JP6328967B2 - Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe - Google Patents

Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe Download PDF

Info

Publication number
JP6328967B2
JP6328967B2 JP2014057628A JP2014057628A JP6328967B2 JP 6328967 B2 JP6328967 B2 JP 6328967B2 JP 2014057628 A JP2014057628 A JP 2014057628A JP 2014057628 A JP2014057628 A JP 2014057628A JP 6328967 B2 JP6328967 B2 JP 6328967B2
Authority
JP
Japan
Prior art keywords
cast iron
graphite cast
iron pipe
spheroidal graphite
area ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014057628A
Other languages
Japanese (ja)
Other versions
JP2015183191A (en
Inventor
光二 中本
光二 中本
佳和 西原
佳和 西原
真司 山瀬
真司 山瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2014057628A priority Critical patent/JP6328967B2/en
Publication of JP2015183191A publication Critical patent/JP2015183191A/en
Application granted granted Critical
Publication of JP6328967B2 publication Critical patent/JP6328967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

この発明は、水道管等に使用される球状黒鉛鋳鉄管、及びこの球状黒鉛鋳鉄管の製造方法に関する。   The present invention relates to a spheroidal graphite cast iron pipe used for water pipes and the like, and a method for producing the spheroidal graphite cast iron pipe.

一般的な球状黒鉛鋳鉄(ダクタイル鋳鉄)は、JIS規格のFCD350、FCD400、FCD450等の高靱性タイプのものや、FCD600、FCD700、FCD800等の高強度タイプのものがある。主に水道管用として鋳造される球状黒鉛鋳鉄については、これらの中で強度と伸びのバランスが比較的良好なFCD450(引張強さ450MPa以上、伸び10%以上)が選択される。これに対し、スラリー状物質や摩耗性の高い硬質物質等を輸送する用途には高硬度のものが、自動車部品や建機部品等の素材としての用途には高強度かつ高耐力のものがそれぞれ選択される。   Common spheroidal graphite cast iron (ductile cast iron) includes high-toughness types such as JIS standards FCD350, FCD400, and FCD450, and high-strength types such as FCD600, FCD700, and FCD800. For spheroidal graphite cast iron mainly cast for water pipes, FCD450 (tensile strength of 450 MPa or more and elongation of 10% or more) having a relatively good balance between strength and elongation is selected. On the other hand, high hardness materials are used for transporting slurry-like materials and hard materials with high wear resistance, and high strength and high strength materials are used for materials such as automobile parts and construction machinery parts. Selected.

例えば、金型遠心鋳造によって鋳造された球状黒鉛鋳鉄管(直管)の鋳放し組織のマトリックス(基地)の主体はパーライトであり、この金型遠心鋳造における冷却速度が大きいため、安定系の黒鉛に加え、準安定系のセメンタイトが同時に多く晶出した斑構造となる。このセメンタイトは伸びの阻害要因となるため、FCD450タイプに要求される強度と伸びの両立を図るために、セメンタイトの分解及びマトリックスのフェライト化を目的とした焼鈍が必要となる。   For example, the main body of the as-cast structure matrix (base) of spheroidal graphite cast iron pipe (straight pipe) cast by mold centrifugal casting is pearlite, and because the cooling rate in this mold centrifugal casting is high, stable graphite In addition to this, a plaque structure is formed in which a large amount of metastable cementite is crystallized at the same time. Since this cementite becomes an obstructive factor for elongation, annealing for the purpose of decomposition of cementite and ferrite formation of the matrix is required in order to achieve both strength and elongation required for the FCD450 type.

球状黒鉛鋳鉄管の焼鈍は、一般的には連続焼鈍炉で行われる。この連続焼鈍炉において、球状黒鉛鋳鉄管は、オーステナイト化温度域以上(870℃以上)に加熱される。これによりセメンタイトを完全に分解し、基地組織のオーステナイト化を行う。このセメンタイトの分解は、処理温度と処理時間に依存し、処理温度が高いほど処理時間を短くすることができる一方で、処理温度が低いほど長い処理時間を要する。この連続焼鈍炉は、炉内の均一な温度コントロールが困難であることが多い。このため、セメンタイトを確実にオーステナイト化するために、処理温度及び処理時間を決定する必要がある。   In general, the spheroidal graphite cast iron pipe is annealed in a continuous annealing furnace. In this continuous annealing furnace, the spheroidal graphite cast iron pipe is heated to an austenitizing temperature range or higher (870 ° C. or higher). As a result, cementite is completely decomposed and the base structure is austenitized. This decomposition of cementite depends on the processing temperature and processing time, and the processing time can be shortened as the processing temperature is higher, while the processing time is longer as the processing temperature is lower. In this continuous annealing furnace, uniform temperature control in the furnace is often difficult. For this reason, in order to make a cementite austenite reliably, it is necessary to determine processing temperature and processing time.

基地組織のオーステナイト化を完了したら、このオーステナイトからフェライトを析出させるため、共析変態点付近(680〜750℃程度)の温度域を一定時間保持するか、この共析変態点付近を徐冷する熱処理を行う。この際の保持時間や冷却速度により、フェライト析出量が決定される。すなわち、保持時間が長いほど、又は冷却速度が小さいほどフェライト析出量は増大する一方で、保持時間が短いほど、又は冷却速度が大きいほどフェライト析出量は減少し、マトリックスの主体はパーライトとなる。   When the austenite of the base structure is completed, in order to precipitate ferrite from this austenite, the temperature range near the eutectoid transformation point (about 680 to 750 ° C.) is maintained for a certain time, or the vicinity of this eutectoid transformation point is gradually cooled. Heat treatment is performed. The ferrite precipitation amount is determined by the holding time and the cooling rate at this time. That is, as the holding time is longer or the cooling rate is lower, the ferrite precipitation amount is increased. On the other hand, as the holding time is shorter or the cooling rate is higher, the ferrite precipitation amount is reduced, and the matrix is mainly pearlite.

この熱処理において連続焼鈍炉を用いる場合、厳密に温度コントロールを行ってフェライトとパーライトの量を細かくコントロールすることが困難なため、基本的にはフェライトが主体となる条件で焼鈍を実施して靱性の確保を図っている。   When a continuous annealing furnace is used in this heat treatment, it is difficult to finely control the amount of ferrite and pearlite by strictly controlling the temperature. Therefore, annealing is basically performed under conditions mainly composed of ferrite. We are trying to secure it.

球状黒鉛鋳鉄管において、FCD600、FCD700、FCD800といった高強度タイプのものが要求される場合は、マトリックスのパーライト化が必要となる。このパーライト化を熱処理条件の制御のみで行うのは困難なため、パーライト化を促進するMn、Cr、Cu、Sn等を添加するのが一般的である。   When the spheroidal graphite cast iron pipe is required to have a high strength type such as FCD600, FCD700, and FCD800, the matrix needs to be made pearlite. Since it is difficult to perform this pearlite formation only by controlling the heat treatment conditions, it is common to add Mn, Cr, Cu, Sn, etc. that promote pearlite formation.

この球状黒鉛鋳鉄管を、鉱石質スラリーや石灰質スラリー等のスラリー状物質や、摩耗性の高い硬質物質等の輸送に用いる場合は、耐摩耗性に優れた特性が要求される。一般的に、この耐摩耗性は、硬度を上昇させることにより向上する。球状黒鉛鋳鉄管を摩耗性の高い物質を輸送する目的で使用する際には、ブリネル硬度で評価した硬度が350HB以上であることが望ましいといわれている。   When this spheroidal graphite cast iron pipe is used for transporting slurry-like materials such as ore slurry and calcareous slurry, hard materials having high wear properties, etc., characteristics excellent in wear resistance are required. Generally, this wear resistance is improved by increasing the hardness. When the spheroidal graphite cast iron pipe is used for the purpose of transporting a highly wearable substance, it is said that the hardness evaluated by Brinell hardness is desirably 350 HB or more.

この球状黒鉛鋳鉄管の硬度を高めるために、低炭素マルテンサイトの形成を目的とした焼入れ及び焼き戻し等の特殊な熱処理を行うことが考えられる。しかしながら、上記のように、連続焼鈍炉を用いた熱処理は厳密な温度コントロールが困難であり、所望の硬度を達成できないことが多い。このため、耐摩耗性に優れるといわれる耐摩耗鋼管を採用したり、特許文献1に示すように、Ni等のレアメタルを添加してマトリックスの改良を行い、硬度の向上を図る手法を採用したりすることがある。   In order to increase the hardness of the spheroidal graphite cast iron pipe, it is conceivable to perform a special heat treatment such as quenching and tempering for the purpose of forming low carbon martensite. However, as described above, heat treatment using a continuous annealing furnace is difficult to strictly control temperature, and often cannot achieve a desired hardness. For this reason, a wear-resistant steel pipe that is said to be excellent in wear resistance is adopted, or, as shown in Patent Document 1, a method of improving the matrix by adding a rare metal such as Ni to improve hardness is adopted. There are things to do.

特許第3823347号公報Japanese Patent No. 3823347

上記の耐摩耗鋼管は比較的安価であるものの、高い耐摩耗性を発揮するために必要とされる硬度(ブリネル硬度で350HB以上)を達成できないものが多い。また、Ni等のレアメタルを添加する方法は、所望の硬度を達成できる反面、高価なレアメタルを使用するため、材料コストの高騰につながる問題がある。   Although the above-mentioned wear-resistant steel pipes are relatively inexpensive, many of them cannot achieve the hardness required to exhibit high wear resistance (Brinell hardness of 350 HB or more). In addition, the method of adding a rare metal such as Ni can achieve a desired hardness, but has a problem of increasing the material cost because it uses an expensive rare metal.

そこで、この発明は、高価なレアメタルを使用せずに、高い耐摩耗性を備えた球状黒鉛鋳鉄管を構成することを課題とする。   Accordingly, an object of the present invention is to construct a spheroidal graphite cast iron pipe having high wear resistance without using an expensive rare metal.

上記の課題を解決するため、この発明は、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:2.50〜3.00%、Cu:0.80〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなり、焼鈍後の基地組織におけるパーライトの面積率が80%以上であり、未分解のセメンタイトの面積率が10〜15%の範囲内である球状黒鉛鋳鉄管を構成した。   In order to solve the above-described problems, the present invention is based on weight%, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr : 0.01 to 0.20%, Mn: 2.50 to 3.00%, Cu: 0.80 to 2.00%, the balance from Fe and unavoidable impurities Thus, a spheroidal graphite cast iron pipe having an area ratio of pearlite in the base structure after annealing of 80% or more and an area ratio of undecomposed cementite in the range of 10 to 15% was formed.

ここで、パーライトの面積率とは、所定の大きさの視野におけるマトリックスの面積を100%としたときにパーライトの面積が占める割合(%)のことをいい、セメンタイトの面積率とは、所定の大きさの視野の全体の面積を100%としたときにセメンタイトの面積が占める割合(%)のことをいう。   Here, the area ratio of pearlite means the ratio (%) of the area of pearlite when the area of the matrix in the field of view of a predetermined size is 100%, and the area ratio of cementite is a predetermined area ratio. This means the percentage (%) of the cementite area when the entire area of the size field of view is 100%.

次に、各合金元素の含有量を上記の範囲に限定した理由について説明する。   Next, the reason why the content of each alloy element is limited to the above range will be described.

Cは、本発明に必要な黒鉛量と鋳造性(溶湯の流動性)を確保するために、少なくとも3.20%含有するようにした。その一方で、含有量が高すぎると黒鉛の晶出が過剰になって高い強度が得られなくなるので、その上限を4.00%とした。   C is contained in an amount of at least 3.20% in order to ensure the amount of graphite and castability (fluidity of the molten metal) necessary for the present invention. On the other hand, if the content is too high, crystallization of graphite becomes excessive and high strength cannot be obtained, so the upper limit was made 4.00%.

Siは、溶湯の流動性を高める作用や黒鉛の晶出を促進する作用を確保するために、少なくとも1.40%含有するようにした。その一方で、含有量が高すぎると黒鉛の晶出が過剰になるとともに基地組織のパーライト化を抑える作用が大きくなって高強度が得られなくなり、製品の外表面にピンホール等の荒れが発生しやすくなるため、その上限を3.00%とした。   Si is contained in an amount of at least 1.40% in order to ensure the effect of increasing the fluidity of the molten metal and the effect of promoting the crystallization of graphite. On the other hand, if the content is too high, the crystallization of graphite becomes excessive and the effect of suppressing the pearlite formation of the matrix structure becomes large and high strength cannot be obtained, and roughness such as pin holes occurs on the outer surface of the product Therefore, the upper limit was made 3.00%.

Mnは、Sを固定して無害化するとともにパーライトを安定的に存在させ、かつパーライトの強度を向上させるのに有効な元素であり、その効果を十分に得つつ所定の硬度を確保するために少なくとも2.50%含有するようにした。その一方で、含有量が高すぎると、セメンタイトの残留が顕著となって強度及び伸びが低下するため、その上限を3.00%とした。   Mn is an element effective for fixing S to be detoxified and stably presenting pearlite and improving the strength of pearlite. In order to secure a predetermined hardness while sufficiently obtaining the effect. It was made to contain at least 2.50%. On the other hand, if the content is too high, cementite remains remarkably and the strength and elongation decrease, so the upper limit was made 3.00%.

Mgは、黒鉛を球状化させるのに必要な元素であり、その効果を十分に得るために少なくとも0.02%含有するようにした。その一方で、含有量が高すぎると、その効果の向上があまり見られなくなるので、その上限を0.08%とした。   Mg is an element necessary for spheroidizing graphite, and is contained at least 0.02% in order to sufficiently obtain the effect. On the other hand, if the content is too high, the improvement of the effect cannot be seen so much, so the upper limit was made 0.08%.

Cuは、Mnと同様にパーライトを安定的に存在させるのに有効な元素であり、その効果を十分に得つつ所定の硬度を確保するために少なくとも0.80%含有するようにした。その一方で、含有量を必要以上に高くしても、その効果には限界があるため、その上限を2.00%とした。   Cu, like Mn, is an element effective for stably presenting pearlite, and is contained in an amount of at least 0.80% in order to secure a predetermined hardness while sufficiently obtaining the effect. On the other hand, even if the content is increased more than necessary, the effect is limited, so the upper limit was made 2.00%.

Crは、通常、不可避的に0.01%以上含まれるが、含有量が0.20%以下であればその影響は小さい。   Usually, Cr is inevitably contained in an amount of 0.01% or more, but the effect is small if the content is 0.20% or less.

上記各合金元素の他に、P、S等の不可避的不純物が含有されるが、その含有量は少ないほどよい。例えば、Pは0.08%以下、Sは0.015%以下とすることが好ましい。   In addition to the above alloy elements, unavoidable impurities such as P and S are contained, but the smaller the content, the better. For example, it is preferable that P is 0.08% or less and S is 0.015% or less.

このように、各合金元素を上記濃度範囲内で、特にパーライト組織を安定的に存在させるMn及びCuを上記濃度範囲内で含有させることにより、十分なパーライトの面積比(80%以上)を有するとともに、未分解のセメンタイトの面積比を所定の面積比の範囲内(10〜15%)とした球状黒鉛鋳鉄管とすることができる。このように各合金元素の濃度を調整して鋳造した球状黒鉛鋳鉄管は、焼入れ・焼き戻し等の特殊な熱処理を必要とせず、比較的簡便な焼鈍熱処理のみで、引張強さ、耐力だけでなく十分な耐摩耗性を発揮できる硬度(ブリネル硬度で350HB以上)を付与される。また、高価なレアメタルであるNi等の代わりに、比較的安価なMnやCuを使用しているため、製造コストの低減を図ることもできる。   Thus, each alloy element has a sufficient pearlite area ratio (80% or more) by containing Mn and Cu within the above concentration range, in particular, within the above concentration range, in which pearlite structure is stably present. At the same time, a spheroidal graphite cast iron pipe having an undecomposed cementite area ratio within a predetermined area ratio range (10 to 15%) can be obtained. Spheroidal graphite cast iron pipes cast by adjusting the concentration of each alloy element in this way do not require special heat treatments such as quenching and tempering, but only with a relatively simple annealing heat treatment, and only with tensile strength and proof stress. And a hardness capable of exhibiting sufficient wear resistance (Brinell hardness of 350 HB or more). In addition, since relatively inexpensive Mn and Cu are used instead of expensive rare metal Ni or the like, the manufacturing cost can be reduced.

前記各構成においては、基地組織中に晶出している黒鉛が微細化された状態とするのが好ましい。   In each of the above structures, it is preferable that the graphite crystallized in the base structure is in a fine state.

このように、微細なサイズ(例えば、15.0μm以下)とすることにより、十分な耐摩耗性を確保しつつ、さらに高強度かつ高耐力を兼ね備えた球状黒鉛鋳鉄管を構成することができる。   Thus, by making it a fine size (for example, 15.0 μm or less), it is possible to configure a spheroidal graphite cast iron pipe having both high strength and high proof stress while ensuring sufficient wear resistance.

また、本発明に係る球状黒鉛鋳鉄管の製造方法は、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:2.50〜3.00%、Cu:0.80〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなる溶湯を用いて、冷却速度2.0〜8.0℃/秒で所定形状の半製品を鋳造し、前記半製品を900〜1100℃の温度範囲内で5〜30分保持した後、1〜8℃/分の冷却速度で冷却する球状黒鉛鋳鉄管を製造するものである。   Moreover, the manufacturing method of the spheroidal graphite cast iron pipe which concerns on this invention is weight%, C: 3.20-4.00%, Si: 1.40-3.00%, Mg: 0.02-0.08. %, Cr: 0.01 to 0.20%, Mn: 2.50 to 3.00%, Cu: 0.80 to 2.00%, the balance being Fe and inevitable A semi-finished product having a predetermined shape was cast at a cooling rate of 2.0 to 8.0 ° C./second using a molten metal composed of mechanical impurities, and the semi-finished product was held in a temperature range of 900 to 1100 ° C. for 5 to 30 minutes. Thereafter, a spheroidal graphite cast iron pipe that is cooled at a cooling rate of 1 to 8 ° C./min is manufactured.

上述したように、各合金元素の含有量の範囲を上記のようにすることにより、十分な耐摩耗性を確保しつつ、高強度と高耐力を兼ね備えた球状黒鉛鋳鉄管を製造することができる。しかも、上記の熱処理は厳密な温度コントロールを要求されないため、一般的な連続焼鈍炉を用いて熱処理を行うことができる。   As described above, by making the range of the content of each alloy element as described above, it is possible to produce a spheroidal graphite cast iron tube having both high strength and high yield strength while ensuring sufficient wear resistance. . In addition, since the above heat treatment does not require strict temperature control, the heat treatment can be performed using a general continuous annealing furnace.

この製造方法においては、前記溶湯を金型に注湯する際に、Siが45〜75重量%含まれたFe−Si系接種剤を0.1〜0.5重量%注湯流接種するのが好ましい。   In this production method, when pouring the molten metal into a mold, an Fe-Si inoculum containing 45 to 75% by weight of Si is inoculated with 0.1 to 0.5% by weight of the molten metal. Is preferred.

このようにすれば、基地組織中に晶出する黒鉛の粒数を増加させることができ、より確実に高い耐力を得ることができる。   In this way, the number of graphite grains crystallized in the base structure can be increased, and high yield strength can be obtained more reliably.

この発明によると、球状黒鉛鋳鉄の溶湯に、Mn及びCuを所定の濃度範囲内で含有させることで、特殊な熱処理を行うことなく、耐摩耗性を発揮するために十分な硬度(ブリネル硬度で350HB以上)を確保しつつ、高強度かつ耐力性を備えた球状黒鉛鋳鉄管を構成することができる。しかも、Ni等の高価なレアメタルの代わりに、比較的安価なMn及びCuを使用したので、材料コストの低減を図ることもできる。   According to the present invention, the molten spheroidal graphite cast iron contains Mn and Cu within a predetermined concentration range, so that a sufficient hardness (with Brinell hardness) can be obtained without performing special heat treatment. It is possible to construct a spheroidal graphite cast iron pipe having high strength and proof stress while ensuring 350HB or more. Moreover, since relatively inexpensive Mn and Cu are used instead of expensive rare metals such as Ni, the material cost can be reduced.

球状黒鉛鋳鉄管の材料組織の顕微鏡写真を示し、(a)は実施例1、(b)は実施例2、(c)は実施例3The micrograph of the material structure of a spheroidal graphite cast iron pipe is shown, (a) is Example 1, (b) is Example 2, (c) is Example 3. 摩耗試験の装置構成を示し、(a)は装置全体の正面から見た断面図、(b)は試験片の正面図The apparatus structure of an abrasion test is shown, (a) is a sectional view seen from the front of the entire apparatus, and (b) is a front view of the test piece. 摩耗試験の結果を示す図Figure showing the results of the wear test

本願発明に係る球状黒鉛鋳鉄管の特性評価実験に先立ち、本願発明の実施例となる球状黒鉛鋳鉄管を鋳造した。この実施例に対する比較例として、耐摩耗鋼管とNi系ダクタイル管を用意した。表1に実施例及び比較例に係る球状黒鉛鋳鉄の溶湯の化学成分を示す(本表への記載を省略した残部はFe、及びP、S等の不可避的不純物である)。なお、表1に示した化学成分データは、それぞれの溶湯から作製した白銑試料を発光分光分析装置で分析した値である。   Prior to the characteristic evaluation experiment of the spheroidal graphite cast iron pipe according to the present invention, a spheroidal graphite cast iron pipe serving as an example of the present invention was cast. As a comparative example for this example, a wear-resistant steel pipe and a Ni-based ductile pipe were prepared. Table 1 shows the chemical components of the spheroidal graphite cast iron melts according to the examples and comparative examples (the remainder not shown in this table is inevitable impurities such as Fe, P, and S). The chemical composition data shown in Table 1 is a value obtained by analyzing a white birch sample prepared from each molten metal with an emission spectroscopic analyzer.

この実施例に係る球状黒鉛鋳鉄管においては、表1に示した化学成分の各溶湯を1300℃において金型遠心鋳造装置の円筒状金型に注湯し、肉厚が12.0mmの管状の半製品(鋳放し管)を鋳造した。この注湯の際には、Siが45〜75重量%含まれたFe−Si系接種剤を0.1〜0.5重量%注湯流接種した。この鋳造時の冷却速度は4.0〜6.0℃/秒程度であった。この冷却速度は、金型の形状、注湯量、管の肉厚によって変化するが、2.0〜8.0℃/秒程度の範囲内に収まることが多い。   In the spheroidal graphite cast iron pipe according to this example, each molten metal having the chemical composition shown in Table 1 is poured into a cylindrical mold of a mold centrifugal casting apparatus at 1300 ° C., and the tubular thickness is 12.0 mm. Semi-finished product (as-cast pipe) was cast. In the case of this pouring, 0.1-0.5 wt% pouring was inoculated with an Fe-Si inoculum containing 45 to 75 wt% Si. The cooling rate at the time of casting was about 4.0 to 6.0 ° C./second. The cooling rate varies depending on the shape of the mold, the amount of pouring, and the thickness of the pipe, but often falls within the range of about 2.0 to 8.0 ° C./second.

次に、この半製品に対し、次に示す焼鈍条件で焼鈍することにより、製品としての球状黒鉛鋳鉄管に仕上げた。
(焼鈍条件)
・加熱温度 :900〜1100℃
・加熱保持時間:5〜30分
・冷却速度 :1〜8℃/分
Next, this semi-finished product was annealed under the following annealing conditions, and finished into a spheroidal graphite cast iron pipe as a product.
(Annealing conditions)
-Heating temperature: 900-1100 ° C
・ Heat holding time: 5 to 30 minutes ・ Cooling rate: 1 to 8 ° C./minute

このようにして得られた各鋳造管から試験片を採取し、それぞれについて、5%ナイタール液で腐食処理した後の組織観察、及び機械的性質(引張強さ、耐力、硬度)の測定を実施した。図1に顕微鏡による組織観察の結果を、表2に組織表面の画像解析結果を、表3に機械的性質の測定結果をそれぞれ示す。画像解析は、管の厚さ方向の中心部において実施している。   Test specimens were collected from each of the cast pipes obtained in this way, and each was subjected to structure observation after corrosion treatment with 5% nital liquid and measurement of mechanical properties (tensile strength, yield strength, hardness). did. FIG. 1 shows the result of tissue observation with a microscope, Table 2 shows the result of image analysis of the tissue surface, and Table 3 shows the result of measurement of mechanical properties. Image analysis is performed at the center of the tube in the thickness direction.

表2に示すように、Mn及びCuの含有量を所定の範囲内(Mn:2.50〜3.00%、Cu:0.8〜2.0%)とすることにより、高いパーライト面積率(95%以上)と所定範囲(10〜15%)のセメンタイト面積率を確保することができた。このパーライト面積率が80%以上であれば、十分な強度を確保することができる。   As shown in Table 2, by setting the contents of Mn and Cu within a predetermined range (Mn: 2.50 to 3.00%, Cu: 0.8 to 2.0%), a high pearlite area ratio (95% or more) and a cementite area ratio within a predetermined range (10 to 15%) could be secured. If the pearlite area ratio is 80% or more, sufficient strength can be ensured.

ここで、パーライトの面積率とは、所定の大きさの視野におけるマトリックスの面積を100%としたときにパーライトの面積が占める割合(%)のことをいい、セメンタイト又は黒鉛の面積率とは、所定の大きさの視野の全体の面積を100%としたときにセメンタイト又は黒鉛の面積が占める割合(%)のことをいう。なお、黒鉛に関しては、粒径が3μm以下のものを除いて計測を行っている。   Here, the area ratio of pearlite means the ratio (%) of the area of pearlite when the area of the matrix in the field of view of a predetermined size is 100%, and the area ratio of cementite or graphite is The ratio (%) of the area of cementite or graphite when the total area of the field of view of a predetermined size is 100%. In addition, regarding graphite, measurement is performed except for particles having a particle size of 3 μm or less.

また、表3に示すように、Mn及びCuの含有量を上記の所定の範囲内とすることにより、700MPa以上の高い引張強さ(FCD700相当以上)と高い耐力(FCD450相当以上)を確保しつつ、ブリネル硬度で350HB以上の高硬度を達成できることが確認できた(実施例1〜3参照)。この引張強さや耐力は、耐摩耗鋼管やNi系ダクタイル管と比較して優れているか、全く遜色がない水準であるといえる。また、ブリネル硬度についても、耐摩耗鋼管よりも大幅に高く、高価なレアメタルを使用するNi系ダクタイル管と比較しても同等程度の水準であるといえる。   In addition, as shown in Table 3, by setting the contents of Mn and Cu within the above predetermined range, a high tensile strength (equivalent to FCD700 or higher) of 700 MPa or higher and a high yield strength (equivalent to FCD450 or higher) are ensured. However, it was confirmed that a high hardness of 350 HB or more can be achieved in the Brinell hardness (see Examples 1 to 3). It can be said that the tensile strength and proof stress are superior to those of wear-resistant steel pipes and Ni-based ductile pipes, or are inferior to each other. Further, the Brinell hardness is significantly higher than that of the wear-resistant steel pipe, and it can be said that the Brinell hardness is comparable to that of a Ni-based ductile pipe using an expensive rare metal.

次に、これらの試料を用いて摩耗試験を行った。この摩耗試験に用いた試験装置の構成を図2(a)に示す。この試験装置は、試験容器1内に水と珪砂を混合した混合体2を入れ、この混合体2に、外周近傍に図2(b)に示すように棒状(長さL70mm、直径D8.0mm)に加工した試験片3を取り付けた円盤4を水平に埋設し、この円盤4をその回転軸5周りに回転させるようになっている。この試験では、円盤を周速度r=4m/秒(円盤外周近傍の速度)で360時間回転させて行った。   Next, an abrasion test was performed using these samples. The configuration of the test apparatus used for this wear test is shown in FIG. In this test apparatus, a mixture 2 in which water and silica sand are mixed is placed in a test container 1, and a rod-like shape (length L 70 mm, diameter D 8.0 mm) is provided in the vicinity of the outer periphery of the mixture 2 as shown in FIG. The disk 4 to which the processed test piece 3 is attached is horizontally embedded, and the disk 4 is rotated around the rotation axis 5. In this test, the disk was rotated at a peripheral speed r = 4 m / second (speed near the outer periphery of the disk) for 360 hours.

この摩耗試験の結果を図3に示す。グラフ縦軸の摩耗重量(%)は、各試験片の試験前の重量に対する、試験後の重量の減少分の割合を意味する。実施例1〜3に係る試験片の摩耗重量は、Ni系ダクタイル管よりは若干高いものの、一般的に用いられている耐摩耗鋼管よりも優れた耐摩耗性を有していることが確認できた。   The results of this wear test are shown in FIG. The wear weight (%) on the vertical axis of the graph means the ratio of the decrease in the weight after the test to the weight before the test of each test piece. Although the wear weight of the test pieces according to Examples 1 to 3 is slightly higher than that of the Ni-based ductile pipe, it can be confirmed that the wear weight is superior to that of a commonly used wear-resistant steel pipe. It was.

上記のように、溶湯への各添加元素の含有量、特にMn及びCuの含有量を所定の範囲内(Mn:2.50〜3.00%、Cu:0.80〜2.00%)とし、焼鈍後の基地組織におけるパーライトの面積率が80%以上、未分解のセメンタイトの面積率が10〜15%となるようにすることにより、鋳放し品に対して特殊な熱処理を行うことなしに、しかも、Ni等の高価なレアメタルを使用することなく、高硬度を有し、優れた耐摩耗性を備えた球状黒鉛鋳鉄管を構成することができる。   As described above, the content of each additive element in the molten metal, particularly the contents of Mn and Cu are within a predetermined range (Mn: 2.50 to 3.00%, Cu: 0.80 to 2.00%). No special heat treatment is performed on the as-cast product by setting the area ratio of pearlite in the base structure after annealing to 80% or more and the area ratio of undecomposed cementite to 10 to 15%. In addition, a spheroidal graphite cast iron pipe having high hardness and excellent wear resistance can be formed without using an expensive rare metal such as Ni.

なお、上記の実施形態においては、接種剤としてFe−Si系のものを用いたが、Biが0.5〜5.0重量%、Siが45〜75%、それぞれ含まれたBi系接種剤を用いることもできる。また、これらの接種剤は、黒鉛をより多く晶出させるために使用されるが、必要な耐力が確保される限りにおいて、接種剤の使用を省略することも許容される。   In the above embodiment, the Fe-Si type inoculum was used as the inoculum, but Bi type inoculum containing 0.5 to 5.0% by weight of Bi and 45 to 75% of Si, respectively. Can also be used. In addition, these inoculants are used to crystallize more graphite, but it is acceptable to omit the use of the inoculants as long as necessary proof stress is ensured.

1 試験容器
2 混合体
3 試験片
4 円盤
5 回転軸
1 Test container 2 Mixture 3 Test piece 4 Disk 5 Rotating shaft

Claims (4)

質量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:2.50〜3.00%、Cu:0.80〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなり、基地組織におけるパーライトの面積率が80%以上であり、未分解のセメンタイトの面積率が10〜15%の範囲内である球状黒鉛鋳鉄管。 In mass %, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20% further Mn: 2.50~3.00%, Cu: contains at 0.80 to 2.00% scope, balance of Fe and unavoidable impurities, the area ratio of pearlite in groups ground weave 80 % Or more, and the area ratio of undecomposed cementite is in the range of 10 to 15%. 基地組織中に晶出している黒鉛が15.0μm以下に微細化された請求項1に記載の球状黒鉛鋳鉄管。 The spheroidal graphite cast iron pipe according to claim 1, wherein graphite crystallized in the matrix structure is refined to 15.0 µm or less . 質量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:2.50〜3.00%、Cu:0.80〜2.00%となる範囲で含有し、残部がFe及び不可避的不純物からなる溶湯を用いて、冷却速度2.0〜8.0℃/秒で所定形状の半製品を鋳造し、前記半製品を900〜1100℃の温度範囲内で5〜30分保持した後、1〜8℃/分の冷却速度で冷却し、
基地組織におけるパーライトの面積率を80%以上、未分解のセメンタイトの面積率を5〜15%の範囲内とした球状黒鉛鋳鉄管の製造方法。
In mass %, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20% Further, Mn: 2.50 to 3.00%, Cu: 0.80 to 2.00% contained in the range, the balance using the molten metal consisting of Fe and inevitable impurities, cooling rate 2.0 ~ After casting a semi-finished product of a predetermined shape at 8.0 ° C./second, holding the semi-finished product within a temperature range of 900 to 1100 ° C. for 5 to 30 minutes, and then cooling at a cooling rate of 1 to 8 ° C./min .
A method for producing a spheroidal graphite cast iron pipe in which the area ratio of pearlite in the base structure is 80% or more and the area ratio of undecomposed cementite is in the range of 5 to 15% .
前記溶湯を金型に注湯する際に、Siが45〜75質量%含まれたFe−Si系接種剤を0.1〜0.5質量%注湯流接種する請求項3に記載の球状黒鉛鋳鉄管の製造方法。 The spherical shape according to claim 3, wherein when pouring the molten metal into a mold, 0.1 to 0.5% by mass of a Fe-Si inoculum containing 45 to 75% by mass of Si is inoculated. A method for producing a graphite cast iron pipe.
JP2014057628A 2014-03-20 2014-03-20 Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe Active JP6328967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014057628A JP6328967B2 (en) 2014-03-20 2014-03-20 Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014057628A JP6328967B2 (en) 2014-03-20 2014-03-20 Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe

Publications (2)

Publication Number Publication Date
JP2015183191A JP2015183191A (en) 2015-10-22
JP6328967B2 true JP6328967B2 (en) 2018-05-23

Family

ID=54350094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014057628A Active JP6328967B2 (en) 2014-03-20 2014-03-20 Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe

Country Status (1)

Country Link
JP (1) JP6328967B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6793541B2 (en) * 2016-12-26 2020-12-02 株式会社栗本鐵工所 Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe
CN115505829A (en) * 2022-09-16 2022-12-23 宁国市天天耐磨材料有限公司 Nodular cast iron jack and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252755A (en) * 1988-03-31 1989-10-09 Ueda Brake Kk Alloy cast iron brake block for vehicle
US8956565B2 (en) * 2007-06-26 2015-02-17 Incorporated National University Iwate University Flake graphite cast iron and production method thereof
JP2010156003A (en) * 2008-12-26 2010-07-15 Nippon Piston Ring Co Ltd Cast-iron member with cast-in spray deposit film, method for manufacturing the same, cylinder liner with cast-in spray deposit film, and wear-resistant ring with cast-in spray deposit film

Also Published As

Publication number Publication date
JP2015183191A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
KR20140095099A (en) Steel for mechanical structure for cold working, and method for manufacturing same
JPWO2013100148A1 (en) Spheroidal graphite cast iron excellent in strength and toughness and method for producing the same
CN102127673A (en) High-strength spheroidal graphite cast iron for thick-walled casting die
JP2013007091A (en) Steel for mechanical structure for cold working, method for manufacturing the same, and component for mechanical structure
JP6468366B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP6468365B2 (en) Steel, carburized steel parts, and method of manufacturing carburized steel parts
JP2011105993A (en) Spheroidal graphite cast iron tube and method for producing the same
WO2018008621A1 (en) Steel for mechanical structures
JP5753365B2 (en) High chrome cast iron
WO2018008355A1 (en) Steel for machine structures for cold working and method for producing same
JP5262740B2 (en) Case-hardened steel with excellent coarse grain prevention and fatigue characteristics during carburizing and its manufacturing method
KR101723174B1 (en) High chromium white cast-iron alloy with excellent abrasion resistance, oxidation resistance and strength and method for preparing the same
JPH08127845A (en) Graphite steel,its article and its production
JP6328968B2 (en) Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron
JP6328967B2 (en) Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe
JP5392207B2 (en) Induction hardening steel and crankshaft manufactured using the same
JP2004232032A (en) Spheroidal vanadium carbide-containing high manganese cast iron material, and production method therefor
JP2018035423A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
JP6793541B2 (en) Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe
JP4280923B2 (en) Steel materials for carburized parts or carbonitrided parts
JP2015083709A (en) Differential device component
TWI727230B (en) Cast iron structure and manufacturing method thereof
JP2018035420A (en) Steel for carburization, carburization steel member and manufacturing method of carburization steel member
JP4243852B2 (en) Steel for carburized parts or carbonitrided parts, method for producing carburized parts or carbonitrided parts
JP5669038B2 (en) Spheroidal graphite cast iron pipe and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180419

R150 Certificate of patent or registration of utility model

Ref document number: 6328967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150