JPH09217147A - Hot tool steel - Google Patents
Hot tool steelInfo
- Publication number
- JPH09217147A JPH09217147A JP2786196A JP2786196A JPH09217147A JP H09217147 A JPH09217147 A JP H09217147A JP 2786196 A JP2786196 A JP 2786196A JP 2786196 A JP2786196 A JP 2786196A JP H09217147 A JPH09217147 A JP H09217147A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- tool steel
- content
- machinability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、プレス型、鍛造
型、ダイカスト型、パンチ等に使用される熱間工具鋼に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to hot work tool steel used in press dies, forging dies, die casting dies, punches and the like.
【0002】[0002]
【従来の技術】従来、熱間プレス、熱間鍛造、ダイカス
ト等の熱間加工に用いられる金型、パンチ用の鋼として
は、焼戻し軟化抵抗性が高く、耐衝撃性、耐ヒートチェ
ック性に優れたSKD61、SKD8、SKT4等のJ
IS規格鋼や3%Cr−1Mo系鋼、セミハイス系鋼が
多く用いられきた。また、特開昭60−56055号公
報、特開昭60−59052号公報、特開昭60−56
053号公報では、金型等においては、熱疲労により表
面に微小亀裂が発生し(以下ヒ−トチェック)、それら
が伝播、拡大することで寿命に至ることに注目し、耐衝
撃性を低下させずに、割れの起点となるヒ−トチェック
の発生を抑制することが検討されている。これは、従来
より用いられている耐ヒ−トチェック性向上の手法は、
合金元素量の増加や焼入れ温度の高温化により材料硬度
を上げるというものであり、耐ヒ−トチェック性は向上
するものの、耐衝撃性は低下するといった欠点があるた
め、耐衝撃性の保持を念頭に置き検討されたものであ
る。また、寿命の向上という観点からは、起点となるヒ
−トチェックが発生しなければ、従来並の耐衝撃性であ
っても欠けや割れに至ることは無く、寿命は向上すると
いう考えによるものである。その結果、Si含有率の低
減が耐ヒ−トチェック性の向上に有効であるばかりか、
耐衝撃性の向上にも有効であることが、前記公報では開
示されている。前記Si含有率を低減した熱間工具鋼
は、耐ヒートチェック性や耐衝撃性等の金型として使用
する時の特性は優れているものの、金型に加工するとき
の被削性が従来鋼よりも低下するため、切削工程に費用
および時間を要するといった問題があった。また、近年
における数値制御切削加工の進歩、金型加工の自動化に
伴って、金型用鋼の被削性の向上に対する要望が一層高
まっている。2. Description of the Related Art Conventionally, steels for dies and punches used for hot working such as hot pressing, hot forging, die casting, etc. have high temper softening resistance, impact resistance and heat check resistance. Excellent SKD61, SKD8, SKT4, etc. J
IS standard steel, 3% Cr-1Mo steel, and semi-high speed steel have been widely used. Further, JP-A-60-56055, JP-A-60-59052, and JP-A-60-56.
According to Japanese Patent Publication No. 053, attention is paid to the fact that, in a mold or the like, microcracks are generated on the surface due to thermal fatigue (hereinafter referred to as heat check), and these propagate and spread to reach the end of life, thus reducing impact resistance. It has been studied to suppress the occurrence of heat check, which is the starting point of cracking, without causing it. This is because the conventional method for improving heat check resistance is
The material hardness is increased by increasing the amount of alloying elements and increasing the quenching temperature, and although heat check resistance is improved, there is a drawback that impact resistance decreases, so it is necessary to maintain impact resistance. It was considered in mind. Also, from the viewpoint of improving the service life, if the heat check as the starting point does not occur, even if the impact resistance is the same as the conventional one, it will not lead to chipping or cracking and the service life will be improved. Is. As a result, not only is the reduction of the Si content effective in improving the heat check resistance,
It is disclosed in the above-mentioned publication that it is also effective in improving impact resistance. The hot work tool steel having a reduced Si content has excellent characteristics when used as a mold, such as heat check resistance and impact resistance, but has a machinability when used as a conventional steel. Since it is lower than that, there is a problem that the cutting process requires cost and time. Further, with the recent progress of numerically controlled cutting and automation of die machining, there is an increasing demand for improvement of machinability of die steel.
【0003】鋼の被削性を向上するためにはPb、S等
の快削性元素を添加するのが有効であることが知られて
いる。しかし、これらの快削性元素を添加すると、綱の
衝撃値とりわけT方向の衝撃値が著しく低下するため、
低Si含有率の材料に快削性元素を添加した場合、Si
を低減していない快削性元素無添加の材料よりも耐衝撃
性が低下する。そのため、微小なヒ−トチェックが発生
すると、すぐに拡大してしまい、金型等の寿命が低下す
るといった問題があった。It is known that it is effective to add free-cutting elements such as Pb and S in order to improve the machinability of steel. However, when these free-cutting elements are added, the impact value of the rope, particularly the impact value in the T direction, is significantly reduced,
When a free-cutting element is added to a material with a low Si content, Si
The impact resistance is lower than that of a material containing no free-machining element that has not been reduced. Therefore, if a minute heat check occurs, it is enlarged immediately, and there is a problem that the life of the mold or the like is shortened.
【0004】[0004]
【発明が解決しようとする課題】以上の現状に鑑みて、
本発明の目的とするところは、低Si含有率の高性能綱
の工具寿命を損うことなく被削性を改良し、金型用鋼に
適した被削性の優れた熱間工具鋼を提供することにあ
る。In view of the above situation,
The object of the present invention is to improve the machinability without impairing the tool life of a high-performance steel having a low Si content, and to provide a hot work tool steel excellent in machinability suitable for die steel. To provide.
【0005】[0005]
【課題を解決するための手段】本発明の熱間工具鋼は、 (1)化学組成が質量%で、C :0.20%以上0.
80%以下、Si:0.10%未満、Mn:3.0%以
下、S :0.003%以上0.030%未満、Te:
0.003%以上0.010%未満、Cr:10.0%
以下、Mo:5.0%以下、V:3.0%以下のいづれ
か1種または2種以上、残部Feおよび不可避的不純物
からなり、S+Te:0.006%以上0.040%未
満であることを特徴とする。 (2)化学組成が質量%で、C :0.20%以上0.
80%以下、Si:0.10%未満、Mn:3.0%以
下、S :0.003%以上0.030%未満、Te:
0.003%以上0.010%未満、Ca:0.003
0%以下、Cr:10.0%以下、Mo:5.0%以
下、V:3.0%以下のいづれか1種または2種以上、
残部Feおよび不可避的不純物からなり、S+Te:
0.006%以上0.040%未満であることを特徴と
する。 (3)上記(1)または(2)に加えて、さらに質量%
で、Nb:2.0%以下、Ti:2.0%以下、Ta:
4.0%以下のいずれか1種または2種以上を含むこと
を特徴とする。 (4)上記(1)または(2)に加えて、さらに質量%
で、REM:0.50%以下を含むことを特徴とする。 (5)上記(1)または(2)に加えて、さらに質量%
で、W:5.0%以下、Co:5.0%以下を含むこと
を特徴とする。 (6)上記(1)または(2)に加えて、さらに質量%
で、Ni:4.0%以下、Cu:3.0%以下のいずれ
か1種または2種を含むことを特徴とする。MEANS FOR SOLVING THE PROBLEMS The hot work tool steel of the present invention comprises (1) a chemical composition of mass%, C: 0.20% or more and a value of 0.
80% or less, Si: less than 0.10%, Mn: 3.0% or less, S: 0.003% or more and less than 0.030%, Te:
0.003% or more and less than 0.010%, Cr: 10.0%
Hereinafter, any one or more of Mo: 5.0% or less and V: 3.0% or less, the balance Fe and unavoidable impurities, and S + Te: 0.006% or more and less than 0.040% Is characterized by. (2) The chemical composition is% by mass, and C 2 is 0.20% or more.
80% or less, Si: less than 0.10%, Mn: 3.0% or less, S: 0.003% or more and less than 0.030%, Te:
0.003% or more and less than 0.010%, Ca: 0.003
0% or less, Cr: 10.0% or less, Mo: 5.0% or less, V: 3.0% or less, any one kind or two or more kinds,
The balance consists of Fe and unavoidable impurities, and S + Te:
It is characterized by being 0.006% or more and less than 0.040%. (3) In addition to the above (1) or (2), further mass%
Then, Nb: 2.0% or less, Ti: 2.0% or less, Ta:
It is characterized by containing any one kind or two kinds or more of 4.0% or less. (4) In addition to the above (1) or (2), further mass%
And REM: 0.50% or less is contained. (5) In addition to the above (1) or (2), further mass%
In addition, W: 5.0% or less and Co: 5.0% or less are included. (6) In addition to the above (1) or (2), further mass%
And, it is characterized by containing any one or two of Ni: 4.0% or less and Cu: 3.0% or less.
【0006】[0006]
【発明の実施の形態】以下に、本発明の熱間工具鋼の化
学組成を限定する理由について説明する。 C:0.20%以上0.80%以下 Cは鋼に金型として必要な硬さ、耐摩耗性を与えるため
に必須の元素である。そのためには0.2%以上のCを
含有する必要がある。しかし、過度にCを含有すると耐
衝撃性の低下を招くので、C含有率の上限を0.80%
とする。 Si:0.10%未満 本発明鋼においては、Si含有率を低減することによっ
て鋼の靭性、耐ヒートチェック性を高めることができ
る。特にSi含有率を0.1%未満とすることによって
前記の特性の改善が顕著なのでSi含有率は0.1%未
満とする。 Mn:3.0%以下 Mnは鋼の溶製時において脱酸作用を有し、またSと結
合してMnSを形成し、Sによって生じる鋼の赤熱脆性
を防止する。さらに鋼の焼入性を高め、鋼の硬さを確保
するために有効な元素である。しかし、過度にMnを含
有すれば焼なまし時の加工性を低下したり、耐衝撃性を
損ったりするので含有率の上限を3.0%とする。 S:0.003%以上0.030%未満、Te:0.0
03%以上0.010%未満、S+Te:0.006%
以上0.040%未満 S、TeはともにMnと化合物を形成して鋼中に非金属
介在物として介在する。これらの非金属介在物は、鋼の
切削加工時には応力集中源として作用し、切削抵抗を低
めるとともに切削屑の破砕性を高めることによって、鋼
の被削性を向上する。また、TeをSと複合して鋼に添
加することにより、鋼の鍛伸時における硫化物系非金属
介在物の伸長が抑制されるので、非金属介在物の生成に
よるのT方向衝撃値の低下が抑制される効果がある。か
かる被削性の向上効果およびT方向衝撃値の低下抑制効
果を得るためには、SおよびTeの含有率はそれぞれ
0.003%以上であって、さらにS+Teとして0.
006%以上を必要とする。しかし、過度の添加は鋼の
清浄度を損ね、鋼の靭性を低減するのでS、Teは単独
にはそれぞれ0.030%未満および0.010%未
満、S+Teを複合して0.040%未満の含有率とす
る。 Cr:10.0%以下、Mo:5.0%以下、V:3.
0%以下 Cr、Mo、Vはいづれも強固な炭化物を形成し、鋼の
生地を強化し、また、耐摩耗性の向上に有効なのでいず
れか1種以上を添加する。しかし過度に添加すると鋼の
耐衝撃性や加工性の低下を招くので、Cr:10.0
%、Mo:5.0%、V:3.0%をそれぞれ含有率の
上限とする。 Ca:0.0030%以下 Caは鋼の鍛伸時における硫化物系非金属介在物の伸長
を抑制し、T方向衝撃値の低下を防止する効果がある。
また、鋼の被削性の向上にも寄与するので添加すること
が好ましい。しかし、過度に添加するとむしろ鋼の耐衝
撃性を低下するので含有率の上限を0.0030%とす
る。 Nb:2.0%以下、Ti:2.0%以下、Ta:4.
0%以下 Nb、Ti、Taは、いずれも鋼中で微細な炭化物を形
成し、鋼の結晶粒を微細化して耐衝撃性を向上する。し
かし、過度に添加してもその効果が飽和するので、それ
ぞれNb:2.0%以下、Ti:2.0%以下、Ta:
4.0%以下の含有率において添加してもよい。 REM:0.50%以下 REMは鋼中のO、P等の不純物を固定し、基地の清浄
度を高めて耐衝撃性を向上する。しかし、過度に添加す
ると、鋼に地きず欠陥が発生するので含有率0.50%
以下において添加してもよい。 W:5.0%以下 Wは、鋼中で強固な炭化物を形成し、基地の強化、耐摩
耗性の向上に有効なので添加してもよい。しかし、過度
に添加すると鋼の耐衝撃性および加工性の低下を招くの
で含有率の上限を5.0%とする。 Co:5.0%以下 Coは、鋼の焼戻し軟化抵抗性を高めて鋼基地の強化、
耐衝撃性の向上に有効なので添加してもよい。しかし、
過度に添加すると、鋼の加工性を損うばかりでなく、む
しろ耐衝撃性の低下を招くので含有率の上限を5.0%
とする。 Ni:4.0%以下、Cu:3.0%以下 NiおよびCuはいずれも鋼基地の強化、耐衝撃性の向
上に有効なので添加してもよい。しかし、過度に添加す
ると鋼の加工性を損うばかりでなく、むしろ耐衝撃性の
低下を招く含有率の上限を、それぞれNi:4.0%、
Cu:3.0%とする。The reasons for limiting the chemical composition of the hot work tool steel of the present invention will be described below. C: 0.20% or more and 0.80% or less C is an essential element for imparting hardness and wear resistance required for steel as a mold. For that purpose, it is necessary to contain 0.2% or more of C. However, if C is contained excessively, the impact resistance is lowered, so the upper limit of the C content is 0.80%.
And Si: less than 0.10% In the steel of the present invention, the toughness and heat check resistance of the steel can be improved by reducing the Si content. In particular, when the Si content is less than 0.1%, the above-mentioned characteristics are remarkably improved, so the Si content is less than 0.1%. Mn: 3.0% or less Mn has a deoxidizing action at the time of melting of steel, and combines with S to form MnS, which prevents red hot embrittlement of steel caused by S. Further, it is an element effective for enhancing the hardenability of steel and ensuring the hardness of steel. However, if Mn is excessively contained, the workability at the time of annealing is deteriorated and the impact resistance is impaired, so the upper limit of the content is made 3.0%. S: 0.003% or more and less than 0.030%, Te: 0.0
03% or more and less than 0.010%, S + Te: 0.006%
Above 0.040% S and Te both form compounds with Mn and intervene in the steel as non-metallic inclusions. These non-metallic inclusions act as a stress concentration source at the time of cutting steel, reduce cutting resistance and improve the crushability of cutting chips, thereby improving the machinability of steel. Further, by adding Te to S in combination with S, the elongation of the sulfide-based nonmetallic inclusions during the forging of the steel is suppressed, so that the T direction impact value due to the formation of the nonmetallic inclusions It has the effect of suppressing the decrease. In order to obtain the effect of improving the machinability and the effect of suppressing the decrease in the impact value in the T direction, the content rates of S and Te are each 0.003% or more, and S + Te is more than 0.
006% or more is required. However, since excessive addition impairs the cleanliness of the steel and reduces the toughness of the steel, S and Te are independently less than 0.030% and less than 0.010%, and S + Te is less than 0.040% in combination. Content rate. Cr: 10.0% or less, Mo: 5.0% or less, V: 3.
0% or less Cr, Mo, and V all form strong carbides, strengthen the steel material, and are effective in improving wear resistance, so at least one of them is added. However, excessive addition causes a drop in the impact resistance and workability of the steel, so Cr: 10.0
%, Mo: 5.0%, V: 3.0% are the upper limits of the content rates, respectively. Ca: 0.0030% or less Ca has the effect of suppressing the elongation of sulfide-based nonmetallic inclusions during the forging of steel and preventing the reduction of the impact value in the T direction.
Further, it also contributes to the improvement of the machinability of steel, so that it is preferable to add it. However, if added excessively, the impact resistance of the steel is rather lowered, so the upper limit of the content is made 0.0030%. Nb: 2.0% or less, Ti: 2.0% or less, Ta: 4.
0% or less Nb, Ti, and Ta all form fine carbides in the steel and refine the crystal grains of the steel to improve the impact resistance. However, even if added excessively, the effect is saturated, so Nb: 2.0% or less, Ti: 2.0% or less, and Ta:
You may add in the content rate of 4.0% or less. REM: 0.50% or less REM fixes impurities such as O and P in steel to improve the cleanliness of the matrix and improve impact resistance. However, if it is added excessively, a flaw in the steel will occur, so the content rate is 0.50%.
You may add in the following. W: 5.0% or less W forms a strong carbide in the steel and is effective for strengthening the matrix and improving wear resistance, so W may be added. However, if added excessively, the impact resistance and workability of the steel will deteriorate, so the upper limit of the content is made 5.0%. Co: 5.0% or less Co enhances the temper softening resistance of steel and strengthens the steel base,
It may be added because it is effective in improving impact resistance. But,
If it is added excessively, not only the workability of steel is impaired but also the impact resistance is lowered, so the upper limit of the content is 5.0%.
And Ni: 4.0% or less, Cu: 3.0% or less Ni and Cu are both effective in strengthening the steel matrix and improving impact resistance, and thus may be added. However, if added excessively, not only the workability of the steel is impaired, but rather the upper limit of the content rate that causes a decrease in impact resistance is Ni: 4.0%,
Cu: 3.0%.
【0007】[0007]
【実施例】以下、本発明の実施例について説明する。誘
導炉を用いて、表1に示す鋼を溶製し、2tの鋼塊とし
た。この鋼塊を1200℃で鍛造して幅240mm×厚
さ150mmの鋼片とし、焼なましして試験片素材を採
取し、粗加工を行った。試験片素材としては、鍛造方向
(L方向)および鍛造に直角の方向(T方向)より採取
した衝撃試験片素材、ヒートチェック試験片素材、なら
びに被削性試験片素材を得た。Embodiments of the present invention will be described below. Using an induction furnace, the steel shown in Table 1 was melted into a 2t steel ingot. This steel ingot was forged at 1200 ° C. to form a steel piece having a width of 240 mm and a thickness of 150 mm, annealed to obtain a test piece material, and rough processing was performed. As the test piece material, an impact test piece material, a heat check test piece material, and a machinability test piece material obtained from the forging direction (L direction) and the direction perpendicular to the forging (T direction) were obtained.
【0008】[0008]
【表1】 [Table 1]
【0009】これらの試験片素材に、表2に示す熱処理
を施し、それぞれJIS3号衝撃試験片、直径15mm
×高さ5mmのヒートチェック試験片、100mm×4
0mm×200mmの被削性試験片に精加工した。These test piece materials were subjected to the heat treatments shown in Table 2 to give JIS No. 3 impact test pieces, each having a diameter of 15 mm.
× Heat check test piece with height of 5 mm, 100 mm × 4
The machinability test piece of 0 mm × 200 mm was precisely processed.
【0010】[0010]
【表2】 [Table 2]
【0011】衝撃試験片について、ロックウエルCスケ
ールで硬さを測定した。衝撃試験片についてシャルピー
衝撃試験を行ってシャルピー値を求めた。高周波加熱お
よび水冷によって、ヒートチェック試験片に650℃と
室温との加熱・冷却を1000回繰返した後、試験片高
さ中央の横断面において認められる各ヒートクラック長
さ(試験片表面からヒートクラックの先端までの深さ)
を測定した。このヒートクラック長さの平均値をもって
試験片の耐ヒートチェック性を評価した。The hardness of the impact test piece was measured on the Rockwell C scale. A Charpy impact test was performed on the impact test piece to obtain a Charpy value. After heating and cooling the heat check test piece at 650 ° C. and room temperature 1000 times by high frequency heating and water cooling, each heat crack length observed in the cross section at the center of the height of the test piece (heat crack from the surface of the test piece Depth to the tip of
Was measured. The heat check resistance of the test piece was evaluated by the average value of the heat crack length.
【0012】被削性試験片を超硬エンドミル(UTi2
0T)によって切削幅:1mm、切削深さ:3.5m
m、切削速度:40m/min、送り:0.035mm
/刃として乾式で切削し、逃げ面摩耗幅が0.3mmと
なるまでの切削長を求めて工具寿命とした。各鋼種系毎
に、既存鋼の工具寿命を100として各試験片の工具寿
命との比を求めて被削性指数とし、これによって試験片
の被削性を評価した。A machinability test piece was made into a carbide end mill (UTi2
Cutting width: 1 mm, cutting depth: 3.5 m
m, cutting speed: 40 m / min, feed: 0.035 mm
/ Dry cutting was performed as a blade, and the cutting length until the flank wear width became 0.3 mm was determined as the tool life. For each steel type system, the tool life of the existing steel was set to 100, and the ratio to the tool life of each test piece was calculated to obtain a machinability index, which was used to evaluate the machinability of the test piece.
【0013】各試験結果を表3に示す。表3によれば、
本発明の実施例は、比較例と同等の硬さにおいて、Si
を低減していない従来綱の比較例(No.1,7,1
0,13,16)に比べてL方向、T方向ともにシャル
ピ−値が高く、ヒ−トチェック平均長さは小さく、被削
性指数および工具寿命比は大きいことが判る。また、低
Si含有率材の比較例(No.2,3,4,5,6,
8,9,11,12,14,15,17,18)と比べ
ると、シャルピ−値は若干劣る場合はあるものの、ヒ−
トチェック平均長さは同等であり、被削性指数は大き
く、工具寿命は同等であることが判る。これは、本発明
の実施例は工具寿命を確保する上で、十分な耐衝撃性を
保持していることによる。これより、本発明の実施例
は、比較例に比べて工具寿命で劣ることがなく、被削性
において優れていることが明らかである。The results of each test are shown in Table 3. According to Table 3,
The example of the present invention has the same hardness as that of the comparative example.
Comparative example of conventional rope (No. 1, 7, 1)
0, 13, 16), the Charpy values are high in both the L and T directions, the average length of the heat check is small, and the machinability index and the tool life ratio are large. In addition, comparative examples of low Si content materials (No. 2, 3, 4, 5, 6,
8, 9, 11, 12, 12, 14, 15, 17, 18), the Charpy value may be slightly inferior, but
It can be seen that the average check length is the same, the machinability index is large, and the tool life is the same. This is because the embodiment of the present invention retains sufficient impact resistance for ensuring the tool life. From this, it is clear that the working examples of the present invention are not inferior in tool life to the comparative examples and are excellent in machinability.
【0014】[0014]
【表3】 [Table 3]
【0015】また、表1の中の比較例1、2、7、8、
10、11、13、14、16、17、および、実施例
2、5、11、15、16、19については、下表に示
す型打部品の鍛造用金型を作製し、実際に型打鍛造を行
い、各金型の工具寿命を調査した。なお、工具寿命の評
価は、各鋼種毎に、Siを低減していない從来鋼で作製
した金型の廃却まで型打回数を1とする工具寿命比を指
標とした。その結果を表4に示す。Further, Comparative Examples 1, 2, 7, 8 in Table 1
For 10, 11, 13, 14, 16, 17 and Examples 2, 5, 11, 15, 16, 16, 19, forging dies for the stamping parts shown in the table below were prepared and actually stamped. Forging was performed and the tool life of each mold was investigated. The tool life was evaluated for each steel type by using a tool life ratio in which the number of stamping times was 1 until the die made of Kuraiki steel in which Si was not reduced was discarded. The results are shown in Table 4.
【0016】[0016]
【表4】 [Table 4]
【0017】[0017]
【発明の効果】以上詳述したように、本発明の熱間工具
鋼によれば、工具寿命を損うことなく被削性を改良し、
特に金型用鋼として適した、被削性の優れた熱間工具鋼
を提供することができる。As described in detail above, according to the hot work tool steel of the present invention, the machinability is improved without impairing the tool life,
It is possible to provide a hot work tool steel having excellent machinability, which is particularly suitable as a die steel.
Claims (6)
0%以下のいづれか1種または2種以上、残部Feおよ
び不可避的不純物からなり、S+Te:0.006%以
上0.040%未満であることを特徴とする熱間工具
鋼。1. The chemical composition is% by mass, C: 0.20% or more and 0.80% or less, Si: less than 0.10%, Mn: 3.0% or less, S: 0.003% or more, 0. Less than 030%, Te: 0.003% or more and less than 0.010%, Cr: 10.0% or less, Mo: 5.0% or less, V: 3.
0% or less of any one or two or more, balance Fe and unavoidable impurities, and S + Te: 0.006% or more and less than 0.040%, a hot work tool steel.
0%以下のいづれか1種または2種以上、残部Feおよ
び不可避的不純物からなり、S+Te:0.006%以
上0.040%未満であることを特徴とする熱間工具
鋼。2. The chemical composition is% by mass, C: 0.20% or more and 0.80% or less, Si: less than 0.10%, Mn: 3.0% or less, S: 0.003% or more, 0. Less than 030%, Te: 0.003% or more and less than 0.010%, Ca: 0.0030% or less, Cr: 10.0% or less, Mo: 5.0% or less, V: 3.
0% or less of any one or two or more, balance Fe and unavoidable impurities, and S + Te: 0.006% or more and less than 0.040%, a hot work tool steel.
記載の化学組成に加えて、さらに質量%でNb:2.0
%以下、Ti:2.0%以下、Ta:4.0%以下のい
ずれか1種または2種以上を含むことを特徴とする請求
項1または請求項2のいずれか1項記載の熱間工具鋼。3. In addition to the chemical composition according to claim 1, Nb: 2.0% by mass.
% Or less, Ti: 2.0% or less, Ta: 4.0% or less, and any one kind or two or more kinds is included, and the hot work according to claim 1 or claim 2. Tool steel.
記載の化学組成に加えて、さらに質量%でREM:0.
50%以下を含むことを特徴とする請求項1または請求
項2のいずれか1項記載の熱間工具鋼。4. In addition to the chemical composition according to claim 1 or 2, further, in mass%, REM: 0.
50% or less is included, The hot work tool steel of any one of Claim 1 or Claim 2 characterized by the above-mentioned.
記載の化学組成に加えて、さらに質量%でW:5.0%
以下、Co:5.0%以下を含むことを特徴とする請求
項1または請求項2のいずれか1項記載の熱間工具鋼。5. In addition to the chemical composition according to claim 1 or 2, W: 5.0% in mass%
Below, Co: 5.0% or less is included, The hot work tool steel of any one of Claim 1 or Claim 2 characterized by the above-mentioned.
記載の化学組成に加えて、さらに質量%でNi:4.0
%以下、Cu:3.0%以下のいずれか1種または2種
を含むことを特徴とする請求項1または請求項2のいず
れか1項記載の熱間工具鋼。6. In addition to the chemical composition according to claim 1 or 2, Ni: 4.0 in mass% is further added.
% Or less, Cu: 3.0% or less and any one or two of them are contained. 3. The hot work tool steel according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2786196A JPH09217147A (en) | 1996-02-15 | 1996-02-15 | Hot tool steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2786196A JPH09217147A (en) | 1996-02-15 | 1996-02-15 | Hot tool steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09217147A true JPH09217147A (en) | 1997-08-19 |
Family
ID=12232700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2786196A Pending JPH09217147A (en) | 1996-02-15 | 1996-02-15 | Hot tool steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09217147A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001059170A1 (en) * | 2000-02-10 | 2001-08-16 | Aichi Steel Works, Ltd. | Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy |
US6478898B1 (en) | 1999-09-22 | 2002-11-12 | Sumitomo Metal Industries, Ltd. | Method of producing tool steels |
WO2010092067A1 (en) | 2009-02-10 | 2010-08-19 | Gebr. Schmachtenberg Gmbh | Steel alloy |
WO2012082040A1 (en) * | 2010-12-13 | 2012-06-21 | Aktiebolaget Skf | Steel and component intended for high temperature joining processes |
CN115852272A (en) * | 2022-11-09 | 2023-03-28 | 东北大学 | Tellurium-containing high-speed steel and preparation method thereof |
-
1996
- 1996-02-15 JP JP2786196A patent/JPH09217147A/en active Pending
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6478898B1 (en) | 1999-09-22 | 2002-11-12 | Sumitomo Metal Industries, Ltd. | Method of producing tool steels |
WO2001059170A1 (en) * | 2000-02-10 | 2001-08-16 | Aichi Steel Works, Ltd. | Machine structural steel being free of lead, excellent in machinability and reduced in strength anisotropy |
US7195736B1 (en) | 2000-02-10 | 2007-03-27 | Sanyo Special Steel Co., Ltd. | Lead-free steel for machine structural use with excellent machinability and low strength anisotropy |
US7445680B2 (en) | 2000-02-10 | 2008-11-04 | Sanyo Special Steel Co., Ltd. | Lead-free steel for machine structural use with excellent machinability and low strength anisotropy |
WO2010092067A1 (en) | 2009-02-10 | 2010-08-19 | Gebr. Schmachtenberg Gmbh | Steel alloy |
DE102009008285A1 (en) * | 2009-02-10 | 2010-11-25 | Gebr. Schmachtenberg Gmbh | steel alloy |
DE202010018445U1 (en) | 2009-02-10 | 2016-10-17 | Andreas Schremb | Scissors knife of a scrap shear |
WO2012082040A1 (en) * | 2010-12-13 | 2012-06-21 | Aktiebolaget Skf | Steel and component intended for high temperature joining processes |
CN115852272A (en) * | 2022-11-09 | 2023-03-28 | 东北大学 | Tellurium-containing high-speed steel and preparation method thereof |
CN115852272B (en) * | 2022-11-09 | 2024-02-02 | 东北大学 | Tellurium-containing high-speed steel and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6894166B2 (en) | Pre-hardened hot tool steel with excellent machinability | |
JP2834654B2 (en) | High toughness hot work tool steel | |
JP2000034538A (en) | Steel for machine structure excellent in machinability | |
JPH0925539A (en) | Free cutting non-heat treated steel excellent in strength and toughness | |
JP2005336553A (en) | Hot tool steel | |
JPH02247357A (en) | Steel for form rolling die | |
JPH09217147A (en) | Hot tool steel | |
JPH0791620B2 (en) | High speed tool steel with excellent grindability | |
JP4159009B2 (en) | Steel sheet for punched parts with excellent fatigue characteristics | |
JP3445478B2 (en) | Machine structural steel and fracture splitting machine parts using the same | |
JP3534146B2 (en) | Non-heat treated steel excellent in fatigue resistance and method for producing the same | |
JP2002088450A (en) | Hot work tool steel | |
JP3489655B2 (en) | High-strength, high-toughness free-cut non-heat treated steel | |
JP3398233B2 (en) | Manufacturing method of machine structural steel and machine structural member excellent in machinability and fatigue strength after induction hardening / tempering | |
JPH07173571A (en) | High workability wear resistant steel and production thereof | |
JPH11269603A (en) | Hot tool steel excellent in machinability and tool life | |
CN115558854B (en) | Hot-rolled strip steel for high-deformation-resistance buckling circular saw and preparation method thereof | |
JPH07316742A (en) | Production of high strength martensitic stainless steel excellent in rusting resistance and cold formed product | |
JP2002012952A (en) | Tool steel for cold working | |
JP2001234278A (en) | Cold tool steel excellent in machinability | |
JP2002088443A (en) | Hot tool steel for plastic working | |
JPH07188849A (en) | Machine-structural carbon steel excellent in machinability | |
JP2560760B2 (en) | High speed tool steel | |
JPH0726175B2 (en) | Method for manufacturing high speed tool steel | |
JP3898530B2 (en) | Non-tempered steel for V-free hot forging |