JP6793541B2 - Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe - Google Patents

Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe Download PDF

Info

Publication number
JP6793541B2
JP6793541B2 JP2016251094A JP2016251094A JP6793541B2 JP 6793541 B2 JP6793541 B2 JP 6793541B2 JP 2016251094 A JP2016251094 A JP 2016251094A JP 2016251094 A JP2016251094 A JP 2016251094A JP 6793541 B2 JP6793541 B2 JP 6793541B2
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
iron pipe
graphite cast
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016251094A
Other languages
Japanese (ja)
Other versions
JP2018104750A (en
Inventor
仁志 柳谷
仁志 柳谷
親平 堤
親平 堤
光二 中本
光二 中本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2016251094A priority Critical patent/JP6793541B2/en
Publication of JP2018104750A publication Critical patent/JP2018104750A/en
Application granted granted Critical
Publication of JP6793541B2 publication Critical patent/JP6793541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、水道管等に使用される球状黒鉛鋳鉄管、および、この球状黒鉛鋳鉄管の製造方法に関する。 The present invention relates to a spheroidal graphite cast iron pipe used for a water pipe or the like, and a method for producing the spheroidal graphite cast iron pipe.

一般的な球状黒鉛鋳鉄(以下において、ダクタイル鋳鉄と称する。)は、JIS規格のFCD350、FCD400、FCD450等の高靱性タイプのものや、FCD600、FCD700、FCD800等の高強度タイプのものがある。主に水道管用として鋳造されるダクタイル鋳鉄管については、これらの中で強度と伸びのバランスが比較的良好なFCD450(引張強さ450MPa以上、伸び10%以上)が選択される。これに対し、スラリー状物質や摩耗性の高い硬質物質等を輸送する用途には高硬度の耐摩耗材が、自動車部品や建機部品等の素材としての用途には高強度かつ高耐力のものがそれぞれ選択される。 General spheroidal graphite cast iron (hereinafter referred to as ductile cast iron) includes high toughness types such as JIS standard FCD350, FCD400 and FCD450, and high strength types such as FCD600, FCD700 and FCD800. For ductile cast iron pipes mainly cast for water pipes, FCD450 (tensile strength 450 MPa or more, elongation 10% or more) having a relatively good balance between strength and elongation is selected. On the other hand, high-hardness wear-resistant materials are used for transporting slurry-like substances and hard materials with high wear resistance, and high-strength and high-bearing materials are used as materials for automobile parts and construction machinery parts. Each is selected.

例えば、金型遠心鋳造によって鋳造されたダクタイル鋳鉄管(直管)の鋳放し組織のマトリックス(基地)の主体はパーライトであり、この金型遠心鋳造における冷却速度が大きいため、安定系の黒鉛に加え、準安定系のセメンタイトが同時に多く晶出した斑構造となる。このセメンタイトは伸びの阻害要因となるため、FCD450タイプに要求される強度と伸びの両立を図るために、セメンタイトの分解およびマトリックスのフェライト化を目的とした焼鈍が必要となる。 For example, pearlite is the main component of the matrix (base) of the as-cast structure of ductile cast iron pipes (straight pipes) cast by centrifugal casting of dies, and since the cooling rate in this centrifugal casting of dies is high, stable graphite can be used. In addition, a mottled structure in which a large amount of semi-stable cementite is crystallized at the same time is formed. Since this cementite becomes an inhibitory factor for elongation, annealing for the purpose of decomposition of cementite and ferrite formation of the matrix is required in order to achieve both the strength and elongation required for the FCD450 type.

ダクタイル鋳鉄管の焼鈍は、一般的には連続焼鈍炉で行われる。この連続焼鈍炉において、ダクタイル鋳鉄管は、オーステナイト化温度域以上(870℃以上)に加熱される。これによりセメンタイトを完全に分解し、基地組織のオーステナイト化を行う。このセメンタイトの分解は、処理温度と処理時間に依存し、処理温度が高いほど処理時間を短くすることができる一方で、処理温度が低いほど長い処理時間を要する。この連続焼鈍炉は、炉内の均一な温度コントロールが困難であることが多い。このため、セメンタイトを確実にオーステナイト化するために、処理温度および処理時間を決定する必要がある。 Annealing of ductile cast iron pipes is generally performed in a continuous annealing furnace. In this continuous annealing furnace, the ductile cast iron pipe is heated above the austenitizing temperature range (870 ° C. or higher). This completely decomposes cementite and austenites the base tissue. The decomposition of cementite depends on the treatment temperature and the treatment time, and the higher the treatment temperature, the shorter the treatment time, while the lower the treatment temperature, the longer the treatment time. In this continuous annealing furnace, it is often difficult to control the temperature uniformly in the furnace. Therefore, it is necessary to determine the treatment temperature and the treatment time in order to surely austenite the cementite.

基地組織のオーステナイト化を完了したら、このオーステナイトからフェライトを析出させるため、共析変態点付近(680〜750℃程度)の温度域を一定時間保持するか、この共析変態点付近を徐冷する熱処理を行う。この際の保持時間や冷却速度により、フェライト析出量が決定される。すなわち、保持時間が長いほど、または、冷却速度が小さいほどフェライト析出量は増大する一方で、保持時間が短いほど、または、冷却速度が大きいほどフェライト析出量は減少し、マトリックスの主体はパーライトとなる。 After the austeniticization of the matrix structure is completed, in order to precipitate ferrite from this austenite, the temperature range near the eutectoid transformation point (about 680 to 750 ° C.) is maintained for a certain period of time, or the vicinity of this eutectoid transformation point is slowly cooled. Perform heat treatment. The amount of ferrite precipitated is determined by the holding time and cooling rate at this time. That is, the longer the holding time or the lower the cooling rate, the larger the ferrite precipitation amount, while the shorter the holding time or the higher the cooling rate, the smaller the ferrite precipitation amount, and the matrix is mainly composed of pearlite. Become.

この熱処理において連続焼鈍炉を用いる場合、厳密に温度コントロールを行ってフェライトとパーライトの量を細かくコントロールすることが困難なため、基本的にはフェライトが主体となる条件で焼鈍を実施して靱性の確保を図っている。 When a continuous annealing furnace is used in this heat treatment, it is difficult to finely control the amount of ferrite and pearlite by strictly controlling the temperature, so basically annealing is performed under the condition that ferrite is the main component, and the toughness is increased. We are trying to secure it.

ダクタイル鋳鉄管において、FCD600、FCD700、FCD800といった高強度タイプのものが要求される場合は、マトリックスのパーライト化が必要となる。このパーライト化を熱処理条件の制御のみで行うのは困難なため、パーライト化を促進するMn、Cr、Cu、Sn等の微量元素を添加するのが一般的である。 When high-strength types such as FCD600, FCD700, and FCD800 are required for ductile cast iron pipes, it is necessary to make the matrix pearlite. Since it is difficult to perform this pearlite formation only by controlling the heat treatment conditions, it is common to add trace elements such as Mn, Cr, Cu, and Sn that promote pearlite formation.

このダクタイル鋳鉄管を、鉱石質スラリーや石灰質スラリー等のスラリー状物質や、摩耗性の高い硬質物質等の輸送に用いる場合は、耐摩耗性に優れた特性(例えば、ビッカース硬度が200Hv以上)が要求される。さらに、近年においては、火力発電所の配管や、石炭ボイラ装置のように、高温環境下における使用も想定されるため、高温でも十分な硬度を維持できる材料特性が要求されている。 When this ductile cast iron pipe is used for transporting a slurry-like substance such as an ore slurry or a calcareous slurry, or a hard substance having high wear resistance, it has excellent wear resistance (for example, Vickers hardness of 200 Hv or more). Required. Further, in recent years, since it is expected to be used in a high temperature environment such as piping of a thermal power plant and a coal boiler device, material properties capable of maintaining sufficient hardness even at a high temperature are required.

一般的に、この耐摩耗性は、硬度を上昇させることにより向上する。ダクタイル鋳鉄管においては、既述の通り、厳密な温度コントロールを必要とする焼き戻しなどの特殊な熱処理が困難であるため、例えば、特許文献1〜4に示すようにNiを添加したり、あるいは、Moを添加したりしてマトリックスの改良を行い、硬度の向上を図る手法を採用したりすることがある。 Generally, this wear resistance is improved by increasing the hardness. As described above, in ductile cast iron pipes, special heat treatment such as tempering that requires strict temperature control is difficult. Therefore, for example, Ni is added or Ni is added as shown in Patent Documents 1 to 4. , Mo may be added to improve the matrix, and a method for improving the hardness may be adopted.

特許第3823347号公報Japanese Patent No. 3823347 特許第5282547号公報Japanese Patent No. 5282547 特許第5589646号公報Japanese Patent No. 5589646 特許第5712525号公報Japanese Patent No. 5712525

各特許文献に係る構成においては、改良したマトリックスが、レデブライトやマルテンサイトなどの高温下で相変態を起こしやすい組織を形成していた場合、相変態に伴う硬度低下が懸念される。既述の通り、耐摩耗性と硬度は関係があるため、硬度の低下に伴って耐摩耗性が低下する。このため、高温において相変態を起こす可能性のある組織を有する素材は、高温への適用が難しいという問題がある。 In the configuration according to each patent document, when the improved matrix forms a structure such as redebrite or martensite that is prone to phase transformation at high temperature, there is a concern that the hardness may decrease due to the phase transformation. As described above, since the wear resistance and the hardness are related, the wear resistance decreases as the hardness decreases. Therefore, there is a problem that it is difficult to apply a material having a structure that may cause a phase transformation at a high temperature to a high temperature.

そこで、この発明は、高温領域におけるダクタイル鋳鉄管の硬度を維持することを課題とする。 Therefore, an object of the present invention is to maintain the hardness of a ductile cast iron pipe in a high temperature region.

上記の課題を解決するため、この発明は、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.20〜1.70%、Cu:0.60〜1.20%となる範囲で含有し、残部がFeおよび不可避的不純物からなり、焼鈍後の基地組織におけるパーライトの面積率が80%以上であり、未分解のセメンタイトの面積率が10〜15%の範囲内である球状黒鉛鋳鉄管を構成した。 In order to solve the above problems, the present invention has C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr in% by weight. : 0.01 to 0.20%, Mn: 1.20 to 1.70%, Cu: 0.60 to 1.20%, and the balance is from Fe and unavoidable impurities. Therefore, a spheroidal graphite cast iron pipe having an area ratio of pearlite in the matrix structure after annealing of 80% or more and an area ratio of undecomposed cementite in the range of 10 to 15% was constructed.

ここで、パーライトの面積率とは、所定の大きさの視野におけるマトリックスの面積を100%としたときにパーライトの面積が占める割合(%)のことをいい、セメンタイトの面積率とは、所定の大きさの視野の全体の面積を100%としたときにセメンタイトの面積が占める割合(%)のことをいう。 Here, the area ratio of pearlite means the ratio (%) occupied by the area of pearlite when the area of the matrix in the field of view of a predetermined size is 100%, and the area ratio of cementite is a predetermined ratio. It refers to the ratio (%) of the area of cementite when the total area of the field of view is 100%.

次に、各合金元素の含有量を上記の範囲に限定した理由について説明する。 Next, the reason why the content of each alloying element is limited to the above range will be described.

Cは、本発明に必要な黒鉛量と鋳造性(溶湯の流動性)を確保するために、少なくとも3.20%含有するようにした。その一方で、含有量が高すぎると黒鉛の晶出が過剰になって高い強度が得られなくなるので、その上限を4.00%とした。 C was contained at least 3.20% in order to secure the amount of graphite and castability (fluidity of molten metal) required for the present invention. On the other hand, if the content is too high, graphite crystallization becomes excessive and high strength cannot be obtained. Therefore, the upper limit is set to 4.00%.

Siは、溶湯の流動性を高める作用や黒鉛の晶出を促進する作用を確保するために、少なくとも1.40%含有するようにした。その一方で、含有量が高すぎると黒鉛の晶出が過剰になるとともに基地組織のパーライト化を抑える作用が大きくなって高強度が得られなくなり、製品の外表面にピンホール等の荒れが発生しやすくなるため、その上限を3.00%とした。 Si was contained at least 1.40% in order to ensure the action of increasing the fluidity of the molten metal and the action of promoting the crystallization of graphite. On the other hand, if the content is too high, the crystallization of graphite becomes excessive and the effect of suppressing the pearlite formation of the matrix structure becomes large, so that high strength cannot be obtained and the outer surface of the product becomes rough such as pinholes. The upper limit is set to 3.00% because it is easy to do.

Mgは、黒鉛を球状化させるのに必要な元素であり、その効果を十分に得るために少なくとも0.02%含有するようにした。その一方で、含有量が高すぎると、その効果の向上があまり見られなくなるので、その上限を0.08%とした。 Mg is an element necessary for spheroidizing graphite, and it is contained at least 0.02% in order to fully obtain the effect. On the other hand, if the content is too high, the effect is not improved so much, so the upper limit is set to 0.08%.

Crは、通常、不可避的に0.01%以上含まれるが、含有量が0.20%以下であればその影響は小さい。 Cr is usually inevitably contained in an amount of 0.01% or more, but if the content is 0.20% or less, the effect is small.

Mnは、Sを固定して無害化するとともにパーライトを安定的に存在させ、かつパーライトの強度を向上させるのに有効な元素であり、その効果を十分に得つつ所定の硬度を確保するために少なくとも1.20%含有するようにした。その一方で、含有量が高すぎると、セメンタイトの残留が顕著となって強度および伸びが低下するため、その上限を1.70%とした。 Mn is an element effective for fixing S to make it harmless, allowing pearlite to exist stably, and improving the strength of pearlite, and in order to secure a predetermined hardness while sufficiently obtaining the effect. It was made to contain at least 1.20%. On the other hand, if the content is too high, the residual cementite becomes remarkable and the strength and elongation are lowered, so the upper limit is set to 1.70%.

Cuは、Mnと同様にパーライトを安定的に存在させるのに有効な元素であり、その効果を十分に得つつ所定の硬度を確保するために少なくとも0.60%含有するようにした。その一方で、含有量を必要以上に高くしても、その効果には限界があるため、その上限を1.20%とした。 Like Mn, Cu is an element effective for the stable presence of pearlite, and is contained at least 0.60% in order to secure a predetermined hardness while sufficiently obtaining the effect. On the other hand, even if the content is increased more than necessary, the effect is limited, so the upper limit is set to 1.20%.

上記各合金元素の他に、P、S等の不可避的不純物が含有されるが、その含有量は少ないほどよい。例えば、Pは0.08%以下、Sは0.015%以下とすることが好ましい。 In addition to the above alloying elements, unavoidable impurities such as P and S are contained, but the smaller the content, the better. For example, P is preferably 0.08% or less, and S is preferably 0.015% or less.

このように、各合金元素を上記濃度範囲内で、特にパーライト組織を安定的に存在させるMnおよびCuを上記濃度範囲内で含有させることにより、十分なパーライトの面積率(80%以上)を有するとともに、未分解のセメンタイトの面積率を所定の面積率の範囲内(10〜15%)とした球状黒鉛鋳鉄管とすることができる。このように各合金元素の濃度を調整して鋳造した球状黒鉛鋳鉄管は、焼入れ・焼き戻し等の特殊な熱処理を必要とせず、比較的簡便な焼鈍熱処理のみで、引張強さ、耐力だけでなく十分な耐摩耗性を発揮できる硬度(例えば、ビッカース硬度が200Hv以上)を付与される。しかも、レデブライトやマルテンサイトなどの高温で相変態を起こしやすい組織が形成されないため、400〜500℃の高温環境下においてもその硬度を維持することができ、高温環境下における信頼性を大幅に高めることができる。 As described above, by containing each alloying element within the above concentration range, particularly Mn and Cu that stably present the pearlite structure within the above concentration range, a sufficient pearlite area ratio (80% or more) is obtained. At the same time, a spheroidal graphite cast iron pipe in which the area ratio of undecomposed cementite is within a predetermined area ratio (10 to 15%) can be obtained. The spheroidal graphite cast iron pipe cast by adjusting the concentration of each alloy element in this way does not require special heat treatment such as quenching and tempering, and only relatively simple annealing heat treatment is required, and only tensile strength and strength are required. Hardness that can exhibit sufficient abrasion resistance (for example, Vickers hardness of 200 Hv or more) is given. Moreover, since structures such as redebrite and martensite that are prone to phase transformation are not formed at high temperatures, the hardness can be maintained even in a high temperature environment of 400 to 500 ° C, and reliability in a high temperature environment is greatly improved. be able to.

前記各構成においては、基地組織中に晶出している黒鉛が微細化された状態とするのが好ましい。 In each of the above configurations, it is preferable that the graphite crystallized in the matrix structure is in a finely divided state.

このように、微細なサイズ(例えば、15.0μm以下)とすることにより、十分な耐摩耗性を確保しつつ、さらに高強度かつ高耐力を兼ね備えた球状黒鉛鋳鉄管を構成することができる。 By setting the size to a fine size (for example, 15.0 μm or less) in this way, it is possible to construct a spheroidal graphite cast iron pipe having high strength and high yield strength while ensuring sufficient wear resistance.

また、本発明に係る球状黒鉛鋳鉄管の製造方法は、重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.20〜1.70%、Cu:0.60〜1.20%となる範囲で含有し、残部がFeおよび不可避的不純物からなる溶湯を用いて、冷却速度2.0〜8.0℃/秒で所定形状の半製品を鋳造し、前記半製品を900〜1100℃の温度範囲内で5〜30分保持した後、1〜8℃/分の冷却速度で冷却し、球状黒鉛鋳鉄管を製造する方法である。 The method for producing a spheroidal graphite cast iron pipe according to the present invention is, in terms of weight%, C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08. %, Cr: 0.01 to 0.20%, Mn: 1.20 to 1.70%, Cu: 0.60 to 1.20%, and the balance is Fe and unavoidable. A semi-finished product having a predetermined shape was cast at a cooling rate of 2.0 to 8.0 ° C./sec using a molten metal composed of target impurities, and the semi-finished product was held in a temperature range of 900 to 1100 ° C. for 5 to 30 minutes. After that, it is cooled at a cooling rate of 1 to 8 ° C./min to produce a spheroidal graphite cast iron tube.

上述したように、各合金元素の含有量の範囲を上記のようにすることにより、十分な耐摩耗性を確保しつつ、高強度と高耐力を兼ね備えた球状黒鉛鋳鉄管を製造することができる。しかも、上記の熱処理は厳密な温度コントロールを要求されないため、一般的な連続焼鈍炉を用いて熱処理を行うことができる。 As described above, by setting the content range of each alloying element as described above, it is possible to manufacture a spheroidal graphite cast iron tube having both high strength and high yield strength while ensuring sufficient wear resistance. .. Moreover, since the above heat treatment does not require strict temperature control, the heat treatment can be performed using a general continuous annealing furnace.

この製造方法においては、前記溶湯を金型に注湯する際に、Siが45〜75重量%含まれたFe−Si系接種剤を0.1〜0.5重量%注湯流接種するのが好ましい。 In this production method, when the molten metal is poured into a mold, an Fe-Si-based inoculant containing 45 to 75% by weight of Si is inoculated by pouring 0.1 to 0.5% by weight. Is preferable.

このようにすれば、基地組織中に晶出する黒鉛の粒数を増加させることができ、より確実に高い耐力を得ることができる。 By doing so, the number of graphite grains crystallized in the matrix structure can be increased, and a higher yield strength can be obtained more reliably.

この発明によると、球状黒鉛鋳鉄の溶湯に、MnおよびCuを所定の濃度範囲内で含有させることで、特殊な熱処理を行うことなく、耐摩耗性を発揮するために十分な硬度(例えば、ビッカース硬度が200Hv以上)を確保しつつ、高強度かつ耐力性を備えた球状黒鉛鋳鉄管を構成することができる。しかも、その組織が、レデブライトやマルテンサイトなどの高温で相変態を起こしやすい組織が形成されないため、400〜500℃の高温環境下においてもその硬度を維持することができ、高温環境下における信頼性を大幅に高めることができる。 According to the present invention, by containing Mn and Cu in a molten metal of spheroidal graphite cast iron within a predetermined concentration range, hardness sufficient to exhibit wear resistance without performing special heat treatment (for example, Vickers). It is possible to construct a spheroidal graphite cast iron pipe having high strength and strength while ensuring a hardness of 200 Hv or more). Moreover, since the structure does not form a structure such as redebrite or martensite that easily undergoes phase transformation at high temperatures, its hardness can be maintained even in a high temperature environment of 400 to 500 ° C, and reliability in a high temperature environment can be maintained. Can be greatly increased.

高温ビッカース試験の結果を示す図Diagram showing the results of the high temperature Vickers test

本願発明に係るダクタイル鋳鉄管(球状黒鉛鋳鉄管)の特性評価実験に先立ち、本願発明の実施例となるダクタイル鋳鉄管を鋳造した。この実施例に対する比較例として、耐摩耗鋼管を用意した。表1に実施例および比較例に係るダクタイル鋳鉄の溶湯の化学成分を示す(本表への記載を省略した残部はFe、およびP、S等の不可避的不純物である)。なお、表1に示した化学成分データは、それぞれの溶湯から作製した白銑試料を発光分光分析装置で分析した値である。 Prior to the characteristic evaluation experiment of the ductile cast iron pipe (spheroidal graphite cast iron pipe) according to the present invention, the ductile cast iron pipe according to the embodiment of the present invention was cast. A wear-resistant steel pipe was prepared as a comparative example with respect to this example. Table 1 shows the chemical components of the molten ductile cast iron according to Examples and Comparative Examples (the balance omitted from this table is Fe and unavoidable impurities such as P and S). The chemical composition data shown in Table 1 are values obtained by analyzing a white pig iron sample prepared from each molten metal with an emission spectroscopic analyzer.

Figure 0006793541
Figure 0006793541

この実施例に係るダクタイル鋳鉄管においては、表1に示した化学成分の各溶湯を1300℃において金型遠心鋳造装置の円筒状金型に注湯し、肉厚が12.0mmの管状の半製品(鋳放し管)を鋳造した。この注湯の際には、Siが45〜75重量%含まれたFe−Si系接種剤を0.1〜0.5重量%注湯流接種した。この鋳造時の冷却速度は4.0〜6.0℃/秒程度であった。この冷却速度は、金型の形状、注湯量、管の肉厚によって変化するが、2.0〜8.0℃/秒程度の範囲内に収まることが多い。 In the ductile cast iron pipe according to this embodiment, each molten metal of the chemical components shown in Table 1 is poured into a cylindrical mold of a mold centrifugal casting apparatus at 1300 ° C., and a tubular half having a wall thickness of 12.0 mm. The product (as-cast pipe) was cast. At the time of this pouring, a Fe-Si-based inoculant containing 45 to 75% by weight of Si was inoculated by pouring 0.1 to 0.5% by weight. The cooling rate during this casting was about 4.0 to 6.0 ° C./sec. This cooling rate varies depending on the shape of the mold, the amount of pouring water, and the wall thickness of the pipe, but it is often within the range of about 2.0 to 8.0 ° C./sec.

次に、この半製品に対し、次に示す焼鈍条件で焼鈍することにより、製品としてのダクタイル鋳鉄管に仕上げた。
(焼鈍条件)
・加熱温度 :900〜1100℃
・加熱保持時間:5〜30分
・冷却速度 :1〜8℃/分
Next, this semi-finished product was annealed under the following annealing conditions to complete a ductile cast iron pipe as a product.
(Annealing condition)
・ Heating temperature: 900 to 1100 ° C
・ Heating holding time: 5 to 30 minutes ・ Cooling rate: 1 to 8 ° C / min

上記の実施例に対する比較例として、特殊な熱処理によってマルテンサイトを晶出させたマルテンサイト系耐摩耗鋼管を採用した。 As a comparative example with respect to the above example, a martensitic wear-resistant steel pipe in which martensite was crystallized by a special heat treatment was adopted.

実施例(試料1〜3)に係る母材から、強度試験および硬度試験に用いる試験片を作成した。各試験片に対し、常温(30℃)にて行った引張強さ、耐力、および、ブリネル硬度の各試験の結果を表2に示す。また、比較例としての耐摩耗鋼管の引張強さ、耐力、および、ブリネル硬度の各特性範囲についても、表2に併せて示す。この結果から、実施例に係る各試料1〜3は、比較例に対し、引張強さ、耐力、ブリネル硬度のいずれの結果においても同等以上であることが確認できた。 From the base material according to Examples (Samples 1 to 3), test pieces used for strength test and hardness test were prepared. Table 2 shows the results of each test of tensile strength, proof stress, and Brinell hardness performed at room temperature (30 ° C.) for each test piece. Table 2 also shows the respective characteristic ranges of the tensile strength, proof stress, and Brinell hardness of the wear-resistant steel pipe as a comparative example. From this result, it was confirmed that each of the samples 1 to 3 according to the examples was equal to or higher than the comparative example in all the results of tensile strength, proof stress, and Brinell hardness.

Figure 0006793541
Figure 0006793541

次に、これらの試料を用いて、次に示す試験条件でビッカース硬度を測定した。
(試験条件)
・試験温度 :常温(30℃)、200℃、300℃、400℃、500℃(5水準)
・荷重 :20kg
・時間 :30秒間
・圧子 :ダイヤモンド
・雰囲気ガス:アルゴン
Next, using these samples, the Vickers hardness was measured under the following test conditions.
(Test condition)
-Test temperature: Room temperature (30 ° C), 200 ° C, 300 ° C, 400 ° C, 500 ° C (5 levels)
・ Load: 20 kg
・ Time: 30 seconds ・ Indenter: Diamond ・ Atmospheric gas: Argon

各温度におけるビッカース試験の結果を図1に示す。実施例に係る試料1〜3は、試験温度の上昇に伴う素材の軟化によって、ビッカース硬度は緩やかに低下したが、400〜500℃の高温領域においても、200Hv以上の硬度を維持していた。これは、試料1〜3の基地組織がパーライトであるため、500℃程度の高温でも相変態が起こらず、この相変態に伴う組織の軟化が生じないためである。このように、高温領域における十分な硬度を確保したことにより、高温環境下における信頼性を大幅に高めることができる。 The results of the Vickers test at each temperature are shown in FIG. The Vickers hardness of Samples 1 to 3 according to Examples gradually decreased due to the softening of the material as the test temperature increased, but maintained a hardness of 200 Hv or more even in a high temperature region of 400 to 500 ° C. This is because the matrix structure of Samples 1 to 3 is pearlite, so that phase transformation does not occur even at a high temperature of about 500 ° C., and the structure does not soften due to this phase transformation. By ensuring sufficient hardness in the high temperature region in this way, reliability in a high temperature environment can be significantly improved.

これに対し、比較例に係る試料は、300℃以下の温度領域においては、実施例に係る試料1〜3と同様、ビッカース硬度は緩やかに低下した。ところが、300℃を超えると、ビッカース硬度が急激に低下し(図1中の耐摩耗鋼管のグラフの傾斜を参照)、500℃の高温下では200Hvを下回り、実施例と比較して大幅な硬度低下が生じた。これは、耐摩耗鋼管の組織中に晶出しているマルテンサイト層が、300℃程度以上の温度領域で軟化し始めることに起因すると考えられる。 On the other hand, the Vickers hardness of the sample according to the comparative example gradually decreased in the temperature range of 300 ° C. or lower, as in the samples 1 to 3 according to the example. However, when the temperature exceeds 300 ° C, the Vickers hardness drops sharply (see the inclination of the graph of the wear-resistant steel pipe in FIG. 1), and it falls below 200 Hv at a high temperature of 500 ° C, which is a large hardness as compared with the examples. There was a decline. It is considered that this is because the martensite layer crystallized in the structure of the wear-resistant steel pipe begins to soften in a temperature range of about 300 ° C. or higher.

上記のように、溶湯への各添加元素の含有量、特にMnおよびCuの含有量を所定の範囲内(Mn:1.20〜1.70%、Cu:0.60〜1.20%)とし、焼鈍後の基地組織におけるパーライトの面積率が80%以上、未分解のセメンタイトの面積率が10〜15%となるようにすることにより、鋳放し品に対して特殊な熱処理を行うことなしに、400〜500℃の高温領域における十分な硬度を備えた球状黒鉛鋳鉄管を構成することができる。 As described above, the content of each additive element in the molten metal, particularly the content of Mn and Cu, is within a predetermined range (Mn: 1.20 to 1.70%, Cu: 0.60 to 1.20%). By setting the area ratio of pearlite in the base structure after annealing to 80% or more and the area ratio of undecomposed cementite to 10 to 15%, no special heat treatment is performed on the as-cast product. In addition, a spheroidal graphite cast iron tube having sufficient hardness in a high temperature region of 400 to 500 ° C. can be constructed.

なお、上記の実施形態においては、接種剤としてFe−Si系のものを用いたが、Biが0.5〜5.0重量%、Siが45〜75重量%、それぞれ含まれたBi系接種剤を用いることもできる。また、これらの接種剤は、黒鉛をより多く晶出させるために使用されるが、必要な耐力が確保される限りにおいて、接種剤の使用を省略することも許容される。 In the above embodiment, Fe-Si-based inoculation agent was used, but Bi-based inoculation containing 0.5 to 5.0% by weight of Bi and 45 to 75% by weight of Si, respectively. Agents can also be used. In addition, although these inoculants are used to crystallize more graphite, it is permissible to omit the use of the inoculants as long as the required yield strength is ensured.

Claims (4)

重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.20〜1.70%、Cu:0.60〜1.20%となる範囲で含有し、残部がFeおよび不可避的不純物からなり、焼鈍後の基地組織におけるパーライトの面積率が80%以上であり、未分解のセメンタイトの面積率が10〜15%の範囲内である球状黒鉛鋳鉄管。 By weight%, it contains C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20%. Further, Mn: 1.20 to 1.70% and Cu: 0.60 to 1.20% are contained, and the balance is composed of Fe and unavoidable impurities, and the area ratio of pearlite in the matrix structure after annealing. Is 80% or more, and the area ratio of undecomposed cementite is in the range of 10 to 15%. 基地組織中に晶出している黒鉛が15.0μm以下に微細化された請求項1に記載の球状黒鉛鋳鉄管。 The spheroidal graphite cast iron pipe according to claim 1, wherein the graphite crystallized in the matrix structure is refined to 15.0 μm or less . 重量%で、C:3.20〜4.00%、Si:1.40〜3.00%、Mg:0.02〜0.08%、Cr:0.01〜0.20%を含有し、さらにMn:1.20〜1.70%、Cu:0.60〜1.20%となる範囲で含有し、残部がFeおよび不可避的不純物からなる溶湯を用いて、冷却速度2.0〜8.0℃/秒で所定形状の半製品を鋳造し、前記半製品を900〜1100℃の温度範囲内で5〜30分保持した後、1〜8℃/分の冷却速度で冷却する球状黒鉛鋳鉄管の製造方法。 By weight%, it contains C: 3.20 to 4.00%, Si: 1.40 to 3.00%, Mg: 0.02 to 0.08%, Cr: 0.01 to 0.20%. Further, using a molten metal containing Mn: 1.20 to 1.70% and Cu: 0.60 to 1.20% and the balance being Fe and unavoidable impurities, the cooling rate is 2.0 to 2. A spherical shape in which a semi-finished product having a predetermined shape is cast at 8.0 ° C./sec, the semi-finished product is held in a temperature range of 900 to 1100 ° C. for 5 to 30 minutes, and then cooled at a cooling rate of 1 to 8 ° C./min. A method for manufacturing a ductile iron tube. 前記溶湯を金型に注湯する際に、Siが45〜75重量%含まれたFe−Si系接種剤を0.1〜0.5重量%注湯流接種する請求項3に記載の球状黒鉛鋳鉄管の製造方法。 The spherical shape according to claim 3, wherein when the molten metal is poured into a mold, an Fe-Si-based inoculant containing 45 to 75% by weight of Si is inoculated by pouring 0.1 to 0.5% by weight of the molten metal. A method for manufacturing a ductile iron tube.
JP2016251094A 2016-12-26 2016-12-26 Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe Active JP6793541B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016251094A JP6793541B2 (en) 2016-12-26 2016-12-26 Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251094A JP6793541B2 (en) 2016-12-26 2016-12-26 Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe

Publications (2)

Publication Number Publication Date
JP2018104750A JP2018104750A (en) 2018-07-05
JP6793541B2 true JP6793541B2 (en) 2020-12-02

Family

ID=62786658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016251094A Active JP6793541B2 (en) 2016-12-26 2016-12-26 Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe

Country Status (1)

Country Link
JP (1) JP6793541B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102608392B1 (en) * 2021-11-29 2023-12-01 한국생산기술연구원 Methods of fabricating nodular cast iron

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101778959A (en) * 2007-06-26 2010-07-14 国立大学法人岩手大学 Flake graphite cast iron and manufacture method thereof
JP5812832B2 (en) * 2011-12-02 2015-11-17 曙ブレーキ工業株式会社 Thin-walled spheroidal graphite cast iron member, method for producing the same, and vehicle component
US20150004048A1 (en) * 2012-02-17 2015-01-01 Honda Motor Co., Ltd. Cast iron and brake part
JP6328967B2 (en) * 2014-03-20 2018-05-23 株式会社栗本鐵工所 Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe
JP6328968B2 (en) * 2014-03-20 2018-05-23 株式会社栗本鐵工所 Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron

Also Published As

Publication number Publication date
JP2018104750A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP5135562B2 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
CN104532149B (en) A kind of high tough, anti-H 2 S stress corrosion drilling tool round steel and manufacture method thereof
JP5135563B2 (en) Carburizing steel, carburized steel parts, and manufacturing method thereof
TWI589706B (en) Bar-shaped or wire-rod-shaped rolled steel for cold-forged parts
RU2664500C1 (en) Low-alloy steel petroleum tube
TW201708568A (en) Wire for bolt excellent in acid cleaning property and delayed fracture resistance after quenching and tempering, and bolt
JP6432932B2 (en) High strength and high toughness steel parts for machine structures excellent in pitting resistance and wear resistance and method for manufacturing the same
JP5913214B2 (en) Bolt steel and bolts, and methods for producing the same
JP2013227611A (en) High strength steel excellent in ssc resistance and method of manufacturing the same
JP6190298B2 (en) High strength bolt steel and high strength bolts with excellent delayed fracture resistance
TWI595101B (en) Cold forging and quenching and tempering after the delay breaking resistance of the wire with excellent bolts, and bolts
Srivatsa et al. Improvement of impact toughness by modified hot working and heat treatment in 13% Cr martensitic stainless steel
JP2013227598A (en) Iron casting and method for manufacturing the same
Basso et al. Development of high silicon dual phase austempered ductile iron
CN106086772A (en) Nitrizing Treatment wear-resistant ball preparation method
JP6328968B2 (en) Spheroidal graphite cast iron and method for producing spheroidal graphite cast iron
JP6793541B2 (en) Spheroidal graphite cast iron pipe and method for manufacturing spheroidal graphite cast iron pipe
JP2015203138A (en) Iron casting and manufacturing method therefor
JP6328967B2 (en) Spheroidal graphite cast iron pipe and manufacturing method of spheroidal graphite cast iron pipe
JP6459704B2 (en) Steel for cold forging parts
RU2250268C1 (en) Method of production of ingots made out of mottled cast iron with austenitic-bainite structure
RU2449043C2 (en) Method for cast iron heat treatment with spherical graphite
JP2005307257A5 (en)
JP6347153B2 (en) Steel material and manufacturing method thereof
Alias et al. Development of high strength ductile iron with niobium addition

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20161227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201110

R150 Certificate of patent or registration of utility model

Ref document number: 6793541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150