JP3589797B2 - Wear resistant high Mn cast steel - Google Patents

Wear resistant high Mn cast steel Download PDF

Info

Publication number
JP3589797B2
JP3589797B2 JP18124196A JP18124196A JP3589797B2 JP 3589797 B2 JP3589797 B2 JP 3589797B2 JP 18124196 A JP18124196 A JP 18124196A JP 18124196 A JP18124196 A JP 18124196A JP 3589797 B2 JP3589797 B2 JP 3589797B2
Authority
JP
Japan
Prior art keywords
concentration
ductility
cast steel
wear
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18124196A
Other languages
Japanese (ja)
Other versions
JPH108210A (en
Inventor
昌吾 村上
博幸 内田
耕児 皆川
健 増本
寿直 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18124196A priority Critical patent/JP3589797B2/en
Publication of JPH108210A publication Critical patent/JPH108210A/en
Application granted granted Critical
Publication of JP3589797B2 publication Critical patent/JP3589797B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、重衝撃を受ける耐摩耗部材、特に岩石を破砕するコーンクラッシャやジョークラッシャ等の破砕機のライナー材に用いられ、優れた耐摩耗性を有する高Mn鋳鋼に関するものである。
【0002】
【従来の技術】
高Mn鋳鋼は、本来良好な加工硬化特性と靭性を合わせ持った材料であり、その特性を利用してこれまでにも重衝撃を受ける耐摩耗部材、例えば岩石を破砕するコーンクラッシャやジョークラッシャ等の破砕機のライナー材として多用されてきた。ところが近年、破砕機等に対し、特に産業廃棄物や岩石用の破砕機等に対して処理能力の向上が求められるようになり、破砕機等の大型化,高破砕比化が進められている。これに伴い、破砕機等に使用される耐摩耗部材の摩耗状況は今後一層過酷になる傾向にあり、より耐摩耗性に優れた高Mn鋼の開発が急がれている。
【0003】
これまでにも、高Mn鋳鋼の耐摩耗性を改善しようとする試みが種々なされてきた。例えば、特公昭57−17937号,特公昭63−8181号,特公昭1−14303号,特開昭62−139855号,特開平1−142058号公報には、JIS規格の高Mn鋼組成よりC濃度を高めて耐摩耗性を向上させた合金例が記載されている。
【0004】
【発明が解決しようとする課題】
しかし、上記の各公報に記載の合金材料で肉厚の大きい破砕機のライナー材を実際に製作し使用した場合、延性の低下が予想以上に著しいため、耐摩耗性を高めるはずである「C濃度の増加」という手段を直ちに採用できず、現在に至っている。本発明者等も、C濃度を高くすることによって、耐摩耗性を顕著に向上できる点に着目する一方、上記の延性低下の現象にも着目し、その延性低下の原因を見極めれば、「C濃度を高める」手段が真に耐摩耗性の向上にとって有効な手段となりうるはずとの考えに立ち、そのような延性低下の原因の究明を目指して実験を開始し、以下の知見を得ることができた。
【0005】
通常、高Mn鋳鋼はスクラップを配合して溶製されるため、また溶解原料であるフェロマンガンに数1/10%のPが含まれていることもあって、現在使用されている高Mn鋳鋼はPを0.02〜0.07%程度含んでおり、このPが、溶製時にデンドライトアーム間、特に結晶粒界に偏析し、その後の水靭処理時に溶体化温度域で図1に示すようなFe−C−Pの共晶化合物を形成し、これが延性を低下させる原因であることが判明した。次に、本発明者等は、そのようなFe−C−Pの共晶化合物の生成を避けるために水靭処理時の溶体化温度をその共晶化合物の生成温度以下に設定して実験したところ、今度は炭化物(MC)を固溶しきれずに、この炭化物の存在により同じく延性が低下することも判明した。そこで、本発明者等は、Fe−C−Pの共晶化合物の生成因子の一つであるP濃度が大きく影響していることを予想し、P濃度そのものやP濃度とC濃度との相関関係が延性に及ぼす影響を見極めることに解決の糸口があるはずとの考えに到達した。
【0006】
本発明は、こうした状況の下になされたものであって、その目的は、高Mn鋳鋼の耐摩耗性を向上させ、より長寿命の耐摩耗部材を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成し得た本発明のうち、請求項1記載の発明は、重量%でC:1.3〜1.7%,Si:0.3〜1.0%,Mn10〜35%,Cr:0〜5%,Mo:0〜2%,不純物元素であるP濃度が0.01%以下で且つ〔%C〕・〔%P〕≦0.015とし、残部がFeおよび不可避不純物であることを特徴とする耐摩耗高Mn鋳鋼である。また、請求項2記載の発明は、上記構成元素に加えて、Ti,Alのいずれか一方又は両方を0.01〜0.6%含有する耐摩耗高Mn鋳鋼であり、また、請求項3記載の発明は、その上さらにV,Nb,B,Ta,Zrのうち1種又は2種以上を合計で0.01〜3.0%含有する耐摩耗高Mn鋳鋼である。
【0008】
本発明は、以下に詳細に述べるように全く新たな知見に基づいてなされたものである。即ち、従来、Pは不純物元素であり、少ない方が好ましいとはされているものの、特公平2−15623号公報や鉄鋼便覧(1962)P1456等に記載されているように、高Mn鋳鋼においてはP濃度が0.07%を超えなければ延性は確保できるとされていた。このため、製造上のコストを上昇させてまでP濃度を大きく低減させようとする試みはほとんどなされていない。特に本発明のように、P濃度を0.01%より低い範囲に抑えて延性,耐摩耗性との関係で一定の技術上の効果を発揮させようとする試みについては、全く検討されてこなかった。
【0009】
これまでにも、機械的性質に及ぼすP濃度の影響については、2,3の研究報告例が存在する。例えば、Trans Int Conf Struct Mech React Technol,11th,G2(1991)P93 〜98,Izv Vyssh Uchebn Zaved ChernMetall,3(1989)P109 〜113,Litejnoe Proizvod,11(1988)P8〜9 に記載がある。しかし、これらの記載例でも、P濃度が0.02%以上の範囲についてのみ言及されているにすぎない。そこで、本発明者等は、P濃度0.02%以下の範囲も含めて延性に及ぼすP濃度の影響を明らかにすべく、さらに実験研究を進めてきた。その結果、P濃度を0.01%以下にすると共に、その条件を満たしつつさらにC濃度に対するP濃度(相対的濃度)を一定範囲に収まるようにすることによって、延性が飛躍的に向上し、耐摩耗性に優れた高Mn鋳鋼が実現できることを見い出し、本発明を完成したものである。
【0010】
即ち、不純物であるPの濃度を0.01%以下でかつ〔%C〕・〔%P〕≦0.015とすることによって、肉厚が100mmを超えるライナー材に対して、C濃度が1.3%以上であっても高い延性を確保でき、C濃度を現用高Mn鋳鋼の1.0〜1.3%から最大1.7%まで増加させることが可能となり、耐摩耗性を飛躍的に向上させることに成功したものである。そこで、まず、本発明の高Mn鋳鋼の成分範囲限定理由を説明する。
【0011】
(イ)C:1.3〜1.7%
C濃度が1.3%未満では、従来の高Mn鋼材と同等の耐摩耗性しか得られず、一方C濃度が1.7%を超えると、P濃度を0.01%に抑えても延性,靭性が低下し、耐摩耗性部材の製造時又は使用時に割れを生じる。従って、C濃度は1.3〜1.7%の範囲に限定した。
【0012】
(ロ)Si:0.3%〜1.0%
溶解時の溶湯の脱酸及び流動性確保のために、Siを0.3%以上添加する必要があるが、1%を超えると、炭化物の結晶粒界への析出が促進され、靭性が低下する。
【0013】
(ハ)Mn:10〜35%
Mnはオーステナイト組織を得るために必要な元素であり、またCの固溶限を増大させて水靭処理の冷却過程での炭化物析出を抑制して延性向上に寄与する。そのためにはMnを10%以上添加する必要があるが、Mnが35%を超えると、鋳放し状態での炭化物析出量が多くなり、鋳造時の割れ発生の原因となる。
【0014】
(ニ)Cr:0〜5%
Crは加工硬化特性を向上させる有効な元素であるが、5%を超えると、鋳造時及び水靭処理の冷却過程での炭化物析出が顕著となり、延性が低下する。よって、0〜5%の範囲で必要に応じて添加する。
【0015】
(ホ)Mo:0〜2%
Moは水靭処理冷却過程の炭化物析出を抑制し延性を向上させる効果を有するが、2%を超えて添加すると、その効果が失われる。
【0016】
(ヘ)不純物元素であるP濃度が0.01%以下で且つ〔%C〕・〔%P〕≦0.015
不純物であるPの濃度を0.01%以下でかつ〔%C〕・〔%P〕≦0.015とすることによって、肉厚が100mmを超えるライナー材に対して、C濃度が1.3%以上であっても高い延性を確保でき、C濃度を現用高Mn鋳鋼の1.0〜1.3%から最大1.7%まで増加させることが可能となり、耐摩耗性を飛躍的に向上させることができる。一方、P濃度が0.01%を超えるか、〔%C〕・〔%P〕が0.15を超える条件では、Fe−C−Pの共晶化合物の生成が促進され、延性が低下する。
【0017】
本発明の高Mn鋳鋼は、C,Si,Mn,Cr,Moを基本成分とし、不純物元素であるP濃度が0.01%以下で且つ〔%C〕・〔%P〕≦0.015とし、残部がFeおよび不可避不純物よりなるものであるが、必要によってTi,Al,V,Nb,B,Ta,Zrの元素を所定量含有させても良い。これらの元素を含有させるときの成分範囲限定理由は下記の通りである。
【0018】
Ti,Al:いずれか一方又は両方で0.01〜0.6%
Ti及びAlの添加は、酸化物又は窒化物を溶湯中に形成し、結晶粒を微細化するのに有効である。Ti,Alのいずれか一方又は両方の添加量が0.01以上で効果があり、0.6%を超えると、粗大な介在物を生成するため、延性,靭性が低下する。また、大気溶解において、Alは脱酸材として添加する。また、Moと同様にTiの添加は、水靭処理冷却過程の炭化物析出を抑制する効果を有する。
【0019】
V,Nb,B,Ta,Zr:これらのうち1種又は2種以上の合計で0.01〜3.0%
V,Nb,B,Ta,Zrは炭化物析出により、加工硬化特性の向上及び結晶粒の微細化に寄与するが、0.01%以上の添加量で効果があり、添加量が3.0%を超えると、延性,靭性が低下する。
【0020】
ところで、本発明に係る高Mn鋳鋼を得るためには、現在使用されている高Mn鋳鋼中のP濃度(0.02〜0.07%程度)を低下させる、即ち、脱Pする必要があるが、その具体的方法としては、主に以下(1)〜(3)の3つの方法を挙げることができる。
(1)精錬時にBa0系及びNaSi0系フラックスを使用して酸化脱Pする。
(2)精錬時にCaC−CaF系フラックスを使用して還元脱Pする。
(3)溶解原料としてフェロマンガンを使用せず、Mnを含有しない溶鋼に金属Mnを添加する。
特にP濃度を0.01%以下にするには、フェロマンガンの使用をなるべく減らすことが不可欠である。
【0021】
【実施例】
表1に示す化学組成の高Mn鋳鋼を高周波誘導加熱溶解炉を用いて溶製した。
【0022】
【表1】

Figure 0003589797
【0023】
図2に示す鋳塊形状の砂型で、実際のライナー材を想定して鋳塊肉厚を約100mmとした。鋳込温度は、各組成における液相線温度より100±5°C高い温度とした。溶製した鋳塊は、1100°C×6hの溶体化処理後水冷する水靭処理を施した。水靭処理後、引張試験によって延性評価を行うと共に、圧縮試験によって加工硬化の特性評価を行った。いずれの場合も試験片は、鋳塊の肉厚(約100mm)に対して中央部から試験片を採取し、以下の各試験条件で行った(図2参照)。
(1)引張試験:JIS4号A型の試験片を10−3/sのひずみ速度で行い、破断時の伸びから延性を評価した。
(2)圧縮試験:8φ×12hmmの試験片を10−3/sのひずみ速度で行い、ひずみ50%時の変形抵抗から加工硬化量を評価した。
【0024】
なお、高Mn鋼は、加工硬化をすることによって優れた耐摩耗性を示す材質であるため、また、図3に示すように、加工硬化量と実機ライナーの摩耗寿命との間には良い相関が得られることがわかっているので、加工硬化の程度を調べることで、耐摩耗性,摩耗寿命といった特性の良否を知ることができるのである。試験結果を表2に示し、さらにP濃度と伸び(延性)との関係を図4に示す。なお、右肩に*印を添えた数字のNo.が本発明の要件を満足する実施例であり、評価は、伸び>20%で加工硬化量>350kgf/mmのものを合格(○)とした。
【0025】
【表2】
Figure 0003589797
【0026】
表1,表2によれば、P濃度が低くなるほど、伸び(延性)及び加工硬化量(耐摩耗性)が向上する傾向があるが、特にP濃度が0.01%以下になると、伸びが顕著に向上していることが分かる(実施例No.2,3,4,6,7,8,9,13,14,15,17,18)。C濃度が高い場合には、特にP濃度を下げる必要があり(比較例No.19)、逆にC濃度が低い場合には、P濃度が高くても延性は良いが、加工硬化量が小さく摩耗寿命に問題がある(比較例No.1)。また、伸びが約10%以下になると、圧縮試験において高ひずみで割れが発生し、加工硬化量が顕著に低下する(比較例No.10,11,12,16,19,20)。上記結果から、P濃度を0.01%以下で且つ〔%C〕・〔%P〕≦0.015とすることによって、鋳塊肉厚が100mm以上でも必要な延性を確保しつつ、加工硬化量を向上させ、耐摩耗性を画期的に向上させることが可能となることが理解できる。
【0027】
また、延性の向上にはTi及びMoの添加が有効であり(実施例No.7,13,14)、加工硬化量の向上にはTi及び炭化物形成元素(V,Nb,Ta,B)の添加が有効である(実施例No.7,15)。この加工硬化量の向上は、主に結晶粒の微細化効果によるものである。但し、炭化物形成元素が3%を超えると、多量の炭化物の析出によって延性低下を招く(比較例No.16)。
【0028】
【発明の効果】
以上説明したように、本発明のうち請求項1記載の発明は、重量%でC:1.3〜1.7%,Si:0.3〜1.0%,Mn:10〜35%,Cr:0〜5%,Mo:0〜2%,不純物元素であるP濃度が0.01%以下で且つ〔%C〕・〔%P〕≦0.015とし、残部がFeおよび不可避不純物であることを特徴とする耐摩耗高Mn鋳鋼である。特に、P濃度を0.01%以下で且つ〔%C〕・〔%P〕≦0.015とすることによって、延性が向上し、肉厚が100mm前後、あるいはそれ以上の部材に対してもC濃度を1.3%以上にして加工硬化特性を向上させることができ、高Mn鋼製耐摩耗ライナー材の摩耗寿命を画期的に向上させることが可能となった。
【0029】
また、請求項2記載の発明は、請求項1記載の発明の構成に、Ti,Alのいずれか一方又は両方を0.01〜0.6%加えたものであり、請求項1記載の発明の効果に加えて、さらに延性の面で優れた高Mn鋳鋼を提供することができる。さらに、請求項3記載の発明は、請求項2記載の発明の構成に、V,Nb,B,Ta,Zrのうち1種又は2種以上を合計で0.01〜3.0%加えたものであり、請求項2記載の発明の効果に加えて、さらに加工硬化特性(耐摩耗性)の面で優れた高Mn鋳鋼を提供することができる。
【図面の簡単な説明】
【図1】水靭処理後の現用高Mn鋼の結晶粒界に形成されるFe−C−Pの共晶化合物を示す顕微鏡写真である。
【図2】実施例に供した鋳塊の形状,肉厚と引張試験片及び圧縮試験片の採取位置との関係を示す図である。
【図3】加工硬化量と実機コーンクラッシャライナー材寿命との関係を示す図である。
【図4】P濃度と伸び(延性)との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-Mn cast steel having excellent wear resistance, which is used as a liner material for a crusher such as a cone crusher or a jaw crusher for crushing rock, which is used for crushing rocks.
[0002]
[Prior art]
High-Mn cast steel is a material that originally has good work hardening characteristics and toughness. By utilizing these characteristics, wear-resistant members that have been subjected to heavy impacts so far, such as cone crushers and jaw crushers that crush rocks, etc. Has been widely used as a liner material for crushers. However, in recent years, it has been required to improve the processing capacity of crushers and the like, especially for industrial waste and rocks, and the size of crushers and the crushing ratio have been increased. . Accordingly, the wear of wear-resistant members used in crushers and the like tends to become more severe in the future, and the development of high Mn steels having more excellent wear resistance is urgently required.
[0003]
Until now, various attempts have been made to improve the wear resistance of high Mn cast steel. For example, JP-B-57-17937, JP-B-63-8181, JP-B-1-14303, JP-A-62-139855, and JP-A-1-142058 disclose a Cn steel having a high Mn steel composition based on JIS. Examples of alloys in which the concentration is increased to improve wear resistance are described.
[0004]
[Problems to be solved by the invention]
However, when a liner material for a crusher having a large thickness is actually manufactured and used with the alloy material described in each of the above-mentioned publications, the wear resistance should be increased because the decrease in ductility is more remarkable than expected. The means of "increase in concentration" could not be adopted immediately, and it is up to the present. The present inventors have also focused on the fact that the wear resistance can be significantly improved by increasing the C concentration. On the other hand, focusing on the phenomenon of the ductility decrease described above and examining the cause of the ductility decrease, “C Based on the belief that the `` enhancing concentration '' means could be truly an effective means for improving abrasion resistance, we started experiments aiming to find the cause of such a decrease in ductility and obtained the following findings. did it.
[0005]
Normally, high Mn cast steel is melted by mixing scraps, and since ferromanganese, which is a melting raw material, contains several 1/10% of P, currently used high Mn cast steel is used. Contains about 0.02 to 0.07% of P, and this P segregates between the dendrite arms during melting, particularly at the crystal grain boundaries, and is shown in FIG. It was found that such a eutectic compound of Fe-CP was formed, and this was the cause of lowering ductility. Next, the present inventors conducted experiments by setting the solution temperature during the toughening treatment to be equal to or lower than the formation temperature of the eutectic compound in order to avoid the formation of such a eutectic compound of Fe-CP. However, this time, it was also found that the carbide (M 3 C) could not be completely dissolved, and the ductility was similarly reduced by the presence of the carbide. Therefore, the present inventors anticipate that the P concentration, which is one of the factors for forming the eutectic compound of Fe-CP, has a large influence, and have considered the P concentration itself and the correlation between the P concentration and the C concentration. We arrived at the idea that there should be a clue to finding out the effects of relationships on ductility.
[0006]
The present invention has been made under such circumstances, and an object of the present invention is to improve the wear resistance of high Mn cast steel and provide a wear-resistant member having a longer life.
[0007]
[Means for Solving the Problems]
Of the present invention that has achieved the above object, the invention according to claim 1 is characterized in that C: 1.3 to 1.7%, Si: 0.3 to 1.0%, Mn 10 to 35%, Cr: 0 to 5% , Mo: 0 to 2% , P concentration as an impurity element is 0.01% or less, and [% C] · [% P] ≦ 0.015, and the balance is Fe and unavoidable impurities. It is a wear-resistant high Mn cast steel characterized by the following. The invention according to claim 2 is a wear-resistant high Mn cast steel containing 0.01 to 0.6% of one or both of Ti and Al in addition to the above constituent elements. The described invention is a wear-resistant high Mn cast steel further containing 0.01 to 3.0% in total of one or more of V, Nb, B, Ta, and Zr.
[0008]
The present invention has been made based on completely new findings as described in detail below. That is, conventionally, P is an impurity element, and although it is said that a smaller amount is preferable, as described in Japanese Patent Publication No. 15623/1992 and Handbook of Iron and Steel (1962) P1456, in high Mn cast steel, It was considered that ductility could be ensured unless the P concentration exceeded 0.07%. For this reason, almost no attempt has been made to significantly reduce the P concentration until the manufacturing cost is increased. In particular, no attempt has been made at all to attempt to achieve a certain technical effect in relation to ductility and abrasion resistance by suppressing the P concentration to a range lower than 0.01% as in the present invention. Was.
[0009]
There have been a few research reports on the effect of P concentration on mechanical properties. For example, Trans Int Conf Struct Mech React Technol, 11th, G2 (1991) P93-98, Izv Vishsh Uchbn Saved Chen Metall, 3 (1989) P109-113, Litejne Proiz, 88; However, even in these descriptions, only the range where the P concentration is 0.02% or more is mentioned. Thus, the present inventors have further conducted experimental studies to clarify the effect of P concentration on ductility, including the range of P concentration of 0.02% or less. As a result, the P concentration is set to 0.01% or less, and the P concentration (relative concentration) with respect to the C concentration falls within a certain range while satisfying the condition, whereby the ductility is dramatically improved. It has been found that a high Mn cast steel having excellent wear resistance can be realized, and the present invention has been completed.
[0010]
That is, by setting the concentration of P as an impurity to 0.01% or less and [% C] · [% P] ≦ 0.015, the C concentration becomes 1 with respect to the liner material having a thickness of more than 100 mm. High ductility can be ensured even at 0.3% or more, and the C concentration can be increased from 1.0 to 1.3% of the currently used high Mn cast steel to a maximum of 1.7%, and the wear resistance is dramatically improved. It has been successfully improved. Therefore, first, the reasons for limiting the component range of the high Mn cast steel of the present invention will be described.
[0011]
(A) C: 1.3 to 1.7%
If the C concentration is less than 1.3%, only the same abrasion resistance as the conventional high Mn steel material can be obtained, while if the C concentration exceeds 1.7%, the ductility is suppressed even if the P concentration is suppressed to 0.01%. , The toughness is reduced, and cracks occur during the manufacture or use of the wear-resistant member. Therefore, the C concentration was limited to the range of 1.3 to 1.7%.
[0012]
(B) Si: 0.3% to 1.0%
It is necessary to add 0.3% or more of Si in order to deoxidize the molten metal at the time of melting and to ensure fluidity. However, if it exceeds 1%, precipitation of carbides at crystal grain boundaries is promoted, and toughness is reduced. I do.
[0013]
(C) Mn: 10 to 35%
Mn is an element necessary for obtaining an austenite structure, and also increases the solid solubility limit of C to suppress carbide precipitation in the cooling process of the water toughness treatment, thereby contributing to improvement in ductility. For this purpose, Mn must be added in an amount of 10% or more. However, if Mn exceeds 35%, the amount of carbide precipitation in an as-cast state increases, which causes cracking during casting.
[0014]
(D) Cr: 0 to 5%
Cr is an effective element for improving the work hardening characteristics. However, if it exceeds 5%, carbide precipitation during casting and during the cooling process of the water toughness treatment becomes remarkable, and the ductility decreases. Therefore, it is added as needed in the range of 0 to 5% .
[0015]
(E) Mo: 0 to 2%
Mo has the effect of suppressing the precipitation of carbides in the cooling process of the water toughness treatment and improving the ductility. However, if it exceeds 2%, the effect is lost.
[0016]
(F) The concentration of P as an impurity element is 0.01% or less and [% C] · [% P] ≦ 0.015
By setting the concentration of P, which is an impurity, to 0.01% or less and [% C] · [% P] ≦ 0.015, the C concentration is 1.3 for a liner material having a thickness exceeding 100 mm. % Or more, high ductility can be ensured, and the C concentration can be increased from 1.0 to 1.3% of the currently used high Mn cast steel to a maximum of 1.7%, and the wear resistance is dramatically improved. Can be done. On the other hand, when the P concentration exceeds 0.01% or [% C] · [% P] exceeds 0.15, the formation of the eutectic compound of Fe—CP is promoted, and the ductility is reduced. .
[0017]
The high Mn cast steel of the present invention contains C, Si, Mn, Cr, and Mo as basic components, and has a P concentration of an impurity element of 0.01% or less and [% C] · [% P] ≦ 0.015. The remainder is composed of Fe and unavoidable impurities. If necessary, a predetermined amount of elements of Ti, Al, V, Nb, B, Ta, and Zr may be contained. The reasons for limiting the component ranges when these elements are contained are as follows.
[0018]
Ti, Al: 0.01 to 0.6% in either or both
The addition of Ti and Al is effective for forming oxides or nitrides in the molten metal and refining crystal grains. When one or both of Ti and Al are added in an amount of 0.01 or more, there is an effect, and when it exceeds 0.6%, coarse inclusions are generated, so that ductility and toughness decrease. In addition, in dissolving in the air, Al is added as a deoxidizer. Further, similarly to Mo, the addition of Ti has an effect of suppressing carbide precipitation in the cooling process of the water toughness treatment.
[0019]
V, Nb, B, Ta, Zr: 0.01 to 3.0% in total of one or more of these.
V, Nb, B, Ta, and Zr contribute to the improvement of work hardening characteristics and the refinement of crystal grains due to precipitation of carbides, but are effective at an addition amount of 0.01% or more, and the addition amount is 3.0%. If it exceeds, ductility and toughness decrease.
[0020]
Incidentally, in order to obtain the high Mn cast steel according to the present invention, it is necessary to lower the P concentration (about 0.02 to 0.07%) in the currently used high Mn cast steel, that is, to remove P. However, the specific methods mainly include the following three methods (1) to (3).
(1) oxidative de P using Ba0 system and Na 4 Si0 4 based flux during refining.
(2) reduction to de-P using the CaC 2 -CaF 2-based flux at the time of refining.
(3) Ferromanganese is not used as a raw material for melting, and metal Mn is added to molten steel containing no Mn.
In particular, in order to reduce the P concentration to 0.01% or less, it is essential to reduce the use of ferromanganese as much as possible.
[0021]
【Example】
High Mn cast steel having the chemical composition shown in Table 1 was melted using a high frequency induction heating melting furnace.
[0022]
[Table 1]
Figure 0003589797
[0023]
In the ingot-shaped sand mold shown in FIG. 2, the ingot thickness was set to about 100 mm assuming an actual liner material. The casting temperature was 100 ± 5 ° C. higher than the liquidus temperature for each composition. The ingot thus melted was subjected to a solution toughness treatment at 1100 ° C. × 6 h, followed by a water toughness treatment of water cooling. After the water toughness treatment, ductility was evaluated by a tensile test, and work hardening characteristics were evaluated by a compression test. In each case, the test piece was collected from the center with respect to the thickness of the ingot (about 100 mm), and the test was performed under the following test conditions (see FIG. 2).
(1) Tensile test: JIS No. 4 type A test piece was performed at a strain rate of 10 −3 / s, and ductility was evaluated from elongation at break.
(2) Compression test: A test piece of 8φ × 12 hmm was performed at a strain rate of 10 −3 / s, and the amount of work hardening was evaluated from the deformation resistance at a strain of 50%.
[0024]
Since high-Mn steel is a material that exhibits excellent wear resistance due to work hardening, as shown in FIG. 3, there is a good correlation between the amount of work hardening and the wear life of the actual machine liner. Therefore, by examining the degree of work hardening, it is possible to know whether or not characteristics such as wear resistance and wear life are good. The test results are shown in Table 2, and the relationship between P concentration and elongation (ductility) is shown in FIG. In addition, the number of the number which attached * mark to the right shoulder. Is an example that satisfies the requirements of the present invention. In the evaluation, those having elongation> 20% and work hardening amount> 350 kgf / mm 2 were judged as acceptable (○).
[0025]
[Table 2]
Figure 0003589797
[0026]
According to Tables 1 and 2, as the P concentration decreases, the elongation (ductility) and the amount of work hardening (abrasion resistance) tend to improve, but particularly when the P concentration is 0.01% or less, the elongation increases. It can be seen that it is significantly improved (Example Nos . 2 * , 3 * , 4 * , 6 * , 7 * , 8 * , 9 * , 13 * , 14 * , 15 * , 17 * , 18 * ). . When the C concentration is high, it is particularly necessary to lower the P concentration (Comparative Example No. 19). Conversely, when the C concentration is low, the ductility is good even when the P concentration is high, but the work hardening amount is small. There is a problem in wear life (Comparative Example No. 1). Further, when the elongation is about 10% or less, cracks occur with high strain in the compression test, and the amount of work hardening is remarkably reduced (Comparative Examples Nos. 10, 11, 12, 16, 19, and 20). From the above results, by setting the P concentration to be 0.01% or less and [% C] · [% P] ≦ 0.015, work hardening can be achieved while ensuring necessary ductility even when the ingot thickness is 100 mm or more. It can be understood that the amount can be improved and the wear resistance can be remarkably improved.
[0027]
Further, addition of Ti and Mo is effective for improving ductility (Examples No. 7 * , 13 * , 14 * ), and for improving the amount of work hardening, Ti and carbide forming elements (V, Nb, Ta, B) is effective (Examples No. 7 * , 15 * ). This improvement in the amount of work hardening is mainly due to the effect of refining crystal grains. However, when the carbide forming element exceeds 3%, a large amount of carbide precipitates to cause a decrease in ductility (Comparative Example No. 16).
[0028]
【The invention's effect】
As described above, the invention according to claim 1 of the present invention is as follows: C: 1.3 to 1.7%, Si: 0.3 to 1.0%, Mn: 10 to 35%, Cr: 0 to 5% , Mo: 0 to 2% , P concentration as an impurity element is 0.01% or less and [% C] · [% P] ≦ 0.015, and the balance is Fe and unavoidable impurities. It is a wear-resistant high Mn cast steel characterized by the following. In particular, by setting the P concentration to 0.01% or less and [% C] · [% P] ≦ 0.015, ductility is improved, and even for members having a thickness of about 100 mm or more. The work hardening characteristics can be improved by setting the C concentration to 1.3% or more, and the wear life of the wear-resistant liner material made of high Mn steel can be significantly improved.
[0029]
According to a second aspect of the invention, one or both of Ti and Al are added to the configuration of the first aspect of the invention in an amount of 0.01 to 0.6%. In addition to the effects described above, it is possible to provide a high Mn cast steel which is more excellent in ductility. Further, in the invention of claim 3, one or more of V, Nb, B, Ta, and Zr are added to the constitution of the invention of claim 2 in a total amount of 0.01 to 3.0%. Thus, in addition to the effects of the invention described in claim 2, a high Mn cast steel excellent in work hardening characteristics (wear resistance) can be provided.
[Brief description of the drawings]
FIG. 1 is a micrograph showing a Fe-CP eutectic compound formed at a crystal grain boundary of a working high Mn steel after a water toughening treatment.
FIG. 2 is a diagram showing the relationship between the shape and thickness of an ingot used in Examples and the positions at which tensile test pieces and compression test pieces are sampled.
FIG. 3 is a graph showing the relationship between the amount of work hardening and the life of the actual cone crusher liner material.
FIG. 4 is a diagram showing a relationship between P concentration and elongation (ductility).

Claims (3)

重量%でC:1.3〜1.7%,Si:0.3〜1.0%,Mn:10〜35%,Cr:0〜5%,Mo:0〜2%,不純物元素であるP濃度が0.01%以下で且つ〔%C〕・〔%P〕≦0.015とし、残部がFeおよび不可避不純物であることを特徴とする耐摩耗高Mn鋳鋼。C: 1.3 to 1.7% by weight, Si: 0.3 to 1.0%, Mn: 10 to 35%, Cr: 0 to 5% , Mo: 0 to 2% , and are impurity elements. A wear-resistant high Mn cast steel having a P concentration of 0.01% or less and [% C] · [% P] ≦ 0.015, with the balance being Fe and unavoidable impurities. 更に、Ti,Alのいずれか一方又は両方を0.01〜0.6%含有するものである請求項1に記載の耐摩耗高Mn鋳鋼。The wear-resistant high Mn cast steel according to claim 1, further comprising one or both of Ti and Al in an amount of 0.01 to 0.6%. 更に、V,Nb,B,Ta,Zrのうち1種又は2種以上を合計で0.01〜3.0%含有するものである請求項2に記載の耐摩耗高Mn鋳鋼。The wear-resistant high Mn cast steel according to claim 2, further comprising one or more of V, Nb, B, Ta, and Zr in a total amount of 0.01 to 3.0%.
JP18124196A 1996-06-21 1996-06-21 Wear resistant high Mn cast steel Expired - Lifetime JP3589797B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18124196A JP3589797B2 (en) 1996-06-21 1996-06-21 Wear resistant high Mn cast steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18124196A JP3589797B2 (en) 1996-06-21 1996-06-21 Wear resistant high Mn cast steel

Publications (2)

Publication Number Publication Date
JPH108210A JPH108210A (en) 1998-01-13
JP3589797B2 true JP3589797B2 (en) 2004-11-17

Family

ID=16097270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18124196A Expired - Lifetime JP3589797B2 (en) 1996-06-21 1996-06-21 Wear resistant high Mn cast steel

Country Status (1)

Country Link
JP (1) JP3589797B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227681B2 (en) 2015-10-21 2019-03-12 Caterpillar Inc. High manganese steel with enhanced wear and impact characteristics

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100475631B1 (en) * 2002-06-14 2005-03-10 이두찬 Braker chisel with improved were-resistance and crushing-ability, manufacturing apparatus and method, and high-manganese steel thereof
KR100634100B1 (en) 2004-12-22 2006-10-16 현대제철 주식회사 High manganese steel having improved abrasion resistance and impact resistance and method for manufacturing the same
CN101892427B (en) * 2010-06-21 2012-06-06 桃江县正茂福利铸造有限公司 High manganese steel and manufacturing method
US10041156B2 (en) 2012-12-26 2018-08-07 Posco High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor
CN104911504B (en) * 2015-06-15 2017-02-22 三明市毅君机械铸造有限公司 High-strength high-wear-resistance steel casting for super-huge type crusher and production process of steel casting
CN111440997A (en) * 2020-04-07 2020-07-24 洛阳中重铸锻有限责任公司 Ultrahigh manganese cast steel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936088B1 (en) * 1965-11-19 1974-09-27
JPS5623259A (en) * 1979-08-03 1981-03-05 Sumitomo Metal Ind Ltd Nickel-free high manganese cast steel for low temperature use
JPS62139855A (en) * 1985-12-11 1987-06-23 Kurimoto Iron Works Ltd Shock and wear resistant austenitic cast steel
JPH01142058A (en) * 1987-11-30 1989-06-02 Furukawa Co Ltd Austenitic impact-resistant and wear-resistant cast steel
JPH02310337A (en) * 1989-05-24 1990-12-26 Yonago Seiko Kk Impact wear-resistant high manganese cast steel
FI904500A (en) * 1990-09-12 1992-03-13 Lokomo Oy SLITSTARKET STAOL OCH FOERFARANDE FOER FRAMSTAELLNING AV DETTA.
JPH05263194A (en) * 1992-03-19 1993-10-12 Sumitomo Metal Ind Ltd Wear resistant double-layered steel tube for boiler and its manufacture
JPH08100243A (en) * 1994-08-05 1996-04-16 Toyota Motor Corp Highly heat resistant iron-bas alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10227681B2 (en) 2015-10-21 2019-03-12 Caterpillar Inc. High manganese steel with enhanced wear and impact characteristics

Also Published As

Publication number Publication date
JPH108210A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
US6572713B2 (en) Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
JP2003226939A (en) Hot tool steel
JP6245417B1 (en) Steel
AU2002211409A1 (en) Grain-refined austenitic manganese steel casting having microadditions of vanadium and titanium and method of manufacturing
JP3706560B2 (en) Mechanical structural steel with excellent chip control and mechanical properties
JP3589797B2 (en) Wear resistant high Mn cast steel
CA1121187A (en) Bismuth-containing steel
JPH11343543A (en) High toughness super-abrasion resistant cast steel and its production
JP3581028B2 (en) Hot work tool steel and high temperature members made of the hot work tool steel
EP0205869B1 (en) Manganese steel
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3256184B2 (en) Method for producing ultra-free-cutting steel rods and parts, and ultra-free-cutting steel rods and parts using them
JP3507626B2 (en) Steel for high strength bolts and high strength bolts
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JP3245039B2 (en) High wear resistant high Mn cast steel and method for producing the same
JP3740042B2 (en) Method for controlling the morphology of sulfide inclusions
JP3573344B2 (en) Manufacturing method of highly clean maraging steel
JP3217427B2 (en) Lump-resistant mineral wear material
JP3507339B2 (en) Steel plate with excellent toughness in weld heat affected zone
JP2003183766A (en) Tool material for hot working
JP3000873B2 (en) Continuous casting method of steel with excellent toughness in weld heat affected zone
JP3524620B2 (en) Wear resistant high Mn cast steel
JPH08100223A (en) Production of high cleanliness steel
JP3497944B2 (en) Austenitic impact resistant cast steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140827

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term