JP3225788B2 - Method for producing steel with excellent toughness in weld heat affected zone - Google Patents

Method for producing steel with excellent toughness in weld heat affected zone

Info

Publication number
JP3225788B2
JP3225788B2 JP11828095A JP11828095A JP3225788B2 JP 3225788 B2 JP3225788 B2 JP 3225788B2 JP 11828095 A JP11828095 A JP 11828095A JP 11828095 A JP11828095 A JP 11828095A JP 3225788 B2 JP3225788 B2 JP 3225788B2
Authority
JP
Japan
Prior art keywords
steel
oxide
less
particles
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11828095A
Other languages
Japanese (ja)
Other versions
JPH08311598A (en
Inventor
徹 加藤
隆之 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11828095A priority Critical patent/JP3225788B2/en
Publication of JPH08311598A publication Critical patent/JPH08311598A/en
Application granted granted Critical
Publication of JP3225788B2 publication Critical patent/JP3225788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、例えばラインパイプ等
のように溶接熱影響部における靱性が要求される鋼を製
造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing steel requiring toughness in a heat affected zone such as a line pipe.

【0002】[0002]

【従来の技術】近年、溶接工程の合理化のために溶接の
大入熱化が行われているが、一般に鋼材の溶接時には母
材側熱影響部(以下、「HAZ部」という)の結晶粒が
粗大化して靱性が低下することが知られている。これに
対して、適当な酸化物、窒化物等の微細な粒子を分散さ
せれば組織が微細化してHAZ部の靱性向上に効果があ
る。
2. Description of the Related Art In recent years, large heat input of welding has been performed for the purpose of streamlining the welding process. Generally, when welding steel materials, crystal grains of a base material side heat affected zone (hereinafter, referred to as "HAZ zone") are formed. Is known to be coarse and the toughness is reduced. On the other hand, if fine particles such as appropriate oxides and nitrides are dispersed, the structure becomes finer, which is effective in improving the toughness of the HAZ.

【0003】そこで、特公平5−17300号を初めと
する一連の特許では鋼中のAl量を減じ、Tiを添加するこ
とにより微細なTi系酸化物を析出,分散させ、HAZ部
の組織を微細化して靱性を向上させる方法が提案されて
いる。さらに析出粒子を微細化するために特公平3−6
7467号では凝固時の冷却速度を制御する方法が、ま
た特開平4−6243号ではTi添加後出鋼までの時間を
規定する方法が提案されている。また、特開平4−27
13号、特開平3−177535号等ではさらにZr,Y
等を添加することが析出粒子を微細,分散化を図るため
に効果的であることが述べられている。
Therefore, in a series of patents including Japanese Patent Publication No. 5-17300, the amount of Al in steel is reduced, and fine Ti-based oxides are precipitated and dispersed by adding Ti to change the structure of the HAZ portion. A method for improving toughness by miniaturization has been proposed. In order to further refine the precipitated particles,
No. 7467 proposes a method of controlling the cooling rate during solidification, and Japanese Patent Application Laid-Open No. 4-6243 proposes a method of defining the time from the addition of Ti to the tapping. Also, JP-A-4-27
No. 13 and JP-A-3-177535 further disclose Zr, Y
It is described that the addition of the above is effective for achieving fine and dispersed precipitate particles.

【0004】このように、鋼中に微細粒子を分散させて
HAZ靱性を改善する方法は公知であり、微細分散粒子
としてTi系酸化物が適当であることは多くの開示がなさ
れている。しかしながら、これらのTi系酸化物を分散さ
せた鋼では年々高まる材料の要求性能に対して十分応え
ることができないのが実情であり、さらに安定してHA
Z靱性を向上できる材料及びその製造方法が求められる
ようになってきている。
As described above, a method for improving HAZ toughness by dispersing fine particles in steel is known, and there are many disclosures that Ti-based oxides are suitable as fine dispersed particles. However, it is a fact that steels in which these Ti-based oxides are dispersed cannot sufficiently meet the performance requirements of materials, which have been increasing year by year.
A material capable of improving the Z toughness and a manufacturing method thereof have been required.

【0005】また、このようにHAZ靱性を向上するた
めには鋼中にMnS を分散させることが重要であると考
え、析出の核となりやすい酸化物を規定した方法が特開
平5−271864号及び特開平5−255801号に
開示されている。これらには具体的な酸化物として、Si
O2-MnOあるいはAl2O3-MnO が提案されている。
Also, in order to improve the HAZ toughness, it is considered important to disperse MnS in the steel, and JP-A-5-271864 and JP-A-5-271864 disclose a method of defining an oxide which is likely to be a nucleus of precipitation. It is disclosed in JP-A-5-255801. These include, as specific oxides, Si
O 2 -MnO or Al 2 O 3 -MnO has been proposed.

【0006】一方、本出願人は特開平3−162592
号において、Al-Mn 酸化物相及び不可避的に共存する酸
化物相を有する粒子を分散した鋼を提案している。この
鋼は0.2〜20μmの直径の分散粒子が鋼材断面の1
mm2 当たり4〜1000個分散しており、かつ分散粒
子を構成する酸化物相として原子割合で(Al+Mn)が4
0%以上、Al:Mnの比率が1:1〜5:1という特徴を
有するAl-Mn 酸化物相を構成要素として有する酸化物分
散鋼であり、従来の鋼と比較して飛躍的に高い靱性が得
られる。この鋼は酸化物そのものが粒内フェライト相の
生成核となることを意図しており、前述のような酸化物
をMnS の析出核とすることを意図する酸化物分散鋼とは
本質的に異なるものである。
[0006] On the other hand, the present applicant has disclosed Japanese Patent Application Laid-Open No. Hei 3-162592.
Proposes a steel in which particles having an Al-Mn oxide phase and an unavoidably coexisting oxide phase are dispersed. In this steel, dispersed particles having a diameter of 0.2 to 20 μm have a diameter of 1 in the cross section of the steel material.
4 to 1000 particles per mm 2 are dispersed, and (Al + Mn) is 4 in atomic ratio as an oxide phase constituting dispersed particles.
Oxide-dispersed steel having an Al-Mn oxide phase as a component having a characteristic of 0% or more and an Al: Mn ratio of 1: 1 to 5: 1, which is dramatically higher than conventional steel. Toughness is obtained. In this steel, the oxide itself is intended to be the nucleus for the formation of the intragranular ferrite phase, and is essentially different from the oxide-dispersed steel in which the aforementioned oxide is intended to be the precipitation nucleus of MnS. Things.

【0007】さらに、このようなAl-Mn 酸化物相を構成
要素として有する酸化物分散鋼を製造する方法として、
本出願人は特願平6−141960号の明細書及び図面
において、Alを含有する合金を添加する方法を、また、
特願平6−141961号の明細書及び図面において、
酸素ポテンシャルを制御しうる酸化物を添加する方法を
提案している。これらの方法はAl-Mn 酸化物相を構成要
素として有する酸化物が安定して得られるという点で優
れた方法であるが、Ti添加量が適切に規定されていない
ので、Ti添加量によっては目的とする酸化物が生成しな
いという問題があった。
Further, as a method for producing an oxide-dispersed steel having such an Al-Mn oxide phase as a constituent element,
In the specification and drawings of Japanese Patent Application No. 6-141960, the present applicant describes a method for adding an alloy containing Al,
In the specification and drawings of Japanese Patent Application No. 6-141961,
A method of adding an oxide capable of controlling the oxygen potential has been proposed. These methods are excellent in that an oxide having an Al-Mn oxide phase as a constituent element can be obtained stably, but since the amount of Ti added is not properly defined, depending on the amount of Ti added, There was a problem that the target oxide was not generated.

【0008】一方、このような鋼中の微細分散粒子を制
御するために成分含有量を規定するものとしては、特開
平2−175815号に記載された方法がある。この方
法は、化学量論的見地からTi,N,O量がバランスする
ように所定の範囲に規定し、さらに凝固時、凝固後の冷
却速度を規定することにより分散粒子を微細化しようと
いうものであった。しかしながら、この方法は酸化物の
形態を制御しようというものではなく、また良好な靱性
の確保のためにはTiN の生成が必須である。
On the other hand, as a method for controlling the content of components for controlling such finely dispersed particles in steel, there is a method described in JP-A-2-175815. In this method, from the stoichiometric point of view, the amount of Ti, N, and O is defined in a predetermined range so as to be balanced, and at the time of solidification, the cooling rate after solidification is specified to make the dispersed particles finer. Met. However, this method does not attempt to control the morphology of the oxide, and the generation of TiN is essential to ensure good toughness.

【0009】[0009]

【発明が解決しようとする課題】本発明は、上記した従
来の問題点に鑑みてなされたものであり、鋼中の酸化物
の形態を制御することにより高いHAZ靱性が得られる
ような酸化物を分散した鋼材を安定して製造する方法を
提供することを目的としている。
DISCLOSURE OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and is intended to provide an oxide capable of obtaining high HAZ toughness by controlling the form of the oxide in steel. It is an object of the present invention to provide a method for stably producing a steel material in which is dispersed.

【0010】[0010]

【課題を解決するための手段】本発明者らは予備脱酸条
件及び溶存酸素量、脱酸元素添加量を種々変化させて微
細分散粒子の形態とHAZ靱性との相関についての一連
の研究を行い、より適切な形態の微細分散粒子を鋼中に
分散させればHAZ靱性が飛躍的に向上することを知見
した。さらに、微細分散粒子をこの形態となすためには
鋼の化学成分及び溶製過程における微細分散粒子の形態
を適切に規定することが重要であることを知見した。
Means for Solving the Problems The present inventors conducted a series of studies on the correlation between the morphology of finely dispersed particles and the HAZ toughness by varying the conditions of preliminary deoxidation, the amount of dissolved oxygen, and the amount of deoxidizing element added. It has been found that the HAZ toughness is dramatically improved if finely dispersed particles having a more appropriate form are dispersed in steel. Furthermore, it has been found that it is important to appropriately define the chemical composition of the steel and the form of the finely dispersed particles in the smelting process in order to form the finely dispersed particles in this form.

【0011】本発明の溶接熱影響部靱性に優れた鋼材の
製造方法は上記した知見に基づいてなされたものであ
、重量%で、 C:0.01〜0.25% Si:0.05〜0.6% Mn:0.3〜3.0% P:0.03%以下 S:0.01%以下 Ti:0.005〜0.03% O:0.0010〜0.0070% を含有し、さらに、Cr:1.0%以下、Mo:0.7%以
下、Cu:2.0%以下、Ni:2.0%以下、Nb:0.0
8%以下、V:0.1%以下、B:0.002%以下の
うちの一種以上を含有し、残部がFe及び不可避的不純物
からなる炭素鋼を製造するにあたり、予めSiとMnを添加
して予備脱酸を行い、溶存酸素濃度を20〜100ppm
とし、かつ溶鋼中のAl濃度を0.0001〜0.003
0%に制御した後Tiを添加し、 0.5<[Ti mass%]/[O mass%] <4.0 の関係を満たす組成の鋼とし、分散粒子としてAl−Mn酸
化物相及びTi酸化物相を含有する粒子を鋼中に分散させ
ているのである。
[0011] The steel material of the present invention having excellent toughness in the heat affected zone is
The manufacturing method is based on the above findings.
Ri, in weight%, C: 0.01~0.25% Si: 0.05~0.6% Mn: 0.3~3.0% P: 0.03% or less S: 0.01% or less Ti: 0.005 to 0.03% O: 0.0010 to 0.0070%, Cr: 1.0% or less, Mo: 0.7% or less, Cu: 2.0% or less, Ni: 2.0% or less, Nb: 0.0
8% or less, V: 0.1% or less, B: 0.002% or less, and Si and Mn are added in advance to produce a carbon steel containing Fe and unavoidable impurities. Pre-deoxidation, and dissolved oxygen concentration 20 ~ 100ppm
And the Al concentration in the molten steel is 0.0001 to 0.003.
After controlling to 0%, Ti is added to obtain a steel having a composition satisfying the relationship of 0.5 <[Ti mass%] / [O mass%] <4.0, and Al-Mn oxide phase and Ti The particles containing the oxide phase are dispersed in the steel.

【0012】[0012]

【作用】以下に本発明を詳細に説明する。本発明者ら
は、予備脱酸条件及び溶存酸素量、脱酸元素添加量を種
々変化させた鋼を溶製し、鋼中の微細分散粒子の分散状
況及び形態、さらには実継ぎ手性能を調査する一連の実
験を行った。その結果、実継ぎ手性能は鋼中の微細分散
粒子の分散状況及び形態と相関があり、鋼中の微細分散
粒子の分散状況及び形態は鋼成分を制御することにより
変化することを知見した。さらに、適切な形態の酸化物
を微細分散させると著しく実継ぎ手性能の良い鋼材が得
られ、この酸化物はTi添加前の溶鋼成分及びTi添加量を
適切に制御することにより安定して得られることを知見
した。本発明はこれらの知見に基づいてなされたもので
ある。
The present invention will be described below in detail. The present inventors smelt steel in which the pre-deoxidation conditions, dissolved oxygen amount, and deoxidized element addition amount are variously changed, and investigate the dispersion state and form of finely dispersed particles in the steel, and further, the actual joint performance. A series of experiments were performed. As a result, it was found that the actual joint performance was correlated with the dispersion state and form of the finely dispersed particles in the steel, and that the dispersion state and form of the finely dispersed particles in the steel were changed by controlling the steel composition. Furthermore, finely dispersing the oxide in the appropriate form can provide a steel material with extremely good actual joint performance, and this oxide can be obtained stably by appropriately controlling the molten steel component and the Ti addition amount before adding Ti I found that. The present invention has been made based on these findings.

【0013】HAZ組織を微細化して靱性を向上させる
ために適切な形態の粒子を鋼中に分散することが有効で
あることは前述の通りであり、微細分散粒子としてTi系
酸化物が有効であることは良く知られている。さらに、
前述のように特開平3−162592号には、Al-Mn 酸
化物相及び不可避的に共存する酸化物相を有する粒子を
分散した鋼はTi系酸化物が分散した鋼の性能を飛躍的に
上回る良好な靱性がえられることが開示されている。こ
の酸化物粒子は、具体的には直径が0.2〜20μmで
あり、金属元素のモル分率として(Al+Mn)が40%以
上であり、かつAl:Mnの比率が1:1〜5:1という特
徴を有するAl-Mn 酸化物相を構成要素として含むものを
いい、このような粒子が鋼材断面の1mm2 当たり4〜
1000個分散していることが必要である。
As described above, it is effective to disperse particles of an appropriate form in steel in order to refine the HAZ structure and improve toughness. As described above, Ti-based oxides are effective as finely dispersed particles. Some are well known. further,
As described above, JP-A-3-162592 discloses that a steel in which particles having an Al-Mn oxide phase and an unavoidably coexisting oxide phase are dispersed significantly improves the performance of a steel in which a Ti-based oxide is dispersed. It is disclosed that superior toughness can be obtained. Specifically, the oxide particles have a diameter of 0.2 to 20 μm, a metal element molar fraction of (Al + Mn) of 40% or more, and an Al: Mn ratio of 1: 1 to 5: refers to those containing Al-Mn oxide phase has a feature that 1 as a component, such particles are 1 mm 2 per 4 to the steel section
It is necessary that 1000 are dispersed.

【0014】本発明者らは、一連の実験を経てAl-Mn 酸
化物相及び不可避的に共存する酸化物相を有する粒子を
鋼中に微細分散させるためには、溶製の初期より溶鋼中
に溶存する酸化物の形態を制御することが重要であるこ
とを知見した。すなわち、溶製の初期においては、Mn,
Siを添加して予備脱酸を行うことで全酸素濃度を調整す
るとともに、脱酸生成物としてMnO-SiO2を生成する必要
がある。このMnO-SiO2の一部は浮上分離するが、微細な
ものは溶鋼中に残存する。その後、より強い脱酸元素の
適量の添加によりこの酸化物の形態が変化する。適切な
脱酸元素を適量添加することによりAl-Mn 酸化物相及び
不可避的に共存する酸化物相を有する粒子を鋼中に微細
分散させることができる。
The inventors of the present invention have conducted a series of experiments to finely disperse particles having an Al-Mn oxide phase and an unavoidably coexisting oxide phase in steel. It has been found that it is important to control the morphology of oxides dissolved in water. That is, Mn,
It is necessary to adjust the total oxygen concentration by performing preliminary deoxidation by adding Si, and to generate MnO—SiO 2 as a deoxidation product. Part of this MnO—SiO 2 floats and separates, but fine ones remain in the molten steel. Thereafter, the morphology of this oxide is changed by the addition of an appropriate amount of a stronger deoxidizing element. By adding an appropriate amount of an appropriate deoxidizing element, particles having an Al-Mn oxide phase and an unavoidable oxide phase can be finely dispersed in steel.

【0015】本発明において、予備脱酸時に添加するSi
及びMnの濃度は脱酸生成物形態の制御及び得られた鋼の
性能の観点から次のように規定する必要がある。すなわ
ち、Siは過剰に添加するとHAZ部での島状マルテンサ
イトの生成を助長するために0.6%が上限である。一
方、Mnは母材及びHAZ部の強度を確保するために必要
な元素であることから0.3%を下限とするが、過剰な
添加はHAZ部の靱性を低下させるので、3.0%を上
限とする。さらに、溶存酸素濃度を20〜100ppm と
し、酸化物の形態を効率的な予備脱酸が可能でAl-Mn 酸
化物相形成の核とするために有利なMnO-SiO2とするため
に、Si及びMnの添加量については重量割合にてSi:0.
05〜0.6%及びMn:0.3〜3.0%が必要であ
る。また、予備脱酸後の溶存酸素濃度については20pp
m 未満では分散させる酸化物の核の量が不十分となり、
100ppm を超えてしまった場合には溶鋼の清浄性が不
十分となる。
In the present invention, Si added at the time of preliminary deoxidation
And the concentration of Mn need to be defined as follows from the viewpoint of control of the deoxidation product form and performance of the obtained steel. In other words, the upper limit is 0.6% because excessive addition of Si promotes the formation of island martensite in the HAZ. On the other hand, Mn is an element necessary for securing the strength of the base material and the HAZ portion, so the lower limit is set to 0.3%. However, since excessive addition lowers the toughness of the HAZ portion, it is 3.0%. Is the upper limit. Further, in order to set the dissolved oxygen concentration to 20 to 100 ppm, and to form MnO-SiO 2 which is advantageous for efficiently preliminarily deoxidizing the oxide form and forming a core for forming an Al-Mn oxide phase, And the addition amount of Mn is expressed by weight ratio of Si: 0.
0.5-0.6% and Mn: 0.3-3.0% are required. The dissolved oxygen concentration after preliminary deoxidation is 20pp
If it is less than m, the amount of oxide nuclei to be dispersed becomes insufficient,
If it exceeds 100 ppm, the cleanliness of the molten steel becomes insufficient.

【0016】さらに、Mnの添加量については、酸化物を
SiO2などではなく確実にMnを含有させてMnO-SiO2とし、
かつ確実に溶存酸素濃度を20〜100ppm とするため
には0.8〜2%に制御することがより望ましい。Siに
ついては鋼中のSi濃度が0.2%を超えると低温靱性の
悪化を招くことから0.2%以下とすることが望まし
い。
Further, regarding the amount of Mn added,
Reliably contain a Mn rather than including SiO 2 and MnO-SiO 2,
In order to ensure the dissolved oxygen concentration of 20 to 100 ppm, it is more preferable to control the concentration to 0.8 to 2%. As for Si, when the Si concentration in steel exceeds 0.2%, the low-temperature toughness is deteriorated.

【0017】このような予備脱酸を行った溶鋼に、より
強い脱酸元素を添加すると脱酸生成物中のMn,Si が脱酸
元素に置換されて鋼中に微細に分散する粒子となる。
When a stronger deoxidizing element is added to the molten steel that has been subjected to such preliminary deoxidation, Mn and Si in the deoxidized product are replaced by the deoxidizing element and become particles that are finely dispersed in the steel. .

【0018】従って、酸化物相にMnが残存した形態の粒
子を得るためには、脱酸元素を添加した段階で全ての脱
酸生成物中のMnが置換されてはならず、脱酸生成物中に
Mnを残すことが必要である。すなわち、溶鋼中のOがTi
量に対して過剰に存在すればよいことになる。そこで、
後述のように溶存酸素量、脱酸元素添加量と脱酸生成物
の組成を検討した結果、[Ti mass%]/[O mass%] の値で
4.0未満であれば脱酸生成物中にMnが含有されること
が判明した。化学量論的にはTiの酸化物が鋼中でTi2O3
であると仮定すると、Ti量に対してOが過剰となるため
には[Ti mass%]/[O mass%] 2.0以下であることが必
要であるが、実際には各成分がそれぞれに固溶限があ
り、相互作用があるために4.0未満であれば脱酸生成
物中にMnが含有されるものと考えられる。一方、下限に
ついてはTi添加量が少ない場合には予備脱酸時に生成し
たMnO-SiO2のSiが十分Tiに置換されず、鋼塊中の分散粒
子中にもSiが残存する。このような粒子では十分な靱性
が得られないとともに、溶鋼の脱酸不足となる。従っ
て、0.5より大きければ適切な形態の分散粒子が得ら
れることが判明した。
Therefore, in order to obtain particles in the form of Mn remaining in the oxide phase, Mn in all the deoxidized products must not be replaced at the stage where the deoxidizing element is added. In things
It is necessary to leave Mn. That is, O in molten steel is Ti
It only has to be present in excess with respect to the amount. Therefore,
As will be described later, as a result of examining the dissolved oxygen content, the amount of the deoxidizing element added, and the composition of the deoxidation product, if the value of [Ti mass%] / [O mass%] is less than 4.0, the deoxidation product It was found that Mn was contained therein. Ti 2 O 3 in the steel oxides of Ti in stoichiometric
In order to make O excessive with respect to the amount of Ti, it is necessary that [Ti mass%] / [O mass%] be 2.0 or less. It is considered that Mn is contained in the deoxidized product if it is less than 4.0 because of its solid solubility limit and interaction. On the other hand, as for the lower limit, when the amount of Ti added is small, Si of MnO—SiO 2 generated during preliminary deoxidation is not sufficiently replaced by Ti, and Si remains in the dispersed particles in the steel ingot. Such particles do not provide sufficient toughness and result in insufficient deoxidation of the molten steel. Therefore, it was found that if it is larger than 0.5, dispersed particles of an appropriate form can be obtained.

【0019】Alは極めて強い脱酸元素であるから、優先
的に脱酸生成物中に含有されAl2O3となる。従って、Al
濃度を重量割合にて0.0001〜0.0030%と規
定することにより、微細粒子のうちのAl2O3 が主体のも
の、Ti2O3 が主体のものの割合が減少し、Al-Mn 酸化物
相及び不可避的に共存する酸化物相を有する粒子が安定
して生成するので、よりよい靱性が得られる。このよう
に、Alも鋼中で酸化物を形成するので、本来はAl含有量
についてもTi/Oの比を規定した関係式の中で考慮するべ
きであるが、今回の実験ではAl=0.01%未満の成分
領域では考慮しなくても差し支えないことが判った。
Since Al is a very strong deoxidizing element, it is preferentially contained in the deoxidized product to become Al2O3. Therefore , Al
By defining the concentration to be 0.0001 to 0.0030% by weight, the proportion of fine particles mainly composed of Al 2 O 3 and those mainly composed of Ti 2 O 3 is reduced, and Al-Mn Since particles having an oxide phase and an unavoidably coexisting oxide phase are stably formed, better toughness can be obtained. As described above, since Al also forms an oxide in steel, the Al content should be originally considered in the relational expression defining the Ti / O ratio, but in this experiment, Al = 0 It has been found that there is no need to consider it in the component region of less than 0.01%.

【0020】また、Alは精錬期において各添加元素、ス
ラグ、各種の耐火物等から溶鋼中に移行するため、特に
添加しなくても少量は不可避的に溶鋼中に含有される
が、含有量を精度良く制御するために、特願平6−14
1960号の明細書及び図面、或いは特願平6−141
961号の明細書及び図面において、Alを含有する合金
や酸化物等を意図的に添加することが有効であることを
開示している。
In addition, since Al is transferred from the added elements, slag, various refractories, etc. into the molten steel during the refining period, a small amount is inevitably contained in the molten steel even if it is not particularly added. Japanese Patent Application No. Hei 6-14
Description and drawings of 1960, or Japanese Patent Application No. 6-141
No. 961 discloses and discloses that it is effective to intentionally add an alloy or oxide containing Al.

【0021】また、従来の技術ではTi系の酸化物の周囲
にMnS が存在する時には良好な靱性が得られることが数
多く述べられているが、本発明の方法では微細に分散し
た形態による寄与が圧倒的に大きく、酸化物に付着した
MnS は必ずしも必要ではない。
In the prior art, it is often stated that good toughness can be obtained when MnS is present around a Ti-based oxide. However, in the method of the present invention, contribution by a finely dispersed form is obtained. Overwhelmingly large, adhered to oxide
MnS is not required.

【0022】次に、本発明における他の元素含有量の限
定理由について説明する。Cは、母材及びHAZ部の強
度を確保するために必要な元素であり、NbやVの添加時
にこれらの効果を得るためにも0.01%程度は必要で
あるのでこれを下限とした。しかしながら、過剰に存在
すると靱性に悪影響を及ぼすので、0.25%を上限と
した。
Next, the reasons for limiting the content of other elements in the present invention will be described. C is an element necessary to secure the strength of the base material and the HAZ portion, and about 0.01% is necessary to obtain these effects when Nb or V is added, so that the lower limit is set. . However, an excessive amount adversely affects toughness, so the upper limit was made 0.25%.

【0023】Pは鋼中に不可避的に含有される不純物で
あり、粒界に偏析して割れ発生の一因となる元素である
ので、0.03%を上限とした。Sも鋼中に不可避的に
含有される不純物であり、過剰に存在すると溶接割れの
原因となるので、上限を0.01%とした。
P is an impurity inevitably contained in steel and is an element that segregates at the grain boundary and causes cracking. Therefore, the upper limit is set to 0.03%. S is also an impurity unavoidably contained in steel, and if present in excess, causes welding cracks, so the upper limit was made 0.01%.

【0024】Cr,Mo,Cu,Ni,Nb,Vはこれらの一種あ
るいは二種以上を添加することで良好な強度,靱性を得
ることができる元素であるが、いずれも過剰に添加した
場合にはHAZ部の靱性を悪化させるので、Crは1.0
%以下、Moは0.7%以下、Cuは2.0%以下、Niは
2.0%以下、Nbは0.08%以下,Vは0.1%以下
と上限を定めた。これらの元素は靱性に影響する微細粒
子の分散には影響を与えないので、材料特性上の要求に
あわせて適宜添加する。
Cr, Mo, Cu, Ni, Nb, and V are elements that can obtain good strength and toughness by adding one or more of these, but when any of them is added in excess, Deteriorates the toughness of the HAZ part,
% Or less, Mo is 0.7% or less, Cu is 2.0% or less, Ni is 2.0% or less, Nb is 0.08% or less, and V is 0.1% or less. Since these elements do not affect the dispersion of fine particles that affect toughness, they are appropriately added in accordance with the requirements of the material properties.

【0025】Bは通常、母材強度を向上させるには有効
な元素であるが、HAZ部の靱性には悪影響を及ぼす。
しかしながら、本発明のような酸化物を分散した鋼の場
合には少量の添加によってHAZ部の靱性を改善でき
る。この目的から適当な添加量は0.00005〜0.
0004%であるが、加えて母材の強度を確保すること
も目的とする場合には、0.0004〜0.002%が
適当である。
B is usually an element effective for improving the strength of the base material, but has an adverse effect on the toughness of the HAZ.
However, in the case of the steel in which the oxide is dispersed as in the present invention, the addition of a small amount can improve the toughness of the HAZ. For this purpose, an appropriate addition amount is 0.00005 to 0.5.
Although it is 0004%, if the purpose is to secure the strength of the base material in addition, 0.0004 to 0.002% is appropriate.

【0026】Cr,Mo,Cu,Ni,Nb,V,B等の含有量を
変更しても、これらの元素は靱性の向上に寄与する酸化
物の形態には影響を与えず、本発明の方法が有効である
ことは言うまでもない。
Even if the contents of Cr, Mo, Cu, Ni, Nb, V, B, etc. are changed, these elements do not affect the morphology of the oxide contributing to the improvement of the toughness. It goes without saying that the method is effective.

【0027】本発明の方法は鋼中の[Ti mass%]/[O mas
s%] の値を制御することにより、鋼中に存在する酸化物
の形態を制御しようとするものであり、製造の装置及び
規模が変わっても有効であることは言うまでもない。ま
た、鋼の凝固時の冷却速度により粒子径が変化し、冷却
速度が速いほど微細になることは明らかであるが、本発
明の方法の場合は低温靱性には酸化物の形態による寄与
が大きく、通常の製造工程である連続鋳造でも静止鋳造
であっても、他の製造工程であってもいずれも良好な結
果が得られることは言うまでもない。
The method of the present invention is characterized in that [Ti mass%] / [O mas
By controlling the value of [s%], it is intended to control the form of oxides present in the steel, and it goes without saying that it is effective even if the production equipment and scale are changed. In addition, it is clear that the particle size changes depending on the cooling rate during solidification of steel, and the finer the cooling rate is, the higher the cooling rate is. However, in the case of the method of the present invention, the contribution of the oxide form to the low-temperature toughness is large. It goes without saying that good results can be obtained in any of the usual manufacturing processes such as continuous casting and static casting, and in other manufacturing processes.

【0028】[0028]

【実施例】以下、本発明の鋼材の製造方法の効果を実施
例及び比較例に基づいて説明する。本発明者らは150
kgの高周波真空溶解炉を使用して種々の組成の鋼を溶製
し、予備脱酸条件、溶存酸素量、脱酸元素量と脱酸生成
物の組成の検討を行った。また、初期酸素濃度0.04
〜0.07%の溶鋼を1550〜1650℃で溶解し、
Mn,Siを添加して予備脱酸を行い、溶鋼中の全酸素濃度
を確認した後、Tiを所定量添加した。溶鋼中の全酸素濃
度を調整するために必要に応じて真空脱ガス或いは酸化
物粉末の添加を行った。また、Al含有量の制御のために
必要に応じて少量のAlの添加、酸化物粉末の添加、或い
はAlを含有する合金元素の添加を行った。これらの鋼の
溶製時には適宜試料を採取し、溶鋼中に存在する酸化物
の形態、大きさ等を調査した。
EXAMPLES The effects of the method for producing a steel material according to the present invention will be described below based on examples and comparative examples. We have 150
Steels of various compositions were smelted using a high-frequency vacuum melting furnace of kg, and preliminary deoxidation conditions, dissolved oxygen content, deoxidized element content and composition of deoxidized products were examined. The initial oxygen concentration is 0.04
~ 0.07% molten steel at 1550-1650 ° C
Preliminary deoxidation was performed by adding Mn and Si, and after confirming the total oxygen concentration in the molten steel, a predetermined amount of Ti was added. Vacuum degassing or addition of oxide powder was performed as necessary to adjust the total oxygen concentration in the molten steel. Further, in order to control the Al content, a small amount of Al was added, an oxide powder was added, or an alloy element containing Al was added as necessary. At the time of smelting these steels, samples were appropriately collected and the form, size, etc. of the oxides present in the molten steel were investigated.

【0029】さらに得られた鋼塊を圧延した後再現HA
Z試験を行い、JIS 4号シャルピー試験片を作成して衝
撃試験を行った。種々の入熱及び試験温度で試験を実施
したが、SAW=20kJ/cm 相当の入熱で再現HAZ試
験、−30℃で衝撃試験を行ったときの吸収エネルギー
は代表性のある値が得られたので、この条件における吸
収エネルギーで評価した。
After the obtained ingot is rolled, the HA is reproduced.
A Z test was performed, a JIS No. 4 Charpy test piece was prepared, and an impact test was performed. Tests were conducted at various heat input and test temperatures, but a typical value was obtained for the absorbed energy when the HAZ test was reproduced at a heat input equivalent to SAW = 20 kJ / cm and the impact test was performed at -30 ° C. Therefore, evaluation was made based on the absorbed energy under these conditions.

【0030】鋼中の分散粒子の個数を光学顕微鏡で数え
るとともに、組成をエネルギー分散型X線マイクロアナ
ライザーで調査した。組成の分析では酸化物中に含有さ
れる金属元素の分析値から母材の影響と考えられるFeの
分を引き、他の金属元素は酸化物として存在するものと
して換算した。
The number of dispersed particles in the steel was counted with an optical microscope, and the composition was examined with an energy dispersive X-ray microanalyzer. In the analysis of the composition, the amount of Fe considered to be the influence of the base material was subtracted from the analysis value of the metal element contained in the oxide, and the other metal elements were converted as if they existed as an oxide.

【0031】本発明の実施例について、予備脱酸条件及
び鋼塊の成分分析値から求めた[Timass%]/[O mass%]
を表1に、また酸化物の形態、衝撃試験結果等を表2に
示す。また、比較例における予備脱酸条件及び鋼塊の成
分分析値から求めた[Ti mass%]/[O mass%] を表3に、
また酸化物の形態、衝撃試験結果等を表4に示す。
[Examples] [Timass%] / [Omass%] obtained from the pre-deoxidation conditions and the component analysis values of the steel ingot in Examples of the present invention.
Is shown in Table 1, and the form of the oxide, the results of the impact test and the like are shown in Table 2. Table 3 shows [Ti mass%] / [O mass%] obtained from the preliminary deoxidation conditions and the component analysis values of the steel ingot in Comparative Example.
Table 4 shows the form of the oxide, the results of the impact test, and the like.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 注)酸化物形態について、○はAl-Mn 酸化物相及び不可
避的に共存する酸化物相を有する粒子であることを表
す。粒子数について、○は直径が0.2〜20μmのも
のが鋳片断面の1mm2当たりに4〜1000個あること
を示す。
[Table 2] Note) Regarding the oxide form, ○ indicates that the particles have an Al-Mn oxide phase and an oxide phase that inevitably coexists. Regarding the number of particles, ○ indicates that there are 4 to 1000 particles having a diameter of 0.2 to 20 μm per 1 mm 2 of the cross section of the slab.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【表4】 注)酸化物形態について、○はAl-Mn 酸化物相及び不可
避的に共存する酸化物相を有する粒子であることを表
す。粒子数について、○は直径が0.2〜20μmのも
のが鋳片断面の1mm2当たりに4〜1000個あること
を示す。
[Table 4] Note) Regarding the oxide form, ○ indicates that the particles have an Al-Mn oxide phase and an oxide phase that inevitably coexists. Regarding the number of particles, ○ indicates that there are 4 to 1000 particles having a diameter of 0.2 to 20 μm per 1 mm 2 of the cross section of the slab.

【0036】[Ti mass%]/[O mass%] を4.0以上とし
た比較例1,2では酸化物中にMnがほとんど含有されて
おらず、比較例1ではAl-Ti 系酸化物が中心であり、比
較例2ではTi系酸化物が中心であった。さらに、[Ti ma
ss%]/[O mass%] を0.5以下とした比較例3では酸化
物中にSiも存在していた
In Comparative Examples 1 and 2 in which [Ti mass%] / [O mass%] was 4.0 or more, Mn was scarcely contained in the oxide. Was the center, and in Comparative Example 2, the Ti-based oxide was the center. In addition, [Ti ma
In Comparative Example 3 in which [ss%] / [O mass%] was 0.5 or less, Si was also present in the oxide .

【0037】Al含有量を厳密に制御し、Al-Mn 酸化物相
及びTi酸化物相を含有する粒子を鋼中に分散させた実施
では、目的とする形態の酸化物が鋼中に分散し
ており、継ぎ手靱性の点でも極めて良好な性能が得られ
た。
[0037] controls the Al content in strictly, the Al-Mn oxide phases and Ti particles containing oxide phase dispersed in the steel in Example 1, 2, oxide forms of the intended It was dispersed in the steel, and very good performance was obtained in terms of joint toughness.

【0038】これらの結果を含め、予備脱酸条件のほぼ
等しい条件の鋼の継ぎ手靱性調査結果を図1に示す。
0.5<[Ti mass%]/[O mass%] <4.0の場合には靱
性が著しく向上することが明らかである。鋼中の酸化物
の形態は明らかに[Ti mass%]/[O mass%] と相関があ
り、0.5以下の場合には酸化物中にSiが存在してお
り、また、4.0以上の場合には酸化物中にMnが存在せ
ず、Tiの酸化物あるいはTi-Al と不可避的に含有される
金属元素の酸化物となる。さらに、図1より明らかなよ
うに、1.5<[Ti mass%]/[O mass%] <3.5の範囲
では際立って高い性能が得られている。
FIG. 1 shows the results of an investigation of the joint toughness of steel under the conditions that are substantially equal to the pre-deoxidation conditions, including these results.
When 0.5 <[Ti mass%] / [O mass%] <4.0, it is clear that toughness is significantly improved. The morphology of the oxide in the steel is clearly correlated with [Ti mass%] / [O mass%], and when it is less than 0.5, Si is present in the oxide, and 4.0. In the above case, Mn does not exist in the oxide, and the oxide becomes an oxide of Ti or an oxide of a metal element inevitably contained with Ti-Al. Further, as is apparent from FIG. 1, remarkably high performance is obtained in the range of 1.5 <[Ti mass%] / [O mass%] <3.5.

【0039】予備脱酸後の溶鋼中に存在する酸化物の形
態は、Siのみで予備脱酸を行った場合、Mnのみで行った
場合を除いていずれもMnO-SiO2が存在していた。予備脱
酸をSiのみで行った比較例4では、Ti添加前にはMnO-Si
O2ではなくSiO2のみが生成しており、また、Ti添加後も
Ti,Al,Siの酸化物が生成しているので、十分な性能が得
られなかった。一方、Mnのみで予備脱酸を行った比較例
5では脱酸不足となり、鋼塊に気泡が存在しており良好
な性能を得ることはできなかった。従って、本発明の方
法においてはSiとMnを両者共添加して予備脱酸を行うこ
とが必須となる。
Regarding the form of the oxides present in the molten steel after the pre-deoxidation, MnO-SiO 2 was present in all cases except when the pre-deoxidation was performed using only Si and when only Mn was used. . In Comparative Example 4 in which preliminary deoxidation was performed only with Si, MnO-Si was added before adding Ti.
Only SiO 2 was generated instead of O 2 , and even after Ti addition
Sufficient performance could not be obtained because Ti, Al, and Si oxides were generated. On the other hand, in Comparative Example 5 in which preliminary deoxidation was performed only with Mn, deoxidation was insufficient, and good performance could not be obtained due to the presence of bubbles in the steel ingot. Therefore, in the method of the present invention, it is essential to carry out preliminary deoxidation by adding both Si and Mn.

【0040】Siを0.41%とした実施例では十分な
吸収エネルギーが得られたものの、その値はやや低めで
あった。Mnを0.52%とした実施例では鋼中に微細
な酸化物中のMnの存在割合がやや低く、これに対応して
吸収エネルギーの値もやや低かった。
In Example 6 in which the content of Si was 0.41%, sufficient absorption energy was obtained, but the value was slightly lower. In Example 7 in which Mn was 0.52%, the proportion of Mn in the fine oxide in the steel was slightly lower, and the value of the absorbed energy was correspondingly slightly lower.

【0041】予備脱酸後の溶存酸素量については、溶存
酸素量が20ppm 未満であった比較例6では鋼中に酸化
物がほとんど見当たらず、一方、100ppm を超えた比
較例7では溶鋼の清浄性が不十分となり、10μm以上
の粗大な介在物が大量に鋼中に存在した。従って、鋼の
清浄度を保ち、かつ微細な酸化物を分散させるために
は、本発明のように溶存酸素濃度を20〜100ppm と
する必要があることが明らかとなった。
Regarding the dissolved oxygen content after the pre-deoxidation, almost no oxide was found in the steel in Comparative Example 6 in which the dissolved oxygen content was less than 20 ppm, while in Comparative Example 7 in which the dissolved oxygen content exceeded 100 ppm, the molten steel was not cleaned. The properties were insufficient, and large inclusions of 10 μm or more were present in the steel in large quantities. Therefore, in order to maintain the cleanliness of the steel and to disperse fine oxides, it is clear that the dissolved oxygen concentration needs to be 20 to 100 ppm as in the present invention.

【0042】前述のようにMnS を微細分散させるために
適当な酸化物を微細分散させる方法も知られている。そ
こで、S濃度を変化させて酸化物上のMnS の析出割合を
変化させた鋼を意図的に製造し、同様の調査を行った。
他の実施例及び比較例ではS=0.001〜0.005
%であるのに対してSを0.0005%に低減した実施
では酸化物上にほとんどMnS は析出していなかった
が、他の実施例と同等の靱性を得ることができた。従っ
て、本発明の方法においてはMnS の粒子数は鋼材の性能
にほとんど影響しないことが判明した。
As described above, a method of finely dispersing an appropriate oxide to finely disperse MnS is also known. Therefore, a steel in which the precipitation ratio of MnS on the oxide was changed by changing the S concentration was intentionally manufactured, and the same investigation was conducted.
In other Examples and Comparative Examples, S = 0.001 to 0.005
%, Whereas in Example 8 where S was reduced to 0.0005%, almost no MnS was precipitated on the oxide, but the same toughness as in the other examples could be obtained. Therefore, it was found that the number of MnS particles hardly affected the performance of the steel material in the method of the present invention.

【0043】Alを0.01%以上含有した比較例8では
予備脱酸条件、及び[Ti mass%]/[Omass%] を所定の範
囲内に制御したにもかかわらず鋼中の微細な酸化物の多
くはAl2O3 であり、靱性も十分な値が得られなかった。
In Comparative Example 8 containing 0.01% or more of Al, fine oxidation in steel was performed despite pre-deoxidation conditions and [Ti mass%] / [Omass%] being controlled within a predetermined range. Most of the materials were Al 2 O 3 , and sufficient toughness was not obtained.

【0044】溶接熱影響部の低温靱性にはN含有量が影
響することが知られており、Nの影響を調査した。実施
では他の鋼材についてはいずれもN=20〜40pp
m であるのに対して55ppm と高くしたが、他の実施例
と同等の性能が得られており、本発明の方法においては
N含有量は靱性に影響していないことが判明した。
It is known that the low-temperature toughness of the heat affected zone is affected by the N content, and the effect of N was investigated. In Example 9 , N = 20 to 40 pp for all other steel materials
m, but increased to 55 ppm, but the same performance as in the other examples was obtained, and it was found that the N content did not affect the toughness in the method of the present invention.

【0045】[0045]

【発明の効果】以上説明したように、本発明の鋼材の製
造方法では、所定の含有率等に規定された鋼材を製造す
るにあたり、予めSiとMnを添加して予備脱酸を行い、溶
存酸素濃度を20〜100ppm とし、かつ溶鋼中のAl濃
度を0.0001〜0.0030%に制御した後Tiを添
加し、 0.5<[Ti mass%]/[O mass%] <4.0 の関係を満たす組成の鋼とし、さらに分散粒子としてAl
−Mn酸化物相及びTi酸化物相を含有する粒子を鋼中に分
散させるので、高いHAZ靱性が得られるAl-Mn酸化物
相を有する酸化物を分散した鋼を安定して製造すること
ができる。
As described in the foregoing, in the manufacturing method of the steel of the present invention, in producing a defined steel in a predetermined content such as, A preliminary deoxidation by adding previously Si and Mn, soluble After controlling the oxygen concentration to 20 to 100 ppm and the Al concentration in the molten steel to 0.0001 to 0.0030%, Ti is added, and 0.5 <[Ti mass%] / [O mass %] <a 4.0 composition of the steel satisfies the relationship, is et to Al as the dispersed particles
-Since the particles containing the Mn oxide phase and the Ti oxide phase are dispersed in the steel, it is possible to stably produce a steel in which the oxide having the Al-Mn oxide phase in which high HAZ toughness is obtained is dispersed. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例及び比較例における[Ti mass%]
/[O mass%] と継ぎ手靱性(吸収エネルギー)の関係を
調査した結果を示す図である。
FIG. 1 shows [Ti mass%] in Examples and Comparative Examples of the present invention.
It is a figure which shows the result of having investigated the relationship between / [O mass%] and joint toughness (absorbed energy).

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−100924(JP,A) 特開 平6−293936(JP,A) 特開 平6−293937(JP,A) 特開 平7−242985(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 1/00 - 49/14 C21C 7/00 - 7/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-100924 (JP, A) JP-A-6-293936 (JP, A) JP-A-6-293937 (JP, A) JP-A-7-1997 242985 (JP, A) (58) Fields surveyed (Int. Cl. 7 , DB name) C22C 1/00-49/14 C21C 7 /00-7/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C:0.01〜0.25% Si:0.05〜0.6% Mn:0.3〜3.0% P:0.03%以下 S:0.01%以下 Ti:0.005〜0.03% O:0.0010〜0.0070% を含有し、さらに、Cr:1.0%以下、Mo:0.7%以
下、Cu:2.0%以下、Ni:2.0%以下、Nb:0.0
8%以下、V:0.1%以下、B:0.002%以下の
うちの一種以上を含有し、残部がFe及び不可避的不純物
からなる炭素鋼を製造するにあたり、 予めSiとMnを添加して予備脱酸を行い、溶存酸素濃度を
20〜100ppm とし、かつ溶鋼中のAl濃度を0.00
01〜0.0030%に制御した後Tiを添加し、 0.5<[Ti mass%]/[O mass%] <4.0 の関係を満たす組成の鋼とし、 分散粒子としてAl−Mn酸化物相及びTi酸化物相を含有す
る粒子を鋼中に分散させることを特徴とする溶接熱影響
部靱性に優れた鋼材の製造方法。
C: 0.01 to 0.25% Si: 0.05 to 0.6% Mn: 0.3 to 3.0% P: 0.03% or less S: 0. 01% or less Ti: 0.005 to 0.03% O: 0.0010 to 0.0070%, Cr: 1.0% or less, Mo: 0.7% or less, Cu: 2.0 % Or less, Ni: 2.0% or less, Nb: 0.0
8% or less, V: 0.1% or less, B: 0.002% or less, with the balance being Fe and unavoidable impurities. To carry out preliminary deoxidation to bring the dissolved oxygen concentration to 20 to 100 ppm and the Al concentration in the molten steel to 0.00
After controlling to 0.01 to 0.0030%, Ti is added to obtain a steel having a composition satisfying the relationship of 0.5 <[Ti mass%] / [O mass%] <4.0, and Al-Mn oxide is used as dispersed particles. A method for producing a steel material having excellent weld heat affected zone toughness, characterized in that particles containing a material phase and a Ti oxide phase are dispersed in steel.
JP11828095A 1995-05-17 1995-05-17 Method for producing steel with excellent toughness in weld heat affected zone Expired - Lifetime JP3225788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11828095A JP3225788B2 (en) 1995-05-17 1995-05-17 Method for producing steel with excellent toughness in weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11828095A JP3225788B2 (en) 1995-05-17 1995-05-17 Method for producing steel with excellent toughness in weld heat affected zone

Publications (2)

Publication Number Publication Date
JPH08311598A JPH08311598A (en) 1996-11-26
JP3225788B2 true JP3225788B2 (en) 2001-11-05

Family

ID=14732761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11828095A Expired - Lifetime JP3225788B2 (en) 1995-05-17 1995-05-17 Method for producing steel with excellent toughness in weld heat affected zone

Country Status (1)

Country Link
JP (1) JP3225788B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101899607B (en) * 2009-05-26 2012-10-17 宁波市鄞州商业精密铸造有限公司 Smelting technology of wear-resistant alloy cast steel and equipment system thereof
JP6720842B2 (en) * 2016-11-22 2020-07-08 日本製鉄株式会社 Steel sheet pile

Also Published As

Publication number Publication date
JPH08311598A (en) 1996-11-26

Similar Documents

Publication Publication Date Title
WO2017183630A1 (en) Steel
WO2021172381A1 (en) Stainless steel for metal foils, satinless steel foil, method for roducing stainless steel for metal foils, and method for producing satinless steel foil
WO2022210651A1 (en) Duplex stainless steel wire rod, and duplex stainless steel wire
JPH0642979B2 (en) Manufacturing method of high strength steel for welding and low temperature containing titanium oxide
JP4074536B2 (en) Steel with excellent toughness of base metal and weld heat affected zone
JP3502822B2 (en) Steel material excellent in toughness of welded heat-affected zone and method for producing the same
JP3225788B2 (en) Method for producing steel with excellent toughness in weld heat affected zone
JPH0527703B2 (en)
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JP3852118B2 (en) Steel material with excellent toughness of weld heat affected zone
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP3520241B2 (en) Super large heat input welding steel containing Mg
JP2002371338A (en) Steel superior in toughness at laser weld
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP2001020033A (en) Non-heattreated high tensile strength steel excellent in toughness of base material and weld heat-affected zone
JP3036361B2 (en) Manufacturing method of Al-Mn oxide dispersed steel
JP2008266706A (en) Method for continuously casting ferritic stainless steel slab
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
CN116445826B (en) Low-alloy high-strength steel plate for pressure-bearing container and manufacturing method thereof
JP7530447B2 (en) Precipitation hardening martensitic stainless steel with excellent fatigue resistance
JP2696624B2 (en) Oxide dispersion strengthened ferritic heat-resistant steel sheet
JP4355866B2 (en) Steel material excellent in welding heat-affected zone characteristics and method for producing the same
JP3535026B2 (en) Slab for thin steel sheet with less inclusion defect and method for producing the same
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP4356156B2 (en) Steel plate for welded structure with excellent toughness of heat affected zone

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070831

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080831

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090831

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term