JP3695935B2 - Fe-Si-C amorphous alloy and powder metallurgy member using the alloy - Google Patents

Fe-Si-C amorphous alloy and powder metallurgy member using the alloy Download PDF

Info

Publication number
JP3695935B2
JP3695935B2 JP07342098A JP7342098A JP3695935B2 JP 3695935 B2 JP3695935 B2 JP 3695935B2 JP 07342098 A JP07342098 A JP 07342098A JP 7342098 A JP7342098 A JP 7342098A JP 3695935 B2 JP3695935 B2 JP 3695935B2
Authority
JP
Japan
Prior art keywords
alloy
amorphous
graphite
weight
cast iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07342098A
Other languages
Japanese (ja)
Other versions
JPH11256277A (en
Inventor
明久 井上
濤 張
昇 佐藤
新敏 王
雄二 尾形
和也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Basic Material Co Ltd
Original Assignee
Japan Basic Material Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Basic Material Co Ltd filed Critical Japan Basic Material Co Ltd
Priority to JP07342098A priority Critical patent/JP3695935B2/en
Publication of JPH11256277A publication Critical patent/JPH11256277A/en
Application granted granted Critical
Publication of JP3695935B2 publication Critical patent/JP3695935B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【産業上の利用分野】
本発明はアモルファス化が可能で、アモルファス状態からアニールする事で微細グラファイトを金属組織中に均一に分散させる事ができる高炭素含有鉄系アモルファス合金と該粉末合金利用の粉末冶金部材に関する。」
【0002】
【従来の技術】
現在、工業素材として最も普遍的に使用されており、工業素材として最も重要な鉄をベースとしたFe系アモルファス合金の研究が盛んに行われている。しかしながら現在の処、Feをその組成の一部とするものの報告はあるが、成分のほとんどが鉄であ、例えば鋼或いは鋳鉄のような高炭素含有Fe系アモルファス合金に関する報告はない。
【0003】
一方、これまでのアモルファスに関する研究から臨界冷却速度が小さいほどアモルファス化しやすいという事が知られており、金属組織学上では共晶点、即ち2種以上の相が同一温度で同時に凝固し混じりあった組織となる点がその1つと考えられている。換言すれば、共晶組織付近では融点がかなり低下しているので、融点とガラス転移点との温度差が小さくなり、この温度領域を速やかに通過出来、その結果アモルファス化しやすいと言うことになる。
【0004】
【発明が解決しようとする課題】
本発明の解決課題は、鋳鉄の共晶組成に着目し、鉄の含有率がその大半を占めるFe−C−Si系合金組成でアモルファス化が可能で内部に微細グラファイトが生成された鉄系アモルファス合金の開発をその第1課題とし、そのような合金或いはその合金粉末を使用し、少なくともその表面をアモルファス化させた合金粉末にて形成された特殊な性質を持つ粉末冶金部材の開発を第2課題とするものである
【0005】
【課題を解決するための手段】
本発明は「重量%で、Cが2 . 0〜7 . 0重量%、Bが0 . 2〜3 . 0重量%、Siが1 . 0〜2 . 5重量%であり、残部がF e と不可避不純物とで構成され、金属組織内に微細グラファイトが形成されている」事を特徴とする。
【0006】
これによれば、いずれも共晶組成を含む高炭素含有鉄系合金組成であり、アモルファス化の可能な速度で急冷した場合、Bの添加により、共晶組成よりC含有量が少ない亜共晶組成の場合には初晶オーステナイトの析出が阻害され、或いは共晶組成よりC含有量が多 い過共晶の場合には黒鉛の析出が阻害され、共晶組成の場合はそのまま凝固してその全体或いは少なくともその表面層全体或いは表面層の一部がアモルファス化して、そのアモルファス化した部分が非常に高い硬度を示すようになる。
【0007】
ここでBの添加量は、0 . 2重量%以下の場合少なすぎて全くアモルファス化の効果を発揮せず、3 . 0重量%以上の場合はアニールしても微細グラファイトが析出せず、F e −B化合物とセメンタイトとが析出して非常に脆く且つ硬い金属組織となってしまい工業的用途がない。従って、本発明ではBの添加は0 . 2〜3 . 0重量%が採用された。
【0008】
そして、前記組成の本発明合金をアニーリングすると、まず、組織緩和が起こり、次にナノ結晶化が徐々に始まる。更にアニーリングを進めると、結晶成長と共に平均直径が1〜2μm(勿論、これより大きいもの或いは小さいものもある)の微細なグラファイトが金属組織全体に均一に析出し、残部がフェライト組織になり、組織的に柔らかくなり加工が可能となる。
【0009】
これを更に加熱すると前記微細なグラファイトが成長して大きな球状グラファイトを形成するようになる。特に、前記組成が共晶組成とその近傍の場合、前述の理由でアモルファス化し易い。Fe−C系平行状態図で見れば、C;4 . 3重量%の所が共晶点となるが、Fe−C−Si系平行状態図(Si;2重量%の場合)で見れば、C;3 . 5重量%の所が共晶点となる。尚、Siの含有量が増えると、共晶点は低炭素側に移動し、S i ;3 . 8重量%の場合には共晶点はC;3 . 0重量%の所が共晶点となる。
【0010】
そして前述のように「金属組織内に微細グラファイトを形成させた」場合には、柔らかいフェライト組織の中に微細なグラファイトが均一に分散しているので、例えばこの微細なグラファイトに潤滑油を含浸させることで、軸受け表面に加わる荷重はフェライト層で担持し、潤滑油を吸収保持しているグラファイト層から潤滑油を徐々に軸受け表面に放出して軸受け表面の摩耗を防ぎ、良好な無給油軸受けとする事ができる。
【0011】
請求項2は、請求項1の合金のアモルファス組織に関し「その表面層がアモルファス化されている」事を特徴とするもので、表面層全体或いはその一部がアモルファス化されているために表面硬度が著しく改善され、耐摩耗性が向上するのみならず、表面層全体がアモルファス化されている場合には結晶粒界が存在しないために耐食性も著しく改善される。
【0012】
請求項3は、本発明に係る合金を利用した「粉末冶金部材」で、このアモルファス化された合金粉末を、例えば軟鉄のようなバンイダ粉末と共に混練し、或いはアモルファス合金粉末だけで所定の形状に加圧圧縮成形してから焼結すると焼結工程でアモルファス化粉末中に微細グラファイトが析出する。この微細グラファイトに潤滑油を含浸した場合は良好な無給油軸受けとする事ができるし、そのままで使用した場合には微細グラファイトが振動吸収能を発揮するので、振動吸収部材としての働きをなす。
【0013】
請求項4は、「請求項3記載した合金粉末の少なくともその表面層がアモルファス化されている」事を特徴とする粉末冶金部材で、前述のように結晶粒界が存在しないために耐食性が著しく改善される。
【0014】
【発明の実施の形態】
以下、本発明を詳述する。本発明にかかる合金は、前述のように、Bを添加することによってアモルファス化が可能となったFe−Si−C系合金で、重量%で、Cが2.0〜7.0重量%、Bが0.2〜3.0重量%、Siが1.0〜2.5重量%であり、残部がFeと不可避不純物とで構成されている。
【0015】
前記組成中には鋳鉄組成(鋳鉄の化学組成は厳密に規定されておらず、その主たる組成はC、Si、Mn、P、Sで、前述の合金鋳鉄などではその目的とする用途に供するために例えば必要に応じてNi、Cr、Mo、V、Cu、Tiなどが添加される。鋳鉄組成の代表的ものとしてねずみ鋳鉄(引っ張り強さを基準にしてFC10、FC15、FC20、FC25、FC30、FC35で表される)がある。
【0016】
また、これに珪素鉄や珪酸カルシウム粉末を接種して黒鉛化を促進させ、黒鉛の形状を球状化(球状化黒鉛鋳鉄=FCD37、FCD40、FCD45、FCD50、FCD60、FCD70、FCD80などの記号で表される)や芋虫状或いは擬片状としたもの(例えば、ミーハーナイト鋳鉄=その材質種類はGE、GD、GC、GB、GA、GM、GS、GSH、GSFで表され、組織はGGS、GSH、GSFは球状黒鉛であり、その他は遊離セメンタイトとフェライトを含まない均一緻密なパーライト組織に芋虫状の黒鉛が一様に分布している)、各種合金元素(Ni、Cr、Mo、Ti、V、Cu等)を添加して普通鋳鉄では得られない機械的性質や耐食性その他各種性質を具備する合金鋳鉄《高力合金鋳鉄(例えばアシキュラー鋳鉄)、耐摩耗性鋳鉄、耐酸性鋳鉄》などがある。
【0017】
一般的には、鋳鉄は亜共晶から共晶領域で使用されるためC;2.8〜3.4重量%であるが、過共晶領域で使用される場合にはC;最大7.0重量%が採用される。Cの含有量が7.0重量%以上になると凝固組織がセメンタイト化して工業用途に耐えない。他の成分は、Si;1.4〜2.5重量%、Mn;0.4〜1.0重量%、P;0.3〜0.8重量%、S;0.1重量%以下で、前記合金鋳鉄などの用途には、例えば必要に応じてNi;1.0〜1.0重量%、Cr;0.2〜0.6重量%、Mo;0.1〜1.6重量%、V;0.1〜1.0重量%、Cu;0.1〜1.0重量%、Ti;0.01〜0.05重量%が添加される。
【0018】
前記鋳鉄組成のものは、Cが2.8〜4.4重量%(過共晶領域で使用される場合のCの最大含有量は7.0重量%である。)、Siが1.0〜2.5重量%、Bが0.2〜3.0重量%であり、その内、共晶組成である事が前述の理由から好ましい。前記組成において、Bの添加は、0.2重量%以下の場合少なすぎて全くアモルファス化の効果を発揮せず、3.0重量%以上の場合はアニールしても微細グラファイトが析出せず、セメンタイトとFe−B化合物が析出され、非常に硬く且つ脆い性質を示すので、工業用途には使用できない。
【0019】
前記鋳鉄組成のものは、いずれも共晶組成を含む幅広い共晶組成であり、アモルファス化可能な速度で急冷した場合、Bの添加により初晶オーステナイト或いは黒鉛の析出が阻害されてそのまま凝固しその全体或いは少なくともその表面部分全体或いはその一部がアモルファス化し、非常に高い硬度を呈するようになる。(アモルファス化していない部分は、鋳鉄組成の場合は、状態図或いはマウラー(Maurer)の組織図に従って所定の組成となる。)
【0020】
そして、このアモルファス化したものをアニーリング《例えば、A1点以上(一般的にはA1点+50℃程度)の温度でアニール(即ち、徐冷)》すると原子が移動し易くなって組織緩和が起こり、更に加熱するとナノ結晶が生じる。更に加熱を続けるとグラファイトが析出し結晶する。この段階のグラファイトは微細で1〜2μmの平均直径の微細なもので、且つフェライト組織全体に均一に分散して現れる。アニーリング組織は十分柔らかく機械加工も簡単に行える。そして、これを更に加熱すると結晶成長が起こり、且つグラファイトの凝集が起こり、大きな球状グラファイトが発生する。(図1参照)
【0021】
アニーリングしてグラファイト化した合金を再溶融してから急冷すれば再度アモルファス化する。再溶融は、試料全体を溶融する事は勿論であるが、例えばレーザーや高周波加熱のように表面層のみを加熱溶融してもよい。冷却方法は、アモルファス化に十分な冷却速度が得られれば足り、油冷、水冷、空冷などいずれの方法でもよい。
【0022】
本発明にかかる合金素材は、ブロックで使用する事も可能であるし、単ロール方式により成形される0.01〜0.5mm厚程度のリボン、噴霧衝撃微粉製造装置による平均粒度が5〜20μm程度の各粒度の粉体、双ロール方式或いは水中紡糸方式による直径0.01〜2mm程度の線材或いは棒材の形で使用される。
【0023】
直径が2mm以上のブロックの場合は、一般的に内部の冷却速度が不十分であるため、内部はフェライト中に黒鉛が析出した組織となるが、表面層は冷却速度が十分であるためアモルファス化する。冷却は、空冷、水冷、或いは油冷のいずれでもよく、冷却速度が十分であればよい。前記リボン及び線材或いは棒材は、中心部でも冷却速度は十分であるため、中心までアモルファス化する。アモルファス表面の硬度はFe3Cより硬く優れた耐摩耗性を示す。また、表面全体がアモルファス化されている場合は、結晶金属のような結晶粒界がないので、アモルファス特有の耐食性を示す。
【0024】
(実施例)Fe;92.6重量%、C;3.5重量%、Si;2.7重量%、P;0.1重量%、Mn;0.07重量%の鋳鉄にB;(a)0重量%、(b)0.2重量%、(c)0.5重量%、(d)1.0重量%、(e)2.0重量%、(f)3.0重量%、(g)4.0重量%、を添加して、鋳鉄リボン(厚さ0.1mm)を単ロール方式で調製し試料(a)とし、アモルファス化を調べ、更にこれを1150Kでアニールしてグラファイトの析出状態を調べた。B添加量が0重量%の試料(a)は、アモルファス化せず、最初から大きいグラファイトが析出した。B添加量が0.2重量%〜4.0重量%の試料(b)〜(g)迄は急冷によってアモルファス化した。
【0025】
これを1150Kでアニールすると、B添加量の少ないものほどグラファイトの析出量が大きく、Bの添加量が増すほどグラファイトの析出量は減少し、4.0重量%の試料(g)ではセメンタイトとFe−B化合物となり、殆どグラファイトの析出は見られなかった。析出したグラファイトは平均粒度1〜2μmの微細なもので、フェライト組織中に均一に分散し、アニールの進行と共に凝集して粗大化した。前記傾向はCを変えた場合でも同様で、Fe−C系合金の場合には2.0〜7.0重量%で同様の作用が見られ、Fe−Si−C系合金では、Cが2.0〜7.0重量%、Siが1.0〜2.5重量%で同様の作用が見られた。C量が多い場合にはB量が多い方が好ましい。なお、前記の場合において、残部はFeと不可避不純物である。
【0026】
又、Fe;92.6重量%、C;3.5重量%、Si;2.7重量%、P;0.1重量%、Mn;0.07重量%の鋳鉄にB;1.3重量%を加えたものの硬度を調べた処、アーク溶解した母合金(非アモルファス状態)の硬度は、Hv423であったものが、アモルファス化させ、アモルファス部分の硬度を調べた処、Hv1132であり、非常に高い硬度を示している。これを1000℃でアニールしてグラファイトを析出させると、Hv312と軟化し、ほぼ母合金と同じ硬度を示すようになった。前記傾向はCを変えた場合でも同様であった。
【0027】
実施例のアモルファス化している鋳鉄リボンをアニールしたのが図1で、結晶化挙動分析法による。横軸にアニール温度、縦軸にDSC mJ/Sを取った。このグラフにおいて、558.6Kにおいて組織緩和のピークを迎え、続いて782.4Kでナノ結晶化のピークを迎え、その後900K当たりからグラファイトの析出が始まり、金属組織のフェライト化が進行する。1050K近辺でグラファイトの析出が完了し、以後はグラファイトの凝集と結晶粒の成長が起こる。
【0028】
次に、本発明合金による製品例を説明する。図2は例えば軸受けのようなものに使用される円筒状部材(1)で、図2(a)は本発明合金の粉末を加圧圧縮成形したものである。粉末は十分微細であり、全体がアモルファス化している。これをアニールすると前述のように組織緩和を経て微細グラファイト(2)の析出が見られ、これに潤滑油を含浸させることで、例えば優れた軸受けとする事ができる。また、アニール部材をそのままで使用した場合には微細グラファイト(2)(12)が振動吸収能を発揮するので、例えば楽器や音響機器の振動吸収部材としての働きをなす。
【0029】
尚、この場合では、微細グラファイト(2)が全体に分散した状態で析出しているので、このグラファイト(2)が図2(c)に示す従来の成長型含油軸受け(1')内全体に縦横に析出している大きな片状黒鉛(2')が亀裂のような欠陥として働かず、潤滑性を高める事ができるにも拘わらず、強度の低下を招かない。従って、重荷重が加わるような箇所にも十分使用する事ができる。これに対して図2(c)の場合は前記成長片状黒鉛(2')が前述のように欠陥となり強度低下の原因となるため、重荷重が加わるような部分には不向きである。
【0030】
図3は、板状部材(10)の場合で、アモルファス化した板状部材(10a)をそのまま使用する場合は、耐摩耗性用途或いは耐食性用途に使用される。(図3(a1))(図3(b))は、これをアニールしてナノ結晶(11)を晶出させた場合で、この板状部材を(10b)で示す。更にアニールして微細グラファイト(12)をフェライト結晶中(13)に均一分散状態で析出させると、前記同様摺動板のような部材(10c)として使用される。(図3(c))
【0031】
又、そのような部材(10c)或いはこれを更にアニールしてグラファイトを凝集させたもの(12a)の板状材(10d)(図3(d))の表面の全部或いは必要箇所にレーザー光線を照射して照射部分のみを溶融させ、急冷した場合は該急冷層(14)がアモルファス化する。これにより、照射部分だけがアモルファス状態の部材(10e)を得ることができる。(図3(e))表面層だけの溶融は、レーザー照射の他に高周波誘導加熱などによっても可能である。板材(10)の場合は、鋳造や粉末冶金或いは単ロール法或いは双ロール法などの方法により製造され、筒状部材(1)の場合は粉末冶金によって製造される。
【0032】
前記粉末冶金に使用される合金粉末は、本発明合金を溶融し、アトマイズ法や傘状の回転ロールに溶湯液滴を噴射することにより、微粉化すると同時に臨界冷却速度以上の速度で冷却して微細アモルファス合金粉末を得る。
【0033】
【発明の効果】
本発明合金によれば、Bを0.2〜3.0重量%添加する事により、急冷するとアモルファス状態にする事が出来、これをアニールすることで、フェライト組織中に微細グラファイトを析出させる事が出来、例えば良好な無給油軸受けや摺動板或いは振動吸収部材とする事ができる。
【図面の簡単な説明】
【図1】本発明合金をアニールした場合の状態変化を示すグラフ
【図2】本発明合金を円筒状にした場合の斜視図で、(a)は表面がアモルファス層となっている場合であり、(b)はアモルファス表面層が結晶化すると同時に微細グラファイトを析出した状態であり、(c)は従来の片状黒鉛来朝型含油軸受けである。
【図3】本発明合金を板状部材とした場合の斜視図で、(a1)は全体かアモルファス状態の板状部材、(a2)は本発明合金粉末を固めて板状部材とした場合、(b)は(a1)の板状部材をアニールしてナノ結晶を晶出させた状態、(c)は更にアニールしてフェライト結晶中に微細グラファイトを均一分散晶出させた状態、(d)はこれを更にアニールしてグラファイトとフェライト結晶を成長させた場合、(e)は(d)の部材の表面にレーザーを照射して溶融し、この溶融層を急冷してアモルファス層とした場合、(f)は更にこれをアニールしてアモルファス層を分解して微細グラファイトをフェライト層に分散晶出させた場合である。
【符号の説明】
(1)…円筒状部材
(2)(12)…微細グラファイト
(10)…板状部材
(10a)…アモルファス化した板状部材
(10b)…ナノ結晶を晶出させた板状部材
(10c)…アニールして微細グラファイトをフェライト結晶中に均一分散状態で析出させた板状部材
(10d)…更にアニールしてグラファイトが凝集して粗大化した場合の板状部材
(10e)…照射部分だけがアモルファス状態の板状部材
(10f)…必要箇所がアモルファス化した板状部材
(10a1)…粉末冶金部材
[0001]
[Industrial application fields]
The present invention relates to a high-carbon iron-based amorphous alloy that can be amorphized and can uniformly disperse fine graphite in a metal structure by annealing from an amorphous state, and a powder metallurgy member using the powder alloy. "
[0002]
[Prior art]
At present, research on Fe-based amorphous alloys based on iron, which is most widely used as an industrial material and is the most important industrial material, has been actively conducted. However the current treatment, albeit reports of what part of that composition to Fe, Ri mostly iron der ingredients, for example, reports on high-carbon Fe-based amorphous alloy, such as steel or cast iron is not.
[0003]
On the other hand, it has been known from previous studies on amorphous that the smaller the critical cooling rate, the easier it becomes amorphous. In metallography, eutectic points, that is, two or more phases, coagulate and mix simultaneously at the same temperature. One of these points is considered to be a new organization. In other words, since the melting point is considerably reduced in the vicinity of the eutectic structure, the temperature difference between the melting point and the glass transition point becomes small, and this temperature region can be passed quickly, and as a result, it is said that it is easy to become amorphous. .
[0004]
[Problems to be solved by the invention]
The problem to be solved by the present invention is to focus on the eutectic composition of cast iron, and the Fe-C-Si-based alloy composition occupying the majority of the iron content can be amorphized, and an iron-based amorphous in which fine graphite is generated inside The development of alloys is the first issue, and the development of powder metallurgical members with special properties made of such alloys or alloy powders and at least the surface of which is amorphized is used. It is to be an issue .
[0005]
[Means for Solving the Problems]
The present invention is a "weight%, C is from 2.0 to 7.0 wt%, B is from 0.2 to 3.0 wt%, Si is 1.0 to 2.5 wt%, the balance being F e And inevitable impurities, and fine graphite is formed in the metal structure.
[0006]
According to this, both are high carbon-containing iron-based alloy compositions including a eutectic composition, and when quenched at a rate capable of amorphization, the addition of B causes a hypoeutectic with less C content than the eutectic composition. precipitation of primary crystal austenite is inhibited in the case of the composition, or in the case of the C content is not multi hypereutectic than the eutectic composition is inhibited precipitation of graphite, in the case of eutectic composition it coagulates the The whole or at least the entire surface layer or a part of the surface layer is amorphized, and the amorphized portion exhibits a very high hardness.
[0007]
Amount of wherein B is 0. If 2 wt% or less without effective entirely too little amorphous 3. 0 for wt% or more without even precipitation of fine graphite annealed, F The e- B compound and cementite precipitate to form a very brittle and hard metal structure, and there is no industrial use. Accordingly, the present invention is the addition of B 0. 2 to 3. 0 wt% is employed.
[0008]
When the alloy of the present invention having the above composition is annealed, first, the structure relaxation occurs, and then nanocrystallization gradually starts. When annealing is further advanced, fine graphite having an average diameter of 1 to 2 μm (of course, there are also larger or smaller ones) precipitates uniformly on the entire metal structure as the crystal grows, and the remainder becomes a ferrite structure. It becomes softer and can be processed.
[0009]
When this is further heated, the fine graphite grows to form large spherical graphite. In particular, when the composition is a eutectic composition and its vicinity, it is likely to be amorphous due to the above-described reason. If you look at the Fe-C-based parallel state diagram, C;. 4 but 3 wt% where is the eutectic point, Fe-C-Si based parallel state diagram; if you look at (Si case of 2 wt.%), C;. 3 of 5 wt% where there is a eutectic point. Incidentally, the content of Si increases, the eutectic point is moved to the low-carbon side, S i;. 3 8 is eutectic point in the case of wt% C;. 3 0 wt% at the eutectic point It becomes.
[0010]
As described above, when “fine graphite is formed in the metal structure”, fine graphite is uniformly dispersed in the soft ferrite structure. For example, this fine graphite is impregnated with lubricating oil. Therefore, the load applied to the bearing surface is supported by the ferrite layer, and the lubricating oil is gradually released from the graphite layer that absorbs and holds the lubricating oil to the bearing surface to prevent wear of the bearing surface. I can do it.
[0011]
Claim 2 is characterized in that “the surface layer is amorphized” with respect to the amorphous structure of the alloy of claim 1, and since the entire surface layer or part thereof is amorphized, the surface hardness Not only improves the wear resistance, but also improves the corrosion resistance when the entire surface layer is amorphized, since there are no crystal grain boundaries.
[0012]
Claim 3 is a “powder metallurgy member” using an alloy according to the present invention, wherein the amorphous alloy powder is kneaded with a vanida powder such as soft iron, or is formed into a predetermined shape only with the amorphous alloy powder. When sintering after pressure compression molding, fine graphite is precipitated in the amorphized powder during the sintering process. When this fine graphite is impregnated with lubricating oil, a good oil-free bearing can be obtained, and when it is used as it is, the fine graphite exhibits a vibration absorbing ability, and thus functions as a vibration absorbing member.
[0013]
Claim 4 is a powder metallurgy member characterized in that “at least the surface layer of the alloy powder described in claim 3 is amorphized”, and has no remarkable grain resistance as described above, since there is no crystal grain boundary. Improved.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. As described above, the alloy according to the present invention is an Fe-Si-C-based alloy that can be made amorphous by adding B. The alloy is wt% and C is 2.0 to 7.0 wt%. B is 0.2 to 3.0% by weight, Si is 1.0 to 2.5% by weight, and the balance is composed of Fe and inevitable impurities.
[0015]
In the above composition, the cast iron composition (the chemical composition of cast iron is not strictly defined, the main composition is C, Si, Mn, P, S, and the above-mentioned alloy cast iron, etc., for its intended use. For example, if necessary, Ni, Cr, Mo, V, Cu, Ti, etc. are added as gray cast iron (FC10, FC15, FC20, FC25, FC30, based on tensile strength) as a representative cast iron composition. Represented by FC35).
[0016]
Moreover, silicon iron or calcium silicate powder is inoculated into this to promote graphitization, and the shape of graphite is spheroidized (spheroidized graphite cast iron = FCD37, FCD40, FCD45, FCD50, FCD60, FCD70, FCD80, etc.) ), Worm-like or pseudo-piece-shaped (for example, mehernite cast iron = material type is represented by GE, GD, GC, GB, GA, GM, GS, GSH, GSF, and the structure is GGS, GSH) , GSF is spheroidal graphite, others are worm-like graphite uniformly distributed in uniform dense pearlite structure that does not contain free cementite and ferrite, various alloy elements (Ni, Cr, Mo, Ti, V , Cu, etc.) alloy cast iron << high strength alloy cast iron (for example, acicular) with mechanical properties, corrosion resistance and other properties that cannot be obtained with ordinary cast iron Iron), wear resistance cast iron, acid resistance cast iron "and the like.
[0017]
Generally, cast iron is used in the hypoeutectic to eutectic region, so C; 2.8-3.4 wt%, but when used in the hypereutectic region, C; up to 7. 0% by weight is employed. When the C content is 7.0% by weight or more, the solidified structure becomes cementite and cannot withstand industrial use . The other components are Si; 1.4 to 2.5% by weight, Mn; 0.4 to 1.0% by weight, P; 0.3 to 0.8% by weight, S; For applications such as the alloy cast iron, for example, Ni: 1.0 to 1.0% by weight, Cr: 0.2 to 0.6% by weight, Mo; 0.1 to 1.6% by weight as necessary. V: 0.1 to 1.0% by weight; Cu; 0.1 to 1.0% by weight; Ti; 0.01 to 0.05% by weight.
[0018]
In the cast iron composition, C is 2.8 to 4.4% by weight (the maximum content of C when used in the hypereutectic region is 7.0% by weight), and Si is 1.0. -2.5 wt%, B is 0.2-3.0 wt%, of which eutectic composition is preferred for the reasons described above. In the above composition, the addition of B is too small in the case of 0.2% by weight or less and does not exhibit the effect of amorphization at all. In the case of 3.0% by weight or more, fine graphite does not precipitate even when annealed. Cementite and Fe-B compounds are precipitated and are very hard and brittle, so they cannot be used for industrial applications.
[0019]
All of the cast iron compositions have a wide range of eutectic compositions including eutectic compositions. When quenched at a rate capable of becoming amorphous, the addition of B inhibits the precipitation of primary austenite or graphite and solidifies as it is. The entire surface or at least the entire surface portion or a part thereof becomes amorphous and exhibits a very high hardness. (In the case of a cast iron composition, the non-amorphous part has a predetermined composition according to the phase diagram or Maurer's structure diagram.)
[0020]
Then, when this amorphous material is annealed (for example, annealed at a temperature of A1 point or higher (generally about A1 point + 50 ° C.) (ie, slowly cooled)), atoms easily move and the structure is relaxed. Further heating produces nanocrystals. When heating is continued, graphite precipitates and crystallizes. The graphite at this stage is fine and has an average diameter of 1 to 2 μm, and appears uniformly dispersed throughout the ferrite structure. The annealing structure is soft enough to be machined easily. When this is further heated, crystal growth occurs, and graphite agglomerates, generating large spherical graphite. (See Figure 1)
[0021]
If the alloy that has been annealed and graphitized is remelted and then rapidly cooled, it becomes amorphous again. In remelting, the entire sample is naturally melted, but only the surface layer may be heated and melted, for example, by laser or high-frequency heating. The cooling method is sufficient as long as a cooling rate sufficient for amorphization is obtained, and any method such as oil cooling, water cooling, and air cooling may be used.
[0022]
The alloy material according to the present invention can be used in a block, or a ribbon having a thickness of about 0.01 to 0.5 mm formed by a single roll method, and an average particle size of 5 to 20 μm by a spray impact fine powder production apparatus. It is used in the form of powders of various particle sizes, wire rods or rods having a diameter of about 0.01 to 2 mm by a twin roll method or an underwater spinning method.
[0023]
In the case of a block having a diameter of 2 mm or more, since the internal cooling rate is generally insufficient, the inside becomes a structure in which graphite is precipitated in ferrite, but the surface layer is made amorphous because the cooling rate is sufficient. To do. The cooling may be any of air cooling, water cooling, and oil cooling as long as the cooling rate is sufficient. The ribbon and the wire or rod are made amorphous to the center because the cooling rate is sufficient even in the center. The hardness of the amorphous surface is harder than Fe 3 C and exhibits excellent wear resistance. In addition, when the entire surface is amorphized, there is no crystal grain boundary like a crystalline metal, so that the corrosion resistance peculiar to amorphous is shown.
[0024]
(Example) Fe: 92.6% by weight, C: 3.5% by weight, Si: 2.7% by weight, P: 0.1% by weight, Mn: 0.07% by weight, B: (a ) 0 wt%, (b) 0.2 wt%, (c) 0.5 wt%, (d) 1.0 wt%, (e) 2.0 wt%, (f) 3.0 wt%, (g) A cast iron ribbon (thickness: 0.1 mm) is prepared by a single roll method by adding 4.0% by weight and used as a sample (a) to examine amorphization, which is further annealed at 1150K and graphite. The precipitation state of was investigated. Sample (a) in which the amount of B added was 0% by weight did not become amorphous and large graphite precipitated from the beginning. Samples (b) to (g) having B addition amounts of 0.2 wt% to 4.0 wt% were made amorphous by rapid cooling.
[0025]
When this was annealed at 1150 K, the smaller the amount of B added, the larger the amount of graphite precipitated, and the larger the amount of B added, the smaller the amount of graphite precipitated. In the 4.0 wt% sample (g), cementite and Fe It became a -B compound, and precipitation of graphite was hardly seen. The precipitated graphite was fine with an average particle size of 1 to 2 μm, was uniformly dispersed in the ferrite structure, and agglomerated and coarsened with the progress of annealing. This tendency is the same even when C is changed. In the case of an Fe-C alloy, the same effect is observed at 2.0 to 7.0% by weight. In the Fe-Si-C alloy, C is 2 Similar effects were observed at 0.0 to 7.0 wt% and Si at 1.0 to 2.5 wt%. When the amount of C is large, it is preferable that the amount of B is large. In the above case, the balance is Fe and inevitable impurities.
[0026]
In addition, Fe; 92.6% by weight, C; 3.5% by weight, Si; 2.7% by weight, P: 0.1% by weight, Mn: 0.07% by weight, B: 1.3% by weight %, The hardness of the arc-melted master alloy (non-amorphous state) was Hv 423, but the amorphous part was examined and the hardness of the amorphous part was examined. Shows high hardness. When this was annealed at 1000 ° C. to precipitate graphite, it softened with Hv 312 and showed almost the same hardness as the mother alloy. The tendency was the same even when C was changed.
[0027]
FIG. 1 shows the annealing of the amorphized cast iron ribbon in the example, which is based on the crystallization behavior analysis method. The horizontal axis represents the annealing temperature, and the vertical axis represents DSC mJ / S. In this graph, a structure relaxation peak is reached at 558.6K, followed by a nanocrystallization peak at 782.4K. Thereafter, precipitation of graphite starts around 900K, and ferrite formation of the metal structure proceeds. Graphite precipitation is completed at around 1050 K, and thereafter graphite agglomeration and crystal grain growth occur.
[0028]
Next, product examples using the alloy of the present invention will be described. FIG. 2 shows a cylindrical member (1) used for a bearing, for example, and FIG. 2 (a) shows a pressure-compression-molded powder of the alloy of the present invention. The powder is sufficiently fine and the whole is amorphous. When this is annealed, fine graphite (2) is precipitated through the structure relaxation as described above, and by impregnating this with a lubricating oil, for example, an excellent bearing can be obtained. Further, when the annealed member is used as it is, the fine graphite (2) (12) exhibits a vibration absorbing ability, and thus functions as a vibration absorbing member for a musical instrument or an acoustic device, for example.
[0029]
In this case, since the fine graphite (2) is precipitated in a dispersed state, the graphite (2) is distributed throughout the conventional growth type oil-impregnated bearing (1 ') shown in FIG. 2 (c). The large flake graphite (2 ′) precipitated vertically and horizontally does not work as a defect such as a crack, and the lubricity can be improved, but the strength is not lowered. Therefore, it can be used sufficiently even in places where heavy loads are applied. On the other hand, in the case of FIG. 2 (c), the flake graphite (2 ′) becomes a defect as described above and causes a decrease in strength, and is not suitable for a portion where a heavy load is applied.
[0030]
FIG. 3 shows the case of the plate member (10). When the amorphous plate member (10a) is used as it is, it is used for wear resistance or corrosion resistance. (FIG. 3 (a1)) (FIG. 3 (b)) shows the case where the nanocrystal (11) is crystallized by annealing this, and this plate-like member is indicated by (10b). When further annealed to precipitate fine graphite (12) in the ferrite crystal (13) in a uniformly dispersed state, it is used as a member (10c) like a sliding plate as described above. (Figure 3 (c))
[0031]
Also, the laser beam is applied to all or necessary portions of the surface of such a member (10c) or a plate-like material (10d) (12a) obtained by further annealing and agglomerating graphite (12a). Then, when only the irradiated part is melted and quenched, the quenched layer (14) becomes amorphous. Thereby, it is possible to obtain a member (10e) in which only the irradiated portion is in an amorphous state. (FIG. 3 (e)) Only the surface layer can be melted by high-frequency induction heating or the like in addition to laser irradiation. In the case of the plate member (10), it is manufactured by a method such as casting, powder metallurgy, single roll method or twin roll method, and in the case of the cylindrical member (1), it is manufactured by powder metallurgy.
[0032]
The alloy powder used in the powder metallurgy is melted at the same time as the atomization method or by spraying molten liquid droplets onto an umbrella-shaped rotating roll, and at the same time, cooled at a speed equal to or higher than the critical cooling rate. A fine amorphous alloy powder is obtained.
[0033]
【The invention's effect】
According to the alloy of the present invention, by adding 0.2 to 3.0% by weight of B, it can be brought into an amorphous state when rapidly cooled, and by annealing this, fine graphite is precipitated in the ferrite structure. For example, a good oil-free bearing, a sliding plate, or a vibration absorbing member can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph showing a state change when an alloy of the present invention is annealed. FIG. 2 is a perspective view when the alloy of the present invention is formed into a cylindrical shape. FIG. 1 (a) is a case where the surface is an amorphous layer. (B) is a state where the amorphous surface layer is crystallized and fine graphite is deposited at the same time, and (c) is a conventional flake graphite next-morrow type oil-impregnated bearing.
FIG. 3 is a perspective view when the alloy of the present invention is used as a plate member, (a1) is a plate member in the whole or amorphous state, and (a2) is a plate member formed by solidifying the alloy powder of the present invention. (b) is a state where the plate member of (a1) is annealed to crystallize nanocrystals, (c) is a state where further annealing is performed to finely disperse fine graphite in the ferrite crystal, (d) When this is further annealed to grow graphite and ferrite crystals, (e) is melted by irradiating the surface of the member of (d) with a laser, and when this molten layer is rapidly cooled to an amorphous layer, (f) is a case where this is further annealed to decompose the amorphous layer and cause fine graphite to disperse and crystallize in the ferrite layer.
[Explanation of symbols]
(1)… Cylindrical member
(2) (12) ... fine graphite
(10) Plate member
(10a) ... Amorphized plate member
(10b) ... Plate-shaped member crystallized from nanocrystals
(10c): A plate-like member in which fine graphite is annealed and precipitated in a ferrite crystal in a uniformly dispersed state
(10d): Plate member when graphite is further aggregated and coarsened by annealing
(10e)… A plate-like member in which only the irradiated part is in an amorphous state
(10f) ... Plate-shaped member where necessary parts are made amorphous
(10a1) ... Powder metallurgy member

Claims (4)

重量%で、Cが2.0〜7.0重量%、Bが0.2〜3.0重量%、Siが1.0〜2.5重量%であり、残部がFeと不可避不純物とで構成され、金属組織内に平均粒度1〜2μmの微細グラファイトが形成されている事を特徴とするFe−Si−C系アモルファス合金。C is 2.0 to 7.0% by weight, B is 0.2 to 3.0% by weight, Si is 1.0 to 2.5% by weight, and the balance is Fe and inevitable impurities. An Fe-Si-C-based amorphous alloy, characterized in that fine graphite having an average particle size of 1 to 2 [ mu] m is formed in a metal structure. 請求項1に記載した合金の少なくともその表面層がアモルファス化されている事を特徴とするFe−Si−C系アモルファス合金。  An Fe-Si-C amorphous alloy characterized in that at least the surface layer of the alloy according to claim 1 is amorphized. 請求項1に記載の合金粉末にて形成された粉末冶金部材。  A powder metallurgy member formed of the alloy powder according to claim 1. 請求項3記載した合金粉末の少なくともその表面層がアモルファス化されている事を特徴とする粉末冶金部材。  A powder metallurgy member, wherein at least a surface layer of the alloy powder according to claim 3 is amorphized.
JP07342098A 1998-03-06 1998-03-06 Fe-Si-C amorphous alloy and powder metallurgy member using the alloy Expired - Lifetime JP3695935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07342098A JP3695935B2 (en) 1998-03-06 1998-03-06 Fe-Si-C amorphous alloy and powder metallurgy member using the alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07342098A JP3695935B2 (en) 1998-03-06 1998-03-06 Fe-Si-C amorphous alloy and powder metallurgy member using the alloy

Publications (2)

Publication Number Publication Date
JPH11256277A JPH11256277A (en) 1999-09-21
JP3695935B2 true JP3695935B2 (en) 2005-09-14

Family

ID=13517719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07342098A Expired - Lifetime JP3695935B2 (en) 1998-03-06 1998-03-06 Fe-Si-C amorphous alloy and powder metallurgy member using the alloy

Country Status (1)

Country Link
JP (1) JP3695935B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522879B1 (en) * 2012-05-30 2015-05-26 (주)제이엠씨 Chemical composition and fabrication method of hard fe-based materials with amorphous phases

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358298B1 (en) 1999-07-30 2002-03-19 Quebec Metal Powders Limited Iron-graphite composite powders and sintered articles produced therefrom
WO2014044692A1 (en) * 2012-09-21 2014-03-27 Höganäs Ab (Publ) New powder, powder composition, method for use thereof and use of the powder and powder composition
US11685982B2 (en) * 2016-10-17 2023-06-27 Tenneco Inc. Free graphite containing powders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522879B1 (en) * 2012-05-30 2015-05-26 (주)제이엠씨 Chemical composition and fabrication method of hard fe-based materials with amorphous phases

Also Published As

Publication number Publication date
JPH11256277A (en) 1999-09-21

Similar Documents

Publication Publication Date Title
JP5308916B2 (en) Soft magnetic powder for dust magnetic body and dust magnetic body using the same
KR100690281B1 (en) Fe-based bulk amorphous alloy compositions containing more than 5 elements and composites containing the amorphous phase
US5419789A (en) Aluminum-based alloy with high strength and heat resistance containing quasicrystals
JPH0239563B2 (en)
EP0093487B1 (en) Nickel-based alloy
JP4693853B2 (en) As-cast high-strength spheroidal graphite cast iron and method for producing the same
IE52603B1 (en) Process for the production of amorphous metal alloys based on iron,phosphorus,carbon and chromium
JP3695935B2 (en) Fe-Si-C amorphous alloy and powder metallurgy member using the alloy
GB2088409A (en) Dispersion Strengthened Aluminium Alloy Article and Method
Bahadur et al. The development of Fe-Al intermetallics
JP3737803B2 (en) Spherical vanadium carbide-containing high manganese cast iron material and method for producing the same
JP2000104138A (en) Cast iron material excellent in vibration damping performance and strength
JPH05125474A (en) Aluminum-base alloy combining high strength with high toughness
Stefanescu Classification and basic types of cast iron
JP6756179B2 (en) Fe-based alloy composition
JP3723706B2 (en) High-strength spheroidal graphite cast iron and method for producing the same
JPS6237335A (en) Aluminum alloy having high corrosion resistance and strength
CA1195863A (en) Amorphous metals and articles made thereof
WO2022070508A1 (en) Soft magnetic material, soft magnetic material manufacturing method, and electric motor
JP4020277B2 (en) Cast iron composite manufacturing method
JPH10330817A (en) Eutectic graphite case iron and production thereof
JPH09235609A (en) Production of cast iron
Badmos et al. Multiple inoculations of ductile iron and the effects on properties
Das et al. Rapid solidification of cast iron-some new observations
JPS6393840A (en) Low-thermal expansion cast iron

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5