JP4693853B2 - As-cast high-strength spheroidal graphite cast iron and method for producing the same - Google Patents

As-cast high-strength spheroidal graphite cast iron and method for producing the same Download PDF

Info

Publication number
JP4693853B2
JP4693853B2 JP2008043477A JP2008043477A JP4693853B2 JP 4693853 B2 JP4693853 B2 JP 4693853B2 JP 2008043477 A JP2008043477 A JP 2008043477A JP 2008043477 A JP2008043477 A JP 2008043477A JP 4693853 B2 JP4693853 B2 JP 4693853B2
Authority
JP
Japan
Prior art keywords
graphite
cast iron
cast
spheroidal graphite
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008043477A
Other languages
Japanese (ja)
Other versions
JP2009197311A (en
Inventor
俊幸 三吉
英登 高杉
純一 福味
安次 松川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Pipe Fitting Mfg Co Ltd
Original Assignee
JFE Pipe Fitting Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Pipe Fitting Mfg Co Ltd filed Critical JFE Pipe Fitting Mfg Co Ltd
Priority to JP2008043477A priority Critical patent/JP4693853B2/en
Publication of JP2009197311A publication Critical patent/JP2009197311A/en
Application granted granted Critical
Publication of JP4693853B2 publication Critical patent/JP4693853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

本発明は、強靭性及び被削性に優れた鋳放し高強度球状黒鉛鋳鉄およびその製造方法に関するものである。   The present invention relates to an as-cast high-strength spheroidal graphite cast iron excellent in toughness and machinability and a method for producing the same.

球状黒鉛鋳鉄は、優れた強度を有するので、自動車部品や機械部品、土木部品等種々の用途に広く使用されている。特に、オーステンパ処理に基づく基地組織のベイナイト化による強靱化された球状黒鉛鋳鉄の出現により、従来では得られなかった高強度化が可能となり、良好な鋳造性と複雑な形状に対応できる球状黒鉛鋳鉄が鍛鋼や鋳鋼の代替材料として使用されるに至っている。   Since spheroidal graphite cast iron has excellent strength, it is widely used in various applications such as automobile parts, machine parts, and civil engineering parts. In particular, the advent of tough spheroidal graphite cast iron due to the bainite of the base structure based on austempering treatment makes it possible to increase the strength not previously obtained, and spheroidal graphite cast iron that can cope with good castability and complex shapes Has been used as an alternative material for forged steel and cast steel.

又、鋳放しによる高強度球状黒鉛鋳鉄は、現状では、引張り強さ800MPa/mm以上、伸び2%以上を得るのは困難とされている。 In addition, it is difficult to obtain high strength spheroidal graphite cast iron by as-casting at present with a tensile strength of 800 MPa / mm 2 or more and an elongation of 2% or more.

そこで、より高強度を得るための手段として、Mo、Ni、V等を添加することが行われている。焼入れ性に関しては、鋳放し状態で表面焼入れを行う場合、高周波焼入れがあるが、球状黒鉛鋳鉄では硬化層が通常2mm前後である。Cuは、基地のパーライトの安定化成分で、その量が増すに従い、引張強度は増大するが、Cuは黒鉛の球状化阻害元素であり、2%以上になると阻害作用が強くなり、又、チル化傾向も増大すると言われる。(特開昭61−55577号公報)   Therefore, addition of Mo, Ni, V or the like is performed as a means for obtaining higher strength. Regarding hardenability, when performing surface quenching in an as-cast state, there is induction hardening, but in spheroidal graphite cast iron, the hardened layer is usually around 2 mm. Cu is a stabilizing component of base pearlite, and the tensile strength increases as the amount increases. However, Cu is a spheroidizing inhibitory element of graphite, and when it exceeds 2%, the inhibitory action becomes strong. It is said that the tendency to change will also increase. (Japanese Patent Laid-Open No. 61-55577)

そのため、Cu2%以上の添加は、通常考えられていない。又、Biを添加することで球状黒鉛の微細分散化を図り、強靭性及び耐肌荒性を改善したダクタイル鋳鉄材が特開平6−116677号公報及び特開平9−87787号公報に記載されている。   Therefore, addition of Cu 2% or more is not usually considered. In addition, ductile cast iron materials that have improved the toughness and skin resistance by adding fine Bi to spherical graphite and adding Bi are disclosed in JP-A-6-116767 and JP-A-9-87787. Yes.

しかしながら、これらの場合、球状黒鉛の微細分散化による黒鉛組織の改善は記載されているものの、Ni、Cr、Moとの共存により初めて達成されるものであり、又、特開平9−87787号において、Cu:1%〜4%、Bi:0.0005%〜0.05%の記載はあるが、これも同様にNi、Crとの共存により達成できるものであり、夫々Bi単独での改善方法には触れられていない。   However, in these cases, although the improvement of the graphite structure by the fine dispersion of the spherical graphite is described, it is achieved for the first time by coexistence with Ni, Cr, Mo, and in JP-A-9-87787. , Cu: 1% to 4%, Bi: 0.0005% to 0.05%, but this can also be achieved by coexistence with Ni and Cr. Is not touched.

マトリックス組織の改善については、Cuが0.1%よりフェライト析出抑制効果があり、3%を越えるとフェライト量(面積率)は0%、つまりマトリックスが全てパーライトになるとの記載があるだけであり、Cuが入ればマトリックスは良くなるとの考えであり、Cuに全てを負うとしている。   Regarding the improvement of the matrix structure, there is a description that Cu has a ferrite precipitation suppressing effect from 0.1%, and if it exceeds 3%, the ferrite amount (area ratio) is 0%, that is, the matrix is all pearlite. It is thought that the matrix will be improved if Cu is added, and it is assumed that Cu is fully charged.

特開昭61−55577号公報JP-A 61-55577 特開平6−116677号公報JP-A-6-116667 特開平9−87787号公報JP-A-9-87787

然るに、オーステンパ球状黒鉛鋳鉄は、高強度を得るために熱処理工程が加わるため、コストの上昇、ベイナイト組織に起因する被削性や加工工程の複雑化等の問題があり、広く普及には至っていない。   However, austempered spheroidal graphite cast iron has a heat treatment step to obtain high strength, and thus has problems such as cost increase, machinability due to bainite structure and complication of processing steps, and has not been widely spread. .

又、鋳放しによる高強度球状黒鉛鋳鉄は、Mo、Ni、V等の添加のために折角の鋳放しによる経済的な効果が相殺されてしまっている。又、元来、Cr、Mo等は鋳放しフェライト化の阻害元素である。
又、Cuのみによるマトリックス組織の改善には限界があること当然で、これで解決出来ない点が多い故に、多種の元素の組合せが提案されているのである。
In addition, the high-strength spheroidal graphite cast iron produced by as-casting has been offset by the addition of Mo, Ni, V, and the like, so that the economic effects of the as-casted cast-off are offset. In addition, Cr, Mo and the like are originally elements that inhibit as-cast ferrite.
In addition, there is a limit to the improvement of the matrix structure by using only Cu, and since there are many points that cannot be solved by this, combinations of various elements have been proposed.

これに対し、本願発明者は、既にCu:2.4%〜3.3%、Sn:0.01%〜0.05%含有の球状黒鉛鋳鉄を提案し、(特許第3723706号)効果を挙げている。
しかし、該球状黒鉛鋳鉄において、引張強さ900MPa以上を実現するためには、Alの添加が必要であった。
In contrast, the inventor of the present application has already proposed a spheroidal graphite cast iron containing Cu: 2.4% to 3.3% and Sn: 0.01% to 0.05% (Patent No. 3723706). Cite.
However, in order to achieve a tensile strength of 900 MPa or more in the spheroidal graphite cast iron, it is necessary to add Al.

しかし、各種歯車、動力伝達機構の構成部品等実用範囲の拡大に伴い、更なる高強度、被削性の性能アップが求められている。   However, with the expansion of the practical range such as various gears and components of the power transmission mechanism, there is a demand for higher strength and machinability.

本発明は、上記の背景技術の問題点を解決し、鋳放しでベイナイトやセメンタイトのない被削性の良好な緻密な組織からなり、Alの添加なしでも、引張強さ900MPa以上の高強度と、4%以上の良好な伸びを有し、優れた被削性を有し、鍛鋼や鋳鋼、オーステンパ球状黒鉛鋳鉄の代替化、部品としての寿命や軽量化に寄与できる鋳放し高強度球状黒鉛鋳鉄を得ることを目的とするものである。   The present invention solves the above-mentioned problems of the background art, consists of a fine structure with good machinability without bainite and cementite as cast, and has a high strength with a tensile strength of 900 MPa or more without the addition of Al. As-cast high-strength spheroidal graphite cast iron that has excellent elongation of 4% or more, has excellent machinability, can replace forged steel, cast steel, and austempered spheroidal graphite cast iron, and can contribute to life and weight reduction of parts The purpose is to obtain.

そこで、本発明は、上記目的を達成するため、Cu、Sn、Biを合金とすることにより、緻密な組織が生成され、鋳放しで高強度と良好な伸び、優れた被削性が経済的に得られるようにしたものであって、重量%で、C:3.0%〜4.0%、Si:2.0%〜3.0%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02%〜0.06%、Cu:1.8%〜4.0%、Sn:0.01%〜0.05%、Bi:0.0005%〜0.01%を含有し、残部Fe及び不可避的不純物から成ることを特徴とする鋳放し高強度球状黒鉛鋳鉄である。   Therefore, in order to achieve the above object, the present invention uses Cu, Sn, and Bi as an alloy to produce a dense structure, and as cast, high strength and good elongation, and excellent machinability are economical. In which, by weight, C: 3.0% to 4.0%, Si: 2.0% to 3.0%, Mn: 0.6% or less, P: 0 0.03% or less, S: 0.03% or less, Mg: 0.02% to 0.06%, Cu: 1.8% to 4.0%, Sn: 0.01% to 0.05%, Bi : An as-cast high-strength spheroidal graphite cast iron containing 0.0005% to 0.01% and comprising the balance Fe and inevitable impurities.

又、黒鉛周囲に近接して、CuとSnの濃化層を析出形成したことを特徴とする鋳放し高強度球状黒鉛鋳鉄である。   Further, it is an as-cast high-strength spheroidal graphite cast iron characterized in that a concentrated layer of Cu and Sn is deposited in the vicinity of the graphite periphery.

又、球状化率80%〜100%、黒鉛平均粒径20μm〜40μm、黒鉛粒数個200個/mm〜300個/mm、ブリネル硬さがH260〜320であって、パーライト基地組織を有することを特徴とする鋳放し高強度球状黒鉛鋳鉄である。 Further, the spheroidization rate is 80% to 100%, the average particle diameter of graphite is 20 μm to 40 μm, the number of graphite particles is 200 / mm 2 to 300 / mm 2 , the Brinell hardness is H B 260 to 320, An as-cast high-strength spheroidal graphite cast iron characterized by having a structure.

又、重量%で、C:3.0%〜4.0%、Si:2.0%〜3.0%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02%〜0.06%、Cu:1.8%〜4.0%、Sn:0.01%〜0.05%、Bi:0.0005%〜0.01%を含有し、残部Fe及び不可避的不純物から成り、黒鉛周囲に近接して、CuとSnの濃化層を析出形成させることを特徴とする鋳放し高強度球状黒鉛鋳鉄の製造方法である。   Further, by weight, C: 3.0% to 4.0%, Si: 2.0% to 3.0%, Mn: 0.6% or less, P: 0.03% or less, S: 0.0. 03% or less, Mg: 0.02% to 0.06%, Cu: 1.8% to 4.0%, Sn: 0.01% to 0.05%, Bi: 0.0005% to 0.01 %, A balance Fe and inevitable impurities, and a concentrated layer of Cu and Sn is deposited in the vicinity of the periphery of the graphite to form an as-cast high-strength spheroidal graphite cast iron.

又、黒鉛周囲に近接して、CuとSnの濃化層を析出させ、該濃化層のCu、Snにより、炭素原子の黒鉛粒への析出を阻害し、パーライトの分解を抑制することを特徴とする鋳放し高強度球状黒鉛鋳鉄の製造方法である。   In addition, a concentrated layer of Cu and Sn is deposited in the vicinity of graphite, and the deposition of carbon atoms on the graphite grains is inhibited by Cu and Sn of the concentrated layer, thereby suppressing the decomposition of pearlite. This is a method for producing as-cast high-strength spheroidal graphite cast iron.

又、Fe―Siをインモールド法により二次接種することを特徴とする鋳放し高強度球状黒鉛鋳鉄の製造方法である。   Further, the present invention is a method for producing as-cast high-strength spheroidal graphite cast iron, characterized in that Fe—Si is secondly inoculated by an in-mold method.

本発明の請求項1によれば、重量%で、C:3.0%〜4.0%、Si:2.0%〜3.0%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02%〜0.06%以下、Cu:1.8%〜4.0%、Sn:0.01%〜0.05%、Bi:0.0005%〜0.01%を含有し、残部Fe及び不可避的不純物から成るもので、鋳放し状態では、従来にはない高強度、良好な伸び、セメンタイトやベイナイトのない緻密な組成ならではの優れた被削性を有する球状黒鉛鋳鉄を提供することが出来る。   According to the first aspect of the present invention, by weight, C: 3.0% to 4.0%, Si: 2.0% to 3.0%, Mn: 0.6% or less, P: 0.00%. 03% or less, S: 0.03% or less, Mg: 0.02% to 0.06% or less, Cu: 1.8% to 4.0%, Sn: 0.01% to 0.05%, Bi : Containing 0.0005% to 0.01%, consisting of the balance Fe and unavoidable impurities. In the as-cast state, it has high strength, good elongation, and a dense composition free of cementite and bainite. Nodular cast iron having excellent machinability can be provided.

このため、黒鉛組織は、粒数は多く、且つ粒計は小さく形成され、黒鉛化の促進により、延性、靭性の優れた球状黒鉛鋳鉄が得られた。それと共に、チル化組織の発生が抑制される効果を生む。
従って、極めて高強度、優れた伸びにより、機械的性質の優れた球状黒鉛鋳鉄を提供できる。
For this reason, the graphite structure had a large number of grains and a small granule meter, and the spheroidal graphite cast iron having excellent ductility and toughness was obtained by promoting graphitization. At the same time, it produces an effect of suppressing the generation of chilled tissue.
Accordingly, it is possible to provide spheroidal graphite cast iron having excellent mechanical properties due to extremely high strength and excellent elongation.

本発明の請求項2、3、5、6によれば、黒鉛周囲に近接してCuとSnの濃化層を薄層状に析出形成したので、これにより球状黒鉛の過大な成長を阻止し、且つ球状黒鉛の変形を防止する効果を挙げることが出来た。   According to Claims 2, 3, 5, and 6 of the present invention, the concentrated layer of Cu and Sn is formed in a thin layer in the vicinity of the periphery of the graphite, thereby preventing excessive growth of the spherical graphite, In addition, the effect of preventing the deformation of the spherical graphite could be obtained.

CuとSnの共存による黒鉛周辺のCuとSnの濃化層の形成に加えて、Biの添加によるBi自身の有する気泡中に晶出する多大な黒鉛粒の生成と、黒鉛粒の成長による他の黒鉛の生成の抑制作用とが相俟って、黒鉛数の増大とその生成の抑制による黒鉛粒の小径化を齎すことなどにより、球状黒鉛鋳鉄において最も重要な黒鉛化に大きな役割を果たしている。   In addition to the formation of a concentrated layer of Cu and Sn around graphite due to the coexistence of Cu and Sn, the addition of Bi generates a large number of graphite grains that crystallize in the bubbles of Bi itself, and the growth of graphite grains. Combined with the suppressive action of graphite formation, it plays a major role in the most important graphitization in spheroidal graphite cast iron by, for example, increasing the number of graphite and reducing the size of the graphite grains by suppressing the formation of graphite. .

鋳放しによる省エネルギー性に加え、靭性を高めるためにセメンタイトがないことが望ましい。前記のCrはセメンタイトの発生を促進するので、その添加を止め、合金元素の主軸にCuを用いることで、更にMo、Ni、V等の添加剤を使用しないことにより、製造工程は省略され、製造が容易であり、製造原価の低減化に高い効果を齎す。又、質量効果が大幅に改善されるため、鋳物とした場合の実用性に優れ、環境保全をも考慮した工業的価値は非常に高い。
又、得られる球状黒鉛鋳鉄は、引張強さ900MPa以上の高強度と、4%以上の伸びがある製品が提供できる。
In addition to energy saving by as-casting, it is desirable that there is no cementite to increase toughness. Since the above-mentioned Cr promotes the generation of cementite, its addition is stopped, Cu is used for the main axis of the alloy element, and further, the use of additives such as Mo, Ni, V, etc., and the manufacturing process is omitted, Easy to manufacture and highly effective in reducing manufacturing costs. In addition, since the mass effect is greatly improved, it is excellent in practicality in the case of casting, and the industrial value considering environmental conservation is very high.
Moreover, the obtained spheroidal graphite cast iron can provide a product having a high strength with a tensile strength of 900 MPa or more and an elongation of 4% or more.

更に、請求項7によれば、Fe―Siをインモールド法により二次接種することで、上記の本発明の高強度を得る方法が容易に達成し得る効果がある。   Furthermore, according to claim 7, there is an effect that the above-described method for obtaining the high strength of the present invention can be easily achieved by secondary inoculation of Fe—Si by the in-mold method.

以下、本発明について説明する。Cu、Bi、Snの作用は本発明の鋳鉄の大きな特徴であるため、詳細に記す。
Cuは、オーステナイトを安定化し、オーステナイト―パーライト変態が低温で起き、基地パーライト面積率を増加させる作用を有し、質量効果を軽減させる。リサイクル材として発生量も多いため、過去に多くの試みがなされてきた。
The present invention will be described below. Since the action of Cu, Bi, and Sn is a major feature of the cast iron of the present invention, it will be described in detail.
Cu stabilizes austenite, austenite-pearlite transformation occurs at a low temperature, has an action of increasing the base pearlite area ratio, and reduces the mass effect. Many attempts have been made in the past due to the large amount of recycled material generated.

しかし、その臨界量は研究者により異なり、1.5%、1.9%、2.2%とも言われている。そして、それを超えての使用は、オーステナイト粒界に偏析し、不規則形黒鉛を晶出して球状化を阻害すると言われている。加えて、2%以上の添加は、チル化傾向も増大すると指摘されている。   However, the critical amount varies depending on the researcher and is said to be 1.5%, 1.9%, and 2.2%. And use beyond that is said to segregate at austenite grain boundaries and crystallize irregular graphite to inhibit spheroidization. In addition, it has been pointed out that the addition of 2% or more also increases the chilling tendency.

指摘されている事項の確認のため、次なる実験を行った。2,000kg要領の低周波誘導炉を用い、鋼屑及び戻し材を使用してFCD450相当の溶湯とし、これにCuを1.3%〜2.8%と変化させて添加した後、市販のFe―Si―Mg―Ca―REM合金添加のサンドウィッチ法による黒鉛球状化処理を実施し、注湯取鍋移し換え時に接種、CO鋳型のJIS G5502 Y型B号(25t×215l)に鋳込んだ。
実験は、成分毎に2回実施した。その結果、Cu:1.5%で不規則形黒鉛は確認できず、2.3%、2.6%、2.8%で球状黒鉛の回りにいくつかの凝集状黒鉛が出来た。
The following experiment was conducted to confirm the pointed out matters. Using a low-frequency induction furnace with a weight of 2,000 kg, using steel scrap and return material to make a molten metal equivalent to FCD450, adding Cu to 1.3% to 2.8%, and then adding commercially available Fe-Si-Mg-Ca-REM alloy added sandwich spheroidizing process by sandwich method, inoculated at the time of transferring hot water ladle, cast into CO 2 mold JIS G5502 Y type B (25t × 215l) It is.
The experiment was performed twice for each component. As a result, irregular graphite was not confirmed at Cu: 1.5%, and some aggregated graphite was formed around the spherical graphite at 2.3%, 2.6%, and 2.8%.

球状化の阻害は、Cu:1.8%〜2.3%で開始されることが予想されるが、注目すべきはCu:2.0%〜2.6%の範囲は僅かながらも引張り強さが向上し、加えて伸びの低下が急激ではないことである。引張り強さが上昇するのは、基地がより緻密に強化され、球形阻害より優位になるためであり、伸びが低下するのは、球形阻害が僅かながらも増えるからである。
しかし、Cu:2.6%を超えると球形阻害が優位となる。しかも、この含有量の範囲でセメンタイトの発生は皆無であった。
Inhibition of spheronization is expected to start with Cu: 1.8% to 2.3%, but it should be noted that the range of Cu: 2.0% to 2.6% is a little bit tensile. Strength is improved, and in addition, the decrease in elongation is not abrupt. The tensile strength increases because the base is strengthened more densely and becomes superior to spherical inhibition, and the elongation decreases because the spherical inhibition increases slightly.
However, when Cu exceeds 2.6%, spherical inhibition becomes dominant. Moreover, there was no generation of cementite within this content range.

この2.8%の試験溶湯に微量のSn:0.02%を添加したところ、黒鉛形状、基地組織が改善され、引張り強さと伸びが大幅に向上することを発見した。Snは、Cuと同様の効果を持つが、Cuとの相乗効果でオーステナイト―パーライト変態をより低温側に移動させ、黒鉛粒をより微細にすると共に、適量の添加により不規則形黒鉛の晶出を防止し、黒鉛形状を改善し、伸びを増加させるものである。又、基地組織をより緻密にするため高強度となる。   It was discovered that when a small amount of Sn: 0.02% was added to this 2.8% test molten metal, the graphite shape and matrix structure were improved, and the tensile strength and elongation were greatly improved. Sn has the same effect as Cu, but it moves the austenite-pearlite transformation to a lower temperature side by synergistic effect with Cu, makes the graphite grains finer, and crystallizes irregular graphite by adding an appropriate amount. Is to improve the graphite shape and increase the elongation. Moreover, it becomes high strength in order to make the base organization more precise.

次に、本発明の鋳鉄の化学組成を前記の如く限定した理由について記す。
本発明は、Cuの範囲が1.8%〜4.0%であることを大きな特徴とする。Cuがこの範囲であると黒鉛粒が微細になり、基地が緻密に強化されるため高強度で良好な伸びを有し、一方偏析したCuは熱伝導率を上げ、焼入れに際しては加熱冷却速度を速め、Cr、Ni、Mo等の添加がなくても強力な焼入れ性を提供する。Cuが1.8%未満では充分な高強度が得られず、4.0%以上では効果が飽和状態となり、不経済になることからCuの範囲を設けるものである。
Next, the reason why the chemical composition of the cast iron of the present invention is limited as described above will be described.
The present invention is greatly characterized in that the range of Cu is 1.8% to 4.0%. When Cu is in this range, the graphite grains become fine and the base is densely strengthened, so that it has high strength and good elongation, while segregated Cu increases the thermal conductivity, and the heating and cooling rate is increased during quenching. Fast and provides strong hardenability without the addition of Cr, Ni, Mo, etc. If Cu is less than 1.8%, sufficient high strength cannot be obtained, and if it is 4.0% or more, the effect becomes saturated and uneconomical, so the range of Cu is provided.

Snは、後記に更に詳細に挙動を示したが、範囲を設けるのは0.01%以下ではCuとの相乗効果や黒鉛形状の改善の効果はなく、上限を0.05%としたのは、これ以上では脆化作用が強く、機械的性質が大幅に低下するためである。   Sn behaved in more detail later, but the range is not more than 0.01%, there is no synergistic effect with Cu and the effect of improving the graphite shape, the upper limit was 0.05% Above this, the embrittlement action is strong, and the mechanical properties are greatly reduced.

Biは、鋳鉄材に添加すると、球状化剤を消費してしまうだけでなく、オーステナイトの粒界に偏析して、液相の溝を形成し、これに沿って黒鉛が成長し易くなり、黒鉛晶出が阻害され、球状化も阻害されることから、一般的にはダクタイル鋳鉄材において好ましい元素ではい。
しかしながら、Cuを1.8%〜4%、Snを0.01%〜0.05%含有させたダクタイル鋳鉄において、微量のBiを添加すると、黒鉛晶出が阻害される等の悪影響もなく、冷却速度が遅い内部においても黒鉛を均一微細分散化することが出来る。Biを過量に添加すると、均一微細分散効果よりも、黒鉛量が減少し、鋳鉄の脆化をもたらす傾向が顕著に現れる。従って、0.0005%〜0.01%の範囲にした。
When Bi is added to the cast iron material, it not only consumes the spheroidizing agent, but also segregates at the austenite grain boundaries to form liquid-phase grooves, along which graphite easily grows. Since crystallization is inhibited and spheroidization is also inhibited, it is generally not a preferable element in a ductile cast iron material.
However, in the ductile cast iron containing Cu 1.8% to 4% and Sn 0.01% to 0.05%, when a small amount of Bi is added, there is no adverse effect such as inhibition of graphite crystallization, Even in the interior where the cooling rate is slow, the graphite can be uniformly and finely dispersed. When Bi is added in an excessive amount, the amount of graphite decreases and the tendency to cause embrittlement of cast iron appears more remarkably than the uniform fine dispersion effect. Therefore, it was made into the range of 0.0005%-0.01%.

代表的な球状化剤であるMg、Caが、第1に沸点が低く溶解温度で気化する、第2に鉄に対す溶解度がほとんどないという特徴を持っているが、これと同様にBiも上記の2つの性質を有することが明らかにされ、黒鉛を球状化するのに必要な気泡を溶湯中に適当に懸濁させることが出来、球状化剤として有用であることは確認されている。   Typical spheroidizing agents, Mg and Ca, have the first feature that they have a low boiling point and are vaporized at the melting temperature, and secondly there is almost no solubility in iron. It has been clarified that it has the following two properties, and bubbles necessary for spheroidizing graphite can be appropriately suspended in the molten metal, and it has been confirmed that it is useful as a spheroidizing agent.

しかし、Biの沸点は1420〜1627℃であり、従って、1500℃程で溶解した溶湯にBiを添加すれば、Biを気化させることが出来る。Biは、添加後15分もすると、ほとんど系外へ失われて溶湯中に残っていない。
しかし、その後の実験では、1300℃近辺でも使用可能であった。
このような急激な変化は、処理温度が比較的高く、溶湯の粘性が小さいこと、BiはFe中にほとんど溶解しないことから、Biが気化して気泡になれば、非常に早く浮上して消失する。
However, the boiling point of Bi is 1420 to 1627 ° C. Therefore, if Bi is added to the molten metal melted at about 1500 ° C., Bi can be vaporized. Even after 15 minutes from the addition, Bi is almost lost outside the system and does not remain in the molten metal.
However, in subsequent experiments, it could be used even near 1300 ° C.
Such a rapid change has a relatively high processing temperature, the viscosity of the molten metal is small, and Bi hardly dissolves in Fe. Therefore, if Bi evaporates into bubbles, it rises very quickly and disappears. To do.

又、Bi添加後、少しの間は溶湯表面に沸騰現象が見られ、その凝固組織には空洞や中空の黒鉛が確認されている。
このBiの気化した気泡に、黒鉛の晶出により球状黒鉛が生成したと確認出来た。
In addition, after the addition of Bi, a boiling phenomenon is observed on the surface of the molten metal for a while, and voids and hollow graphite are confirmed in the solidified structure.
It was confirmed that spheroidal graphite was generated by crystallization of graphite in the gasified bubbles of Bi.

可鍛鋳鉄溶湯において、Biは白銑化促進(チル化促進)元素として使用されているが、ダクタイル鋳鉄溶湯の場合は、それとは全く逆に、黒鉛粒の微細化によるチル化抑制元素として使用されている。   In the malleable cast iron melt, Bi is used as an element for promoting whitening (promoting chilling), but in the case of ductile cast iron melt, it is used as an element for suppressing chilling by refining graphite grains. Has been.

Biの鋳鉄に及ぼす影響について、上記の相反する挙動を説明する。
可鍛鋳鉄におけるBiのチル化促進効果については、早稲田大学の堤名誉教授の系統的な研究がある。その研究結果によると、Biは黒鉛核表面に吸着し、黒鉛核の成長を抑制することによって、黒鉛の晶出を阻害し、チル化を促進すると結論づけている。
Regarding the influence of Bi on cast iron, the above conflicting behavior will be described.
There is a systematic study by Professor Emeritus Tsutsumi at Waseda University regarding the effect of Bi chilling in malleable cast iron. According to the research results, it is concluded that Bi adsorbs on the surface of the graphite nucleus and inhibits the growth of the graphite nucleus, thereby inhibiting the crystallization of graphite and promoting chilling.

溶湯にBiを添加すると、核生成直後にその表面にBiが吸着し、黒鉛粒の成長が抑制される。可鍛鋳鉄のようにC、Si量が少ない溶湯の場合は、そのまま黒鉛粒が成長することなく、凝固してチル組織となるので、Bi添加によってチル化(白銑化)が促進されることになる。   When Bi is added to the molten metal, Bi is adsorbed on the surface immediately after nucleation, and the growth of graphite grains is suppressed. In the case of a molten metal with a small amount of C and Si, such as malleable cast iron, graphite grains do not grow as they are, but solidifies into a chill structure, so that chilling (whitening) is promoted by adding Bi. become.

一方、C、Si量が高いダクタイル鋳鉄の場合、Bi添加によって核成長が抑制されると、黒鉛近傍で、新たな核生成が始まり、これによって黒鉛核数が増加することになる。ダクタイル鋳鉄の場合、C、Siが充分に高いので、さらに温度が低下すると、黒鉛粒の成長が始まる。その結果、黒鉛組織はより黒鉛粒数が多く、黒鉛粒径はより小さくなる。   On the other hand, in the case of ductile cast iron with a high amount of C and Si, when nucleation is suppressed by addition of Bi, new nucleation starts near the graphite, thereby increasing the number of graphite nuclei. In the case of ductile cast iron, since C and Si are sufficiently high, the growth of graphite grains starts when the temperature is further lowered. As a result, the graphite structure has a larger number of graphite grains and a smaller graphite particle size.

又、黒鉛粒数が多くなると、黒鉛化が促進されて、チル化組織の発生が抑えられるので、ダクタイル鋳鉄の場合は、Bi添加によってチル化防止効果が得られることになる。
以上のように、可鍛鋳鉄におけるチル化促進効果及びダクタイル鋳鉄における黒鉛粒数の増加とチル化防止効果を、矛盾なく説明することが出来る。
本発明は、この吸着説をダクタイル鋳鉄に適用しようとするものである。
Further, when the number of graphite grains is increased, graphitization is promoted and generation of a chilled structure is suppressed. In the case of ductile cast iron, an effect of preventing chilling can be obtained by adding Bi.
As described above, the chilling promoting effect in malleable cast iron and the increase in the number of graphite grains in ductile cast iron and the chilling preventing effect can be explained without contradiction.
The present invention intends to apply this adsorption theory to ductile cast iron.

以下、本発明の黒鉛の成長について図を以って説明する。
図1、2は、球状黒鉛鋳鉄溶湯において、冷却過程で黒鉛核が生成し、成長していく過程を模式的に示したものである。
図1は、Bi無添加における黒鉛の成長過程を示している。炉1に溶湯2を入れ、そこにFe−Si−Mg3を添加する。(図1a)溶湯温度が低下していくと、まずMgS4等が核となって微細な黒鉛核5が発生する。(図1b)
黒鉛6の成長が始まる(図1c)と、黒鉛周辺のC量が減少するので、黒鉛近傍では新たな核生成は起こりにくくなる。
Hereinafter, the growth of the graphite of the present invention will be described with reference to the drawings.
1 and 2 schematically show a process in which graphite nuclei are generated and grown during the cooling process in a spheroidal graphite cast iron melt.
FIG. 1 shows the growth process of graphite without addition of Bi. The molten metal 2 is put into the furnace 1 and Fe—Si—Mg 3 is added thereto. (FIG. 1a) When the molten metal temperature is lowered, fine graphite nuclei 5 are first generated using MgS4 and the like as nuclei. (Fig. 1b)
When the growth of the graphite 6 begins (FIG. 1c), the amount of C around the graphite decreases, so that new nucleation hardly occurs in the vicinity of the graphite.

このため、Biを添加しない通常の溶湯では、より早く核生成した黒鉛が、近傍における新たな核の生成を抑制しながら成長していく。その結果的として、黒鉛粒間の距離が或る程度保たれ比較的粒径の大きな黒鉛組織となる。(図1d)   For this reason, in a normal molten metal to which Bi is not added, graphite nucleated earlier grows while suppressing the generation of new nuclei in the vicinity. As a result, the distance between the graphite grains is maintained to some extent, and a graphite structure having a relatively large particle diameter is obtained. (Fig. 1d)

又、Biは、凝固初期の黒鉛核生成の際に、その表面に吸着して黒鉛核の成長を抑制する効果があると言われている。これにより、新たな黒鉛核生成の機会を作ることによって、黒鉛粒数を増加させると考えられる。   Bi is said to have an effect of suppressing the growth of graphite nuclei by adsorbing on the surface of graphite nuclei at the initial stage of solidification. This is thought to increase the number of graphite grains by creating new opportunities for graphite nucleation.

本発明においては、Biの添加による作用について1は、Bi添加時の発生する気泡による黒鉛の生成、2には、溶湯の冷却して行く段階でのBiの黒鉛への吸着、それによる黒鉛成長抑制、更に新たなる黒鉛の生成という二段構成の作用が行われていると考えている。   In the present invention, with respect to the effect of Bi addition, 1 is the formation of graphite by bubbles generated when Bi is added, and 2 is the adsorption of Bi to graphite when the molten metal is cooled, resulting in the growth of graphite. It is believed that the two-stage action of suppression and the generation of new graphite is taking place.

図2は、炉1に溶湯2、Fe−Si−Mg+Bi7を約1500℃にて添加した経過を示す。
図2bにおいては、MgSの核生成及びBi吸着による核成長の抑制が行われる。
図2cにおいては、新たな核生成が進行する。
図2dにおいては、約1200℃付近にて黒鉛が晶出する。
FIG. 2 shows a process of adding molten metal 2 and Fe—Si—Mg + Bi 7 to the furnace 1 at about 1500 ° C.
In FIG. 2b, nucleation of MgS and suppression of nucleation by Bi adsorption are performed.
In FIG. 2c, new nucleation proceeds.
In FIG. 2d, graphite crystallizes out at around 1200 ° C.

さらに、約1200℃以下になると、これらの黒鉛核が一斉に成長を始める。本高強度鋳鉄では、一般の球状黒鉛鋳鉄と比較して、この黒鉛粒の成長過程において、黒鉛形状がより丸く成長する。
この原因は、CuとSnの働きによると考えられるが、このパーライト変態までの黒鉛核の成長に対するCuとSnの働きについては、不明な点が多い。
Furthermore, when it becomes about 1200 degrees C or less, these graphite nuclei will begin to grow all at once. In the present high-strength cast iron, the graphite shape grows more round in the process of growing the graphite grains than in the general spheroidal graphite cast iron.
The cause of this is thought to be due to the action of Cu and Sn, but there are many unclear points regarding the action of Cu and Sn on the growth of graphite nuclei up to this pearlite transformation.

温度が900℃以下になると、Cu量が例えば、2.5%(過共析成分)の場合、初析Cuの析出が始まり、黒鉛粒表面に濃化する。
又、Snもこれに同伴することにより、黒鉛粒表面にCu−Sn薄膜が形成される。この膜がC原子の黒鉛粒表面への析出を阻止するため、黒鉛付着による黒鉛球状化率の低下が防止できる。同時に、黒鉛粒周辺のパーライトの分解が抑制されるので、強度低下の原因になるフェライトの生成が阻止される。
以上の効果によって、球状黒鉛鋳鉄の高強度化が達成できたと考えられる。
When the temperature is 900 ° C. or lower, when the amount of Cu is, for example, 2.5% (hypereutectoid component), precipitation of proeutectoid Cu starts and concentrates on the graphite grain surface.
In addition, Sn accompanies this to form a Cu—Sn thin film on the surface of the graphite grains. Since this film prevents the precipitation of C atoms on the surface of the graphite grains, it is possible to prevent a decrease in the graphite spheroidization ratio due to graphite adhesion. At the same time, since the decomposition of pearlite around the graphite grains is suppressed, the formation of ferrite that causes a decrease in strength is prevented.
It is considered that the strength of spheroidal graphite cast iron could be achieved by the above effects.

ここで、Cuの濃化機構について説明する。
Fe−Cu系平衡状態図を図5に示す。Cu:2%、857℃にαFe−Cu共析変態点があり、Cu量が2%を越える過共析成分の場合は、γ鉄から初析Cuが生成する。この場合の核生成場所(サイト)としては、γ鉄中の微細な介在物や欠陥のほかに、黒鉛粒表面も核生成サイトとなる。このため、初析Cuが黒鉛粒表面にも析出したため、Cu濃化層が形成されたものと考えられる。
尚、実際の鋳鉄では、CやSi等が数%含まれているが、FeとCuの平衡状態は、本質的には図2と大きな違いはないものと考えられる。
Here, the Cu concentration mechanism will be described.
An Fe—Cu system equilibrium diagram is shown in FIG. Cu: 2%, 857 ° C. has an αFe—Cu eutectoid transformation point, and in the case of a hypereutectoid component in which the amount of Cu exceeds 2%, proeutectoid Cu is generated from γ iron. In this case, as the nucleation site (site), in addition to the fine inclusions and defects in γ-iron, the graphite grain surface also becomes a nucleation site. For this reason, since proeutectoid Cu also precipitated on the graphite grain surface, it is considered that a Cu concentrated layer was formed.
In addition, although actual cast iron contains several percent of C, Si, etc., it is considered that the equilibrium state of Fe and Cu is essentially not different from FIG.

又、Snの濃化機構について説明する。
Cu量が0.5%の場合(亜共析成分)では、Snの濃化現象が現れず、Cu量が2.8%の場合(過共析成分)にSnの濃化現象が現れている。このことから、Snの濃化現象は、Cu量に影響されることは明らかである。特に、過共析領域での初析Cuの析出が大きく影響しているものと考えられる。
The Sn concentration mechanism will be described.
When the amount of Cu is 0.5% (hypereutectoid component), the Sn concentration phenomenon does not appear, and when the Cu amount is 2.8% (hypereutectoid component), the Sn concentration phenomenon appears. Yes. From this, it is clear that the Sn concentration phenomenon is affected by the amount of Cu. In particular, it is considered that precipitation of proeutectoid Cu in the hypereutectoid region has a great influence.

図6は、X線マイクロアナライザーを用いて、CuとSnの濃度分布を調べたものである。
ダクタイル FCD800(MAP)
加速電圧 15.0V
照射電流 1.002e−07A
時間(msec) 200.00
点数 450*450
間隔(μm)X:0.45
Y:0.45
Cu WOS 2ch LIF
最大値 2465
最小値 0
平均値 113
Sn WOS 3ch PETH
最大値 2620
最小値 7
平均値 94
FIG. 6 is an examination of the concentration distribution of Cu and Sn using an X-ray microanalyzer.
Ductile FCD800 (MAP)
Acceleration voltage 15.0V
Irradiation current 1.002e-07A
Time (msec) 200.00
Score 450 * 450
Interval (μm) X: 0.45
Y: 0.45
Cu WOS 2ch LIF
Maximum value 2465
Minimum value 0
Average value 113
Sn WOS 3ch PETH
Maximum value 2620
Minimum value 7
Average 94

Cu21の濃度分布を見ると、比較的広い範囲でCu21が黒鉛22周辺で濃化(黄色の部分)しているが、これは凝固過程において、Cu21の濃度が液体中より固体中の方が高くなる性質があるので、先に凝固する黒鉛近傍のCu21の濃度が高くなったものである。(図61) Looking at the concentration distribution of Cu21, Cu21 is concentrated around the graphite 22 in a relatively wide range (yellow part). This is because the concentration of Cu21 is higher in the solid than in the liquid during the solidification process. Therefore, the concentration of Cu21 in the vicinity of the first solidified graphite is increased. (Fig. 61)

さらに、Cu量の高い領域(赤色の部分)が点在しており、これが基地組織の他に、黒鉛粒表面にも存在している。この粒状組織は、先に述べた初析Cuであって、冷却過程で析出したものである。
この粒状組織は、Snの面分析結果にも現れており(図62)、その形状と位置がCuの場合とほとんど同一であることから、初析Cuと同伴してSn30が析出していることが分かる。
以上のことから、Snの黒鉛粒表面への濃化現象については、初析Cuの黒鉛粒表面への析出に同伴して析出するためであると考えられる。
Furthermore, the area | region (red part) with high Cu amount is dotted, and this exists also on the graphite grain surface other than a base structure. This granular structure is the proeutectoid Cu described above, and is precipitated in the cooling process.
This granular structure also appears in the Sn surface analysis results (FIG. 62), and since the shape and position thereof are almost the same as in the case of Cu, Sn30 is precipitated along with the proeutectoid Cu. I understand.
From the above, it is considered that the concentration phenomenon of Sn on the graphite particle surface is caused by precipitation accompanying precipitation of proeutectoid Cu on the graphite particle surface.

以上のように、初析Cuと同伴してSnが黒鉛粒表面に析出し、生成したCuとSnを含む薄膜が、黒鉛粒の成長過程に大きく影響を及ぼし、結果として、基地組織の強化と黒鉛形状の改善により、本鋳鉄の機械的性質の大幅な向上が実現出来たものと考える。   As described above, Sn is precipitated on the surface of the graphite grains accompanied with the proeutectoid Cu, and the formed thin film containing Cu and Sn has a great influence on the growth process of the graphite grains. We believe that the mechanical properties of the cast iron can be greatly improved by improving the graphite shape.

CuとSnの黒鉛粒表面付近の濃化現象による黒鉛形状の改善効果について、球状黒鉛鋳鉄の凝固における黒鉛粒の成長過程を考える。
図3に示すように、第1に、凝固が始まると黒鉛核5が生成し、それを取り囲んでオーステナイト相8が晶出する。(図3a)
Consider the growth process of graphite grains during solidification of spheroidal graphite cast iron for the effect of improving the graphite shape due to the concentration phenomenon near the surface of the graphite grains of Cu and Sn.
As shown in FIG. 3, first, when solidification begins, graphite nuclei 5 are generated, and austenite phase 8 crystallizes around them. (Fig. 3a)

第2に、温度が低下するに従って、オーステナイト相8に取り囲まれながら黒鉛粒6は成長していくが、ここまでの黒鉛粒6の成長過程は、比較的等方的で球状に成長する傾向が強いと考えられる。この時に、Cuの比較的広い領域での濃化現象(偏析)が現れる。(図3b)   Secondly, as the temperature decreases, the graphite grains 6 grow while being surrounded by the austenite phase 8, but the growth process of the graphite grains 6 so far tends to grow relatively isotropic and spherical. It is considered strong. At this time, a concentration phenomenon (segregation) in a relatively wide area of Cu appears. (Figure 3b)

第3に、温度がさらに低下して、A1点以下になると、2%以下の低Cuの場合には、オーステナイト8がパーライト9に変態する。(図3c、3d)   Thirdly, when the temperature is further lowered to A1 point or less, austenite 8 is transformed into pearlite 9 in the case of 2% or less of low Cu. (Fig. 3c, 3d)

第4に、更にパーライト9はフェライト10と炭素に分解するが、この炭素は黒鉛粒表面に析出する。この析出過程は、焼鈍過程での黒鉛成長と同一の過程(自己焼鈍)で、黒鉛形状は塊状に成長し、黒鉛球状化率を低下させる原因となる。   Fourthly, pearlite 9 further decomposes into ferrite 10 and carbon, which is deposited on the surface of the graphite grains. This precipitation process is the same process (self-annealing) as the graphite growth in the annealing process, and the graphite shape grows in a lump shape, causing a reduction in the graphite spheroidization rate.

この時、初析Cuが黒鉛粒表面に析出するが、Cu単独では、パーライトの分解(自己焼鈍)を十分に抑制出来なかったものと考えられる。
高強度球状黒鉛鋳鉄の場合、このようなパーライトのフェライト化と球状化率の低下は、引張強さと伸びに顕著な悪影響を及ぼす。
At this time, proeutectoid Cu precipitates on the surface of the graphite grains, but it is considered that the decomposition of pearlite (self-annealing) could not be sufficiently suppressed by Cu alone.
In the case of high-strength spheroidal graphite cast iron, such ferritization of pearlite and a decrease in the spheroidization rate have a significant adverse effect on tensile strength and elongation.

一方、2.8%以上の高CuとSnが存在すると、初析Cuと同伴して黒鉛粒表面にCu―Sn濃化層の薄層14を形成する。(図3e)
この薄層11が、炭素原子の黒鉛粒への析出を阻害することによって、パーライト9への分解を抑制する。このため、黒鉛粒の塊状化が防止されるので、黒鉛形状の劣化が防げたものと考えられる。
On the other hand, when high Cu and Sn of 2.8% or more are present, a thin layer 14 of a Cu—Sn concentrated layer is formed on the surface of the graphite grains accompanying the proeutectoid Cu. (Fig. 3e)
This thin layer 11 inhibits the decomposition into pearlite 9 by inhibiting the precipitation of carbon atoms into the graphite grains. For this reason, since the agglomeration of the graphite grains is prevented, it is considered that the deterioration of the graphite shape can be prevented.

図4は、黒鉛粒の拡大写真であるが、周囲に生成するフェライトの面積率が少ない順に並べてある。写真で明らかなように、フェライトの成長と共に、黒鉛の粒形が悪くなっているのが分かる。
CuとSnの複合添加による効果を、より具体的に表現すると、図4における写真(2)の段階で、フェライトの成長或いはパーライトの分解を止めることである。これによって、球状化率の高い黒鉛粒が得られる。
FIG. 4 is an enlarged photograph of graphite grains, which are arranged in ascending order of area ratio of ferrite generated around. As is apparent from the photograph, it can be seen that the grain shape of the graphite deteriorates with the growth of ferrite.
More specifically, the effect of the combined addition of Cu and Sn is to stop the growth of ferrite or the decomposition of pearlite at the stage of photograph (2) in FIG. Thereby, graphite grains having a high spheroidization rate are obtained.

Mnは0.6%を超えると、共晶セル境界に強く偏析すると共に、セメンタイトをつくり延性を著しく低下させ、被削性を悪くするため上限を設けるものである。
Pは0.03%を超えると、ステダイトの影響で伸びが低下し、又、表面焼入れした時の焼割れを防止するために上限を設けるものである。
Sは、Mg消費型の球状化阻害元素であり、0.03%以下とした。C、Si、Mgは一般的な球状黒鉛鋳鉄の範囲である。
If Mn exceeds 0.6%, it strongly segregates at the eutectic cell boundary, and also produces cementite, significantly lowers the ductility, and lowers the machinability, thereby providing an upper limit.
When P exceeds 0.03%, the elongation decreases due to the influence of steadite, and an upper limit is provided to prevent quench cracking when the surface is quenched.
S is an Mg consuming spheroidizing inhibiting element, and is set to 0.03% or less. C, Si and Mg are in the range of general spheroidal graphite cast iron.

本発明の実施例を説明する。
前記試験と同様の手順、即ち2.000kg容量の低周波誘導炉を用い、鋼屑及び戻し材を使用し、FCD450相当の溶湯とし、これに表1に示す如く所望量のCuを添加した後、市販のFe―Si―Mg―Ca―REM合金添加のサンドウィッチ法による黒鉛球状化処理を実施時に表1に示す如く所望量のSn、Biを添加し、注湯取鍋移し換え時に接種、シェル鋳型のJIS G 5502 Y型B号(25t×215l)に鋳込んだ。同様の手順で、化学組成を変化させた本発明実施品1〜9についての機械的性質及び化学組成を表1に示す。
Examples of the present invention will be described.
The same procedure as in the above test, that is, using a low frequency induction furnace with a capacity of 2.000 kg, using steel scraps and return material to make a molten metal equivalent to FCD450, and after adding a desired amount of Cu as shown in Table 1 When the graphite spheroidizing treatment by the sandwich method with commercially available Fe-Si-Mg-Ca-REM alloy is added, Sn and Bi of the desired amount are added as shown in Table 1, and inoculated when the pouring ladle is transferred, shell It was cast into a mold JIS G 5502 Y type B (25 t × 215 l). Table 1 shows the mechanical properties and chemical compositions of the inventive products 1 to 9 in which the chemical composition was changed in the same procedure.

表1において、Cu、Snで含有した時に比べ、それにBiが加わることにより、引張り強さ、伸びが大幅に向上し、更にCuが2.6%を超えても低下しないことが分かる。
図2の金属組成の顕微鏡写真に示す如く、セメンタイトやベイナイトは皆無で、球形も良好で微細な黒鉛と非常に緻密な組成を有している。本発明の球状黒鉛鋳鉄は、JIS G 5503のFCAD900―4の規格相当、引張り強さ900MPa以上、伸び4%以上を鋳放しにて十分満足するものである。
In Table 1, it can be seen that when Bi is added to Cu and Sn, tensile strength and elongation are greatly improved, and Cu does not decrease even if Cu exceeds 2.6%.
As shown in the photomicrograph of the metal composition in FIG. 2, there is no cementite or bainite, the sphere is good, and it has a very dense composition with fine graphite. The spheroidal graphite cast iron of the present invention sufficiently satisfies the standard of FCAD900-4 of JIS G5503, has a tensile strength of 900 MPa or more, and an elongation of 4% or more when cast as it is.

表1の本発明実施品1〜5及び本発明実施品6〜9は、比較品1〜5に比べ、引張り強さが向上し、図7の金属組成の顕微鏡写真より、基地はソルバイトの如くに緻密になっているのが分かる。本発明の球状黒鉛鋳鉄は、JIS G 5503のFCAD900―4の規格相当引張り強さ900MPa以上、伸び4%以上を鋳放しにて十分満足するものである。
又、本発明実施品1〜5において、所謂インモールド法によりFe−Siも二次接種した結果においても、強度、伸び共に満足する結果が得られた。
The inventive products 1 to 5 and the inventive products 6 to 9 in Table 1 have improved tensile strength compared to the comparative products 1 to 5, and the base is like sorbite from the micrograph of the metal composition in FIG. You can see that it is dense. The spheroidal graphite cast iron of the present invention sufficiently satisfies the JIS G 5503 FCAD900-4 standard equivalent tensile strength of 900 MPa or more and elongation of 4% or more as cast.
In addition, in the products 1 to 5 of the present invention, the results of satisfying both the strength and the elongation were obtained in the result of secondary inoculation of Fe-Si by the so-called in-mold method.

写真71は比較3、写真72は本発明3、写真73は本発明9、写真74は比較4のデータである表2に対応する。   The photograph 71 corresponds to the comparison 3, the photograph 72 corresponds to the present invention 3, the photograph 73 corresponds to the present invention 9, and the photograph 74 corresponds to the data of the comparison 2.

ダクタイルの球状化黒鉛における元素分布を、オージェ電子分光法(AES:Auger Electron Spectroscopy)を用いた深さ方向分析により調査する。   The element distribution in ductile spheroidized graphite is investigated by depth direction analysis using Auger Electron Spectroscopy (AES).

試料:本発明3ダクタイル鋳鉄
Cu 0.5%(他は本発明と同成分)ダクタイル鋳鉄
試料調整:乾式にて引張試験後の試料を切断し、分析に供した。
その概略を参考図として図9に示す。
装置:Physical Electronics社製 PHI MODEL 660
測定条件:
電子ビーム条件
加速電圧 5kV、
試料電流 0.2μA
試料検査角度 30°
測定領域 <1μmφ(電子ビーム径)
イオンビーム条件
加速電圧 3kV、
ラスター 3mm×3mm
スパッタ速度 3.2nm/min(SiO実測値)
測定スペクトル
C KLL、O KLL、Sn MNN、Fe LMM、Cu LMM、Mg KLL、S LVV、Cl LVV、N KLL
Sample: Invention 3 Ductile cast iron Cu 0.5% (other components are the same as those of the present invention) Ductile cast iron Sample preparation: A sample after a tensile test was cut by a dry method and subjected to analysis.
The outline is shown in FIG. 9 as a reference diagram.
Device: PHI MODEL 660 manufactured by Physical Electronics
Measurement condition:
Electron beam conditions Acceleration voltage 5kV,
Sample current 0.2μA
Sample inspection angle 30 °
Measurement area <1μmφ (electron beam diameter)
Ion beam condition Acceleration voltage 3kV,
Raster 3mm x 3mm
Sputtering rate 3.2 nm / min (measured value of SiO 2 )
Measurement spectrum C KLL, O KLL, Sn MNN, Fe LMM, Cu LMM, Mg KLL, S LVV, Cl LVV, N KLL

測定範囲:基地組織が黒鉛粒子表面に接する位置から、深さ方向に約0.032μm(スパッタリング時間10分)の範囲     Measurement range: A range of about 0.032 μm (sputtering time 10 minutes) in the depth direction from the position where the base structure contacts the surface of the graphite particles.

本発明品3とCu0.5%含有品をオージェ電子分光法(AES)による深さ方向分析結果を図8に示す。CuとSnの黒鉛粒近傍における濃度分布測定結果は、図に示されるように、Cu量が0.5%と比較的低い場合は、Cu、Sn共に、黒鉛粒表面近傍における濃化現象は認められない。   FIG. 8 shows the depth direction analysis results of the product 3 of the present invention and the product containing 0.5% Cu by Auger electron spectroscopy (AES). As shown in the figure, the concentration distribution measurement results in the vicinity of the graphite grains of Cu and Sn show that the concentration phenomenon near the graphite grain surface is observed for both Cu and Sn when the Cu content is relatively low at 0.5%. I can't.

しかし、Cu量が2.8%と高い本発明6の場合、Cuが黒鉛粒表面から約0.01μmの範囲で6〜9%と濃化しており、更に添加量(0.02%)を変えていないSnにおいても、1.5〜2.5%と黒鉛粒表面付近に濃化現象が現れた。このCu、Sn濃化層αは、厚さ約0.01μmである。   However, in the case of the present invention 6 in which the Cu amount is as high as 2.8%, Cu is concentrated to 6 to 9% in the range of about 0.01 μm from the surface of the graphite grains, and the addition amount (0.02%) is further reduced Even in Sn that was not changed, a concentration phenomenon appeared in the vicinity of the surface of the graphite grains, 1.5 to 2.5%. The Cu and Sn concentrated layer α has a thickness of about 0.01 μm.

これと対照的に、Cu0.5%、Sn0.02%の場合、黒鉛の近くに濃化することなく略平均化している。   In contrast, in the case of Cu 0.5% and Sn 0.02%, they are approximately averaged without being concentrated near graphite.

本発明球状黒鉛鋳鉄溶湯における黒鉛成長過程説明図Explanatory drawing of the graphite growth process in the spheroidal graphite cast iron melt of the present invention 同上Bi添加溶湯の黒鉛成長過程説明図Explanatory drawing of graphite growth process of Bi-added molten metal 同上Cu、Snの濃化現象説明図Same as above for Cu and Sn concentration phenomenon 本発明実施品3の600倍の顕微鏡写真図600 × magnification of the present invention product 3 本発明実施試験Fe−Cu系平衡状態図The present invention test Fe-Cu system equilibrium diagram 本発明実施試験品のX線マイクロアナライザーのCu、Sn面分析結果図Cu / Sn plane analysis result diagram of X-ray microanalyzer of test product of the present invention 表1の本発明実施試験品の600倍の顕微鏡写真図600 times magnification micrograph of the test product of the present invention in Table 1 本発明実施品と対象従来品の黒鉛粒表面付近のCuとSnのオージェ電子 分光法による濃度分布測定結果図Concentration distribution measurement results by Auger electron spectroscopy of Cu and Sn in the vicinity of the graphite grain surface of the product of the present invention and the target conventional product 引張試験後の試料の概略参考図Schematic reference diagram of the sample after the tensile test

Claims (6)

重量%で、C:3.0%〜4.0%、Si:2.0%〜3.0%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02%〜0.06%、Cu:1.8%〜4.0%、Sn:0.01%〜0.05%、Bi:0.0005%〜0.01%を含有し、残部Fe及び不可避的不純物から成ることを特徴とする鋳放し高強度球状黒鉛鋳鉄。 By weight%, C: 3.0% to 4.0%, Si: 2.0% to 3.0%, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% Hereinafter, Mg: 0.02% to 0.06%, Cu: 1.8% to 4.0%, Sn: 0.01% to 0.05%, Bi: 0.0005% to 0.01% An as-cast high-strength spheroidal graphite cast iron containing and comprising the remainder Fe and inevitable impurities. 球状黒鉛周囲に近接して、CuとSnの濃化層を析出形成させたことを特徴とする請求項1に記載の鋳放し高強度球状黒鉛鋳鉄。2. The as-cast high-strength spheroidal graphite cast iron according to claim 1, wherein a concentrated layer of Cu and Sn is deposited in the vicinity of the periphery of the spheroidal graphite. 球状化率80%〜100%、黒鉛平均粒径20μm〜40μm、黒鉛粒数個200個/mmSpheroidization rate 80% ~ 100%, graphite average particle diameter 20μm ~ 40μm, several graphite grains 200 / mm 2 〜300個/mm~ 300 / mm 2 、ブリネル硬さがHBrinell hardness is H B 260〜320であって、パーライト基地組織を有することを特徴とする請求項1又は2に記載の鋳放し高強度球状黒鉛鋳鉄。The as-cast high-strength spheroidal graphite cast iron according to claim 1 or 2, which has a pearlite base structure. 重量%で、C:3.0%〜4.0%、Si:2.0%〜3.0%、Mn:0.6%以下、P:0.03%以下、S:0.03%以下、Mg:0.02%〜0.06%、Cu:1.8%〜4.0%、Sn:0.01%〜0.05%、Bi:0.0005%〜0.01%を含有し、残部Fe及び不可避的不純物から成り、黒鉛周囲に近接して、CuとSnの濃化層を析出形成させることを特徴とする鋳放し高強度球状黒鉛鋳鉄の製造方法。By weight%, C: 3.0% to 4.0%, Si: 2.0% to 3.0%, Mn: 0.6% or less, P: 0.03% or less, S: 0.03% Hereinafter, Mg: 0.02% to 0.06%, Cu: 1.8% to 4.0%, Sn: 0.01% to 0.05%, Bi: 0.0005% to 0.01% A method for producing an as-cast high-strength spheroidal graphite cast iron, comprising a balance layer of Fe and inevitable impurities, and forming a concentrated layer of Cu and Sn in the vicinity of the periphery of graphite. 黒鉛周囲に近接して、CuとSnの濃化層を析出させ、該濃化層のCu、Snにより、炭素原子の黒鉛粒への析出を阻害し、パーライトの分解を抑制することを特徴とする請求項4に記載の鋳放し高強度球状黒鉛鋳鉄の製造方法。It is characterized in that a concentrated layer of Cu and Sn is deposited in the vicinity of the graphite periphery, and Cu and Sn in the concentrated layer inhibit the precipitation of carbon atoms on the graphite grains and suppress the decomposition of pearlite. The method for producing as-cast high-strength spheroidal graphite cast iron according to claim 4. Fe―Siをインモールド法により二次接種することを特徴とする請求項4又は5に記載の鋳放し高強度球状黒鉛鋳鉄の製造方法。The method for producing as-cast high-strength spheroidal graphite cast iron according to claim 4 or 5, wherein Fe-Si is secondarily inoculated by an in-mold method.
JP2008043477A 2008-02-25 2008-02-25 As-cast high-strength spheroidal graphite cast iron and method for producing the same Active JP4693853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008043477A JP4693853B2 (en) 2008-02-25 2008-02-25 As-cast high-strength spheroidal graphite cast iron and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008043477A JP4693853B2 (en) 2008-02-25 2008-02-25 As-cast high-strength spheroidal graphite cast iron and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009197311A JP2009197311A (en) 2009-09-03
JP4693853B2 true JP4693853B2 (en) 2011-06-01

Family

ID=41141134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008043477A Active JP4693853B2 (en) 2008-02-25 2008-02-25 As-cast high-strength spheroidal graphite cast iron and method for producing the same

Country Status (1)

Country Link
JP (1) JP4693853B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2993646B1 (en) * 2012-07-17 2015-07-03 Ferry Capitain DRIVE DEVICE AND CORRESPONDING ROTARY FURNACE
KR101988463B1 (en) * 2012-11-13 2019-06-12 현대모비스 주식회사 Nodular graphite cast iron with high strength and high toughness and parts of an automobile manufactured from the same
JP6473192B2 (en) * 2017-06-08 2019-02-20 青梅鋳造 株式会社 Spheroidal graphite cast iron and method for producing the same
JP2018204082A (en) * 2017-06-08 2018-12-27 青梅鋳造 株式会社 Spheroidal graphite cast iron, and manufacturing method therefor
CN114058938B (en) * 2021-11-19 2022-06-10 襄阳金耐特机械股份有限公司 Ductile cast iron with excellent low-temperature toughness and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188645A (en) * 1981-05-13 1982-11-19 Takaoka Kogyo Kk Nodular graphite cast iron and its manufacture
JPH1096041A (en) * 1996-09-20 1998-04-14 Toyota Motor Corp Spheroidal graphite cast iron with high rigidity and high fatigue strength, and its production
JP2000345279A (en) * 1999-06-02 2000-12-12 Komatsu Ltd Spheroidal graphite cast iron article and its production
JP2001131678A (en) * 1999-11-10 2001-05-15 Oume Chuzo Kk High strength spheroidal graphite cast iron and producing method therefor
JP2002317219A (en) * 2001-04-23 2002-10-31 Tokyo Tekko Co Ltd Production method for spheroidal graphite cast iron product as-cast
JP2003221638A (en) * 2002-01-29 2003-08-08 Hino Motors Ltd Globular graphite cast iron

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57188645A (en) * 1981-05-13 1982-11-19 Takaoka Kogyo Kk Nodular graphite cast iron and its manufacture
JPH1096041A (en) * 1996-09-20 1998-04-14 Toyota Motor Corp Spheroidal graphite cast iron with high rigidity and high fatigue strength, and its production
JP2000345279A (en) * 1999-06-02 2000-12-12 Komatsu Ltd Spheroidal graphite cast iron article and its production
JP2001131678A (en) * 1999-11-10 2001-05-15 Oume Chuzo Kk High strength spheroidal graphite cast iron and producing method therefor
JP2002317219A (en) * 2001-04-23 2002-10-31 Tokyo Tekko Co Ltd Production method for spheroidal graphite cast iron product as-cast
JP2003221638A (en) * 2002-01-29 2003-08-08 Hino Motors Ltd Globular graphite cast iron

Also Published As

Publication number Publication date
JP2009197311A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP6794479B2 (en) Copper-rich nanocluster reinforced ultra-high-strength ferritic steel and its manufacturing method
JP6079641B2 (en) Spheroidal graphite cast iron excellent in strength and toughness and method for producing the same
CN103201399B (en) High-carbon-chromium bearing steel and preparation method thereof
JPH0239563B2 (en)
CN112962018B (en) Chilling process manufacturing method of non-label QT600-7 nodular cast iron
JP4693853B2 (en) As-cast high-strength spheroidal graphite cast iron and method for producing the same
JP2011105993A (en) Spheroidal graphite cast iron tube and method for producing the same
JP2019081924A (en) Spheroidal graphite cast iron and method for producing the same
JP6473192B2 (en) Spheroidal graphite cast iron and method for producing the same
JP2012092401A (en) Spheroidal graphite cast iron article excellent in wear resistance
CN107779781A (en) A kind of ore-benificiating ball grinder liner plate manufacture method
JP3723706B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
US9708677B2 (en) Method of heat treating a cast iron, in particular a nodular cast iron
JP5367041B2 (en) Thin wall spheroidal graphite cast iron casting
JP6328968B2 (en) Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron
JP2010149129A (en) Holder for die-casting die, and method for producing the same
Kiani-Rashid et al. Microstructural characteristics of Al-alloyed austempered ductile irons
JP2010132971A (en) High-strength thick spherical graphite iron cast product excellent in wear resistance
CN114850436A (en) Carbide refining method of high-carbon high-alloy steel
JP2018204082A (en) Spheroidal graphite cast iron, and manufacturing method therefor
JP3695935B2 (en) Fe-Si-C amorphous alloy and powder metallurgy member using the alloy
JPH04350113A (en) Production of case hardening steel free from coarsening of crystalline grain at the time of carburizing heat treatment
Bihari et al. Effect on the mechanical properties of gray cast iron with variation of copper and molybdenum as alloying elements
JP6191781B1 (en) Spheroidal graphite cast iron with excellent gas defect resistance
KR101042480B1 (en) Manufacturing Method of casting roll

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4693853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250