22 2014-12-24 青阳县天平机械制造有限公司 Cast state high-strength and high-toughness ball iron alloy for steering axle and preparation method of cast state high-strength and high-toughness ball iron alloy
JP2016132783A (en) * 2015-01-15 2016-07-25 トヨタ自動車株式会社 Manufacturing method of spheroidal graphite cast iron
CN113897539A (en) * 2021-10-12 2022-01-07 安徽裕隆模具铸业有限公司 Preparation method of double-high-carbon-phase MoCr gray cast iron automobile covering part drawing die

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140061165A (en) * 2012-11-13 2014-05-21 현대모비스 주식회사 Nodular graphite cast iron with high strength and high toughness and parts of an automobile manufactured from the same
CN103805832A (en) * 2012-11-13 2014-05-21 现代摩比斯株式会社 Nodular graphite cast iron with high strength and high toughness and parts of an automobile manufactured from the same
KR101988463B1 (en) 2012-11-13 2019-06-12 현대모비스 주식회사 Nodular graphite cast iron with high strength and high toughness and parts of an automobile manufactured from the same
CN104233048A (en) * 2014-09-22 2014-12-24 青阳县天平机械制造有限公司 Cast state high-strength and high-toughness ball iron alloy for steering axle and preparation method of cast state high-strength and high-toughness ball iron alloy
CN104233048B (en) * 2014-09-22 2017-02-08 安徽天平机械股份有限公司 Cast state high-strength and high-toughness ball iron alloy for steering axle and preparation method of cast state high-strength and high-toughness ball iron alloy
JP2016132783A (en) * 2015-01-15 2016-07-25 トヨタ自動車株式会社 Manufacturing method of spheroidal graphite cast iron
CN113897539A (en) * 2021-10-12 2022-01-07 安徽裕隆模具铸业有限公司 Preparation method of double-high-carbon-phase MoCr gray cast iron automobile covering part drawing die
CN113897539B (en) * 2021-10-12 2023-12-01 安徽裕隆模具铸业有限公司 Preparation method of double high carbon phase MoCr gray cast iron automobile covering part drawing die

Similar Documents

Publication Publication Date Title
JP5839461B2 (en) Method for producing spheroidal graphite cast iron, and method for producing vehicle parts using spheroidal graphite cast iron
JP5839465B2 (en) Method for producing spheroidal graphite cast iron and method for producing spheroidal graphite cast iron member
JP4548263B2 (en) Manufacturing method of cast iron products with excellent wear resistance
CN104060157B (en) A kind of hypereutectic high-chromium white cast iron and preparation method thereof
CN112962018B (en) Chilling process manufacturing method of non-label QT600-7 nodular cast iron
KR20180132857A (en) Gray cast iron inoculant
KR20180008612A (en) How to melt cast iron
JP6473192B2 (en) Spheroidal graphite cast iron and method for producing the same
JP2010149129A (en) Holder for die-casting die, and method for producing the same
He et al. Effect of Mg addition on carbides in H13 steel during electroslag remelting process
JP4693853B2 (en) As-cast high-strength spheroidal graphite cast iron and method for producing the same
Hemanth et al. Effect of cooling rate on eutectic cell count, grain size, microstructure, and ultimate tensile strength of hypoeutectic cast iron
CN111575511A (en) Method for improving micro-macro segregation of copper-tin alloy
JP5282547B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP5282546B2 (en) High-strength, thick-walled spheroidal graphite cast iron with excellent wear resistance
JP2018204082A (en) Spheroidal graphite cast iron, and manufacturing method therefor
JP2001123242A (en) Fe SERIES ALLOY MATERIAL FOR THIXOCASTING
JPH11279681A (en) High strength cast iron
JP2002292453A (en) Manufacturing method for thick, high strength, and spherical graphite cast iron
JP2007327083A (en) Spheroidal graphite cast iron and its production method
KR102539284B1 (en) Nodular cast iron with excellent resistance to gas defects
Wang et al. Effect of rare earth on primary carbides in H13 die steel and their addition method: a review
RU2616734C1 (en) Aluminium-based cast high-silicon alloy
JP7220428B2 (en) Method for manufacturing spheroidal graphite cast iron casting
JP7278316B2 (en) Flaky graphite cast iron product and its manufacturing method