JPH1017997A - High strength invar alloy excellent in hot workability - Google Patents

High strength invar alloy excellent in hot workability

Info

Publication number
JPH1017997A
JPH1017997A JP8188591A JP18859196A JPH1017997A JP H1017997 A JPH1017997 A JP H1017997A JP 8188591 A JP8188591 A JP 8188591A JP 18859196 A JP18859196 A JP 18859196A JP H1017997 A JPH1017997 A JP H1017997A
Authority
JP
Japan
Prior art keywords
less
alloy
hot workability
content
invar alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8188591A
Other languages
Japanese (ja)
Inventor
Shinji Tsuge
信二 柘植
Masahiro Aoki
正紘 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8188591A priority Critical patent/JPH1017997A/en
Publication of JPH1017997A publication Critical patent/JPH1017997A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high strength invar alloy withstanding mass-production and having excellent hot workability without deteriorating its thermal expansibility even in a low temp. region from a room temp. to a liq. nitrogen temp. SOLUTION: This invar alloy has a chemical compsn. contg., by weight, 0.015 to 0.10% C, <=0.35% Si, <=1.0% Mn, <=0.015% P, <=0.0010% S, <=0.3% Cr, 35 to 37% Ni, 0 to 0.5% Mo, 0 to 0.05% V, <=0.01% Al, 0.15 to <1.0% Nb, <=0.003% Ti and <=0.005% N or, in which the content of S is regulated to <=0.002% and that of Ti to 0.05 to 0.2%. The alloy furthermore contains 0.0005 to 0.005% B according to necessary, and the balance Fe with inevitable impurities.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、高強度で、かつ優れ
た熱間加工性を有していて製造コストが安価な、室温以
下での熱膨張係数の低いインバ−合金(アンバ−合金)
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an invar alloy (invar alloy) having high strength, excellent hot workability, low production cost, and low thermal expansion coefficient at room temperature or lower.
It is about.

【0002】[0002]

【従来技術とその課題】34〜45%(以降、 成分割合を表
す%は重量%とする)のNiを含有するFe−Ni系の低熱膨
張インバ−合金は極低温から約300℃程度までの比較
的広い温度域にわたって低い熱膨張率を示すことから、
従来、この特徴を生かして、液化天然ガスの輸送用船舶
のタンク,大型テレビジョンや静止画像用ブラウン管の
シャド−マスク,ICリ−ドフレ−ム,ガラス封着材料
等の用途に多用されてきた。
2. Description of the Related Art Fe-Ni based low thermal expansion invar alloys containing 34-45% (hereinafter, "%" representing a component ratio is referred to as "% by weight") of Ni have a temperature range from extremely low temperature to about 300 ° C. Because it shows a low coefficient of thermal expansion over a relatively wide temperature range,
In the past, taking advantage of this feature, it has been frequently used in tanks for liquefied natural gas transport vessels, shadow masks for large-sized televisions and cathode ray tubes for still images, IC lead frames, glass sealing materials, and the like. .

【0003】なお、上記インバ−合金に対してより強く
求められる特性は“使用される温度域”や“合金部材に
要求される熱膨張係数の程度”によって異なるが、室温
以下での用途に供される所謂“36Ni合金”の場合は、
特に小さい熱膨張係数を利用するために開発されたもの
であるので「熱膨張特性」が最も重要な特性とされてい
る。そして、インバ−合金の“室温付近での熱膨張係
数”の低下にはC,Si,Mn等の合金元素含有量の低減が
有効であることが知られており、これら合金元素の含有
量を極力低減することによって 1.2×10-6/℃台という
極めて低い熱膨張係数を達成することもできる。
[0003] It should be noted that the characteristics more strongly required for the above-mentioned invar alloy vary depending on the "temperature range to be used" and the "degree of thermal expansion coefficient required for the alloy member". In the case of so-called “36Ni alloy”,
In particular, the "thermal expansion characteristic" is the most important characteristic because it was developed to utilize a small coefficient of thermal expansion. It is known that reducing the content of alloying elements such as C, Si, and Mn is effective in reducing the "coefficient of thermal expansion near room temperature" of Invar alloys. An extremely low coefficient of thermal expansion of the order of 1.2 × 10 −6 / ° C. can be achieved by reducing as much as possible.

【0004】ただ、このような高純度のインバ−合金は
肉厚が2mm未満の形態で使用されることが殆どであるた
めにそれを補うだけの強度が望まれるが、強度的には決
して満足できるものではなく、同じ低温用材料として使
用されている“9%Ni鋼”や“SUS304鋼”等と比
べて室温の強度が2〜4割ほども低い。そこで、肉厚の
厚い鋼板類として使用することを試みると、この場合に
は製造過程で結晶粒径が大きくなりがちで、そのため強
度が更に低下するという問題があった。
However, such high-purity invar alloys are often used in a form having a wall thickness of less than 2 mm, and therefore, it is desired that the high-purity invar alloy has sufficient strength to make up for it. The strength at room temperature is about 20 to 40% lower than that of "9% Ni steel" or "SUS304 steel" used as the same low temperature material. Therefore, when an attempt is made to use the steel sheet as a thick steel sheet, in this case, there is a problem that the crystal grain size tends to increase in the manufacturing process, and the strength is further reduced.

【0005】もっとも、合金元素を添加することによっ
てインバ−合金の高強度化が可能であり、合金元素とし
て例えばCo,Nb,C,Cr等の添加が有効であることは知
られている。この他にも、高強度化の手法として“最終
焼鈍温度の調整により結晶粒の微細化を図る方法”や
“冷間加工により強化する方法”等が知られてはいる
が、“合金元素の添加”は母材のみならず溶接部の強度
も上昇することができる普遍的な手法であると言える。
However, it is known that by adding an alloy element, it is possible to increase the strength of the invar alloy, and it is effective to add, for example, Co, Nb, C, Cr or the like as an alloy element. Other known techniques for increasing the strength include a "method of refining crystal grains by adjusting the final annealing temperature" and a "method of strengthening by cold working". It can be said that "addition" is a universal method capable of increasing the strength of not only the base material but also the welded portion.

【0006】しかし、高強度化を図るための合金元素の
添加はインバ−合金の熱間加工性を低下させることが多
い。即ち、図1は、S:0.001%未満,P:0.005%未満,
N:0.002%未満,Al:0.003%未満とS,P,N及びAlの
含有量をそれぞれ規制すると共に、強化元素として種々
割合でNbを添加した0.03%C-0.2%Si-0.3%Mn−36%Ni
−Nb系インバ−合金につき、その熱間延性を「熱間圧延
に相当する歪速度(≒1×s-1)で引張試験した際の絞
り値(断面収縮率)」で評価した結果を示したグラフで
あるが、この図1に示される結果からも、インバ−合金
にNb等の強化元素を添加すると熱間延性が著しく低下す
ることが分かる。
However, the addition of alloying elements to increase the strength often lowers the hot workability of the Invar alloy. That is, FIG. 1 shows that S: less than 0.001%, P: less than 0.005%,
N: less than 0.002%, Al: less than 0.003%, the contents of S, P, N and Al are each regulated, and Nb is added in various proportions as a strengthening element. 0.03% C-0.2% Si-0.3% Mn- 36% Ni
The results obtained by evaluating the hot ductility of the -Nb-based invar alloy by the "reduced value (cross-sectional shrinkage) at the time of a tensile test at a strain rate (相当 1 × s -1 ) corresponding to hot rolling". FIG. 1 also shows that the addition of a strengthening element such as Nb to the Invar alloy significantly reduces the hot ductility.

【0007】元来、インバ−合金は熱間加工性が良好で
あるとは言えず、特に連続鋳造スラブとした場合に熱間
加工性の低下が著しいことからインゴット法による製造
が主流をなしているが、それでも熱間圧延時に割れや表
面疵を発生することが多く、生産性や製造歩留の低い材
料である。しかも、成分元素として高価なNiを多量に含
んでおり、そのため製造歩留の低下は大幅なコスト高を
招いていた。従って、熱間加工性を低下させるNbやC等
の合金元素を添加してインバ−合金の高強度化を図るこ
とは、インゴット法によった場合でも熱間加工工程にお
ける耳割れ,表面疵等といった熱間加工疵の発生をより
著しくし、材料の量産を考えた場合には到底そのまま採
用できる手段とは言えなかった。
[0007] Originally, invar alloys cannot be said to have good hot workability. Particularly, when a continuous cast slab is used, the hot workability is significantly reduced. Nevertheless, cracking and surface flaws often occur during hot rolling, and are low in productivity and production yield. In addition, since a large amount of expensive Ni is contained as a component element, a reduction in the production yield has resulted in a significant increase in cost. Therefore, increasing the strength of an invar alloy by adding an alloying element such as Nb or C, which lowers hot workability, means that even when the ingot method is used, ear cracks, surface flaws, etc. in the hot working step. However, in the case of considering mass production of hot working flaws and considering mass production of materials, it cannot be said that such means can be adopted as it is.

【0008】なお、インバ−合金の熱間加工性改善に適
量のBを添加するのが効果的であることが知られてい
る。例えば、特公昭64−8696号公報や特公平1−
8692号公報には「Bの添加によってアンバ−合金
(インバ−合金)の熱間加工性が改善される」との報告
がなされている。また、特開平5−171357号公報
には「Nb含有インバ−合金の熱間加工性が微量Bの添加
によって改善される」旨の開示がなされている。
It is known that it is effective to add an appropriate amount of B to improve the hot workability of an Invar alloy. For example, Japanese Patent Publication No. 64-8669 and Japanese Patent Publication No.
No. 8692 reports that "the addition of B improves the hot workability of an invar alloy (invar alloy)". Japanese Patent Application Laid-Open No. 5-171357 discloses that "the hot workability of an Nb-containing invar alloy is improved by adding a small amount of B".

【0009】しかしながら、B添加は確かにインバ−合
金の熱間加工性改善に有効な手段ではあるものの、所望
の効果を確保するためにはその含有量の微妙な調整が必
要であり、適正な調整がなされないとホウ化物が形成さ
れて逆に熱間加工性に著しい悪影響が及ぶという問題を
有していた。特にNb含有インバ−合金の場合は、前記特
開平5−171357号公報中でも指摘されているよう
に、Nb含有量に応じてB添加量を厳密に管理しないと著
しい熱間加工性の低下を招く危険性があり、合金材の量
産手段として好適なものとは言えなかった。
However, although the addition of B is certainly an effective means for improving the hot workability of an Invar alloy, it is necessary to finely adjust its content in order to secure a desired effect. If the adjustment is not made, there is a problem that boride is formed, and conversely, the hot workability is significantly adversely affected. In particular, in the case of an Nb-containing invar alloy, as pointed out in the above-mentioned JP-A-5-171357, unless the amount of B added is strictly controlled in accordance with the Nb content, a remarkable decrease in hot workability is caused. There was a danger, and it could not be said to be suitable as a means for mass-producing alloy materials.

【0010】もっとも、B添加によってインバ−合金の
熱間加工性を改善することに触れた前記特公昭64−8
696号公報,特公平1−8692号公報あるいは特開
平5−171357号公報に開示の技術は、何れもIC
のリ−ドフレ−ムや送電用芯線,精密機械部品等のよう
な400℃程度までの“室温よりも高い温度域”で使用
され、該温度域で10-6/℃未満の比較的小さい熱膨張係
数が維持される極薄板用や線材用といった、必ずしも量
産を必要とすることのない用途の高強度インバ−合金を
対象としたものに過ぎない。しかるに、液化天然ガス輸
送用船舶のタンク等に代表される低温用貯蔵タンクの素
材等を生産するためには“量産体制の確立”は避け得な
い必要事項である。それにもかかわらず、“室温以下の
温度域で熱膨張係数:1.5×10-6/℃以下という優れた熱
膨張特性を維持しつつ高強度化を図った低コストの実用
的なインバ−合金”の量産体制は未だ確立するに至って
いなかった。
[0010] However, Japanese Patent Publication No. Sho 64-8 mentions that the addition of B improves the hot workability of an invar alloy.
No. 696, Japanese Patent Publication No. Hei 1-8692 or Japanese Patent Application Laid-Open No. Hei 5-171357 disclose any of the techniques disclosed in
Used in the "temperature range higher than room temperature" up to about 400 ° C, such as lead frames, power transmission core wires, precision machine parts, etc., in which relatively small heat of less than 10 -6 / ° C is used. It is intended only for high-strength invar alloys for applications that do not necessarily need to be mass-produced, such as for ultra-thin sheets and wires that maintain the expansion coefficient. However, in order to produce raw materials for low-temperature storage tanks such as tanks for transporting liquefied natural gas, "establishing a mass production system" is an inevitable requirement. Nevertheless, "a low-cost practical invar alloy with high strength while maintaining excellent thermal expansion characteristics of 1.5 × 10 -6 / ° C or less in the temperature range below room temperature" Has not yet established a mass production system.

【0011】このようなことから、本発明が目的とした
のは、室温から液体窒素温度にかけての低温域において
も低い熱膨張特性を損なうことがなく、しかも量産に耐
え得る優れた熱間加工性を具備した高強度化インバ−合
金の安定提供手段を確立することであった。
In view of the above, an object of the present invention is to provide an excellent hot workability capable of withstanding mass production without impairing low thermal expansion characteristics even in a low temperature range from room temperature to liquid nitrogen temperature. The purpose of the present invention is to establish a means for stably providing a high-strength invar alloy having the following features.

【0012】[0012]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究を行った結果、次のような知見を得
ることができた。 a) インバ−合金の強度向上には合金元素としてCとNb
を添加するのが極めて有効かつ安定した手段であるが、
この場合には、先に述べたようにNb添加を行うことによ
る合金の著しい熱間加工性低下が懸念される。しかしな
がら、本発明者の検討により、Nb添加を行った場合の熱
間加工性低下はNbそのものに起因しているだけでなく、
Nb原料に不可避的に含まれて随伴されるTiも熱間加工性
低下の大きな原因となっていて、この微量のTiとやはり
不純物として合金に含まれているSとが熱間加工温度域
で硫化物として結晶粒界に析出し、熱間加工性の劣化を
助長させることが明らかとなった。そこで、この事実を
基に、「Nb添加による高強度化インバ−合金であって
も、 Nb含有量を適正に調整すると共に、 不純物元素であ
るS及びTiの含有量を極力低減するようにすれば、 熱膨
張特性に格別な悪影響を及ぼすことなく量産に差し支え
ないだけの熱間加工性が確保される」ことが見出され
た。
Means for Solving the Problems The present inventor has made intensive studies to achieve the above object, and as a result, has obtained the following findings. a) To improve the strength of Invar alloy, C and Nb are used as alloying elements.
Is a very effective and stable means to add
In this case, there is a concern that the addition of Nb significantly reduces the hot workability of the alloy as described above. However, according to the study of the present inventors, the decrease in hot workability when Nb is added is caused not only by Nb itself,
Ti which is inevitably contained in the Nb raw material is also a major cause of the deterioration of hot workability, and this trace amount of Ti and S which is also contained in the alloy as an impurity in the hot working temperature range. It has been clarified that sulfide precipitates at the crystal grain boundaries and promotes deterioration of hot workability. Therefore, based on this fact, `` Even if the strength of an invar alloy is increased by adding Nb, it is necessary to appropriately adjust the Nb content and minimize the content of the impurity elements S and Ti. For example, the hot workability sufficient for mass production can be ensured without having a particular adverse effect on the thermal expansion characteristics. "

【0013】b) 一方、Tiを積極添加してインバ−合金
に多量に含有させた場合にも熱間圧延中における硫化物
の結晶粒界析出が起こらなくなるため、Nb含有量が適正
に調整されておればS含有量が多少高めでも量産に差し
支えないだけの熱間加工性を確保することができる。図
2は、36%Ni-0.3Nb-0.001%S−Ti系インバ−合金につ
きTi含有量と熱間延性(絞り値)との調査結果を示した
グラフであるが、この図2に示される結果からも、Nb添
加インバ−合金のTi含有量が極力低い(0.0005%)か、
逆にある程度多量に含有された場合(0.12%)に熱間延
性が向上する傾向は明らかである。
B) On the other hand, even when Ti is positively added and contained in a large amount in the invar alloy, the sulfide crystal grain boundary precipitation during hot rolling does not occur, so that the Nb content is appropriately adjusted. If this is the case, even if the S content is somewhat high, hot workability sufficient for mass production can be ensured. FIG. 2 is a graph showing the examination results of the Ti content and the hot ductility (reduced value) of the 36% Ni-0.3Nb-0.001% S-Ti-based invar alloy, which are shown in FIG. The results show that the Ti content of the Nb-added invar alloy is as low as possible (0.0005%),
Conversely, when it is contained in a certain amount (0.12%), the tendency of the hot ductility is improved.

【0014】c) 更に、Nb含有量が適正に調整されてお
れば、必要に応じてB添加を行うことも量産に不利とな
らない熱間加工性の有効な改善手段となり得る。
C) Further, if the Nb content is properly adjusted, the addition of B as needed can be an effective means of improving hot workability without being disadvantageous for mass production.

【0015】本発明は、上記知見事項等に基づいてなさ
れたもので、「インバ−合金の化学組成を、 C: 0.015〜0.10%, Si:0.35%以下, Mn: 1.0%以下, P: 0.015%以下, S:0.0010%以下, Cr: 0.3%以下, Ni:35〜37%, Mo:0〜 0.5%, V:0〜0.05%, Al:0.01%以下, Nb:0.15%以上 1.0%未満, Ti: 0.003%以下, N: 0.005%以下 を含有するか、 あるいは C: 0.015〜0.10%, Si:0.35%以下, Mn: 1.0%以下, P: 0.015%以下, S: 0.002%以下, Cr: 0.3%以下, Ni:35〜37%, Mo: 0.5%以下, V:0.05%以下, Al:0.01%以下, Nb:0.15%以上 1.0%未満, Ti:0.05〜 0.2%, N: 0.005%以下 を含有し、 更に必要に応じてB:0.0005〜 0.005%をも
含むと共に残部がFe及び不可避的不純物より成る如くに
調整することによって、 室温以下での優れた熱膨張特
性,高強度並びに良好な熱間加工性を兼備せしめた点」
に大きな特徴を有している。
The present invention has been made based on the above findings and the like. "The chemical composition of an invar alloy is as follows: C: 0.015 to 0.10%, Si: 0.35% or less, Mn: 1.0% or less, P: 0.015% %, S: 0.0010% or less, Cr: 0.3% or less, Ni: 35 to 37%, Mo: 0 to 0.5%, V: 0 to 0.05%, Al: 0.01% or less, Nb: 0.15% to less than 1.0% , Ti: 0.003% or less, N: 0.005% or less, or C: 0.015 to 0.10%, Si: 0.35% or less, Mn: 1.0% or less, P: 0.015% or less, S: 0.002% or less, Cr : 0.3% or less, Ni: 35 to 37%, Mo: 0.5% or less, V: 0.05% or less, Al: 0.01% or less, Nb: 0.15% to less than 1.0%, Ti: 0.05 to 0.2%, N: 0.005% By containing B and 0.0005 to 0.005% as necessary, and adjusting the balance so that the balance consists of Fe and unavoidable impurities, excellent thermal expansion at room temperature or lower can be achieved. Properties, that was allowed combines high strength and good hot workability "
It has great features.

【0016】[0016]

【作用】上述のように、本発明は、CとNbの複合添加に
より高強度化したインバ−合金について、室温から液体
窒素温度にかけての熱膨張特性を損なうことなく材料の
量産に耐え得る熱間加工性が付与されるように合金の化
学組成に工夫を凝らしたものであるが、 以下、本発明
において合金の化学組成を前記の如くに限定した理由を
各元素の作用と共に詳述する。 C:Cは合金の高強度化に有効であるので添加される
が、その含有量が 0.015%未満であると合金に所望の強
度を確保することができず、一方、0.10%を超える過剰
な添加は合金の優れた熱膨張特性(低熱膨張係数)を損
なうことから、C含有量は 0.015〜0.10%と定めた。
As described above, the present invention relates to an invar alloy which has been strengthened by the combined addition of C and Nb, and has a hot working strength capable of withstanding mass production of a material without impairing the thermal expansion characteristics from room temperature to liquid nitrogen temperature. The chemical composition of the alloy is devised so that the workability is imparted. The reason why the chemical composition of the alloy is limited as described above in the present invention together with the action of each element will be described in detail below. C: C is added because it is effective for increasing the strength of the alloy. However, if the content is less than 0.015%, the desired strength of the alloy cannot be secured. Since the addition impairs the excellent thermal expansion characteristics (low thermal expansion coefficient) of the alloy, the C content was determined to be 0.015 to 0.10%.

【0017】Si及びMn:Si,Mnは合金溶製時の脱酸剤と
して必要な基本元素であるが、何れも過剰に含有される
と合金の熱膨張特性が損なわれる。従って、Si及びMnの
含有量は0.35%以下, 1.0%以下とそれぞれ定めた。
Si and Mn: Si and Mn are basic elements necessary as a deoxidizing agent in the production of an alloy, but if both are contained in excess, the thermal expansion characteristics of the alloy are impaired. Therefore, the contents of Si and Mn are determined to be 0.35% or less and 1.0% or less, respectively.

【0018】P:Pは合金の凝固割れ感受性,溶接割れ
感受性を著しく高める不純物元素であるが、その含有量
が 0.015%以下であれば量産体制を維持できる。従っ
て、P含有量の上限を 0.015%と定めた。
P: P is an impurity element which remarkably enhances the susceptibility of the alloy to solidification cracking and welding cracking. If the content of P is 0.015% or less, a mass production system can be maintained. Therefore, the upper limit of the P content is set to 0.015%.

【0019】Cr:Crの含有量が 0.3%を超えると合金の
熱膨張係数への悪影響が顕著化するようになる。従っ
て、Cr含有量は 0.3%以下と定めた。
Cr: If the Cr content exceeds 0.3%, the adverse effect on the thermal expansion coefficient of the alloy becomes remarkable. Therefore, the Cr content was determined to be 0.3% or less.

【0020】Ni:Niは合金の熱膨張特性を支配する最も
重要な元素であり、その含有量を35〜37%に調整するこ
とで熱膨張係数を極小とすることができる。従って、Ni
含有量は35〜37%と定めた。
Ni: Ni is the most important element that controls the thermal expansion characteristics of the alloy, and its thermal expansion coefficient can be minimized by adjusting its content to 35 to 37%. Therefore, Ni
The content was determined to be 35 to 37%.

【0021】Mo及びV:Mo,Vは何れも合金の熱膨張特
性を劣化させる元素であるため、これら元素の添加は控
えねばならない。少なくとも、Mo含有量については 0.5
%以下に、またV含有量については0.05%以下にそれぞ
れ抑制しないと所望の熱膨張特性を確保することができ
ない。
Mo and V: Since Mo and V are both elements that deteriorate the thermal expansion characteristics of the alloy, the addition of these elements must be avoided. At least 0.5 for Mo content
% Or less, and the V content must be suppressed to 0.05% or less to ensure desired thermal expansion characteristics.

【0022】Al:Alは合金の熱間加工性を劣化させる元
素であり、熱間加工性の観点からその含有量を規制しな
ければならない。特に、Al含有量が0.01%を超えると熱
間加工性への悪影響が顕著化することから、その含有量
は0.01%以下と定めた。
Al: Al is an element that degrades the hot workability of the alloy, and its content must be regulated from the viewpoint of hot workability. In particular, when the Al content exceeds 0.01%, the adverse effect on hot workability becomes remarkable, so the content is set to 0.01% or less.

【0023】Nb:Nbは合金の強度向上のために必要な重
要な元素であり、0.15%以上の含有量を確保しないと所
望の強度を確保することができない。一方、本発明合金
においてはNb含有量が 1.0%以上になると熱膨張特性が
劣化する傾向が現れてくるので、1.0 %以上のNbを含有
させることは厳に避けなければならない。従って、Nb含
有量は0.15%以上 1.0%未満と定めた。
Nb: Nb is an important element necessary for improving the strength of the alloy, and the desired strength cannot be ensured unless the content is 0.15% or more. On the other hand, in the alloy of the present invention, when the Nb content is 1.0% or more, the thermal expansion characteristic tends to be deteriorated. Therefore, it must be strictly avoided to contain 1.0% or more Nb. Therefore, the Nb content is determined to be 0.15% or more and less than 1.0%.

【0024】S及びTi:SもTiも本発明合金を溶製する
際に混入する不可避的不純物であるが(Tiは特にNb原料
に随伴されて不可避的に混入する)、このS及びTiは合
金の熱間加工性に影響する重要な元素である。即ち、合
金中のSとTiは熱間加工温度域で硫化物として結晶粒界
に析出し、熱間加工性を著しく劣化させる。しかし、S
含有量を0.0010%以下(好ましくは0.0005%以下)に低
減すると共にTi含有量を 0.003%以下(好ましくは 0.0
01%以下)に規制すると、Nb含有量の調整効果と相まっ
て熱膨張特性に格別な悪影響を及ぼすことなく量産に差
し支えないだけの熱間加工性が確保される。
S and Ti: Both S and Ti are unavoidable impurities that are mixed in when the alloy of the present invention is melted (Ti is unavoidably mixed particularly with the Nb raw material). It is an important element that affects the hot workability of an alloy. That is, S and Ti in the alloy precipitate at the grain boundaries as sulfides in the hot working temperature range, and significantly degrade hot workability. However, S
Reduce the Ti content to 0.0010% or less (preferably 0.0005% or less) and reduce the Ti content to 0.003% or less (preferably 0.0
When the content is regulated to 01% or less, the hot workability sufficient for mass production can be secured without significantly adversely affecting the thermal expansion characteristics in combination with the effect of adjusting the Nb content.

【0025】一方、本発明合金においては、Tiを0.05%
以上と多量に含有させた場合にも熱間圧延中の硫化物の
結晶粒界析出が起こらなくなるため良好な熱間加工性を
確保することができる。そして、Tiを積極的に0.05%以
上含有させた場合にはS含有量の許容上限は 0.002%に
まで拡大する。ただ、Tiの過剰な添加は熱膨張特性を劣
化させるので、この場合でもTi含有量は 0.2%以下に制
限することが必要である。
On the other hand, in the alloy of the present invention, Ti
Even in the case of containing a large amount as described above, sulphide crystal grain boundary precipitation during hot rolling does not occur, so that good hot workability can be ensured. When Ti is positively contained at 0.05% or more, the allowable upper limit of the S content is increased to 0.002%. However, excessive addition of Ti degrades the thermal expansion characteristics, so even in this case it is necessary to limit the Ti content to 0.2% or less.

【0026】従って、S及びTiの含有量については、
「Ti含有量が 0.003%以下であってかつS含有量が0.00
10%以下」あるいは「Ti含有量が0.05〜 0.2%であって
かつS含有量が 0.002%以下」と定めた。
Therefore, regarding the contents of S and Ti,
"Ti content is 0.003% or less and S content is 0.00
10% or less "or" Ti content is 0.05 to 0.2% and S content is 0.002% or less ".

【0027】N:Nは合金の熱間加工性を劣化させる不
可避的不純物元素であり、本発明合金においてはその含
有量が 0.005%を超えると熱間加工性の劣化傾向が著し
くなることから、N含有量は 0.005%以下に低減するこ
とと定めた。
N: N is an unavoidable impurity element that deteriorates the hot workability of the alloy. In the alloy of the present invention, if its content exceeds 0.005%, the tendency of the hot workability to deteriorate becomes remarkable. It has been determined that the N content should be reduced to 0.005% or less.

【0028】B:Bには合金の熱間加工性を改善する作
用があり、Nb含有量が0.15%以上 1.0%未満の領域に調
整される本発明合金では必要に応じて 0.005%までの範
囲で含有させるのが有効である。しかしながら、B含有
量が0.0005%未満であると前記作用による所望の効果が
得られず、一方、 0.005%を超えてBを含有させると熱
膨張係数が著しく増加してインバ−合金の特性が劣化す
ることから、B含有量については0.0005〜0.005 %と定
めた。
B: B has the effect of improving the hot workability of the alloy, and the Nb content is adjusted to a range of 0.15% or more and less than 1.0%. Is effective. However, if the B content is less than 0.0005%, the desired effect cannot be obtained by the above-mentioned action. On the other hand, if the B content exceeds 0.005%, the thermal expansion coefficient increases significantly and the properties of the invar alloy deteriorate. Therefore, the B content was determined to be 0.0005 to 0.005%.

【0029】なお、本発明合金を溶製する際にはCoやCu
等も不可避的不純物元素として混入する場合が多いが、
これらCoやCuが不純物として含有されていても、それぞ
れの含有量が 0.1%以下の範囲であれば特に問題となる
ことはない。
When melting the alloy of the present invention, Co or Cu
Etc. are often mixed as unavoidable impurity elements,
Even if these Co and Cu are contained as impurities, there is no particular problem as long as their contents are in the range of 0.1% or less.

【0030】以下、本発明を実施例によって説明する。Hereinafter, the present invention will be described with reference to examples.

【実施例】まず、25kg真空誘導炉により表1に示す化
学組成のインバ−合金を溶製し、鋳塊に鋳造した後、こ
れらに熱間鍛造,熱間圧延及び「900℃×15分均
熱」の仕上焼鈍を施して12mm厚の板材を得た。
EXAMPLE First, an invar alloy having the chemical composition shown in Table 1 was melted and cast into an ingot by a 25 kg vacuum induction furnace, and then hot forged, hot rolled and "900 ° C. × 15 minutes Heat treatment was performed to obtain a 12 mm thick plate.

【0031】[0031]

【表1】 [Table 1]

【0032】次に、熱間延性の評価のために、前記各熱
延板から「直径10mm×長さ130mm」の平滑丸棒試験
片を採取し、これらを「1200℃×5分加熱」後の冷
却途上における1100〜700℃の温度域で歪速度1
×s-1にて引張試験して破断させ、絞り値(=断面収縮
率)を測定した。
Next, for the evaluation of hot ductility, a smooth round bar test piece of “diameter 10 mm × length 130 mm” was sampled from each hot-rolled sheet, and these were heated at “1200 ° C. × 5 minutes”. Strain rate 1 in the temperature range of 1100 to 700 ° C during cooling of
The specimen was broken by a tensile test at × s −1, and the drawing value (= cross-sectional shrinkage) was measured.

【0033】また、熱膨張特性の評価のため、前記各熱
延板から「厚さ2mm×幅5mm×長さ50mm」の角棒試験
片を採取し、20℃〜−196℃での線膨張を測定し
た。そして、−180℃〜20℃における測定値を基に
平均熱膨張係数を算出した。
For the evaluation of the thermal expansion characteristics, square rod test pieces of “thickness 2 mm × width 5 mm × length 50 mm” were sampled from each of the hot-rolled sheets and subjected to linear expansion at 20 ° C. to -196 ° C. Was measured. Then, the average coefficient of thermal expansion was calculated based on the measured values at -180 ° C to 20 ° C.

【0034】更に、機械的特性の評価のため、前記各熱
延板から平行部が「直径6mm×長さ40mm」の引張試験
片を採取し、 0.2%降伏強さ(YS)と引張強さ(T
S)を測定した。表2に、これらの測定結果(1000℃,9
00℃及び 800℃での熱間延性,常温での0.2%降伏強さ及
び引張強さ,20℃〜−180℃の平均熱膨張係数)を
示す。
Further, for the evaluation of mechanical properties, a tensile test piece having a parallel part of “diameter 6 mm × length 40 mm” was taken from each of the hot-rolled sheets, and was subjected to a 0.2% yield strength (YS) and a tensile strength. (T
S) was measured. Table 2 shows the measurement results (1000 ° C, 9
(Hot ductility at 00 ° C and 800 ° C, 0.2% yield strength and tensile strength at room temperature, average thermal expansion coefficient from 20 ° C to -180 ° C).

【0035】[0035]

【表2】 [Table 2]

【0036】表2に示される結果からも、化学組成が本
発明で規定する条件を満たしていない比較合金(比較
例)では、熱間延性が劣っていて高温での絞り値が60
%を下回るか、あるいは常温での強度が十分ではなくて
0.2%降伏強さが250MPaを下回る等の問題を有するの
に対して、本発明合金(本発明例)では高温での絞り値
が何れの温度でも60%を超えており、また0.2%降伏強
さも300MPaを超えていて熱間加工性と強度特性に優
れる材料であることが分かる。なお、本発明合金に係る
熱延板からは耳割れの発生がなかったことを確認してい
る。更に、本発明合金では平均熱膨張係数は何れも 1.5
×10-6未満を示しており、本発明合金が高強度と良好な
熱間加工性を有し、かつ優れた熱膨張特性を備えたイン
バ−合金であることは明らかである。
From the results shown in Table 2, it can be seen that the comparative alloy (comparative example) whose chemical composition does not satisfy the conditions specified in the present invention has inferior hot ductility and an aperture value of 60 at high temperature.
% Or the strength at room temperature is not enough
While the 0.2% yield strength has a problem of being less than 250 MPa, the alloy of the present invention (example of the present invention) has a high-temperature drawing value of more than 60% at any temperature and the 0.2% yield strength. It can be seen that the material exceeds 300 MPa and has excellent hot workability and strength properties. In addition, it was confirmed that there was no occurrence of edge cracks from the hot-rolled sheet according to the alloy of the present invention. Furthermore, the average thermal expansion coefficient of each of the alloys of the present invention is 1.5
It is less than × 10 -6 , and it is clear that the alloy of the present invention is an invar alloy having high strength, good hot workability and excellent thermal expansion characteristics.

【0037】[0037]

【効果の総括】以上に説明した如く、この発明によれ
ば、熱間加工性に優れた高強度インバ−合金を提供する
ことができて高強度インバ−合金の板材類を製造する際
の歩留が大幅に向上するので、高強度が望まれる低温用
貯蔵タンクの素材等を比較的安価に提供することが可能
となるなど、産業上有用な効果がもたらされる。
As described above, according to the present invention, it is possible to provide a high-strength invar alloy having excellent hot workability, and it is possible to provide a high-strength invar alloy in the production of sheet materials. Since the retention is greatly improved, industrially useful effects such as a low-temperature storage tank material or the like for which high strength is desired can be provided relatively inexpensively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】0.03%C-0.2%Si-0.3%Mn−36%Ni−Nb系イン
バ−合金のNb含有量と熱間延性(高温絞り値)との関係
を示したグラフである。
FIG. 1 is a graph showing the relationship between the Nb content of a 0.03% C-0.2% Si-0.3% Mn-36% Ni-Nb-based invar alloy and hot ductility (high-temperature drawing value).

【図2】36%Ni-0.3Nb-0.001%S−Ti系インバ−合金に
つきTi含有量と熱間延性(高温絞り値)との関係を示し
たグラフである。
FIG. 2 is a graph showing the relationship between Ti content and hot ductility (high-temperature drawing value) for a 36% Ni-0.3Nb-0.001% S-Ti-based invar alloy.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて C: 0.015〜0.10%, Si:0.35%以下, Mn: 1.0%以下, P: 0.015%以下, S:0.0010%以下, Cr: 0.3%以下, Ni:35〜37%, Mo:0〜 0.5%, V:0〜0.05%, Al:0.01%以下, Nb:0.15%以上 1.0%未満, Ti: 0.003%以下, N: 0.005%以下 を含有すると共に残部がFe及び不可避的不純物より成る
ことを特徴とする、熱間加工性に優れた高強度インバ−
合金。
C. 0.015 to 0.10%, Si: 0.35% or less, Mn: 1.0% or less, P: 0.015% or less, S: 0.0010% or less, Cr: 0.3% or less, Ni: 35 to 37%, Mo: 0 to 0.5%, V: 0 to 0.05%, Al: 0.01% or less, Nb: 0.15% to less than 1.0%, Ti: 0.003% or less, N: 0.005% or less, with the balance Fe And high-strength invar with excellent hot workability characterized by being composed of unavoidable impurities.
alloy.
【請求項2】 請求項1に記載の各成分に加え更にBを
0.0005〜 0.005重量%含有して成ることを特徴とする、
熱間加工性に優れた高強度インバ−合金。
2. The composition according to claim 1, further comprising B
Characterized by containing 0.0005 to 0.005% by weight,
High strength invar alloy with excellent hot workability.
【請求項3】 重量割合にて C: 0.015〜0.10%, Si:0.35%以下, Mn: 1.0%以下, P: 0.015%以下, S: 0.002%以下, Cr: 0.3%以下, Ni:35〜37%, Mo: 0.5%以下, V:0.05%以下, Al:0.01%以下, Nb:0.15%以上 1.0%未満, Ti: 0.003%以下, N: 0.005%以下 を含有すると共に残部がFe及び不可避的不純物より成る
ことを特徴とする、熱間加工性に優れた高強度インバ−
合金。
3. The weight ratio of C: 0.015 to 0.10%, Si: 0.35% or less, Mn: 1.0% or less, P: 0.015% or less, S: 0.002% or less, Cr: 0.3% or less, Ni: 35 to 37%, Mo: 0.5% or less, V: 0.05% or less, Al: 0.01% or less, Nb: 0.15% or more and less than 1.0%, Ti: 0.003% or less, N: 0.005% or less, with the balance Fe and unavoidable Strength, excellent in hot workability, characterized by being composed of chemical impurities
alloy.
【請求項4】 請求項3に記載の各成分に加え更にBを
0.0005〜 0.005重量%含有して成ることを特徴とする、
熱間加工性に優れた高強度インバ−合金。
4. A compound according to claim 3, further comprising B
Characterized by containing 0.0005 to 0.005% by weight,
High strength invar alloy with excellent hot workability.
JP8188591A 1996-06-28 1996-06-28 High strength invar alloy excellent in hot workability Pending JPH1017997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8188591A JPH1017997A (en) 1996-06-28 1996-06-28 High strength invar alloy excellent in hot workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8188591A JPH1017997A (en) 1996-06-28 1996-06-28 High strength invar alloy excellent in hot workability

Publications (1)

Publication Number Publication Date
JPH1017997A true JPH1017997A (en) 1998-01-20

Family

ID=16226348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8188591A Pending JPH1017997A (en) 1996-06-28 1996-06-28 High strength invar alloy excellent in hot workability

Country Status (1)

Country Link
JP (1) JPH1017997A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060528A (en) * 1996-08-14 1998-03-03 Sumitomo Metal Ind Ltd Production of high strength invar alloy sheet
EP1063304A1 (en) * 1999-06-22 2000-12-27 Imphy Ugine Precision Masking device for a colour flat screen cathode ray tube comprising a supporting frame for planar mask and planar mask
WO2001021848A1 (en) * 1999-09-17 2001-03-29 Krupp Vdm Gmbh Iron-nickel alloy with low thermal expansion coefficient and exceptional mechanical properties
JP2002069535A (en) * 2000-08-30 2002-03-08 Nippon Mining & Metals Co Ltd PRODUCTION METHOD FOR PREVENTING HOT ROLLING CRACK OF Fe-Ni BASED ALLOY MATERIAL HAVING FALLING IMPACT DEFORMATION RESISTANCE AND LOW THERMAL EXPANSION
WO2003085148A1 (en) * 2002-04-05 2003-10-16 Jfe Steel Corporation Low-thermal expansion alloy thin sheet and its manufacturing method
JP2005207869A (en) * 2004-01-22 2005-08-04 Mitsubishi Electric Corp Infrared detector
CN100334676C (en) * 2002-12-02 2007-08-29 鸿富锦精密工业(深圳)有限公司 Field emission display unit having sealing arrangement
JP2010511781A (en) * 2006-12-02 2010-04-15 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Iron-nickel alloy with high ductility and low expansion coefficient
CN108588555A (en) * 2018-04-17 2018-09-28 全球能源互联网研究院有限公司 A kind of aerial condutor steel alloy, steel alloy preparation method and aerial condutor
WO2021132634A1 (en) 2019-12-27 2021-07-01 日本製鉄株式会社 Alloy
WO2021221003A1 (en) 2020-04-28 2021-11-04 日鉄ステンレス株式会社 Alloy material and method for producing same
WO2022184695A1 (en) * 2021-03-01 2022-09-09 Aperam Fe-ni alloy, in particular for transporting and storing liquid hydrogen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102345A (en) * 1993-09-30 1995-04-18 Nippon Yakin Kogyo Co Ltd Fe-ni alloy with high young's modulus and low thermal expansion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102345A (en) * 1993-09-30 1995-04-18 Nippon Yakin Kogyo Co Ltd Fe-ni alloy with high young's modulus and low thermal expansion

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060528A (en) * 1996-08-14 1998-03-03 Sumitomo Metal Ind Ltd Production of high strength invar alloy sheet
EP1063304A1 (en) * 1999-06-22 2000-12-27 Imphy Ugine Precision Masking device for a colour flat screen cathode ray tube comprising a supporting frame for planar mask and planar mask
FR2795431A1 (en) * 1999-06-22 2000-12-29 Imphy Ugine Precision FLAT SCREEN COLOR VIEWING CATHODIC TUBE MASKING DEVICE, OF THE TYPE INCLUDING A SUPPORT FRAME FOR TENDERED SHADOW MASK AND TENDER SHADOW MASK
US6420054B1 (en) 1999-06-22 2002-07-16 Imphy Ugine Precision Masking device for a color cathode-ray display tube with a flat screen, of the type comprising a support frame for a tensioned shadowmask, and tensioned shadowmask
WO2001021848A1 (en) * 1999-09-17 2001-03-29 Krupp Vdm Gmbh Iron-nickel alloy with low thermal expansion coefficient and exceptional mechanical properties
JP2004500482A (en) * 1999-09-17 2004-01-08 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Low thermal expansion iron-nickel alloy with special mechanical properties
JP2002069535A (en) * 2000-08-30 2002-03-08 Nippon Mining & Metals Co Ltd PRODUCTION METHOD FOR PREVENTING HOT ROLLING CRACK OF Fe-Ni BASED ALLOY MATERIAL HAVING FALLING IMPACT DEFORMATION RESISTANCE AND LOW THERMAL EXPANSION
WO2003085148A1 (en) * 2002-04-05 2003-10-16 Jfe Steel Corporation Low-thermal expansion alloy thin sheet and its manufacturing method
CN100334676C (en) * 2002-12-02 2007-08-29 鸿富锦精密工业(深圳)有限公司 Field emission display unit having sealing arrangement
JP2005207869A (en) * 2004-01-22 2005-08-04 Mitsubishi Electric Corp Infrared detector
JP2010511781A (en) * 2006-12-02 2010-04-15 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Iron-nickel alloy with high ductility and low expansion coefficient
US8889066B2 (en) 2006-12-02 2014-11-18 Outokumpu Vdm Gmbh Iron-nickel alloy with a high level of ductility and a low expansion coefficient
CN108588555A (en) * 2018-04-17 2018-09-28 全球能源互联网研究院有限公司 A kind of aerial condutor steel alloy, steel alloy preparation method and aerial condutor
WO2021132634A1 (en) 2019-12-27 2021-07-01 日本製鉄株式会社 Alloy
WO2021221003A1 (en) 2020-04-28 2021-11-04 日鉄ステンレス株式会社 Alloy material and method for producing same
WO2022184695A1 (en) * 2021-03-01 2022-09-09 Aperam Fe-ni alloy, in particular for transporting and storing liquid hydrogen
WO2022185092A1 (en) * 2021-03-01 2022-09-09 Aperam Fe-ni alloy, in particular for transporting and storing liquid hydrogen

Similar Documents

Publication Publication Date Title
EP0306578B2 (en) Ferritic stainless steel and process for producing
JPH1017997A (en) High strength invar alloy excellent in hot workability
JPS60215719A (en) Manufacture of electric welded steel pipe for front fork of bicycle
US20230211441A1 (en) Solid wire for gas metal arc welding
JPS62161936A (en) Fe-ni alloy cold-rolled sheet and its production
JPH1060528A (en) Production of high strength invar alloy sheet
EP3378962B1 (en) High heat input welded steel material
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
US20230250518A1 (en) HIGHLY CORROSION-RESISTANT Ni-Cr-Mo-N ALLOY HAVING SUPERIOR PHASE STABILITY
JP2833442B2 (en) Ni-containing steel for low temperature and secondary cooling method of continuous cast slab thereof
JPH11256283A (en) Austenitic stainless steel excellent in hot workability
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JPS6263626A (en) Production of low oxygen ti alloy
KR100595393B1 (en) Fe­Ni BASE ALLOY FOR SHADOW MASK RAW MATERIAL EXCELLENT IN CORROSION RESISTANCE AND SHADOW MASK MATERIAL
JP2004332034A (en) Method for producing thick high tension steel plate excellent in heat affected zone ctod characteristic
JP3535290B2 (en) Metals with excellent plastic deformability in the temperature range below the recrystallization temperature
EP4269627A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JP3888020B2 (en) Steel plate for heat shrink band and method for producing the same
TW202246537A (en) Steel material and method for producing same, and tank and method for producing same
JPH02190416A (en) Production of precipitation hardening type high tensile stainless steel excellent in welding strength and toughness
WO2022091709A1 (en) Hot-rolled steel sheet and method for producing same
JP2538905B2 (en) Steel material for centrifugal casting molds with excellent high temperature strength and toughness
JPH0871784A (en) High-strength austenitic steel welding material and production thereof
JP2518795B2 (en) Soft austenitic stainless steel with excellent hot workability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041019