JP6328968B2 - Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron - Google Patents

Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron Download PDF

Info

Publication number
JP6328968B2
JP6328968B2 JP2014057759A JP2014057759A JP6328968B2 JP 6328968 B2 JP6328968 B2 JP 6328968B2 JP 2014057759 A JP2014057759 A JP 2014057759A JP 2014057759 A JP2014057759 A JP 2014057759A JP 6328968 B2 JP6328968 B2 JP 6328968B2
Authority
JP
Japan
Prior art keywords
cast iron
graphite cast
spheroidal graphite
area ratio
pearlite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014057759A
Other languages
Japanese (ja)
Other versions
JP2015183198A (en
Inventor
光二 中本
光二 中本
佳和 西原
佳和 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2014057759A priority Critical patent/JP6328968B2/en
Publication of JP2015183198A publication Critical patent/JP2015183198A/en
Application granted granted Critical
Publication of JP6328968B2 publication Critical patent/JP6328968B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

この発明は、例えば鋳鉄管等に使用される球状黒鉛鋳鉄、及びこの球状黒鉛鋳鉄の製造方法に関する。   The present invention relates to a spheroidal graphite cast iron used for, for example, cast iron pipes, and a method for producing the spheroidal graphite cast iron.

一般的な球状黒鉛鋳鉄は、JIS規格のFCD350、FCD400、FCD450等の高靱性タイプのものや、FCD600、FCD700、FCD800等の高強度タイプのものがある。主に水道管用として鋳造されるダクタイル鋳鉄については、これらの中で強度と伸びのバランスが比較的良好なFCD450(引張り強さ450MPa以上、伸び10%以上)が選択される。これに対し、スラリー状物質や摩耗性の高い硬質物質等を輸送する用途には高硬度のものが、自動車部品や建機部品等の素材としての用途には高強度かつ高耐力のものがそれぞれ選択される。   Common spheroidal graphite cast irons include high toughness types such as JIS standards FCD350, FCD400, and FCD450, and high strength types such as FCD600, FCD700, and FCD800. For ductile cast iron mainly cast for water pipes, FCD450 (tensile strength of 450 MPa or more and elongation of 10% or more) having a relatively good balance between strength and elongation is selected. On the other hand, high hardness materials are used for transporting slurry-like materials and hard materials with high wear resistance, and high strength and high strength materials are used for materials such as automobile parts and construction machinery parts. Selected.

ダクタイル鋳鉄の鋳造においては、その鋳放し組織のマトリックス(基地)の主体はパーライトであり、例えば金型遠心鋳造でダクタイル鉄管を鋳造したときのように、その鋳造の際の冷却速度が大きい場合には、安定系の黒鉛に加え、準安定系のセメンタイトが同時に多く晶出した斑構造となる。このセメンタイトは伸びの阻害要因となるため、FCD450タイプに要求される強度と伸びの両立を図るために、セメンタイトの分解及びマトリックスのフェライト化を目的とした焼鈍が必要となる。   In the casting of ductile cast iron, the matrix (base) of the as-cast structure is pearlite. For example, when ductile iron pipes are cast by centrifugal mold casting, the cooling rate during casting is high. Has a plaque structure in which a large amount of metastable cementite is crystallized simultaneously with stable graphite. Since this cementite becomes an obstructive factor for elongation, annealing for the purpose of decomposition of cementite and ferrite formation of the matrix is required in order to achieve both strength and elongation required for the FCD450 type.

ダクタイル鋳鉄の焼鈍は、一般的には連続炉若しくはバッチ炉で行われる。焼鈍炉において、ダクタイル鋳鉄は、オーステナイト化温度域以上(870℃以上)に加熱される。これによりセメンタイトを完全に分解し、基地組織のオーステナイト化を行う。このセメンタイトの分解は、処理温度と処理時間に依存し、処理温度が高いほど処理時間を短くすることができる一方で、処理温度が低いほど長い処理時間を要する。焼鈍炉は、炉内の均一な温度コントロールが困難であることが多い。このため、セメンタイトを確実にオーステナイト化するために、処理温度及び処理時間を決定する必要がある。   Ductile cast iron is generally annealed in a continuous furnace or a batch furnace. In the annealing furnace, the ductile cast iron is heated to an austenitizing temperature range or higher (870 ° C. or higher). As a result, cementite is completely decomposed and the base structure is austenitized. This decomposition of cementite depends on the processing temperature and processing time, and the processing time can be shortened as the processing temperature is higher, while the processing time is longer as the processing temperature is lower. In an annealing furnace, uniform temperature control in the furnace is often difficult. For this reason, in order to make a cementite austenite reliably, it is necessary to determine processing temperature and processing time.

基地組織のオーステナイト化を完了したら、このオーステナイトからフェライトを析出させるため、共析変態点付近(680〜750℃程度)の温度域を一定時間保持するか、この共析変態点付近を徐冷する熱処理を行う。この際の保持時間や冷却速度により、フェライト析出量が決定される。すなわち、保持時間が長いほど、又は冷却速度が小さいほどフェライト析出量は増大する一方で、保持時間が短いほど、又は冷却速度が大きいほどフェライト析出量は減少し、マトリックスの主体はパーライトとなる。   When the austenite of the base structure is completed, in order to precipitate ferrite from this austenite, the temperature range near the eutectoid transformation point (about 680 to 750 ° C.) is maintained for a certain time, or the vicinity of this eutectoid transformation point is gradually cooled. Heat treatment is performed. The ferrite precipitation amount is determined by the holding time and the cooling rate at this time. That is, as the holding time is longer or the cooling rate is lower, the ferrite precipitation amount is increased. On the other hand, as the holding time is shorter or the cooling rate is higher, the ferrite precipitation amount is reduced, and the matrix is mainly pearlite.

この熱処理においては、厳密に温度コントロールを行ってフェライトとパーライトの量を細かくコントロールすることが困難なため、基本的にはフェライトが主体となる条件で焼鈍を実施して靱性の確保を図っている。   In this heat treatment, it is difficult to finely control the amount of ferrite and pearlite by strictly controlling the temperature. Therefore, annealing is basically performed under conditions mainly composed of ferrite to ensure toughness. .

ダクタイル鋳鉄において、FCD600、FCD700、FCD800といった高強度タイプのものが要求される場合は、マトリックスのパーライト化が必要となる。このパーライト化の方法には、熱処理条件の制御のみで行う場合と、パーライト化を促進するMn、Cr、Cu、Sn等を添加する場合がある。このようにして製造した一般的な球状黒鉛鋳鉄は、その強度によらず耐力比(耐力/引張り強さ)が0.5〜0.6程度に留まり、FCD450と比較して向上することはない。   When ductile cast iron is required to have a high strength type such as FCD600, FCD700, and FCD800, the matrix needs to be made pearlite. This pearlite method may be performed only by controlling the heat treatment conditions, or may be added with Mn, Cr, Cu, Sn or the like that promotes pearlite. The general spheroidal graphite cast iron produced in this way has a yield ratio (yield / tensile strength) of about 0.5 to 0.6 regardless of its strength, and does not improve compared to FCD450. .

近年、自動車部品や建機部品の素材等に用いられる球状黒鉛鋳鉄においては、高強度のみならず、高耐力すなわち高い耐力比(0.7以上)を備えていることが要求されている。この耐力比を向上させるために、オーステンパ処理や、低炭素マルテンサイトの形成を目的とした焼入れ、焼き戻し処理等の特殊な熱処理が行われることがある。また、特許文献1に示すように、Ni等のレアメタルを添加してマトリックスの改良が行なわれることもある。   In recent years, spheroidal graphite cast iron used for materials of automobile parts and construction equipment parts is required to have not only high strength but also high proof stress, that is, high proof stress ratio (0.7 or more). In order to improve the yield strength ratio, special heat treatment such as austempering, quenching or tempering for the purpose of forming low carbon martensite may be performed. In addition, as shown in Patent Document 1, the matrix may be improved by adding rare metals such as Ni.

特許第3823347号公報Japanese Patent No. 3823347

一般的に用いられている焼鈍炉は、上述したように厳密な温度コントロールが困難であり、上記の特殊な熱処理に適用した場合、熱処理コストが高騰する問題がある。また、Ni等のレアメタルは高価なので、材料コストの高騰につながる問題もある。   The annealing furnace generally used is difficult to strictly control the temperature as described above, and there is a problem that the heat treatment cost increases when applied to the special heat treatment. Moreover, since rare metals, such as Ni, are expensive, there also exists a problem which leads to soaring material cost.

そこで、この発明は、特殊な熱処理を行うことなく、かつ高価なレアメタルを使用せずに、高強度かつ高耐力を備えた球状黒鉛鋳鉄を構成することを課題とする。   Therefore, an object of the present invention is to construct a spheroidal graphite cast iron having high strength and high yield strength without performing special heat treatment and without using an expensive rare metal.

上記の課題を解決するため、この発明は、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.80〜3.00%、Cu:0.50〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなり、焼鈍後の基地組織におけるパーライトの面積率が80%以上であり、未分解のセメンタイトの面積率が5〜15%の範囲内である球状黒鉛鋳鉄を構成した。   In order to solve the above-described problems, the present invention is based on weight%, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr : 0.01 to 0.20%, Mn: 1.80 to 3.00%, Cu: 0.50 to 2.00%, the balance from Fe and inevitable impurities Thus, a spheroidal graphite cast iron having an area ratio of pearlite in the base structure after annealing of 80% or more and an area ratio of undecomposed cementite in the range of 5 to 15% was formed.

ここで、パーライトの面積率とは、所定の大きさの視野におけるマトリックスの面積を100%としたときにパーライトの面積が占める割合(%)のことをいい、セメンタイトの面積率とは、所定の大きさの視野の全体の面積を100%としたときにセメンタイトの面積が占める割合(%)のことをいう。   Here, the area ratio of pearlite means the ratio (%) of the area of pearlite when the area of the matrix in the field of view of a predetermined size is 100%, and the area ratio of cementite is a predetermined area ratio. This means the percentage (%) of the cementite area when the entire area of the size field of view is 100%.

次に、各合金元素の含有量を上記の範囲に限定した理由について説明する。   Next, the reason why the content of each alloy element is limited to the above range will be described.

Cは、本発明に必要な黒鉛量と鋳造性(溶湯の流動性)を確保するために、少なくとも3.20%含有するようにした。その一方で、含有量が高すぎると黒鉛の晶出が過剰になって高い強度が得られなくなるので、その上限を4.00%とした。   C is contained in an amount of at least 3.20% in order to ensure the amount of graphite and castability (fluidity of the molten metal) necessary for the present invention. On the other hand, if the content is too high, crystallization of graphite becomes excessive and high strength cannot be obtained, so the upper limit was made 4.00%.

Siは、溶湯の流動性を高める作用や黒鉛の晶出を促進する作用を確保するために、少なくとも1.40%含有するようにした。その一方で、含有量が高すぎると黒鉛の晶出が過剰になるとともに基地組織のパーライト化を抑える作用が大きくなって高強度が得られなくなり、製品の外表面にピンホール等の荒れが発生しやすくなるため、その上限を3.00%とした。   Si is contained in an amount of at least 1.40% in order to ensure the effect of increasing the fluidity of the molten metal and the effect of promoting the crystallization of graphite. On the other hand, if the content is too high, the crystallization of graphite becomes excessive and the effect of suppressing the pearlite formation of the matrix structure becomes large and high strength cannot be obtained, and roughness such as pin holes occurs on the outer surface of the product Therefore, the upper limit was made 3.00%.

Mnは、Sを固定して無害化するとともにパーライトを安定的に存在させ、かつパーライトの強度を向上させるのに有効な元素であり、その効果を十分に得るために少なくとも1.80%含有するようにした。その一方で、含有量が高すぎると、セメンタイトの残留が顕著となって強度及び伸びが低下するため、その上限を3.00%とした。   Mn is an element effective for fixing and detoxifying S, making pearlite stably present, and improving the strength of pearlite, and is contained at least 1.80% in order to sufficiently obtain the effect. I did it. On the other hand, if the content is too high, cementite remains remarkably and the strength and elongation decrease, so the upper limit was made 3.00%.

Mgは、黒鉛を球状化させるのに必要な元素であり、その効果を十分に得るために少なくとも0.02%含有するようにした。その一方で、含有量が高すぎると、その効果の向上があまり見られなくなるので、その上限を0.08%とした。   Mg is an element necessary for spheroidizing graphite, and is contained at least 0.02% in order to sufficiently obtain the effect. On the other hand, if the content is too high, the improvement of the effect cannot be seen so much, so the upper limit was made 0.08%.

Cuは、Mnと同様にパーライトを安定的に存在させるのに有効な元素であり、その効果を十分に得るために少なくとも0.50%含有するようにした。その一方で、含有量を必要以上に高くしても、その効果には限界があるため、その上限を2.00%とした。   Cu, like Mn, is an element effective for stably presenting pearlite, and is contained in an amount of at least 0.50% in order to sufficiently obtain the effect. On the other hand, even if the content is increased more than necessary, the effect is limited, so the upper limit was made 2.00%.

Crは、通常、不可避的に0.01%以上含まれるが、含有量が0.20%以下であればその影響は小さい。   Usually, Cr is inevitably contained in an amount of 0.01% or more, but the effect is small if the content is 0.20% or less.

上記各合金元素の他に、P、S等の不可避的不純物が含有されるが、その含有量は少ないほどよい。例えば、Pは0.08%以下、Sは0.015%以下とすることが好ましい。   In addition to the above alloy elements, unavoidable impurities such as P and S are contained, but the smaller the content, the better. For example, it is preferable that P is 0.08% or less and S is 0.015% or less.

このように、各合金元素を上記濃度範囲内で、特にパーライト組織を安定的に存在させるMn及びCuを上記濃度範囲内で含有させることにより、十分なパーライトの面積比(80%以上)を有するとともに、未分解のセメンタイトの面積比を所定の面積比の範囲内(5〜15%)とした球状黒鉛鋳鉄とすることができる。このように各合金元素の濃度を調整して鋳造した球状黒鉛鋳鉄は、オーステンパ処理等の特殊な熱処理を必要とせず、しかも、強度と耐力の両方をバランスよく備えるため、高い耐力比(0.7以上)が要求される自動車部品や建機部品の素材等の用途に問題なく使用することができる。また、高価なレアメタルであるNi等の代わりに、比較的安価なMnやCuを使用しているため、製造コストの低減を図ることもできる。   Thus, each alloy element has a sufficient pearlite area ratio (80% or more) by containing Mn and Cu within the above concentration range, in particular, within the above concentration range, in which pearlite structure is stably present. At the same time, it is possible to obtain spheroidal graphite cast iron in which the area ratio of undecomposed cementite is within a predetermined area ratio range (5 to 15%). Spheroidal graphite cast iron cast by adjusting the concentration of each alloy element in this way does not require special heat treatment such as austempering treatment, and has both strength and proof strength in a good balance. 7 or more) can be used without problems in applications such as materials for automobile parts and construction equipment parts. In addition, since relatively inexpensive Mn and Cu are used instead of expensive rare metal Ni or the like, the manufacturing cost can be reduced.

あるいは、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.80〜3.00%、Cu:0.90〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなり、焼鈍後の基地組織におけるパーライトの面積率が80%以上であり、未分解のセメンタイトの面積率が5〜15%の範囲内である球状黒鉛鋳鉄を構成することもできる。   Alternatively, by weight, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20% In addition, Mn: 1.80 to 3.00%, Cu: 0.90 to 2.00%, the balance is made of Fe and inevitable impurities, the pearlite in the base structure after annealing Spheroidal graphite cast iron having an area ratio of 80% or more and an area ratio of undecomposed cementite in the range of 5 to 15% can also be configured.

このように、Cuの含有量の下限を高くすることにより、パーライトの安定性がさらに高まるため、強度の向上が期待できる。   In this way, by increasing the lower limit of the Cu content, the stability of pearlite is further increased, and therefore an improvement in strength can be expected.

前記各構成においては、基地組織中に晶出している黒鉛が微細化された状態とするのが好ましい。   In each of the above structures, it is preferable that the graphite crystallized in the base structure is in a fine state.

このように、微細なサイズ(例えば、15.0μm以下)の黒鉛をマトリックスに晶出させることにより、この球状黒鉛鋳鉄をさらに高強度かつ高耐力のものとすることができる。   As described above, by crystallization of graphite having a fine size (for example, 15.0 μm or less) in the matrix, the spheroidal graphite cast iron can be further enhanced in strength and strength.

また、本発明に係る球状黒鉛鋳鉄の製造方法は、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.80〜3.00%、Cu:0.50〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなる溶湯を用いて、冷却速度2.0〜8.0℃/秒で所定形状の半製品を鋳造し、前記半製品を900〜1100℃の温度範囲内で5〜30分保持した後、1〜8℃/分の冷却速度で冷却することによって球状黒鉛鋳鉄を製造するものである。   Moreover, the manufacturing method of the spheroidal graphite cast iron according to the present invention is, by weight, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08% , Cr: 0.01 to 0.20%, Mn: 1.80 to 3.00%, Cu: 0.50 to 2.00%, the balance is Fe and unavoidable After casting a semi-finished product having a predetermined shape at a cooling rate of 2.0 to 8.0 ° C./second using a molten metal made of impurities and holding the semi-finished product within a temperature range of 900 to 1100 ° C. for 5 to 30 minutes. Nodular cast iron is produced by cooling at a cooling rate of 1 to 8 ° C./min.

上述したように、各合金元素の含有量の範囲を上記のようにすることにより、高強度と高耐力を兼ね備えた球状黒鉛鋳鉄を製造することができる。しかも、上記の熱処理は厳密な温度コントロールを要求されないため、一般的な焼鈍炉を用いて熱処理を行うことができる。   As described above, by making the range of the content of each alloy element as described above, it is possible to produce spheroidal graphite cast iron having both high strength and high yield strength. In addition, since the above heat treatment does not require strict temperature control, the heat treatment can be performed using a general annealing furnace.

この製造方法においては、前記溶湯を金型に注湯する際に、Siが45〜75重量%含まれたFe−Si系接種剤を0.1〜0.5重量%注湯流接種するのが好ましい。   In this production method, when pouring the molten metal into a mold, an Fe-Si inoculum containing 45 to 75% by weight of Si is inoculated with 0.1 to 0.5% by weight of the molten metal. Is preferred.

このようにすれば、基地組織中に晶出する黒鉛の粒数を増加させることができ、より確実に高い強度と耐力を得ることができる。   In this way, the number of graphite grains crystallized in the base structure can be increased, and high strength and proof stress can be obtained more reliably.

この発明によると、球状黒鉛鋳鉄の溶湯に、Mn及びCuを所定の濃度範囲内で含有させることで、特殊な熱処理を行うことなく、高強度かつ耐力性(耐力比0.7以上)を備えた球状黒鉛鋳鉄を構成することができる。しかも、Ni等の高価なレアメタルの代わりに、比較的安価なMn及びCuを使用したので、材料コストの低減を図ることもできる。   According to the present invention, the melt of spheroidal graphite cast iron includes Mn and Cu within a predetermined concentration range, thereby providing high strength and proof strength (proof strength ratio of 0.7 or more) without performing special heat treatment. Spheroidal graphite cast iron can be constructed. Moreover, since relatively inexpensive Mn and Cu are used instead of expensive rare metals such as Ni, the material cost can be reduced.

球状黒鉛鋳鉄の材料組織の顕微鏡写真を示し、(a)は実施例1、(b)は実施例2、(c)は実施例3The micrograph of the material structure of spheroidal graphite cast iron is shown, (a) is Example 1, (b) is Example 2, and (c) is Example 3. 球状黒鉛鋳鉄の材料組織の顕微鏡写真を示し、(a)は実施例4、(b)は実施例5The micrograph of the material structure of spheroidal graphite cast iron is shown, (a) is Example 4, (b) is Example 5. 球状黒鉛鋳鉄の材料組織の顕微鏡写真を示し、(a)は比較例1、(b)は比較例2、(c)は比較例3The micrograph of the material structure of spheroidal graphite cast iron is shown, (a) is Comparative Example 1, (b) is Comparative Example 2, and (c) is Comparative Example 3.

本願発明に係る球状黒鉛鋳鉄の特性評価実験に先立ち、本願発明の実施例となる球状黒鉛鋳鉄、及び本願発明の比較例となる球状黒鉛鋳鉄をそれぞれ鋳造した。表1に実施例及び比較例に係る球状黒鉛鋳鉄の溶湯の化学成分を示す(本表への記載を省略した残部はFe、及びP、S等の不可避的不純物である)。なお、表1に示した化学成分データは、それぞれの溶湯から作製した白銑試料を発光分光分析装置で分析した値である。本表に示すように、C、Si、Mg、及びCrの各元素については、実施例と比較例でほぼ同じとする一方で、MnとCuの各元素については、実施例と比較例で異なる濃度範囲となるように調製を行っている。   Prior to the characteristic evaluation experiment of the spheroidal graphite cast iron according to the present invention, spheroidal graphite cast iron serving as an example of the present invention and a spheroidal graphite cast iron serving as a comparative example of the present invention were respectively cast. Table 1 shows the chemical components of the spheroidal graphite cast iron melts according to the examples and comparative examples (the remainder not shown in this table is inevitable impurities such as Fe, P, and S). The chemical composition data shown in Table 1 is a value obtained by analyzing a white birch sample prepared from each molten metal with an emission spectroscopic analyzer. As shown in this table, the elements of C, Si, Mg, and Cr are substantially the same in the examples and comparative examples, while the elements of Mn and Cu are different in the examples and comparative examples. Preparation is performed so as to be in the concentration range.

この実施形態においては、表1に示した化学成分の各溶湯を1300℃において所定形状の金型に注湯し、所定形状の半製品(鋳放し品)を鋳造した。この注湯の際には、Siが45〜75重量%含まれたFe−Si系接種剤を0.1〜0.5重量%注湯流接種した。例えば、金型遠心鋳造装置の円筒状金型に注湯して管状の半製品を鋳造する場合、その冷却速度は2.0〜8.0℃/秒程度である。この冷却速度は、金型の形状、注湯量、鋳造品の肉厚等によって変化し、例えば肉厚が12.0mmの管状の半製品を鋳造する場合、その冷却速度は4.0〜6.0℃/秒程度となる。   In this embodiment, each molten metal having the chemical composition shown in Table 1 was poured into a mold having a predetermined shape at 1300 ° C. to cast a semi-finished product (as-cast product) having a predetermined shape. In the case of this pouring, 0.1-0.5 wt% pouring was inoculated with an Fe-Si inoculum containing 45 to 75 wt% Si. For example, when casting a tubular semi-finished product by pouring into a cylindrical mold of a mold centrifugal casting apparatus, the cooling rate is about 2.0 to 8.0 ° C./second. This cooling rate varies depending on the shape of the mold, the amount of pouring, the thickness of the cast product, etc. For example, when casting a tubular semi-finished product having a thickness of 12.0 mm, the cooling rate is 4.0-6. 0 ° C./second.

次に、この半製品に対し、次に示す焼鈍条件で焼鈍することにより、製品としての球状黒鉛鋳鉄に仕上げた。
(焼鈍条件)
・加熱温度 :900〜1100℃
・加熱保持時間:5〜30分
・冷却速度 :1〜8℃/分
Next, this semi-finished product was annealed under the following annealing conditions to finish into a spheroidal graphite cast iron as a product.
(Annealing conditions)
-Heating temperature: 900-1100 ° C
・ Heat holding time: 5 to 30 minutes ・ Cooling rate: 1 to 8 ° C./minute

このようにして得られた各鋳造品から試験片を採取し、それぞれについて、5%ナイタール液で腐食処理した後の組織観察、及び機械的性質(引張り強さ、耐力)の測定を実施した。図1から図3に顕微鏡による組織観察の結果を、表2に組織表面の画像解析結果を、表3に機械的性質の測定結果をそれぞれ示す。画像解析は、鋳造品の厚さ方向の中心部において実施している。   Test specimens were collected from each of the castings thus obtained, and each was subjected to structure observation after corrosion treatment with 5% nital liquid and measurement of mechanical properties (tensile strength, proof stress). FIG. 1 to FIG. 3 show the results of tissue observation with a microscope, Table 2 shows the results of image analysis of the tissue surface, and Table 3 shows the results of measurement of mechanical properties. Image analysis is performed at the center of the casting in the thickness direction.

表2に示すように、Mn及びCuの含有量を所定の範囲内(Mn:1.80〜3.00%、Cu:0.5〜2.0%)とすることにより、高いパーライト面積率(95%以上)と所定範囲(5〜15%)のセメンタイト面積率を確保することができた。このパーライト面積率が80%以上であれば、十分な強度を確保することができる(実施例1〜5参照)。これに対し、Mn及びCuの含有量が前記所定の範囲を下回ると、実施例1〜5と比較して、パーライト面積率及びセメンタイト面積率が低下した(比較例1〜3参照)。   As shown in Table 2, by setting the contents of Mn and Cu within a predetermined range (Mn: 1.80 to 3.00%, Cu: 0.5 to 2.0%), a high pearlite area ratio A cementite area ratio within a predetermined range (5 to 15%) (95% or more) could be secured. If this pearlite area ratio is 80% or more, sufficient strength can be secured (see Examples 1 to 5). On the other hand, when the contents of Mn and Cu were below the predetermined range, the pearlite area ratio and the cementite area ratio were reduced as compared with Examples 1 to 5 (see Comparative Examples 1 to 3).

ここで、パーライトの面積率とは、所定の大きさの視野におけるマトリックスの面積を100%としたときにパーライトの面積が占める割合(%)のことをいい、セメンタイト又は黒鉛の面積率とは、所定の大きさの視野の全体の面積を100%としたときにセメンタイト又は黒鉛の面積が占める割合(%)のことをいう。なお、黒鉛に関しては、粒径が3μm以下のものを除いて計測を行っている。   Here, the area ratio of pearlite means the ratio (%) of the area of pearlite when the area of the matrix in the field of view of a predetermined size is 100%, and the area ratio of cementite or graphite is The ratio (%) of the area of cementite or graphite when the total area of the field of view of a predetermined size is 100%. In addition, regarding graphite, measurement is performed except for particles having a particle size of 3 μm or less.

また、表3に示すように、Mn及びCuの含有量を上記の所定の範囲内とすることにより、700MPa以上の高い引張り強さ(FCD700相当以上)を確保しつつ、0.7以上の高い耐力比(FCD450相当以上)を達成できることが確認できた(実施例1〜5参照)。なお、Mnの含有量が2.6%以上となると、セメンタイト面積率が大きくなることに起因して、引張り強さがやや低下する傾向が確認されたが(実施例3〜5参照)、高い耐力比は十分確保されていた。これに対し、Mn及びCuの含有量が前記所定の範囲を下回ると、実施例1〜5と比較して耐力が大幅に低下して、十分な耐力比(0.7以上)を確保できなくなることが確認できた(比較例1〜3参照)。   In addition, as shown in Table 3, by setting the contents of Mn and Cu within the above predetermined range, a high tensile strength of 700 MPa or more (equivalent to FCD700 or more) is secured, and a high value of 0.7 or more. It was confirmed that the yield strength ratio (equivalent to FCD450 or higher) could be achieved (see Examples 1 to 5). In addition, when the Mn content is 2.6% or more, the tendency that the tensile strength is slightly reduced due to the increase in the cementite area ratio was confirmed (see Examples 3 to 5), but high. The yield strength ratio was sufficiently secured. On the other hand, when the contents of Mn and Cu are below the predetermined range, the yield strength is significantly reduced as compared with Examples 1 to 5, and a sufficient yield ratio (0.7 or more) cannot be ensured. It was confirmed (see Comparative Examples 1 to 3).

上記のように、溶湯への各添加元素の含有量、特にMn及びCuの含有量を所定の範囲内(Mn:1.80〜3.00%、Cu:0.50〜2.00%)とし、焼鈍後の基地組織におけるパーライトの面積率が80%以上、未分解のセメンタイトの面積率が5〜15%となるようにすることにより、鋳放し品に対して特殊な熱処理を行うことなしに、しかも、Ni等の高価なレアメタルを使用することなく、高強度と高耐力を兼ね備え、耐力比0.7以上を確保した球状黒鉛鋳鉄を構成することができる。   As described above, the content of each additive element in the molten metal, particularly the contents of Mn and Cu are within a predetermined range (Mn: 1.80 to 3.00%, Cu: 0.50 to 2.00%). No special heat treatment is performed on the as-cast product by setting the area ratio of pearlite in the base structure after annealing to 80% or more and the area ratio of undecomposed cementite to 5 to 15%. In addition, spheroidal graphite cast iron having both high strength and high yield strength and having a yield strength ratio of 0.7 or more can be configured without using expensive rare metals such as Ni.

なお、上記の実施形態においては、接種剤としてFe−Si系のものを用いたが、Biが0.5〜5.0重量%、Siが45〜75重量%、それぞれ含まれたBi系接種剤を用いることもできる。また、これらの接種剤は、黒鉛をより多く晶出させるために使用されるが、必要な耐力が確保される限りにおいて、接種剤の使用を省略することも許容される。   In the above embodiment, the Fe-Si type inoculum was used as the inoculum, but Bi type inoculation containing 0.5 to 5.0% by weight of Bi and 45 to 75% by weight of Si, respectively. An agent can also be used. In addition, these inoculants are used to crystallize more graphite, but it is acceptable to omit the use of the inoculants as long as necessary proof stress is ensured.

Claims (5)

質量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.80〜3.00%、Cu:0.50〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなり、基地組織におけるパーライトの面積率が80%以上であり、未分解のセメンタイトの面積率が5〜15%の範囲内である球状黒鉛鋳鉄。 In mass %, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20% further Mn: 1.80~3.00%, Cu: contains at 0.50 to 2.00% scope, balance of Fe and unavoidable impurities, the area ratio of pearlite in groups ground weave 80 % Or more, and the area ratio of undecomposed cementite is in the range of 5 to 15%. Spheroidal graphite cast iron. 質量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.80〜3.00%、Cu:0.90〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなり、基地組織におけるパーライトの面積率が80%以上であり、未分解のセメンタイトの面積率が5〜15%の範囲内である球状黒鉛鋳鉄。 In mass %, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20% further Mn: 1.80~3.00%, Cu: contains at 0.90 to 2.00% scope, balance of Fe and unavoidable impurities, the area ratio of pearlite in groups ground weave 80 % Or more, and the area ratio of undecomposed cementite is in the range of 5 to 15%. Spheroidal graphite cast iron. 基地組織中に晶出している黒鉛が15.0μm以下に微細化された請求項1又は2に記載の球状黒鉛鋳鉄。 The spheroidal graphite cast iron according to claim 1 or 2, wherein the graphite crystallized in the matrix structure is refined to 15.0 µm or less . 質量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.80〜3.00%、Cu:0.50〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなる溶湯を用いて、冷却速度2.0〜8.0℃/秒で所定形状の半製品を鋳造し、前記半製品を900〜1100℃の温度範囲内で5〜30分保持した後、1〜8℃/分の冷却速度で冷却し、
基地組織におけるパーライトの面積率を80%以上、未分解のセメンタイトの面積率を5〜15%の範囲内とした球状黒鉛鋳鉄の製造方法。
In mass %, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20% Further, Mn: 1.80 to 3.00%, Cu: 0.50 to 2.00% contained in the range, the balance is Fe and unavoidable impurities, the cooling rate 2.0 ~ After casting a semi-finished product of a predetermined shape at 8.0 ° C./second, holding the semi-finished product within a temperature range of 900 to 1100 ° C. for 5 to 30 minutes, and then cooling at a cooling rate of 1 to 8 ° C./min .
A method for producing spheroidal graphite cast iron in which the area ratio of pearlite in the base structure is 80% or more and the area ratio of undecomposed cementite is in the range of 5 to 15% .
前記溶湯を金型に注湯する際に、Siが45〜75質量%含まれたFe−Si系接種剤を0.1〜0.5質量%注湯流接種する請求項4に記載の球状黒鉛鋳鉄の製造方法。 The spherical shape according to claim 4, wherein when pouring the molten metal into a mold, 0.1 to 0.5% by mass of a Fe-Si inoculum containing 45 to 75% by mass of Si is inoculated. A method for producing graphite cast iron.
JP2014057759A 2014-03-20 2014-03-20 Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron Active JP6328968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057759A JP6328968B2 (en) 2014-03-20 2014-03-20 Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057759A JP6328968B2 (en) 2014-03-20 2014-03-20 Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JP2015183198A JP2015183198A (en) 2015-10-22
JP6328968B2 true JP6328968B2 (en) 2018-05-23

Family

ID=54350101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057759A Active JP6328968B2 (en) 2014-03-20 2014-03-20 Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JP6328968B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793541B2 (en) * 2016-12-26 2020-12-02 株式会社栗本鐵工所 Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe
JP7300351B2 (en) * 2019-09-11 2023-06-29 日立造船株式会社 Polishing surface plate using spheroidal graphite cast iron
CN114058937B (en) * 2021-11-19 2022-07-15 襄阳金耐特机械股份有限公司 Low-temperature high-toughness nodular cast iron and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252755A (en) * 1988-03-31 1989-10-09 Ueda Brake Kk Alloy cast iron brake block for vehicle
US8956565B2 (en) * 2007-06-26 2015-02-17 Incorporated National University Iwate University Flake graphite cast iron and production method thereof
JP2010156003A (en) * 2008-12-26 2010-07-15 Nippon Piston Ring Co Ltd Cast-iron member with cast-in spray deposit film, method for manufacturing the same, cylinder liner with cast-in spray deposit film, and wear-resistant ring with cast-in spray deposit film

Also Published As

Publication number Publication date
JP2015183198A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
KR101488120B1 (en) Steel for carburizing, carburized steel component, and method for producing same
US9890445B2 (en) Steel for mechanical structure for cold working, and method for manufacturing same
WO2004104253A1 (en) Wear resistant cast iron
JP6954846B2 (en) Spheroidal graphite cast iron
JPWO2013100148A1 (en) Spheroidal graphite cast iron excellent in strength and toughness and method for producing the same
KR101886030B1 (en) Abrasion-resistant steel material excellent in fatigue characteristics and method for manufacturing same
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP6468365B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP6468366B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP2011105993A (en) Spheroidal graphite cast iron tube and method for producing the same
KR20170118902A (en) Steel wire for machine structural parts
WO2018008355A1 (en) Steel for machine structures for cold working and method for producing same
JP6328968B2 (en) Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron
JP2017171977A (en) Crankshaft, manufacturing method therefor, and steel for crankshaft
WO2018061101A1 (en) Steel
JP6328967B2 (en) Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe
JP2018035423A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
JP2018024909A (en) Steel for machine structural use for cold working and production method thereof
JP6459704B2 (en) Steel for cold forging parts
JP6793541B2 (en) Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe
JP2018154914A (en) High strength spring, method of manufacturing the same, steel for high strength spring, and method of manufacturing the same
JP5669038B2 (en) Spheroidal graphite cast iron pipe and manufacturing method thereof
JP2018035420A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
RU2449043C2 (en) Method for cast iron heat treatment with spherical graphite
WO2018074003A1 (en) High-strength spring, method for producing same, steel for high-strength spring, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R150 Certificate of patent or registration of utility model

Ref document number: 6328968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150