JP2016132783A - Manufacturing method of spheroidal graphite cast iron - Google Patents

Manufacturing method of spheroidal graphite cast iron Download PDF

Info

Publication number
JP2016132783A
JP2016132783A JP2015006210A JP2015006210A JP2016132783A JP 2016132783 A JP2016132783 A JP 2016132783A JP 2015006210 A JP2015006210 A JP 2015006210A JP 2015006210 A JP2015006210 A JP 2015006210A JP 2016132783 A JP2016132783 A JP 2016132783A
Authority
JP
Japan
Prior art keywords
cast iron
granular
spheroidal graphite
graphite
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015006210A
Other languages
Japanese (ja)
Inventor
啓太 長倉
Keita Nagakura
啓太 長倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015006210A priority Critical patent/JP2016132783A/en
Publication of JP2016132783A publication Critical patent/JP2016132783A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of a spheroidal graphite cast iron capable of producing a fine spheroidal graphite particle in a cast iron structure from carbon contained in molten iron.SOLUTION: In a manufacturing method of a spheroidal graphite cast iron, granular graphite spheroidizing agent 6, powdery bismuth 7 and granular copper 8 are arranged in a layered state in a ladle 20 in this order from a bottom side of the ladle 20 so that Cu of 2.2 to 2.7 mass% and Bi of 0.005 to 0.05 mass% are added to molten iron. A spheroidal graphite cast particle is produced from carbon of molten iron M by injecting the molten iron M from upper of the ladle 20 into the ladle 20 and contacting the molten iron M with the granular graphite spheroidizing agent 6, the powdery bismuth 7 and he granular copper 8 in the ladle 20.SELECTED DRAWING: Figure 2

Description

本発明は、鋳鉄溶湯に黒鉛球状化剤を接触させることにより、鋳鉄溶湯の炭素から球状黒鉛粒子を生成する球状黒鉛鋳鉄の製造方法に関する。   The present invention relates to a method for producing spheroidal graphite cast iron in which spheroidal graphite particles are produced from carbon in a molten cast iron by bringing a graphite spheroidizing agent into contact with the molten cast iron.

従来から、自動車のエンジン、足回り部品、または駆動部品等に、球状黒鉛鋳鉄が採用されることがある。球状黒鉛鋳鉄は、鉄基地内に球状黒鉛粒子を含むので、他の鋳鉄に比べて高い強度を期待することができる。このような球状黒鉛鋳鉄は、鋳鉄溶湯に、Mg、Ca、またはCe等を含む黒鉛球状化剤を接触・反応させることにより、製造される。   Conventionally, spheroidal graphite cast iron may be employed for automobile engines, undercarriage parts, drive parts, and the like. Since spheroidal graphite cast iron contains spheroidal graphite particles in the iron base, it can be expected to have higher strength than other cast irons. Such spheroidal graphite cast iron is produced by contacting and reacting a cast iron melt with a graphite spheroidizing agent containing Mg, Ca, Ce or the like.

たとえば、特許文献1には、鋳鉄にCuを1.8〜4.0質量%、Biを0.0005〜0.01質量%含有させた球状黒鉛鋳鉄の製造方法が提案されている。この技術では、まず、鋳鉄溶湯(JIS規格:FCD450相当)に、上記含有量のCuを添加する。次にCuを添加した鋳鉄溶湯に対して、Fe−Si−Mg−Ca−REM合金(黒鉛球状化剤)添加のサンドイッチ法による黒鉛球状化処理を実施時に、Bi、Snを添加している。   For example, Patent Document 1 proposes a method for producing spheroidal graphite cast iron in which cast iron contains 1.8 to 4.0 mass% Cu and 0.0005 to 0.01 mass% Bi. In this technique, first, Cu having the above content is added to molten cast iron (JIS standard: FCD450 equivalent). Next, Bi and Sn are added to the cast iron melt to which Cu is added during the graphite spheroidization treatment by the sandwich method in which an Fe-Si-Mg-Ca-REM alloy (graphite spheroidizing agent) is added.

特開2009−197311号公報(明細書段落[0063]参照)JP 2009-197311 A (see paragraph [0063] of the specification)

しかしながら、特許文献1に示す技術では、鋳鉄溶湯に予めCuを添加しているため、Cu添加からBi添加まで長い時間が経過しており、Biによる黒鉛の微細化効果を十分に発現することができない場合があった。また、Cuの添加量によっては、CuがFeにすべて固溶して黒鉛の微細が阻害されたり、不規則な形状の黒鉛が生成されたりして、黒鉛が球状化しないことがあった。   However, in the technique shown in Patent Document 1, since Cu is added to the cast iron melt in advance, a long time elapses from Cu addition to Bi addition, and the effect of refining graphite by Bi can be sufficiently exhibited. There were cases where it was not possible. Also, depending on the amount of Cu added, all of the Cu was dissolved in Fe and the fineness of the graphite was inhibited, or irregularly shaped graphite was generated, and the graphite did not spheroidize.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、鋳鉄溶湯の炭素から微細な球状黒鉛粒子を生成することができる球状黒鉛鋳鉄の製造方法を提供することにある。   The present invention has been made in view of these points, and an object of the present invention is to provide a method for producing spheroidal graphite cast iron capable of generating fine spheroidal graphite particles from carbon of the cast iron melt. It is in.

前記課題を鑑みて、本発明に係る球状黒鉛鋳鉄の製造方法は、鋳鉄溶湯にCuが2.2〜2.7質量%、Biが0.005〜0.05質量%添加されるように、粒状の黒鉛球状化剤、粉状のBi、および粒状のCuを、容器の底面側から順に、前記容器内に層状に配置し、前記容器の上方から前記鋳鉄溶湯を前記容器内に注入し、前記容器内で、前記鋳鉄溶湯に、前記粒状の黒鉛球状化剤、前記粉状のBi、および前記粒状のCuを接触させることにより、前記鋳鉄溶湯の炭素から球状黒鉛粒子を生成することを特徴とする。   In view of the said subject, the manufacturing method of the spheroidal graphite cast iron which concerns on this invention is such that Cu is added to a cast iron melt 2.2-2.7 mass%, Bi is added 0.005-0.05 mass%. A granular graphite spheroidizing agent, powdered Bi, and granular Cu are arranged in layers in the container in order from the bottom side of the container, and the cast iron melt is poured into the container from above the container, In the container, spherical graphite particles are generated from carbon of the cast iron melt by bringing the granular graphite spheroidizing agent, the powdered Bi, and the granular Cu into contact with the cast iron melt. And

本発明によれば、鋳鉄溶湯の炭素から微細な球状黒鉛粒子を生成することができる。   According to the present invention, fine spherical graphite particles can be generated from the carbon of the cast iron melt.

本発明の実施形態に係る球状黒鉛鋳鉄の製造方法を説明するための模式図。The schematic diagram for demonstrating the manufacturing method of the spheroidal graphite cast iron which concerns on embodiment of this invention. 図1に示す取鍋の模式的断面図。The typical sectional view of the ladle shown in FIG. (a)本実施形態に係る製造方法で、球状黒鉛粒子が生成されるメカニズムを説明するための模式図、(b)従来技術に係る方法で、球状黒鉛粒子が生成されるメカニズムを説明するための模式図。(A) Schematic diagram for explaining the mechanism by which spherical graphite particles are produced by the production method according to the present embodiment, (b) To explain the mechanism by which spherical graphite particles are produced by the method according to the prior art. FIG. (a)実施例1に係る球状黒鉛鋳鉄の組織写真、(b)比較例1に係る球状黒鉛鋳鉄の組織写真。(A) Structure photograph of spheroidal graphite cast iron according to Example 1, (b) Structure photograph of spheroidal graphite cast iron according to Comparative Example 1. 実施例1および比較例2、3に係る球状黒鉛鋳鉄の組織写真。The structure photograph of the spheroidal graphite cast iron according to Example 1 and Comparative Examples 2 and 3.

以下に、図面を参照して、本発明の実施形態について説明する。
本実施形態に係る球状黒鉛鋳鉄は、球状黒鉛鋳鉄品(JIS規格:FCD700)に、Cuが2.2〜2.7質量%、Biが0.005〜0.05質量%、さらに接種・添加されたものであり、以下の表1に示す成分の範囲を満たす。なお、表1に示す成分以外の残部は、鉄および不可避不純物からなる。本実施形態に係る球状黒鉛鋳鉄には、鉄基地に、従来(たとえばFCD700)に比べて微細な球状黒鉛粒子が数多く分散している。
Embodiments of the present invention will be described below with reference to the drawings.
The spheroidal graphite cast iron according to the present embodiment is a spheroidal graphite cast iron product (JIS standard: FCD700), Cu is 2.2 to 2.7 mass%, Bi is 0.005 to 0.05 mass%, and further inoculated and added Which satisfies the component ranges shown in Table 1 below. The balance other than the components shown in Table 1 is composed of iron and inevitable impurities. In the spheroidal graphite cast iron according to the present embodiment, many fine spheroidal graphite particles are dispersed in the iron base as compared with the conventional (for example, FCD700).

Figure 2016132783
Figure 2016132783

以下に、本実施形態に係る球状黒鉛鋳鉄の製造方法を説明する。図1は、本発明の実施形態に係る球状黒鉛鋳鉄の製造方法を説明するための模式図であり、図2は、図1に示す取鍋の模式的断面図である。   Below, the manufacturing method of the spheroidal graphite cast iron which concerns on this embodiment is demonstrated. FIG. 1 is a schematic view for explaining a method for producing spheroidal graphite cast iron according to an embodiment of the present invention, and FIG. 2 is a schematic cross-sectional view of the ladle shown in FIG.

まず、図1に示すように、表1に示す元素の含有量を超えない範囲で、溶解炉10内で鋳鉄溶湯Mの成分調整を行う。ここで成分調整された鋳鉄溶湯Mの各元素の含有量と、後述する取鍋20内に配置される粒状・粉状の材料の各添加元素の添加量と、を合わせた総量が、最終的に表1に示す含有量となるように、溶解炉10内で鋳鉄溶湯Mを成分調整する。なお、本実施形態では、鋳鉄溶湯Mの成分調整において、少なくとも、Mg,Biは添加していない。   First, as shown in FIG. 1, the components of the cast iron melt M are adjusted in the melting furnace 10 within a range not exceeding the content of elements shown in Table 1. The total amount of the elemental content of the cast iron melt M, the components of which are adjusted here, and the addition amount of each additive element of the granular / powder material placed in the ladle 20 to be described later is finally obtained. The components of the molten cast iron M are adjusted in the melting furnace 10 so that the contents shown in Table 1 are obtained. In the present embodiment, at the time of adjusting the components of the cast iron melt M, at least Mg and Bi are not added.

次に、溶解炉10から取鍋(容器)20への鋳鉄溶湯Mの注湯時に、以下に示すサンドイッチ法を用いて、鋳鉄溶湯MにCuが2.2〜2.7質量%、Biが0.005〜0.05質量%含有するように、鋳鉄溶湯Mに、Cu、Bi、黒鉛球状化剤(Fe−Si−Mg粉末)を接種・添加する。   Next, when pouring the molten cast iron M from the melting furnace 10 to the ladle (container) 20, Cu is 2.2 to 2.7 mass% and Bi is added to the molten cast iron M using the sandwich method shown below. Cu, Bi, and a graphite spheroidizing agent (Fe—Si—Mg powder) are inoculated and added to the cast iron melt M so as to contain 0.005 to 0.05 mass%.

ここで、本実施形態で用いる取鍋20には、注湯される鋳鉄溶湯Mを収容する収容部22が形成されており、収容部22の底部には、仕切り壁部22bを設けることにより、後述する粒状・粉状の材料を収容する収容凹部22aが形成されている。   Here, in the ladle 20 used in the present embodiment, an accommodating portion 22 that accommodates the cast iron melt M to be poured is formed, and by providing a partition wall portion 22b at the bottom of the accommodating portion 22, An accommodation recess 22a for accommodating a granular / powder-like material described later is formed.

本実施形態では、図1及び図2に示すように、取鍋20の収容凹部22aに、粒状の黒鉛球状化剤(Fe−Si−Mg)6と、粉状のBi(ビスマス)7と、粒状のCu(銅)8とを投入する。より具体的には、取鍋20の底面側から順に、粒状の黒鉛球状化剤6と、粉状のビスマス7と、粒状の銅8とを、収容凹部22a内に層状に配置する。ここで、粒状の銅8は、収容凹部22aに層状に配置された粒状の黒鉛球状化剤6および粉状のビスマス7を覆うように層状に配置される。   In this embodiment, as shown in FIG.1 and FIG.2, in the accommodation recessed part 22a of the ladle 20, granular graphite spheroidizing agent (Fe-Si-Mg) 6, powdered Bi (bismuth) 7, Granular Cu (copper) 8 is charged. More specifically, the granular graphite spheroidizing agent 6, the powdery bismuth 7, and the granular copper 8 are arranged in layers in the accommodating recess 22a in order from the bottom side of the ladle 20. Here, the granular copper 8 is disposed in layers so as to cover the granular graphite spheroidizing agent 6 and the powdered bismuth 7 disposed in layers in the accommodating recess 22a.

また、粒状の銅8の量の方が、粉状のビスマス7の量に比べて多く、粒状の銅8は、粉状のビスマス7のカバー剤としての機能を果たしている。ここで、本明細書でいう「粒状」とは、「粉状」に比べて粒径が大きい状態のことをいう。   Further, the amount of granular copper 8 is larger than the amount of powdered bismuth 7, and the granular copper 8 functions as a covering agent for powdered bismuth 7. Here, “granular” in the present specification means a state in which the particle size is larger than “powder”.

次に、成分調整された鋳鉄溶湯Mを溶解炉10から出湯し、取鍋20の上方から鋳鉄溶湯Mを取鍋20内に注入(注湯)する。これにより、鋳鉄溶湯Mは、粒状の銅8、粉状のビスマス7、および粒状の黒鉛球状化剤6の順に接触し、これらの粒状・粉状の材料からなる元素は、鋳鉄溶湯Mに含有する炭素と反応する(黒鉛の球状化処理反応)。これにより、鋳鉄溶湯M内に球状黒鉛粒子が生成される。このように、取鍋20の収容凹部22aは、粉末の元素と、鋳鉄溶湯Mの元素とが反応する反応室として機能する。   Next, the cast iron melt M whose components are adjusted is discharged from the melting furnace 10, and the cast iron melt M is poured into the ladle 20 from the top of the ladle 20 (pouring). Thereby, the cast iron molten metal M comes into contact with the granular copper 8, the powdered bismuth 7, and the granular graphite spheroidizing agent 6 in this order, and the elements made of these granular and powdered materials are contained in the cast iron molten metal M. It reacts with the carbon (graphite spheroidizing treatment reaction). Thereby, spherical graphite particles are generated in the cast iron melt M. Thus, the accommodation recess 22a of the ladle 20 functions as a reaction chamber in which the powder element and the element of the cast iron melt M react.

取鍋20内で鋳鉄溶湯Mに球状黒鉛粒子が生成された後、鋳鉄溶湯Mの表面に生成されたシリカ等の不要物(ノロ)を除去し、取鍋20から鋳鉄溶湯Mを出湯し、金枠40内に配置された鋳型50の注湯口51に鋳鉄溶湯Mを注湯する。その後、鋳型50内で鋳鉄溶湯Mを冷却する。これにより、鋳鉄溶湯Mが冷却された鋳鉄組織(鉄基地)内に球状黒鉛粒子を形成した球状黒鉛鋳鉄を得ることができる。   After spheroidal graphite particles are generated in the cast iron melt M in the ladle 20, unnecessary substances such as silica generated on the surface of the cast iron melt M are removed, and the cast iron melt M is discharged from the ladle 20. The cast iron melt M is poured into the pouring port 51 of the mold 50 arranged in the metal frame 40. Thereafter, the cast iron melt M is cooled in the mold 50. Thereby, the spheroidal graphite cast iron in which spheroidal graphite particles are formed in the cast iron structure (iron base) in which the molten cast iron M is cooled can be obtained.

ここで、上述した球状化処理反応を図3(a),(b)を参照しながら、詳細に説明する。図3(a)は、本実施形態に係る製造方法で、球状黒鉛粒子が生成されるメカニズムを説明するための模式図であり、図3(b)は、従来技術に係る方法で、球状黒鉛粒子が生成されるメカニズムを説明するための模式図である。   Here, the spheroidizing reaction described above will be described in detail with reference to FIGS. 3 (a) and 3 (b). FIG. 3A is a schematic diagram for explaining a mechanism by which spherical graphite particles are generated in the manufacturing method according to the present embodiment, and FIG. It is a schematic diagram for demonstrating the mechanism in which particle | grains are produced | generated.

従来の如く、BiおよびCuを添加せず、黒鉛球状化剤を用いて、球状黒鉛粒子を生成した場合には、図3(b)に示すように、球状黒鉛粒子に鉄基地内の炭素(C)が拡散し、球状黒鉛粒子が成長し、粗大な球状黒鉛粒子が生成されてしまうことがある。   In the case where spherical graphite particles are produced using a graphite spheroidizing agent without adding Bi and Cu as in the prior art, as shown in FIG. C) may diffuse, and spherical graphite particles may grow, producing coarse spherical graphite particles.

しかしながら、本実施形態では、鋳鉄溶湯Mに粉状のビスマス7のビスマス成分を添加することにより、鉄基地内に分散したビスマスを核として、球状黒鉛粒子が従来よりも数多く分散される。これにより、図3(b)に示す場合に比べて、鉄基地内の球状黒鉛粒子の個数を増やすことができる(図3(a)参照)。さらに、鋳鉄溶湯Mに粒状の銅8の銅成分を添加することにより、球状黒鉛粒子への炭素の拡散を抑制し、球状黒鉛粒子の粗大化を抑えることができる。これにより、従来に比べて、微細な球状黒鉛粒子を鋳鉄組織内に形成することができる。   However, in the present embodiment, by adding the powdered bismuth component of bismuth 7 to the molten cast iron M, more spherical graphite particles are dispersed than in the past with bismuth dispersed in the iron matrix as a core. Thereby, compared with the case shown in FIG.3 (b), the number of the spherical graphite particles in an iron base can be increased (refer Fig.3 (a)). Furthermore, by adding the copper component of the granular copper 8 to the cast iron melt M, the diffusion of carbon into the spherical graphite particles can be suppressed, and the coarsening of the spherical graphite particles can be suppressed. Thereby, compared with the past, fine spherical graphite particles can be formed in the cast iron structure.

特に、本実施形態では、粒状の銅8、粉状のビスマス7、および粒状の黒鉛球状化剤6の順に時間を空けることなく、これらの粉末に鋳鉄溶湯Mを接触させることができるので、このような効果をより一層発現することができると考えられる。   In particular, in this embodiment, the cast iron melt M can be brought into contact with these powders without leaving time in the order of the granular copper 8, the powdered bismuth 7, and the granular graphite spheroidizing agent 6. It is thought that such an effect can be expressed further.

ここで、鋳鉄溶湯Mに添加されるBiが0.005質量%未満である場合には、鉄基地内における、ビスマスによる黒鉛粒子の分散効果を十分に期待することができず、添加されるBiが0.05質量%を超えた場合には、黒鉛粒子の粒状化の阻害や鋳鉄製品への原価増加が懸念される。   Here, when Bi added to the cast iron melt M is less than 0.005% by mass, the effect of dispersing graphite particles by bismuth in the iron base cannot be sufficiently expected, and Bi added. If it exceeds 0.05 mass%, there is a concern that the granulation of graphite particles may be hindered and the cost of cast iron products may increase.

一方、鋳鉄溶湯Mに添加されるCuが2.2質量%未満である場合には、銅による黒鉛粒子の微細化が阻害され、鋳鉄溶湯Mに添加されるCuが2.7質量%を超えた場合には、黒鉛粒子の球状化が阻害される。   On the other hand, when the Cu added to the cast iron melt M is less than 2.2% by mass, the refinement of the graphite particles by copper is inhibited, and the Cu added to the cast iron melt M exceeds 2.7% by mass. In this case, the spheroidization of the graphite particles is inhibited.

以下に本発明を実施例により説明する。
<実施例1>
図1に示す方法で、表1に示す含有量の範囲の元素が添加された球状黒鉛鋳鉄を製造した。まず、表2に示す成分の球状黒鉛鋳鉄(JIS規格:FCD700)を準備し、これを溶解炉内で1510℃の温度まで加熱して溶融して、鋳鉄溶湯Mを作製した。
Hereinafter, the present invention will be described by way of examples.
<Example 1>
Spheroidal graphite cast iron added with elements in the content range shown in Table 1 was manufactured by the method shown in FIG. First, spheroidal graphite cast iron (JIS standard: FCD700) having the components shown in Table 2 was prepared, and this was heated and melted to a temperature of 1510 ° C. in a melting furnace to prepare a cast iron melt M.

Figure 2016132783
Figure 2016132783

次に、表2の成分に、最終的にCuが2.5質量%、Biが0.03質量%含有するように、粒状の黒鉛球状化剤(Fe−Si−Mg)、粉状のBi、および粒状のCuを、取鍋の底面側から順に、取鍋内に層状に配置した。なお、表2に示すように、溶解炉において銅が添加されていてもよい。次に、溶解炉から鋳鉄溶湯Mを取鍋に注入し、鋳鉄溶湯Mに、粒状の黒鉛球状化剤、粉状のBi、粒状のCuを接触させて、球状化処理反応により、鋳鉄溶湯内に球状黒鉛粒子を生成した。球状黒鉛粒子が生成された鋳鉄溶湯Mを鋳型内に注湯した後、これを冷却し、鋳鉄組織内に球状黒鉛粒子が形成された球状黒鉛鋳鉄を製造した。   Next, granular graphite spheroidizing agent (Fe-Si-Mg), powdered Bi so that the components of Table 2 contain 2.5 mass% Cu and 0.03 mass% Bi finally. And granular Cu was arrange | positioned in the ladle in order from the bottom face side of the ladle. In addition, as shown in Table 2, copper may be added in the melting furnace. Next, the cast iron melt M is poured into the ladle from the melting furnace, and the cast iron melt M is brought into contact with the granular graphite spheroidizing agent, powdered Bi, and granular Cu, and the spheroidizing treatment reaction is carried out. Spherical graphite particles were produced. The cast iron melt M in which spheroidal graphite particles were generated was poured into a mold, and then cooled, to produce spheroidal graphite cast iron in which spheroidal graphite particles were formed in the cast iron structure.

<比較例1>
実施例1と同じように、球状黒鉛鋳鉄を製造した。実施例1と相違する点は、粉状のBi、および粒状のCuを取鍋内に配置せず(すなわち鋳鉄溶湯MにBi、Cuを添加せず)、粒状の黒鉛球状化剤(Fe−Si−Mg粉末)のみで、球状化処理反応により、鋳鉄溶湯M内に球状黒鉛粒子を生成した点である。
<Comparative Example 1>
As in Example 1, nodular graphite cast iron was produced. The difference from Example 1 is that powdered Bi and granular Cu are not placed in the pan (that is, Bi and Cu are not added to the cast iron melt M), and a granular graphite spheroidizing agent (Fe- Spherical graphite particles were produced in the cast iron melt M by the spheroidizing treatment reaction using only the Si-Mg powder.

<比較例2>
実施例1と同じように、球状黒鉛鋳鉄を製造した。実施例1と相違する点は、鋳鉄溶湯に添加されるCuが2.0質量%となるように、取鍋に配置する粒状のCuを減量した点である。
<Comparative example 2>
As in Example 1, nodular graphite cast iron was produced. The difference from Example 1 is that the amount of granular Cu placed in the ladle is reduced so that the Cu added to the cast iron melt is 2.0 mass%.

<比較例3>
実施例1と同じように、球状黒鉛鋳鉄を製造した。実施例1と相違する点は、鋳鉄溶湯に添加されるCuが3.0質量%となるように、取鍋に配置する粒状のCuを増量した点である。
<Comparative Example 3>
As in Example 1, nodular graphite cast iron was produced. The difference from Example 1 is that the amount of granular Cu placed in the ladle is increased so that the Cu added to the cast iron melt is 3.0 mass%.

(顕微鏡観察)
実施例1、および比較例1〜3に係る球状黒鉛鋳鉄の組織写真を、光学顕微鏡で400倍に拡大して観察した。この結果を、図4、図5に示す。図4(a)は、実施例1に係る球状黒鉛鋳鉄の組織写真、図4(b)は、比較例1に係る球状黒鉛鋳鉄の組織写真である。図5は、実施例1および比較例2、3に係る球状黒鉛鋳鉄の組織写真である。
(Microscopic observation)
The structure photograph of the spheroidal graphite cast iron according to Example 1 and Comparative Examples 1 to 3 was magnified 400 times with an optical microscope and observed. The results are shown in FIGS. 4A is a structural photograph of the spheroidal graphite cast iron according to Example 1, and FIG. 4B is a structural photograph of the spheroidal graphite cast iron according to Comparative Example 1. FIG. 5 is a structure photograph of the spheroidal graphite cast iron according to Example 1 and Comparative Examples 2 and 3.

(結果)
図4(a),(b)に示すように、実施例1の球状黒鉛鋳鉄は、比較例1の球状黒鉛鋳鉄に比べて、球状黒鉛粒子の粒径は小さく、球状黒鉛粒子の個数は多かった。具体的には、同じ面積内において、実施例1の球状黒鉛粒子の平均粒径は12μmであり、比較例1の球状黒鉛粒子の平均粒径は24μmであった。さらに、実施例1の球状黒鉛粒子の個数は708個であり、比較例1の球状黒鉛粒子の個数は175個であった。すなわち、実施例1の如く、特定の量のCuおよびBiを添加することにより、球状黒鉛粒子の平均粒径は、50%程度まで減少し(微細化され)、この微細化した球状黒鉛粒子の個数は、4倍程度に上昇すると考えられる。
(result)
As shown in FIGS. 4 (a) and 4 (b), the spheroidal graphite cast iron of Example 1 has a smaller particle diameter of the spheroidal graphite particles and a larger number of spheroidal graphite particles than the spheroidal graphite cast iron of Comparative Example 1. It was. Specifically, within the same area, the average particle size of the spherical graphite particles of Example 1 was 12 μm, and the average particle size of the spherical graphite particles of Comparative Example 1 was 24 μm. Further, the number of spherical graphite particles in Example 1 was 708, and the number of spherical graphite particles in Comparative Example 1 was 175. That is, as in Example 1, by adding specific amounts of Cu and Bi, the average particle size of the spherical graphite particles is reduced to about 50% (reduced), and the refined spherical graphite particles The number is considered to increase about four times.

さらに、図5に示すように、比較例2に係る球状黒鉛鋳鉄の球状黒鉛粒子は、実施例1のものに比べて粗大となった。これは、比較例2では実施例1に比べてCuの添加量が少ないからであると考えられる。このことから、Cuの添加量が2.2質量%以上であれば、黒鉛粒子の微細化は阻害されないと推定される。   Furthermore, as shown in FIG. 5, the spheroidal graphite particles of the spheroidal graphite cast iron according to Comparative Example 2 were coarser than those of Example 1. This is probably because the amount of Cu added in Comparative Example 2 is smaller than that in Example 1. From this, it is presumed that if the amount of Cu added is 2.2% by mass or more, the refinement of the graphite particles is not hindered.

一方、図5に示すように、比較例3に係る球状黒鉛鋳鉄の黒鉛粒子の球状化は、阻害されていた。これは、比較例2では実施例1に比べてCuの添加量が多いからであると考えらえる。このことから、Cuの添加量が2.7質量%以下であれば、黒鉛粒子の球状化が阻害されないと推定される。   On the other hand, as shown in FIG. 5, the spheroidization of the graphite particles of the spheroidal graphite cast iron according to Comparative Example 3 was inhibited. This is considered to be because the amount of Cu added in Comparative Example 2 is larger than that in Example 1. From this, it is presumed that if the amount of Cu added is 2.7% by mass or less, the spheroidization of the graphite particles is not inhibited.

以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、明細書並びに特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。   As mentioned above, although embodiment of this invention was explained in full detail, this invention is not limited to the said embodiment, In the range which does not deviate from the mind of this invention described in the specification and the claim, Various design changes can be made.

6:粒状の黒鉛球状化剤、7:粉状のBi粉末、8:粒状のCu、10:溶解炉、20:取鍋、22:収容部、22a:収容凹部、22b:仕切り壁、40:金枠、50:鋳型、51;注湯口 6: granular graphite spheroidizing agent, 7: powdered Bi powder, 8: granular Cu, 10: melting furnace, 20: ladle, 22: storage part, 22a: storage recess, 22b: partition wall, 40: Gold frame, 50: mold, 51; pouring gate

Claims (1)

鋳鉄溶湯にCuが2.2〜2.7質量%、Biが0.005〜0.05質量%添加されるように、粒状の黒鉛球状化剤、粉状のBi、および粒状のCuを、容器の底面側から順に、前記容器内に層状に配置し、
前記容器の上方から前記鋳鉄溶湯を前記容器内に注入し、前記容器内で、前記鋳鉄溶湯に、前記粒状の黒鉛球状化剤、前記粉状のBi、および前記粒状のCuを接触させることにより、前記鋳鉄溶湯の炭素から球状黒鉛粒子を生成すること特徴とする球状黒鉛鋳鉄の製造方法。
A granular graphite spheroidizing agent, powdered Bi, and granular Cu are added so that Cu is added to the cast iron melt in an amount of 2.2 to 2.7% by mass and Bi is added in an amount of 0.005 to 0.05% by mass. In order from the bottom side of the container, arrange in layers in the container,
The molten cast iron is poured into the container from above the container, and the granular graphite spheroidizing agent, the powdered Bi, and the granular Cu are brought into contact with the molten cast iron in the container. A method for producing spheroidal graphite cast iron, comprising producing spheroidal graphite particles from carbon of the molten cast iron.
JP2015006210A 2015-01-15 2015-01-15 Manufacturing method of spheroidal graphite cast iron Pending JP2016132783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015006210A JP2016132783A (en) 2015-01-15 2015-01-15 Manufacturing method of spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015006210A JP2016132783A (en) 2015-01-15 2015-01-15 Manufacturing method of spheroidal graphite cast iron

Publications (1)

Publication Number Publication Date
JP2016132783A true JP2016132783A (en) 2016-07-25

Family

ID=56425863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015006210A Pending JP2016132783A (en) 2015-01-15 2015-01-15 Manufacturing method of spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP2016132783A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149129A (en) * 2008-12-24 2010-07-08 Jfe Pipe Fitting Mfg Co Ltd Holder for die-casting die, and method for producing the same
JP2012036423A (en) * 2010-08-04 2012-02-23 Jfe Steel Corp Bi INOCULANT FOR SPHEROIDAL GRAPHITE CAST IRON AND METHOD FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON USING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010149129A (en) * 2008-12-24 2010-07-08 Jfe Pipe Fitting Mfg Co Ltd Holder for die-casting die, and method for producing the same
JP2012036423A (en) * 2010-08-04 2012-02-23 Jfe Steel Corp Bi INOCULANT FOR SPHEROIDAL GRAPHITE CAST IRON AND METHOD FOR MANUFACTURING SPHEROIDAL GRAPHITE CAST IRON USING THE SAME

Similar Documents

Publication Publication Date Title
US10710156B2 (en) Process for additive manufacturing of parts by melting or sintering particles of powder(s) using a high-energy beam with powders adapted to the targeted process/material pair
US20160273075A1 (en) Aluminium alloy refiner and preparation method and application thereof
JP2019527765A (en) Cast iron inoculum and method for producing cast iron inoculum
CN100519803C (en) Nano TiO2 oxide containing ferroalloy intermediate and preparation method and uses thereof
WO2014157089A1 (en) Copper alloy powder, sintered copper alloy body and brake lining for use in high-speed railway
KR20120129719A (en) Manufacturing method of alloys and alloys fabricated by the same
KR20140005746A (en) Cover material covering nodularizer in graphite spheroidizing of cast iron
CN110904363B (en) Preparation method of ABX alloy
SE459339B (en) REFINING MATERIAL FOR METAL AND PROCEDURES FOR ITS PREPARATION
CN101368237B (en) Process for producing silicon particle reinforced zinc based composite material
RU2567779C1 (en) Method of producing of modified aluminium alloys
JPH044362B2 (en)
KR20100010181A (en) Metal matrix composite with atom-infiltrated porous-materials/nano-fibers and the casting method thereof
US9358607B2 (en) Method for manufacturing boron-containing aluminum plate material
JP2016132783A (en) Manufacturing method of spheroidal graphite cast iron
CN102978425B (en) Zinc-aluminum-zirconium intermediate alloy and preparation method and application thereof
JP4121733B2 (en) Method for producing graphite-containing aluminum alloy and sliding member
CN101787467A (en) Anti-friction and wear-resistant zinc-aluminum-based alloy material and preparation method
JP4889379B2 (en) Method for producing titanium alloy
JP2014025109A (en) Mixed powder for powder metallurgy
CN109475932B (en) Grain refiner for magnesium alloy, preparation method thereof and grain refining method for magnesium alloy
US2261196A (en) Process for making metal powder
JP6926844B2 (en) Raw material for thixomolding, manufacturing method of raw material for thixomolding and molded product
JP4127825B2 (en) Grain refinement method for magnesium alloy castings
CN110885935B (en) Casting method suitable for Mg-Al alloy grain refinement

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180703