JPH06100985A - Fe-ni-co low thermal expansion alloy - Google Patents

Fe-ni-co low thermal expansion alloy

Info

Publication number
JPH06100985A
JPH06100985A JP27820692A JP27820692A JPH06100985A JP H06100985 A JPH06100985 A JP H06100985A JP 27820692 A JP27820692 A JP 27820692A JP 27820692 A JP27820692 A JP 27820692A JP H06100985 A JPH06100985 A JP H06100985A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
coefficient
less
temp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27820692A
Other languages
Japanese (ja)
Other versions
JP3510278B2 (en
Inventor
Kenji Hirano
健治 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP27820692A priority Critical patent/JP3510278B2/en
Publication of JPH06100985A publication Critical patent/JPH06100985A/en
Application granted granted Critical
Publication of JP3510278B2 publication Critical patent/JP3510278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To provide an alloy most suitable for use, e.g. in a structural material for precision mechanical equipment by constituting the composition of the alloy of specific weight percentages of Ni and Co and the balance Fe and also specifying the thermal expansion coefficient of the alloy, the conversion point of thermal expansion, and transformation temp., respectively. CONSTITUTION:This Fe-Ni-Co low thermal expansion alloy has a composition consisting of, by weight, 31.5-34% Ni, 6-8.5% Co, and the balance Fe with inevitable impurity elements and satisfying 38.5<=(Ni+Co)<=40.5%. Moreover, in this alloy, the average thermal expansion coefficient at 30-300 deg.C is <=2X10<-6>/ deg.C and the conversion point of thermal expansion is >=250 deg.C, and further, transformation temp. from (r) to (d') is regulated to <=-50 deg.C. By this method, the alloy wherein the thermal expansion coefficient is minimal and does not change even at the service environment temps. in the wide range from low temp. to high temp. region can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、精密機器用構造材料
等に使用されるFe−Ni−Co系合金材料に係り、N
iとCoとの含有量を極めて狭い特定範囲とすることに
より、その30℃〜100℃の熱膨張係数を従来の所謂
スーパーインバー合金の熱膨張係数と同等となし、かつ
30℃〜300℃の熱膨張係数を該従来合金に比べて著
しく小さくしたFe−Ni−Co系低熱膨張合金に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Fe-Ni-Co alloy material used as a structural material for precision equipment and the like.
By setting the contents of i and Co to a very narrow specific range, the coefficient of thermal expansion of 30 ° C to 100 ° C is made equal to that of the conventional so-called super Invar alloy, and the coefficient of thermal expansion of 30 ° C to 300 ° C. The present invention relates to a Fe—Ni—Co-based low thermal expansion alloy having a coefficient of thermal expansion significantly smaller than that of the conventional alloy.

【0002】[0002]

【従来の技術】従来、精密機器用構造材料等、温度変化
に対する寸法変化を嫌う使用条件下で用いられる金属材
料としては、所謂スーパーインバー合金と呼ばれる公称
組成31wt%Ni−5wt%Co−Fe合金が使用さ
れている。この31wt%Ni−5wt%Co−Fe合
金の平均熱膨張係数(30〜100℃)は、1×10-6
/℃以下と極めて小さい。
2. Description of the Related Art Conventionally, as a metal material used under a use condition in which a dimensional change due to a temperature change is disliked such as a structural material for precision equipment, a so-called Super Invar alloy having a nominal composition of 31 wt% Ni-5 wt% Co-Fe alloy is used. Is used. The average thermal expansion coefficient (30 to 100 ° C.) of this 31 wt% Ni-5 wt% Co-Fe alloy is 1 × 10 −6.
/ ° C or less, which is extremely small.

【0003】[0003]

【発明が解決しようとする課題】しかし、31wt%N
i−5wt%Co−Fe合金は、図2のNo.10の曲
線に示す如く、約150℃を超えた高温側では熱膨張曲
線が急激に立ち上がり、その30〜200℃における平
均熱膨張係数は約2.5×10-6℃であり、30〜30
0℃における平均熱膨張係数が約5.7×10-6℃と非
常に大きな熱膨張特性を示すため、かかる高温下での使
用は不可能であった。
[Problems to be Solved by the Invention] However, 31 wt% N
The i-5 wt% Co-Fe alloy is No. 1 in FIG. As shown by the curve 10, the thermal expansion curve rises sharply on the high temperature side above about 150 ° C., and the average coefficient of thermal expansion at 30 to 200 ° C. is about 2.5 × 10 −6 ° C.
Since the average coefficient of thermal expansion at 0 ° C. is about 5.7 × 10 −6 ° C., which is a very large coefficient of thermal expansion, it cannot be used at such a high temperature.

【0004】近年、種々産業での自動制御化が進み、精
密機器を150℃を超えた高温域で使用する要請が強く
なっているが、所謂スーパーインバー合金では高温域で
の熱膨張が大きく使用できないため、これに代わる低熱
膨張金属材料が求められている。
In recent years, automatic control has progressed in various industries, and there is a strong demand for precision equipment to be used in a high temperature range exceeding 150 ° C. However, a so-called Super Invar alloy has a large thermal expansion in a high temperature range. Therefore, there is a demand for an alternative low thermal expansion metal material.

【0005】この発明は、高温域で精密機器用構造材料
に使用されるFe−Ni−Co系合金材料の上述の問題
点に鑑み、所謂スーパーインバー合金と同等の扱いが可
能で、かつ150℃以上の使用環境温度によっても熱膨
張係数が変化せず、極めて小さな熱膨張係数を有するF
e−Ni−Co系低熱膨張合金の提供を目的としてい
る。
In view of the above-mentioned problems of the Fe-Ni-Co type alloy material used as a structural material for precision equipment in a high temperature range, the present invention can be handled in the same manner as a so-called Super Invar alloy and is 150 ° C. The thermal expansion coefficient does not change even with the above operating environment temperature, and has an extremely small thermal expansion coefficient.
It is intended to provide an e-Ni-Co-based low thermal expansion alloy.

【0006】[0006]

【課題を解決するための手段】発明者は、Fe−Ni−
Co系合金の低熱膨張化と同時に高温域での熱膨張係数
が変化しない組成、特にNi及びCoの含有量を種々検
討の結果、極めて限られた成分範囲でNiとCoの総量
を特定範囲内とすることにより、30℃〜100℃の熱
膨張係数が従来の所謂スーパーインバー合金の熱膨張係
数と同等であり、かつ30℃〜300℃の熱膨張係数を
該従来合金に比べて著しく小さくできること知見し、こ
の発明を完成した。
The inventor has found that Fe-Ni-
As a result of various studies on the composition that does not change the thermal expansion coefficient in the high temperature region at the same time as the low thermal expansion of the Co-based alloy, especially the contents of Ni and Co, the total amount of Ni and Co is within the specified range in an extremely limited composition range. By this, the coefficient of thermal expansion of 30 ° C. to 100 ° C. is equivalent to the coefficient of thermal expansion of the conventional so-called Super Invar alloy, and the coefficient of thermal expansion of 30 ° C. to 300 ° C. can be made significantly smaller than that of the conventional alloy. They found out and completed this invention.

【0007】すなわち、この発明は、Ni 31.5〜
34wt%、Co 6〜8.5wt%、かつ38.5≦
Ni+Co≦40.5wt%を満足し、残部Fe及び不
可避的不純物元素からなり、30〜300℃の平均熱膨
張係数が2×10-6/℃以下で熱膨張の変移点が250
℃以上であり、かつγ→α′変態温度が−50℃以下で
あることを特徴とするFe−Ni−Co系低熱膨張合金
である。
That is, the present invention relates to Ni 31.5-
34 wt%, Co 6 to 8.5 wt%, and 38.5 ≦
Ni + Co ≦ 40.5 wt% is satisfied, the balance is Fe and unavoidable impurity elements, the average thermal expansion coefficient at 30 to 300 ° C. is 2 × 10 −6 / ° C. or less, and the thermal expansion transition point is 250.
The Fe-Ni-Co-based low thermal expansion alloy is characterized in that the temperature is ℃ or higher and the γ → α 'transformation temperature is -50 ° C or lower.

【0008】組成の限定理由 Niは、本系組成基本成分であり、31.5wt%未満
ではγ→α′変態温度が−50℃以上となり、γ→α′
変態を起こすと熱膨張が急激に増大し好ましくなく、ま
た34wt%を超えると熱膨張が大きくなるため、3
1.5〜34wt%の範囲とする。
Reason for limiting composition Ni is a basic component of the present composition, and if it is less than 31.5 wt%, the γ → α 'transformation temperature becomes -50 ° C or higher, and γ → α'.
When transformation occurs, the thermal expansion rapidly increases, which is not preferable, and when it exceeds 34 wt%, the thermal expansion increases, so 3
The range is 1.5 to 34 wt%.

【0009】Coは、本系組成基本成分であり、6wt
%未満では熱膨張の変移点が250℃未満となると同時
に変移点を超える温度での熱膨張が大きくなり、また、
8.5wt%を超えると熱膨張が大きくなるため、6〜
8.5wt%の範囲とする。
Co is a basic component of the present composition and is 6 wt.
If it is less than%, the thermal expansion transition point becomes less than 250 ° C., and at the same time the thermal expansion at a temperature exceeding the transition point becomes large.
If it exceeds 8.5 wt%, the thermal expansion becomes large, so 6-
The range is 8.5 wt%.

【0010】この発明の特徴であるNiとCoの総量規
制は、図1に示す如く、Ni+Coが38.5wt%未
満では熱膨張の変移点が250℃未満となるとともに変
移点を超える温度での熱膨張が大きくなり、さらに4
0.5wt%を超えると熱膨張が大きくなるため、Ni
+Coは38.5〜40.5wt%の範囲とする。
As shown in FIG. 1, the regulation of the total amount of Ni and Co, which is a feature of the present invention, is such that when Ni + Co is less than 38.5 wt%, the transition point of thermal expansion becomes less than 250 ° C. and the temperature exceeds the transition point. The thermal expansion increases, and 4
If it exceeds 0.5 wt%, the thermal expansion becomes large, so Ni
+ Co is in the range of 38.5 to 40.5 wt%.

【0011】添加元素は特に限定しないが、Cは、0,
02wt%を越えると酸洗処理時にスマットが発生し易
く、またガラス封着時に発泡しやすくなるため、0.0
2wt%以下が望ましい。Siは、0.25wt%を越
えると酸化処理を行う場合、内部粒界酸化が激しくな
り、また非金属介在物が多くなり、材料の折曲げ性が低
下するため、0.25wt%以下が望ましい。Mnは、
0.5wt%を越えると非金属介在物が多くなり、材料
の折曲げ性が低下するため、0.5wt%以下が望まし
い。さらに、Feは、本系組成基本成分であり、Niや
Co等の含有残余を占める、
The additive element is not particularly limited, but C is 0,
If it exceeds 02 wt%, smut is likely to occur during pickling treatment and foaming is likely to occur during glass sealing, so 0.0
2 wt% or less is desirable. When Si is more than 0.25 wt%, internal grain boundary oxidation becomes severe, non-metallic inclusions increase, and the bending property of the material decreases, so 0.25 wt% or less is desirable. . Mn is
If it exceeds 0.5 wt%, the amount of non-metallic inclusions increases and the bendability of the material decreases, so 0.5 wt% or less is desirable. Further, Fe is a basic component of this system composition, and accounts for the remaining content of Ni, Co, etc.,

【0012】この発明によるFe−Ni−Co系低熱膨
張合金は、30〜300℃の平均熱膨張係数が2×10
-6/℃以下であることを特徴とするが、150℃を超え
た高温域で精密機器などを使用可能にするため30〜3
50℃の平均熱膨張係数を特定する必要があり、平均熱
膨張係数が2×10-6/℃を越えると熱膨張による寸法
変化が精密機器用構造材料として許容される寸法変化よ
り大きくなりすぎるため、30〜300℃の平均熱膨張
係数を2×10-6/℃以下に限定する。
The Fe-Ni-Co low thermal expansion alloy according to the present invention has an average thermal expansion coefficient of 2 x 10 at 30 to 300 ° C.
It is characterized in that it is -6 / ° C or less, but in order to enable precision equipment to be used in a high temperature range of over 150 ° C, it is 30 to 3
It is necessary to specify the average coefficient of thermal expansion at 50 ° C, and if the average coefficient of thermal expansion exceeds 2 × 10 -6 / ° C, the dimensional change due to thermal expansion becomes too large than the dimensional change allowed as a structural material for precision equipment. Therefore, the average coefficient of thermal expansion at 30 to 300 ° C. is limited to 2 × 10 −6 / ° C. or less.

【0013】この発明において、変移点が250℃未満
では高温雰囲気での使用時に熱膨張の直線性が確保し難
いため、変移点を250℃以上とする。
In the present invention, if the transition point is less than 250 ° C., it is difficult to ensure the linearity of thermal expansion when used in a high temperature atmosphere, so the transition point is set to 250 ° C. or higher.

【0014】この発明において、γ→α′変態温度が−
50℃より高温にあれば、極寒冷地での使用や輸送中に
γ→α′変態し、熱膨張が大きくなる可能性があるた
め、α′変態温度を−50℃以下に限定する。
In the present invention, the γ → α ′ transformation temperature is −
If the temperature is higher than 50 ° C., the γ → α ′ transformation may occur during use or transportation in an extremely cold region and the thermal expansion may increase, so the α ′ transformation temperature is limited to −50 ° C. or lower.

【0015】[0015]

【作用】この発明によるFe−Ni−Co系合金は、そ
れぞれ極狭い含有範囲に規制されたNiとCoの総量を
特定範囲内とすることにより、30℃〜100℃の熱膨
張係数を従来の所謂スーパーインバー合金の熱膨張係数
と同等にすることができ、さらに30〜300℃にわた
って熱膨張が2×10-6/℃以下と極めて小さく、さら
に、変移点が250℃以上、変態温度が−50℃以下と
なり、低温から高温域の高範囲の使用環境温度によって
も熱膨張係数が極めて小さく変化しない特性を発揮す
る。
The Fe-Ni-Co alloy according to the present invention has a coefficient of thermal expansion of 30 ° C to 100 ° C, which is the same as that of the conventional alloy, by keeping the total amount of Ni and Co regulated in the extremely narrow content ranges within the specific ranges. It can be made equivalent to the coefficient of thermal expansion of so-called Super Invar alloy, the thermal expansion is extremely small at 2 × 10 −6 / ° C. or less over 30 to 300 ° C., the transition point is 250 ° C. or more, and the transformation temperature is − It has a temperature of 50 ° C. or less, and exhibits a characteristic that the coefficient of thermal expansion does not change extremely small even with use environment temperature in a high range of low temperature to high temperature.

【0016】[0016]

【実施例】表1に示す如く、Ni及びCo量を変化させ
た種々組成のFe−Ni−Co系合金試料を高周波真空
溶解炉にて溶製した。鋳塊を熱間圧延後、冷間粗圧延、
中間焼鈍を経て、冷間圧延にて板厚0.5mmに仕上げ
た。最終仕上げ焼鈍を900℃で行なった後、熱膨張特
性を測定した。また、仕上がった板より15mm×15
mmの試験片を切出し、−50℃で3時間保持後、γ→
α′変態の有無を確認した。各測定結果を表1に示す。
EXAMPLES As shown in Table 1, Fe-Ni-Co alloy samples of various compositions with different amounts of Ni and Co were melted in a high frequency vacuum melting furnace. After hot rolling the ingot, cold rough rolling,
After intermediate annealing, it was cold-rolled to a plate thickness of 0.5 mm. After the final finish annealing was performed at 900 ° C., the thermal expansion characteristics were measured. Also, 15mm x 15 from the finished plate
mm test piece was cut out and kept at −50 ° C. for 3 hours, then γ →
The presence or absence of α'transformation was confirmed. Table 1 shows each measurement result.

【0017】また、この発明合金No.1および比較例
合金No.8、さらに、公知の31.8wt%Ni−
4.85wt%Co−Fe合金(No.10)のそれぞ
れの熱膨張曲線を図2に示す。なお、図2において、実
線は実施例におけるこの発明合金No.1の場合、破線
は実施例における比較例合金No.8の場合、一点鎖線
は31.8wt%Ni−4.85wt%Co−Fe合金
(No.10)の場合を示す。
Further, according to the invention alloy No. 1 and Comparative Example Alloy No. 8. Furthermore, known 31.8 wt% Ni-
The respective thermal expansion curves of the 4.85 wt% Co-Fe alloy (No. 10) are shown in FIG. In FIG. 2, the solid line indicates the alloy No. of the present invention in the example. In the case of No. 1, the broken line indicates the comparative alloy No. In the case of No. 8, the dashed-dotted line shows the case of 31.8 wt% Ni-4.85 wt% Co-Fe alloy (No. 10).

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】この発明によるFe−Ni−Co系合金
は、それぞれ極狭い含有範囲に規制されたNiとCoの
総量を特定範囲内とすることにより、図2に明らかなよ
うに30℃〜100℃の熱膨張係数を従来の所謂スーパ
ーインバー合金の熱膨張係数と同等にすることができ、
さらに30〜300℃にわたって熱膨張が2×10-6
℃以下と極めて小さく、さらに、変移点が250℃以
上、変態温度が−50℃以下となり、低温から高温域の
高範囲の使用環境温度によっても熱膨張係数が極めて小
さく変化せず、精密機器用構造材料等の用途に最適のF
e−Ni−Co系低熱膨張合金である。
The Fe-Ni-Co alloy according to the present invention has a total content of Ni and Co regulated within an extremely narrow content range within a specific range, and as shown in FIG. The coefficient of thermal expansion at 100 ° C. can be made equal to the coefficient of thermal expansion of the conventional so-called Super Invar alloy,
Further, the thermal expansion is 2 × 10 −6 / over 30 to 300 ° C.
It is extremely small as ℃ or less, and has a transition point of 250 ℃ or more and a transformation temperature of -50 ℃ or less, and its thermal expansion coefficient does not change extremely small even with the use environment temperature in the high temperature range from low temperature to high temperature. Optimal for applications such as structural materials
It is an e-Ni-Co low thermal expansion alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の特徴であるNiとCoの総量規制を
示す、Ni量とCo量との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the amount of Ni and the amount of Co, showing the regulation of the total amount of Ni and Co, which is a feature of the present invention.

【図2】温度と熱膨張率との関係を示すグラフである。
実線は実施例におけるこの発明合金No.1の場合、破
線は実施例における比較例合金No.8の場合、一点鎖
線は31.8wt%Ni−4.85wt%Co−Fe合
金(No.10)の場合を示す。
FIG. 2 is a graph showing the relationship between temperature and coefficient of thermal expansion.
The solid line indicates the alloy No. of the present invention in the examples. In the case of No. 1, the broken line indicates the comparative alloy No. In the case of No. 8, the dashed-dotted line shows the case of 31.8 wt% Ni-4.85 wt% Co-Fe alloy (No. 10).

【手続補正書】[Procedure amendment]

【提出日】平成5年1月20日[Submission date] January 20, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0012[Correction target item name] 0012

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0012】この発明によるFe−Ni−Co系低熱膨
張合金は、30〜300℃の平均熱膨張係数が2×10
-6/℃以下であることを特徴とするが、150℃を超え
た高温域で精密機器などを使用可能にするため30〜
00℃の平均熱膨張係数を特定する必要があり、平均熱
膨張係数が2×10-6/℃を越えると熱膨張による寸法
変化が精密機器用構造材料として許容される寸法変化よ
り大きくなりすぎるため、30〜300℃の平均熱膨張
係数を2×10-6/℃以下に限定する。
The Fe-Ni-Co low thermal expansion alloy according to the present invention has an average thermal expansion coefficient of 2 x 10 at 30 to 300 ° C.
It is characterized in that it is -6 / ° C or less, but in order to enable precision equipment to be used in a high temperature range over 150 ° C, it is 30 to 3
It is necessary to specify the average coefficient of thermal expansion at 00 ℃, and when the average coefficient of thermal expansion exceeds 2 × 10 -6 / ℃, the dimensional change due to thermal expansion becomes too large than the dimensional change allowed as a structural material for precision equipment. Therefore, the average coefficient of thermal expansion at 30 to 300 ° C. is limited to 2 × 10 −6 / ° C. or less.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0018[Correction target item name] 0018

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0018】[0018]

【表1】 [Table 1]

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Ni 31.5〜34wt%、Co 6
〜8.5wt%、かつ38.5≦Ni+Co≦40.5
wt%を満足し、残部Fe及び不可避的不純物元素から
なり、30〜300℃の平均熱膨張係数が2×10-6
℃以下で熱膨張の変移点が250℃以上であり、かつγ
→α′変態温度が−50℃以下であることを特徴とする
Fe−Ni−Co系低熱膨張合金。
1. Ni 31.5 to 34 wt%, Co 6
Up to 8.5 wt% and 38.5 ≦ Ni + Co ≦ 40.5
Wt% is satisfied, the balance is Fe and unavoidable impurity elements, and the average thermal expansion coefficient at 30 to 300 ° C. is 2 × 10 −6 /
The transition point of thermal expansion is 250 ° C or higher at ℃ or lower, and γ
→ Fe'Ni-Co based low thermal expansion alloy having an α'transformation temperature of -50 ° C or lower.
JP27820692A 1992-09-22 1992-09-22 Fe-Ni-Co low thermal expansion alloy Expired - Lifetime JP3510278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27820692A JP3510278B2 (en) 1992-09-22 1992-09-22 Fe-Ni-Co low thermal expansion alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27820692A JP3510278B2 (en) 1992-09-22 1992-09-22 Fe-Ni-Co low thermal expansion alloy

Publications (2)

Publication Number Publication Date
JPH06100985A true JPH06100985A (en) 1994-04-12
JP3510278B2 JP3510278B2 (en) 2004-03-22

Family

ID=17594078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27820692A Expired - Lifetime JP3510278B2 (en) 1992-09-22 1992-09-22 Fe-Ni-Co low thermal expansion alloy

Country Status (1)

Country Link
JP (1) JP3510278B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059169A1 (en) * 2000-02-09 2001-08-16 Nippon Mining & Metals Co.,Ltd. Fe-Ni-Co ALLOY FOR COMPLETELY FLAT MASK OF PRESS-FORMED TYPE, AND COMPLETELY FLAT MASK AND COLOR CATHODE-RAY TUBE USING THE SAME
JP2011082361A (en) * 2009-10-07 2011-04-21 Fujitsu Ltd Circuit board and method of manufacturing the same
JP2011162820A (en) * 2010-02-08 2011-08-25 Res Inst Electric Magnetic Alloys High-strength low-thermal-expansion alloy, method for producing the same, and precision instrument
JP2016027188A (en) * 2014-07-02 2016-02-18 新報国製鉄株式会社 Low-thermal expansion cast steel product and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059169A1 (en) * 2000-02-09 2001-08-16 Nippon Mining & Metals Co.,Ltd. Fe-Ni-Co ALLOY FOR COMPLETELY FLAT MASK OF PRESS-FORMED TYPE, AND COMPLETELY FLAT MASK AND COLOR CATHODE-RAY TUBE USING THE SAME
JP2011082361A (en) * 2009-10-07 2011-04-21 Fujitsu Ltd Circuit board and method of manufacturing the same
JP2011162820A (en) * 2010-02-08 2011-08-25 Res Inst Electric Magnetic Alloys High-strength low-thermal-expansion alloy, method for producing the same, and precision instrument
JP2016027188A (en) * 2014-07-02 2016-02-18 新報国製鉄株式会社 Low-thermal expansion cast steel product and method for producing the same

Also Published As

Publication number Publication date
JP3510278B2 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
KR102663387B1 (en) Medium-entropy alloys with spinodal decomposition-induced extended solubility
US20110056589A1 (en) Iron-nickle alloy
CA1170480A (en) Ferritic stainless steel and processing therefor
WO2001094654A1 (en) Cold rolled steel sheet having excellent corrosion resistance to sulfuric acid
US6692585B2 (en) Ferritic Fe-Cr-Ni-Al alloy having exellent oxidation resistance and high strength and a plate made of the alloy
JPH06100985A (en) Fe-ni-co low thermal expansion alloy
JPH1017997A (en) High strength invar alloy excellent in hot workability
JP6741876B2 (en) Alloy plate and gasket
US6162306A (en) Electromagnetic steel sheet having excellent high-frequency magnetic properities and method
US5688471A (en) High strength low thermal expansion alloy
KR102431831B1 (en) Medium entropy alloy and manufacturing method thereof
JP6587881B2 (en) Ferritic stainless steel wire for fastening parts
JP2991557B2 (en) Fe-cr-al powder alloy
JP2661875B2 (en) Superplastic duplex stainless steel with low deformation resistance and excellent elongation properties
JPH07252608A (en) Ferritic stainless steel alloy amenable to hot working
JP2004083972A (en) Ferritic stainless steel cold rolled, annealed material having excellent secondary workability, and production method therefor
JPS59226117A (en) Production of fe-high ni alloy slab
JPH0790505A (en) Soft magnetic steel material and its production
CN115341147B (en) Medium chromium ferrite stainless steel for elevator panel and preparation method thereof
JPH07252607A (en) Production of stainless steel material for ultrahigh vacuum equipment, excellent in vacuum characteristic and hot workability, and ultrahigh vacuum vessel
JPH06256890A (en) Heat resistant iron alloy for casting
EP0765950B1 (en) High strength low thermal expansion alloy
KR100502854B1 (en) Chromuium-based stainless steel of good bonding ability to glass and acid resistance after high heat treatment
JPS59118814A (en) Manufacture of hot rolled steel plate for enamel with superior formability and fish scale resistance
JPH06184703A (en) Fe-ni alloy for electron gun parts

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Effective date: 20031225

Free format text: JAPANESE INTERMEDIATE CODE: A61

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20090109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20100109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20110109

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20120109

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130109

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20130109