JPH1060528A - Production of high strength invar alloy sheet - Google Patents

Production of high strength invar alloy sheet

Info

Publication number
JPH1060528A
JPH1060528A JP8232617A JP23261796A JPH1060528A JP H1060528 A JPH1060528 A JP H1060528A JP 8232617 A JP8232617 A JP 8232617A JP 23261796 A JP23261796 A JP 23261796A JP H1060528 A JPH1060528 A JP H1060528A
Authority
JP
Japan
Prior art keywords
rolling
alloy
thermal expansion
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8232617A
Other languages
Japanese (ja)
Inventor
Shinji Tsuge
信二 柘植
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP8232617A priority Critical patent/JPH1060528A/en
Publication of JPH1060528A publication Critical patent/JPH1060528A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a means of producing invert alloy showing a sufficiently low thermal expansion coefficient even in a low temp. region from a room temp. to a liq. nitrogen temp. and furthermore having a high strength. SOLUTION: Invar alloy contg. <=0.10%, C, 0.35%, Si, <=1.0% Mn, 0.015% P, <=0.005% S, <=0.3% Cr, 35 to 37% Ni, 0 to 0.5% Mo, 0 to 0.05%V, 0.01 Al, 0 to 1.0% Mb, 0 to 0.005% B. <=0.005% N, and the valance Fe with inevitably impurities is subjected to rolling in which >=30% cumulative draft is secured at least in a temp. region except for a cold temp. regions less than the temp. T( deg.C) calculated by the formula of T( deg.C)=950+110×Nb(%)<1/2> +500×C(%).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、室温以下での熱膨張
係数が十分に低く、かつ高い強度を有するインバ−合金
板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an invar alloy plate having a sufficiently low coefficient of thermal expansion at room temperature or lower and a high strength.

【0002】[0002]

【従来技術とその課題】34〜45%(以降、 成分割合を表
す%は重量%とする)のNiを含有するFe−Ni系の低熱膨
張インバ−合金は極低温から約300℃程度までの比較
的広い温度域にわたって低い熱膨張率を示すことから、
従来、この特徴を生かして、液化天然ガスの輸送用船舶
のタンク,大型テレビジョンや静止画像用ブラウン管の
シャド−マスク,ICリ−ドフレ−ム,ガラス封着材料
等の用途に多用されてきた。なお、上記インバ−合金に
対してより強く求められる特性は“使用される温度域”
や“合金部材に要求される熱膨張係数の程度”によって
異なるが、室温以下での用途に供される所謂“36Ni合
金”の場合は、特に小さい熱膨張係数を利用するために
開発されたものであるので「熱膨張特性」が最も重要な
特性とされている。
2. Description of the Related Art Fe-Ni based low thermal expansion invar alloys containing 34-45% (hereinafter, "%" representing a component ratio is referred to as "% by weight") of Ni have a temperature range from extremely low temperature to about 300 ° C. Because it shows a low coefficient of thermal expansion over a relatively wide temperature range,
In the past, taking advantage of this feature, it has been frequently used in tanks for liquefied natural gas transport vessels, shadow masks for large-sized televisions and cathode ray tubes for still images, IC lead frames, glass sealing materials, and the like. . The characteristics more strongly required for the above-mentioned invar alloy are the "temperature range used".
And "the degree of thermal expansion coefficient required for alloy members", but in the case of so-called "36Ni alloy" used for applications at room temperature or lower, the one developed especially to utilize a small thermal expansion coefficient Therefore, the “thermal expansion characteristic” is regarded as the most important characteristic.

【0003】前記インバ−合金の熱膨張率が著しく小さ
な値を示す理由については古くから研究されており、そ
の結果、“Fe原子が低温で磁気モ−メントと体積の大き
な状態に遷移するために発生する自発体積磁歪”が熱収
縮を打ち消すためであると考えられるようになった。こ
のように、インバ−合金の熱膨張特性が合金中のFe原子
の磁性に支配されていると結論されているが、この現象
自体については十分に解明されていない部分を有してい
る。
The reason why the coefficient of thermal expansion of the Invar alloy is extremely small has been studied for a long time, and as a result, it has been reported that "Fe atoms transition to a magnetic moment and a large volume state at a low temperature. The spontaneous volume magnetostriction that has occurred has been considered to be due to the cancellation of thermal contraction. As described above, it has been concluded that the thermal expansion characteristic of the Invar alloy is governed by the magnetism of Fe atoms in the alloy, but this phenomenon itself has a part that has not been sufficiently elucidated.

【0004】ところで、インバ−合金の“室温付近での
熱膨張係数”の低下にはC,Si,Mn等の合金元素含有量
の低減が有効であることが知られており、これら合金元
素の含有量を極力低減することによって 1.2×10-6/℃
台という極めて低い熱膨張係数を達成することもでき
る。
It is known that reducing the content of alloying elements such as C, Si and Mn is effective in lowering the "coefficient of thermal expansion near room temperature" of an Invar alloy. 1.2 × 10 -6 / ℃ by minimizing the content
A very low thermal expansion coefficient of the stage can also be achieved.

【0005】ただ、このような高純度のインバ−合金は
肉厚が2mm未満の形態で使用されることが殆どであるた
めにそれを補うだけの強度が望まれるが、強度的には決
して満足できるものではなく、同じ低温用材料として使
用されている“9%Ni鋼”や“SUS304鋼”等と比
べて室温の強度が2〜4割ほども低い。そこで、肉厚の
厚い鋼板類として使用することを試みると、この場合に
は製造過程で結晶粒径が大きくなりがちで、そのため強
度が更に低下するという問題があった。
[0005] However, such high-purity invar alloys are mostly used in a form having a wall thickness of less than 2 mm. Therefore, it is desired that the high-purity invar alloy has a strength sufficient to compensate for such a thickness. The strength at room temperature is about 20 to 40% lower than that of "9% Ni steel" or "SUS304 steel" used as the same low temperature material. Therefore, when an attempt is made to use the steel sheet as a thick steel sheet, in this case, there is a problem that the crystal grain size tends to increase in the manufacturing process, and the strength is further reduced.

【0006】もっとも、冷間加工を施したり合金元素を
添加したりすることによってインバ−合金の高強度化が
可能であり、強化用の合金元素として例えばCo,Nb,
C,Cr等の添加が有効であることは知られている。例え
ば、特開平5−171357号公報にはNbを添加して強
度上昇を図ったFe−Ni系インバ−合金の例が示されてい
る。
However, it is possible to increase the strength of an Invar alloy by performing cold working or adding an alloy element, and for example, Co, Nb,
It is known that addition of C, Cr and the like is effective. For example, Japanese Patent Application Laid-Open No. 5-171357 discloses an example of an Fe-Ni-based invar alloy in which Nb is added to increase the strength.

【0007】しかし、前記特開平5−171357号公
報の「実施例」の欄の記載からも分かるように、合金元
素を添加してインバ−合金の高強度化を図る場合であっ
ても実際には冷間加工は優れた高強度化法であって、冷
間加工にたよることが多かった。
However, as can be seen from the description in the "Example" section of JP-A-5-171357, even when an alloy element is added to increase the strength of an invar alloy, the strength of the invar alloy is actually increased. The cold working is an excellent method for increasing the strength and often depends on the cold working.

【0008】ただ、従来、このような強化策を講じた高
強度化インバ−合金が適用対象としたのはテレビジョン
のシャドウマスク,ICのリ−ドフレ−ムや送電用芯線
等といった室温から400℃程度の温度域で使用される
極薄板や線材であって、容易に冷間加工を加えることが
可能な形状のものが殆んどであった。
Heretofore, high strength invar alloys in which such strengthening measures have been taken have been applied only from room temperature such as shadow masks for televisions, lead frames for ICs, and core wires for power transmission. Most of ultra-thin plates and wires used in a temperature range of about ° C. have shapes which can be easily cold-worked.

【0009】しかしながら、肉厚の厚い鋼板類として使
用することを考えると、冷間加工による高強度化の方法
を採用することは製造方法的,設備的に困難であり、他
の強化手法を採用せざるを得ない。しかるに、冷間加工
を施すという手段以外の高強度化法を適用し、かつ“室
温以下の温度域で熱膨張係数:1.5×10-6/℃以下という
優れた熱膨張特性を維持しつつ高強度化を図ったインバ
−合金”を製造する体制は未だ確立するに至っていなか
った。
However, considering the use as a thick steel plate, it is difficult to adopt a method of increasing strength by cold working in terms of manufacturing method and equipment, and other strengthening methods are employed. I have to do it. However, a high-strength method other than the cold-working method is applied, and a high thermal expansion coefficient of 1.5 × 10 −6 / ° C or less in a temperature range of room temperature or less is maintained while maintaining high thermal expansion characteristics. A system for producing "invar alloys with increased strength" has not yet been established.

【0010】このようなことから、本発明が目的とした
のは、室温から液体窒素温度にかけての低温域において
も十分に低い熱膨張係数を示し、しかも冷間加工を施さ
ない板厚10mm程度の板材においても0.2%降伏強度35
0MPa以上,引張強さ500MPa以上の高強度を備えた
インバ−合金の製造手段を確立することであった。
In view of the above, an object of the present invention is to exhibit a sufficiently low coefficient of thermal expansion even in a low temperature range from room temperature to liquid nitrogen temperature and to have a sheet thickness of about 10 mm which is not subjected to cold working. 0.2% yield strength of 35
The aim was to establish a means for producing an Invar alloy having a high strength of at least 0 MPa and a tensile strength of at least 500 MPa.

【0011】[0011]

【課題を解決するための手段】本発明者は、上記目的を
達成すべく鋭意研究を行った結果、次のような知見を得
ることができた。 a) インバ−合金の強度向上には強化元素としてCやNb
を添加するのが極めて有効かつ安定した手段であり、こ
れと特定条件の温間圧延以上の温度域での圧延{即ち
「T(℃)=950+110×Nb(%)1/2+500×C
(%) 」なる式で算出される温度T(℃)以下での累積圧
下率が30%以上となる温間圧延以上の温度域での圧
延}とを組み合わせれば、冷間圧延を要することなく十
分に満足できる強度の確保が可能である。
Means for Solving the Problems The present inventor has made intensive studies to achieve the above object, and as a result, has obtained the following findings. a) To improve the strength of Invar alloy, C or Nb
Is a very effective and stable means, and the rolling in a temperature range equal to or higher than the warm rolling under specific conditions, ie, “T (° C.) = 950 + 110 × Nb (%) 1/2 + 500 × C
(%) ", Cold rolling is required if combined with rolling} in a temperature range not lower than warm rolling where the cumulative rolling reduction below the temperature T (° C.) calculated by the formula below is 30% or more. And a sufficiently satisfactory strength can be ensured.

【0012】b) また、上記特定条件の温間圧延以上の
温度域での圧延を施すことにより、インバ−合金の低温
域における熱膨張係数を一層低下させることができる。
なお、図1は、0.004%C-0.13%Si-0.46%Mn-36%Ni合金
(前記式で算出されるTは952℃)の熱膨張特性に及
ぼす圧延温度の影響を示したグラフである。この図1か
らも確認できるように、「900℃×15分」焼鈍後の
板材(9.5mm厚)の室温から液体窒素温度までの平均熱膨
張係数はL方向(圧延方向),C方向(圧延方向と直角
の方向)ともに 1.5×10-6/℃を超えているのに対し
て、前記式で算出されるT(℃)を下回る温度域で 3.5
mm厚にまで圧延すると(累積圧下率:66%)、L,C
方向とも熱膨張係数が小さな値を示すようになる。
B) Further, by performing rolling in a temperature range equal to or higher than the warm rolling under the above specific conditions, the thermal expansion coefficient of the invar alloy in a low temperature range can be further reduced.
FIG. 1 is a graph showing the effect of the rolling temperature on the thermal expansion characteristics of a 0.004% C-0.13% Si-0.46% Mn-36% Ni alloy (T calculated by the above formula is 952 ° C.). . As can be seen from FIG. 1, the average thermal expansion coefficient from room temperature to liquid nitrogen temperature of the sheet material (9.5 mm thick) after annealing at 900 ° C. for 15 minutes is L direction (rolling direction) and C direction (rolling direction). Direction at right angles to both directions) exceeds 1.5 × 10 -6 / ° C, while 3.5 ° C in the temperature range below T (° C) calculated by the above equation.
When rolled to a thickness of mm (cumulative rolling reduction: 66%), L, C
In both directions, the coefficient of thermal expansion shows a small value.

【0013】更に、上記図1からも窺えることである
が、400℃以下の温度域で温間圧延すれば 1.0×10-6
/℃未満という極力低い熱膨張率を達成でき、また生産
性の観点からより望ましい600℃以上での圧延であっ
ても 1.5×10-6/℃以下という十分に低い熱膨張係数を
得ることができる。しかも、圧延方向の依存性は圧延温
度の依存性に比べて小さいことも明らかである(なお、
これら板材の硬度はビッカ−スでの測定で184〜19
7の範囲にあって引張強度500MPaの目安となる硬度
160を十分に上回っている上、 硬度の圧延温度依存性
も小さかった)。
Further, as can be seen from FIG. 1 described above, if warm rolling is performed in a temperature range of 400 ° C. or less, 1.0 × 10 −6.
/ ° C. as low as possible, and a sufficiently low coefficient of thermal expansion of 1.5 × 10 −6 / ° C. or less even at 600 ° C. or more, which is more desirable from the viewpoint of productivity. it can. Moreover, it is clear that the dependence on the rolling direction is smaller than the dependence on the rolling temperature (in addition,
The hardness of these plates is 184 to 19 as measured by Vickers.
7, which is sufficiently higher than the hardness of 160 which is a standard of the tensile strength of 500 MPa, and the hardness has a small dependence on the rolling temperature.)

【0014】c) しかし、先にも述べたようにNb等の強
化元素の添加は一般にインバ−合金の熱間加工性に悪影
響を及ぼす。ところが、この弊害は、添加する強化元素
の含有量を特定の範囲に制御すると共に、P,S,Al及
びN量の規制や適量のB添加によって熱膨張特性に悪影
響を及ぼすことなく緩和することができる。
C) However, as described above, the addition of a strengthening element such as Nb generally adversely affects the hot workability of an Invar alloy. However, the disadvantage is to control the content of the strengthening element to be added within a specific range, and to reduce the P, S, Al, and N contents or to adjust the amount of B without adversely affecting the thermal expansion characteristics. Can be.

【0015】本発明は、上記知見事項等を基にしてなさ
れたもので、 「C:0.10%以下, Si:0.35%以下, Mn: 1.0%以下, P: 0.015%以下, S: 0.005%以下, Cr: 0.3%以下, Ni:35〜37%, Mo:0〜 0.5%, V:0〜0.05%, Al:0.01%以下, Nb:0〜 1.0%, B:0〜 0.005%, N: 0.005%以下 を含有すると共に残部がFe及び不可避的不純物より成る
インバ−合金に対して、少なくとも、 式 T(℃)=950+110×Nb(%)1/2+500×C(%) にて算出される温度T(℃)を下回る冷間域以外の温度
域で30%以上の累積圧下率が確保される圧延を施すこ
とにより、 室温以下で優れた熱膨張特性を示す高強度イ
ンバ−合金板を低コストにて安定製造できるようにした
点」に大きな特徴を有している。なお、ここで言う「冷
間域」とは、加熱状態や加熱後の冷却途上の温度域では
なくて、冷却後の合金に対して行われる通常の冷間圧延
温度域を指すことは言うまでもない。
The present invention has been made based on the above findings, etc., "C: 0.10% or less, Si: 0.35% or less, Mn: 1.0% or less, P: 0.015% or less, S: 0.005% or less , Cr: 0.3% or less, Ni: 35 to 37%, Mo: 0 to 0.5%, V: 0 to 0.05%, Al: 0.01% or less, Nb: 0 to 1.0%, B: 0 to 0.005%, N: For an Invar alloy containing 0.005% or less and the balance consisting of Fe and unavoidable impurities, it is calculated by at least the following equation: T (° C.) = 950 + 110 × Nb (%) 1/2 + 500 × C (%) By performing rolling to ensure a cumulative rolling reduction of 30% or more in a temperature range other than the cold range below T (° C.), a high-strength invar alloy plate exhibiting excellent thermal expansion characteristics at room temperature or lower can be obtained. That stable production can be achieved at low cost. " It is needless to say that the term “cold region” here is not a temperature region in the middle of cooling after heating or after heating, but a normal cold rolling temperature region performed on the alloy after cooling. .

【0016】[0016]

【作用】上述のように、本発明は、特定化学組成のイン
バ−合金に温間圧延以上の温度域での圧延を施すだけ
で、高い強度を具備すると共に室温から液体窒素温度に
かけての低温域で優れた熱膨張特性を示すインバ−合金
板を安定提供できるようにしたものであるが、以下、本
発明において合金の化学組成並びに板材の製造条件を前
記の如くに限定した理由をその作用と共に詳述する。
As described above, the present invention provides an invar alloy having a specific chemical composition only by rolling in a temperature range not lower than warm rolling, and has high strength and a low temperature range from room temperature to liquid nitrogen temperature. In the present invention, it is possible to stably provide an invar alloy plate exhibiting excellent thermal expansion characteristics.However, in the present invention, the reasons for limiting the chemical composition of the alloy and the manufacturing conditions of the plate material as described above together with the operation thereof will be described. It will be described in detail.

【0017】(A) 合金の化学組成 C:Cはインバ−合金の高強度化に有効であるので添加
される元素であり、このためには合金中におけるC含有
量は 0.015%以上とすることが望ましいが(極く微量で
あっても強化効果は現れる)、0.10%を超える過剰な添
加は合金の優れた熱膨張特性(低熱膨張係数)に悪影響
を及ぼすことから、C含有量は0.10%以下と定めた。
(A) Chemical composition of the alloy C: C is an element to be added because it is effective for increasing the strength of the Invar alloy. For this purpose, the C content in the alloy must be 0.015% or more. Is desirable (the strengthening effect appears even in a very small amount), but an excessive addition exceeding 0.10% adversely affects the excellent thermal expansion characteristics (low thermal expansion coefficient) of the alloy, so that the C content is 0.10%. It is determined as follows.

【0018】Si及びMn:Si,Mnは合金溶製時の脱酸剤と
して必要な元素であるが、何れも過剰に含有されると合
金の熱膨張特性に悪影響を及ぼすようになる。従って、
Si及びMnの含有量は、0.35%以下及び 1.0%以下とそれ
ぞれ定めた。
Si and Mn: Si and Mn are elements necessary as a deoxidizing agent at the time of melting the alloy, but if both are contained excessively, they adversely affect the thermal expansion characteristics of the alloy. Therefore,
The contents of Si and Mn were determined to be 0.35% or less and 1.0% or less, respectively.

【0019】P:Pは合金の凝固割れ感受性,溶接割れ
感受性を著しく高める不純物元素であるが、その含有量
が 0.015%以下であれば前記弊害による合金材製造歩留
の低下は顕著でなくなる。従って、P含有量の上限を
0.015%と定めた。
P: P is an impurity element which significantly increases the susceptibility of the alloy to solidification cracking and welding cracking. If the content of P is 0.015% or less, the decrease in the yield of alloy materials due to the above-mentioned adverse effects will not be remarkable. Therefore, the upper limit of the P content is
It was determined to be 0.015%.

【0020】Cr:Crの含有量が 0.3%を超えると合金の
熱膨張係数への悪影響が顕著化するようになる。従っ
て、Cr含有量は 0.3%以下と定めた。
Cr: When the Cr content exceeds 0.3%, the adverse effect on the thermal expansion coefficient of the alloy becomes remarkable. Therefore, the Cr content was determined to be 0.3% or less.

【0021】Ni:Niは合金の熱膨張特性を支配する最も
重要な元素であり、その含有量を35〜37%に調整するこ
とで熱膨張係数を極小とすることができる。従って、Ni
含有量は35〜37%と定めた。
Ni: Ni is the most important element that governs the thermal expansion characteristics of the alloy, and its thermal expansion coefficient can be minimized by adjusting its content to 35 to 37%. Therefore, Ni
The content was determined to be 35 to 37%.

【0022】Mo及びV:Mo,Vは何れも合金の熱膨張特
性を劣化させる元素であるため、これら元素の添加は控
えねばならない。少なくとも、Mo含有量については 0.5
%以下に、またV含有量については0.05%以下にそれぞ
れ抑制しないと所望の熱膨張特性を確保することができ
ない。
Mo and V: Since Mo and V are both elements that deteriorate the thermal expansion characteristics of the alloy, the addition of these elements must be avoided. At least 0.5 for Mo content
% Or less, and the V content must be suppressed to 0.05% or less to ensure desired thermal expansion characteristics.

【0023】Al:Alは合金の熱間加工性を劣化させる元
素であり、熱間加工性の観点からその含有量を規制しな
ければならない。特に、Al含有量が0.01%を超えると熱
間加工性への悪影響が顕著化することから、その含有量
は0.01%以下と定めた。
Al: Al is an element that deteriorates the hot workability of the alloy, and its content must be regulated from the viewpoint of hot workability. In particular, when the Al content exceeds 0.01%, the adverse effect on hot workability becomes remarkable, so the content is set to 0.01% or less.

【0024】Nb:Nbは合金の強度向上のために有効な元
素であり、Cの添加や圧延による強化効果が得られるに
しても、出来れば微量であれ積極的に添加することが望
ましい。一方、本発明合金においてはNb含有量が 1.0%
を超えると熱膨張特性の劣化傾向が目立つようになるの
で、1.0 %を超えてNbを含有させることは避けなければ
ならない。従って、Nb含有量は0〜 1.0%と定めたが、
好ましい範囲は0.15〜 1.0%である。
Nb: Nb is an element effective for improving the strength of the alloy. Even if a strengthening effect can be obtained by adding C or rolling, it is desirable to add Nb as much as possible, if possible. On the other hand, in the alloy of the present invention, the Nb content was 1.0%.
If Nb is exceeded, the tendency of deterioration of the thermal expansion characteristic becomes conspicuous, so that Nb content exceeding 1.0% must be avoided. Therefore, the Nb content was set to 0 to 1.0%,
The preferred range is 0.15 to 1.0%.

【0025】S:Sは本発明合金を溶製する際に混入す
る不可避的不純物であるが、合金の熱間加工性を低下さ
せるので極力低減すべき元素である。しかし、S含有量
を 0.005%以下(好ましくは 0.001%以下)に低減する
と、前記弊害による合金材製造歩留の低下は顕著でなく
なる。
S: S is an unavoidable impurity that is mixed in when the alloy of the present invention is melted, but is an element to be reduced as much as possible because it reduces the hot workability of the alloy. However, when the S content is reduced to 0.005% or less (preferably 0.001% or less), the decrease in the alloy material production yield due to the above-mentioned adverse effects becomes not significant.

【0026】N:Nは合金の熱間加工性を劣化させる不
可避的不純物元素であり、本発明合金においてはその含
有量が 0.005%を超えると熱間加工性の劣化傾向が著し
くなることから、N含有量は 0.005%以下に低減するこ
とと定めた。
N: N is an unavoidable impurity element that deteriorates the hot workability of the alloy. In the alloy of the present invention, if its content exceeds 0.005%, the tendency of the hot workability to deteriorate becomes remarkable. It has been determined that the N content should be reduced to 0.005% or less.

【0027】B:Bには合金の熱間加工性を改善する作
用があるので、必要に応じて 0.005%までの範囲で含有
させるのが有効である。ただ、 0.005%を超えてBを含
有させると熱膨張係数を著しく増加させることから、B
含有量については0〜 0.005%と定めた。
B: Since B has an effect of improving the hot workability of the alloy, it is effective to contain B in a range of up to 0.005% as necessary. However, if the content of B exceeds 0.005%, the coefficient of thermal expansion is significantly increased.
The content was determined to be 0 to 0.005%.

【0028】なお、本発明合金を溶製する際にはCoやCu
等も不可避的不純物元素として混入する場合が多いが、
これらCoやCuが不純物として含有されていても、それぞ
れの含有量が 0.1%以下の範囲であれば特に問題となる
ことはない。
When melting the alloy of the present invention, Co or Cu
Etc. are often mixed as unavoidable impurity elements,
Even if these Co and Cu are contained as impurities, there is no particular problem as long as their contents are in the range of 0.1% or less.

【0029】(B) 板材の製造条件 本発明に係る板材の製造方法では、上記化学組成のイン
バ−合金に対し、少なくとも「“T(℃)=950+1
10×Nb(%)1/2+500×C(%) なる式で算出される温
度T(℃)を下回る冷間域以外の温度域”で累積圧下率
が30%以上となる圧延(温間圧延以上の温度域での圧
延)」が施される。この場合、上記温度T(℃)を上回
る温度で熱間圧延を施してある程度の減肉を行った後に
上記所定の圧延を実施したり、その後更に形状や表面調
整のために軽度の冷間圧延を施しても良い。
(B) Sheet Material Manufacturing Conditions In the sheet material manufacturing method according to the present invention, at least “T (° C.) = 950 + 1
10 × Nb (%) 1/2 + 500 × C (%) In a temperature range other than the cold range below the temperature T (° C.) calculated by the formula: Rolling in a temperature range equal to or higher than rolling). In this case, after performing the hot rolling at a temperature higher than the temperature T (° C.) to reduce the wall thickness to some extent, the above-described predetermined rolling is performed, and then, the cold rolling is further performed for further shape and surface adjustment. May be applied.

【0030】ところで、本発明が対象とするインバ−合
金の組成においては熱間圧延中の再結晶温度はほぼ95
0〜1050℃の範囲にある。前記式で算出されるT
(℃)はこの再結晶温度と相関しており、この温度T
(℃)を下回る温度域で圧延することで効果的に高強度
化を達成することができる。なお、前記式から分かるよ
うに、CやNbの含有量が増えればインバ−合金の高強度
化が達成される圧延温度はより高温域にまで拡大され
る。
Incidentally, in the composition of the invar alloy targeted by the present invention, the recrystallization temperature during hot rolling is approximately 95%.
It is in the range of 0-1050 ° C. T calculated by the above equation
(° C.) correlates with this recrystallization temperature, and this temperature T
By rolling in a temperature range lower than (° C.), high strength can be effectively achieved. As can be seen from the above equation, as the content of C or Nb increases, the rolling temperature at which the strength of the Invar alloy is increased is extended to a higher temperature range.

【0031】ただ、本発明に係る化学組成のインバ−合
金板に目標とする強度水準(0.2%降伏強度350MPa以
上,引張強さ500MPa以上)を達成するためには、少
なくとも前記温度域での累積圧下率を30%以上確保す
ることが必要である。
However, in order to achieve the target strength level (0.2% yield strength of 350 MPa or more, tensile strength of 500 MPa or more) for the invar alloy sheet of the chemical composition according to the present invention, at least the cumulative temperature in the above temperature range is required. It is necessary to secure a rolling reduction of 30% or more.

【0032】そして、本発明に係るインバ−合金では、
既に述べた通り、“温度T(℃)を下回る温度域での累
積圧下率30%以上の圧延”を施すと熱膨張係数の低下
も達成される。この場合、400℃未満で圧延すること
で 1.0×10-6/℃未満の熱膨張係数を達成することもで
きるが、生産性の観点からは600℃以上での圧延の方
が実際的であり、その場合でも 1.5×10-6/℃以下の低
い熱膨張係数が確保される。
In the invar alloy according to the present invention,
As described above, when “rolling with a cumulative rolling reduction of 30% or more in a temperature range lower than the temperature T (° C.)” is performed, a reduction in the thermal expansion coefficient is also achieved. In this case, by rolling at a temperature lower than 400 ° C., a thermal expansion coefficient of less than 1.0 × 10 −6 / ° C. can be achieved. However, from the viewpoint of productivity, rolling at a temperature of 600 ° C. or higher is more practical. However, even in this case, a low coefficient of thermal expansion of 1.5 × 10 −6 / ° C. or less is secured.

【0033】以下、本発明を実施例によって説明する。Hereinafter, the present invention will be described with reference to examples.

【実施例】まず、25kg真空誘導炉により表1に示す如
き化学組成の各インバ−合金を溶製して鋳塊に鋳造した
後、熱間鍛造によって40mm厚のスラブを作成した。
EXAMPLES First, invar alloys having the chemical compositions shown in Table 1 were melted and cast into ingots in a 25 kg vacuum induction furnace, and slabs having a thickness of 40 mm were formed by hot forging.

【0034】[0034]

【表1】 [Table 1]

【0035】次に、前記各スラブに「1150℃×1時
間」の加熱処理を施してからこれを圧延し、12mm厚の
板材を得た。この際、板厚が18mm厚から12mm厚に減
肉されるまでの間を2パスで圧延したが(累積圧下率3
3%)、本実施例ではこの2パス圧延を特に「調整圧
延」と称する。そして、該調整圧延は圧延温度域が50
℃の範囲内に収まるように行われた。なお、ここでは、
例えば圧延温度域を950〜900℃に管理して行った
調整圧延の圧延温度を950℃とするが、適用合金によ
ってこの調整圧延温度の変更が行われた。
Next, each of the slabs was subjected to a heat treatment of "1150 ° C. × 1 hour" and then rolled to obtain a 12 mm thick plate. At this time, rolling was performed in two passes until the sheet thickness was reduced from 18 mm to 12 mm (cumulative rolling reduction of 3 mm).
In this embodiment, this two-pass rolling is particularly called “adjustment rolling”. And, in the adjustment rolling, the rolling temperature range is 50.
The temperature was kept within the range of ° C. Here,
For example, the rolling temperature of the adjusted rolling performed while controlling the rolling temperature range at 950 to 900 ° C. is 950 ° C., and the adjusted rolling temperature was changed depending on the applied alloy.

【0036】圧延後の冷却は、〔圧延終了温度−100
℃〕の温度より〔室温〕までをスプレ−冷却によった。
また、比較のため、一部の板材については、冷間圧延を
施した材料に適用される「900℃×15分均熱」の仕
上焼鈍を施した。
The cooling after rolling is performed by the following method: [rolling end temperature -100
[° C] to [room temperature] by spray cooling.
For comparison, a part of the sheet material was subjected to finish annealing at “900 ° C. × 15 minutes soaking” applied to the cold-rolled material.

【0037】続いて、熱膨張特性の評価のため、このよ
うにして得られた各圧延板の中央部から「厚さ2mm×幅
5mm×長さ50mm」の角棒試験片をL方向に採取し、2
0℃〜−196℃での線膨張を測定した。そして、−1
80℃〜20℃における測定値を基に平均熱膨張係数を
算出した。
Subsequently, for evaluation of the thermal expansion characteristics, a square bar test piece of “thickness 2 mm × width 5 mm × length 50 mm” was sampled in the L direction from the center of each rolled sheet thus obtained. And 2
The linear expansion from 0 ° C to -196 ° C was measured. And -1
The average coefficient of thermal expansion was calculated based on the measured value at 80 ° C to 20 ° C.

【0038】また、機械的特性の評価のため、前記各熱
延板から平行部が「直径6mmφ×長さ40mm」の引張試
験片を採取し、常温にてL方向の 0.2%降伏強度と引張
強さを測定した。なお、降伏強度の測定は 0.8×10-4/s
の歪速度にて実施した。
For evaluation of mechanical properties, a tensile test piece having a diameter of 6 mmφ × length of 40 mm was taken from each of the hot-rolled sheets, and was subjected to 0.2% yield strength in the L direction and tensile strength at room temperature. The strength was measured. The yield strength was measured at 0.8 × 10 -4 / s
At a strain rate of.

【0039】これらの測定結果(0.2%降伏強度,引張強
さ,20℃〜−180℃の平均熱膨張係数)を、板材の
製造条件と共に表2に示す。
The results of these measurements (0.2% yield strength, tensile strength, average thermal expansion coefficient from 20 ° C. to −180 ° C.) are shown in Table 2 together with the sheet material production conditions.

【0040】[0040]

【表2】 [Table 2]

【0041】表2に示される結果からも、本発明で規定
する条件を満たしていない比較例で得られたインバ−合
金板では、熱膨張係数が 1.5×10-6/℃を上回るか、あ
るいは0.2%降伏強さが350MPaを下回るなど、十分に
満足できる特性が具備されていないのに対して、簡便で
格別なコスト高を招くことのない本発明例の手段で得ら
れたインバ−合金板は0.2%降伏強度が350MPaを超え
る高い値で、かつ熱膨張係数が 1.5×10-6/℃以下の低
い値を示すなど、優れた強度特性と熱膨張特性を有して
いることを確認できる。
From the results shown in Table 2, it can be seen that the coefficient of thermal expansion of the Invar alloy plate obtained in the comparative example which does not satisfy the conditions specified in the present invention exceeds 1.5 × 10 -6 / ° C. The invar alloy plate obtained by the means of the present invention, which is simple and does not cause extraordinary cost, although it does not have sufficiently satisfactory properties such as a 0.2% yield strength of less than 350 MPa. Can be confirmed to have excellent strength characteristics and thermal expansion characteristics, such as a high value of 0.2% yield strength exceeding 350 MPa and a low value of thermal expansion coefficient of 1.5 × 10 −6 / ° C. or less. .

【0042】[0042]

【効果の総括】以上に説明した如く、この発明によれ
ば、板厚にかかわりなく優れた熱膨張特性と高い強度を
有するインバ−合金板を比較的簡便に安定製造すること
ができ、高強度が望まれる低温用貯蔵タンクの素材等を
安価に提供することが可能となるなど、産業上有用な効
果がもたらされる。
As described above, according to the present invention, an invar alloy plate having excellent thermal expansion characteristics and high strength can be stably manufactured relatively easily regardless of the thickness of the plate. In addition, it is possible to provide a low-cost storage tank material or the like at a low cost, which is desirable, and has industrially useful effects.

【図面の簡単な説明】[Brief description of the drawings]

【図1】0.004%C-0.13%Si-0.46%Mn-36.4%Ni系インバ−
合金の熱膨張係数に及ぼす圧延温度の影響を示したグラ
フである。
[Figure 1] 0.004% C-0.13% Si-0.46% Mn-36.4% Ni-based invar
5 is a graph showing the effect of rolling temperature on the coefficient of thermal expansion of an alloy.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量割合にて C:0.10%以下, Si:0.35%以下, Mn: 1.0%以下, P: 0.015%以下, S: 0.005%以下, Cr: 0.3%以下, Ni:35〜37%, Mo:0〜 0.5%, V:0〜0.05%, Al:0.01%以下, Nb:0〜 1.0%, B:0〜 0.005%, N: 0.005%以下 を含有すると共に残部がFe及び不可避的不純物より成る
インバ−合金に対して、少なくとも“下記式にて算出さ
れる温度T(℃)を下回る冷間域以外の温度域で30%
以上の累積圧下率が確保される圧延”を施すことを特徴
とする、高強度インバ−合金板の製造方法。 T(℃)=950+110×Nb(%)1/2+500×C(%)
C. 0.10% or less by weight, Si: 0.35% or less, Mn: 1.0% or less, P: 0.015% or less, S: 0.005% or less, Cr: 0.3% or less, Ni: 35 to 37 %, Mo: 0 to 0.5%, V: 0 to 0.05%, Al: 0.01% or less, Nb: 0 to 1.0%, B: 0 to 0.005%, N: 0.005% or less, with the balance being Fe and inevitable 30% in the temperature range other than the cold range below the temperature T (° C.) calculated by the following equation
A method of producing a high-strength invar alloy sheet, characterized by applying a rolling process that ensures the above-mentioned cumulative rolling reduction. T (° C.) = 950 + 110 × Nb (%) 1/2 + 500 × C (%)
JP8232617A 1996-08-14 1996-08-14 Production of high strength invar alloy sheet Pending JPH1060528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8232617A JPH1060528A (en) 1996-08-14 1996-08-14 Production of high strength invar alloy sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8232617A JPH1060528A (en) 1996-08-14 1996-08-14 Production of high strength invar alloy sheet

Publications (1)

Publication Number Publication Date
JPH1060528A true JPH1060528A (en) 1998-03-03

Family

ID=16942143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8232617A Pending JPH1060528A (en) 1996-08-14 1996-08-14 Production of high strength invar alloy sheet

Country Status (1)

Country Link
JP (1) JPH1060528A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1063304A1 (en) * 1999-06-22 2000-12-27 Imphy Ugine Precision Masking device for a colour flat screen cathode ray tube comprising a supporting frame for planar mask and planar mask
WO2001021848A1 (en) * 1999-09-17 2001-03-29 Krupp Vdm Gmbh Iron-nickel alloy with low thermal expansion coefficient and exceptional mechanical properties
WO2003025232A1 (en) * 2001-09-19 2003-03-27 Thyssenkrupp Vdm Gmbh Method for producing a metal strip from an iron-nickel alloy for tensioned shadow masks
US6592810B2 (en) 2000-03-17 2003-07-15 Hitachi Metals, Ltd. Fe-ni alloy having high strength and low thermal expansion, a shadow mask made of the alloy, a braun tube with the shadow mask, a lead frame made of the alloy and a semiconductor element with lead frame
WO2003085148A1 (en) * 2002-04-05 2003-10-16 Jfe Steel Corporation Low-thermal expansion alloy thin sheet and its manufacturing method
CN106269867A (en) * 2015-06-08 2017-01-04 丹阳市凯鑫合金材料有限公司 The ingot hot rolling of a kind of invar side that cost is relatively low and efficiency is higher makes the method for pipe
CN106269968A (en) * 2015-06-06 2017-01-04 丹阳市凯鑫合金材料有限公司 A kind of method of technique better simply making invar cold-heading dish circle silk material
JP2020190018A (en) * 2019-05-23 2020-11-26 日鉄ステンレス株式会社 Invar alloy sheet and its manufacturing method
WO2021221003A1 (en) 2020-04-28 2021-11-04 日鉄ステンレス株式会社 Alloy material and method for producing same
WO2022185092A1 (en) * 2021-03-01 2022-09-09 Aperam Fe-ni alloy, in particular for transporting and storing liquid hydrogen
CN117144263A (en) * 2023-08-09 2023-12-01 无锡市蓝格林金属材料科技有限公司 High-strength low-thermal-expansion invar alloy wire for double-capacity wire and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965315A (en) * 1972-10-27 1974-06-25
JPH0215153A (en) * 1989-05-01 1990-01-18 Sumitomo Electric Ind Ltd Production of galvanized alloy wire having high strength and low expansion characteristic
JPH07102345A (en) * 1993-09-30 1995-04-18 Nippon Yakin Kogyo Co Ltd Fe-ni alloy with high young's modulus and low thermal expansion
JPH0873935A (en) * 1994-09-01 1996-03-19 Nkk Corp Production of alloy strip of iron-nickel alloy
JPH08193248A (en) * 1995-01-13 1996-07-30 Nisshin Steel Co Ltd Low thermal expansion alloy for shadow mask
JPH08209306A (en) * 1994-11-23 1996-08-13 Imphy Sa Iron-nickel alloy with low coefficient of thermal expansion
JPH1017997A (en) * 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd High strength invar alloy excellent in hot workability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4965315A (en) * 1972-10-27 1974-06-25
JPH0215153A (en) * 1989-05-01 1990-01-18 Sumitomo Electric Ind Ltd Production of galvanized alloy wire having high strength and low expansion characteristic
JPH07102345A (en) * 1993-09-30 1995-04-18 Nippon Yakin Kogyo Co Ltd Fe-ni alloy with high young's modulus and low thermal expansion
JPH0873935A (en) * 1994-09-01 1996-03-19 Nkk Corp Production of alloy strip of iron-nickel alloy
JPH08209306A (en) * 1994-11-23 1996-08-13 Imphy Sa Iron-nickel alloy with low coefficient of thermal expansion
JPH08193248A (en) * 1995-01-13 1996-07-30 Nisshin Steel Co Ltd Low thermal expansion alloy for shadow mask
JPH1017997A (en) * 1996-06-28 1998-01-20 Sumitomo Metal Ind Ltd High strength invar alloy excellent in hot workability

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2795431A1 (en) * 1999-06-22 2000-12-29 Imphy Ugine Precision FLAT SCREEN COLOR VIEWING CATHODIC TUBE MASKING DEVICE, OF THE TYPE INCLUDING A SUPPORT FRAME FOR TENDERED SHADOW MASK AND TENDER SHADOW MASK
US6420054B1 (en) 1999-06-22 2002-07-16 Imphy Ugine Precision Masking device for a color cathode-ray display tube with a flat screen, of the type comprising a support frame for a tensioned shadowmask, and tensioned shadowmask
EP1063304A1 (en) * 1999-06-22 2000-12-27 Imphy Ugine Precision Masking device for a colour flat screen cathode ray tube comprising a supporting frame for planar mask and planar mask
JP2004500482A (en) * 1999-09-17 2004-01-08 ティッセンクルップ ファオ デー エム ゲゼルシャフト ミット ベシュレンクテル ハフツング Low thermal expansion iron-nickel alloy with special mechanical properties
WO2001021848A1 (en) * 1999-09-17 2001-03-29 Krupp Vdm Gmbh Iron-nickel alloy with low thermal expansion coefficient and exceptional mechanical properties
US6592810B2 (en) 2000-03-17 2003-07-15 Hitachi Metals, Ltd. Fe-ni alloy having high strength and low thermal expansion, a shadow mask made of the alloy, a braun tube with the shadow mask, a lead frame made of the alloy and a semiconductor element with lead frame
CN1329533C (en) * 2001-09-19 2007-08-01 蒂森克鲁普德国联合金属制造有限公司 Method for producing a metal strip from an iron-nickel alloy for tensioned shadow masks
WO2003025232A1 (en) * 2001-09-19 2003-03-27 Thyssenkrupp Vdm Gmbh Method for producing a metal strip from an iron-nickel alloy for tensioned shadow masks
WO2003085148A1 (en) * 2002-04-05 2003-10-16 Jfe Steel Corporation Low-thermal expansion alloy thin sheet and its manufacturing method
CN106269968A (en) * 2015-06-06 2017-01-04 丹阳市凯鑫合金材料有限公司 A kind of method of technique better simply making invar cold-heading dish circle silk material
CN106269867A (en) * 2015-06-08 2017-01-04 丹阳市凯鑫合金材料有限公司 The ingot hot rolling of a kind of invar side that cost is relatively low and efficiency is higher makes the method for pipe
JP2020190018A (en) * 2019-05-23 2020-11-26 日鉄ステンレス株式会社 Invar alloy sheet and its manufacturing method
WO2021221003A1 (en) 2020-04-28 2021-11-04 日鉄ステンレス株式会社 Alloy material and method for producing same
EP4144881A4 (en) * 2020-04-28 2023-11-15 NIPPON STEEL Stainless Steel Corporation Alloy material and method for producing same
WO2022185092A1 (en) * 2021-03-01 2022-09-09 Aperam Fe-ni alloy, in particular for transporting and storing liquid hydrogen
WO2022184695A1 (en) * 2021-03-01 2022-09-09 Aperam Fe-ni alloy, in particular for transporting and storing liquid hydrogen
CN117144263A (en) * 2023-08-09 2023-12-01 无锡市蓝格林金属材料科技有限公司 High-strength low-thermal-expansion invar alloy wire for double-capacity wire and preparation method thereof
CN117144263B (en) * 2023-08-09 2024-03-19 无锡市蓝格林金属材料科技有限公司 High-strength low-thermal-expansion invar alloy wire for double-capacity wire and preparation method thereof

Similar Documents

Publication Publication Date Title
EP0672758B1 (en) Method of manufacturing canning steel sheet with non-aging property and superior workability
US6027581A (en) Cold rolled steel sheet and method of making
JPH1060528A (en) Production of high strength invar alloy sheet
JPH1017997A (en) High strength invar alloy excellent in hot workability
JP3922805B2 (en) Manufacturing method of high-tensile steel with excellent low-temperature toughness
JPH08209306A (en) Iron-nickel alloy with low coefficient of thermal expansion
JP3692222B2 (en) High-strength cold-rolled steel sheet and high-strength plated steel sheet with good geomagnetic shielding characteristics and manufacturing method thereof
JPH06102816B2 (en) Cold rolled steel sheet with a composite structure having excellent workability, non-aging at room temperature, and bake hardenability, and a method for producing the same
JPS5849622B2 (en) Manufacturing method of cold-rolled steel sheet for ultra-deep drawing by continuous annealing
JPH0254417B2 (en)
US5871851A (en) Magnetic shielding material for television cathode-ray tube and process for producing the same
WO2004092433A1 (en) High strength and high magnetic permeability steel sheet for cathode ray tube band and method for production thereof
JP2004137554A (en) Steel sheet having excellent workability, and production method therefor
JPH06179922A (en) Production of high tensile strength steel sheet for deep drawing
JP3843021B2 (en) Method for producing thick-walled Al-Mg alloy rolled sheet tempered material excellent in bending workability
US6641682B1 (en) Method for manufacturing an aperture grill material for color picture tube
JP3042273B2 (en) Method for producing Fe-Ni-based alloy thin plate for IC lead frame with excellent rust resistance
JPS60255924A (en) Manufacture of steel plate used for magnetic shielding member
JP2002012942A (en) Steel sheet for heat shrink band
JP4042897B2 (en) Steel plate for CRT frame
KR100276300B1 (en) The manufacturing method of high strength hot rolling steel sheet with having low tensil strength
JP3888020B2 (en) Steel plate for heat shrink band and method for producing the same
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
EP1233079A1 (en) Cold reduced enamelling steel sheet and an enamelled structure comprising a component of such a steel sheet
JPH10168551A (en) Magnetic shielding material for tv cathode-ray tube and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050314

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050524