JP3535290B2 - Metals with excellent plastic deformability in the temperature range below the recrystallization temperature - Google Patents

Metals with excellent plastic deformability in the temperature range below the recrystallization temperature

Info

Publication number
JP3535290B2
JP3535290B2 JP31887295A JP31887295A JP3535290B2 JP 3535290 B2 JP3535290 B2 JP 3535290B2 JP 31887295 A JP31887295 A JP 31887295A JP 31887295 A JP31887295 A JP 31887295A JP 3535290 B2 JP3535290 B2 JP 3535290B2
Authority
JP
Japan
Prior art keywords
solid solution
dislocation density
total amount
gas components
deformability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31887295A
Other languages
Japanese (ja)
Other versions
JPH08225899A (en
Inventor
兼次 安彦
Original Assignee
兼次 安彦
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 兼次 安彦 filed Critical 兼次 安彦
Priority to JP31887295A priority Critical patent/JP3535290B2/en
Publication of JPH08225899A publication Critical patent/JPH08225899A/en
Application granted granted Critical
Publication of JP3535290B2 publication Critical patent/JP3535290B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、再結晶温度以下に
おいて優れた変形能を発揮する金属( Fe あるいは Fe
Cr 系合金)に関するものである。
The present invention relates to a metal that exhibits excellent deformability below the recrystallization temperature (pure Fe or Fe -
Cr- based alloy ).

【0002】[0002]

【従来の技術】金属は、一般に、それぞれの固有の特性
(物理的特性、化学的特性等)を有しているものの、延
性、展性などの加工上の特性が良好であるという共通し
た性質を備えており、工業用材料として多方面で使用さ
れている。そして、金属を用いた種々の製品や部品は、
一般に、金属が元来有しているこのような特性を生かし
て、多かれ少なかれ各種の塑性加工(以下、単に「加
工」と略記する)、例えば曲げ、圧延、線引き、絞りお
よび張出しなどの加工を、単独または組み合わせて施す
ことによって製造される。このような加工は、その加工
温度によって冷間加工、温間加工および熱間加工に大別
され、特に、冷間加工および温間加工は、省エネルギ
ー、表面性状、加工精度などの点から熱間加工よりも有
利である。
2. Description of the Related Art Generally, metals have their own unique characteristics (physical characteristics, chemical characteristics, etc.), but they have common characteristics that they have good processing characteristics such as ductility and malleability. It is used in various fields as an industrial material. And various products and parts using metal are
Generally, by taking advantage of such characteristics inherent to metal, more or less various plastic workings (hereinafter simply referred to as "working"), such as bending, rolling, wire drawing, drawing and overhanging, are carried out. , Or by applying them in combination. Such working is roughly classified into cold working, warm working and hot working depending on the working temperature. Especially, cold working and warm working are hot working in terms of energy saving, surface quality and working accuracy. Advantageous over processing.

【0003】しかしながら、冷間加工あるいは温間加工
は、いずれも金属の再結晶温度以下の温度範囲における
加工であるので、加工時の再結晶が期待されず、加工の
進行につれていわゆる加工硬化現象のために変形能が低
下し、加工に起因する欠陥を生じ、所望の製品を製造す
ることが困難となったり、最終製品に至までに中間熱処
理を必要とするなどの問題があった。
However, both cold working and warm working are working in a temperature range below the recrystallization temperature of the metal, so recrystallization at the time of working is not expected, and so-called work hardening phenomenon occurs as the working progresses. Therefore, the deformability is lowered, defects due to processing occur, it is difficult to manufacture a desired product, and there is a problem that an intermediate heat treatment is required until the final product.

【0004】ところで、これまでに、金属の再結晶温度
以下の温度範囲における塑性変形能(以下、単に「変形
能」と略記する。)は、加工変形時のすべり系の数と
質、転位の移動度と増殖形態、あるいは、それらと不純
物元素との相互作用に依存していることが示されてい
る。しかし、上記の変形能支配要因については、未だ、
十分に解明されているとは言いがたく、これまでに説明
されている要因の多くは、推察や予想の域を脱していな
いのが実情であった。このため、再結晶温度以下の温度
範囲において優れた変形能を普遍的に得るための金属の
製造技術は存在しなかったといってよく、所望の特性を
得るまでには、試行錯誤に頼り、多くの労力と時間を費
やしていた。このため、再結晶温度以下の温度範囲にお
いて優れた変形能を有する金属の製造技術の出現が強く
望まれていた。
By the way, heretofore, the plastic deformability (hereinafter simply referred to as "deformability") in a temperature range below the recrystallization temperature of a metal has been such that the number and quality of slip systems at the time of work deformation and dislocations. It has been shown to depend on mobility and growth morphology, or their interaction with impurity elements. However, regarding the above-mentioned factors governing deformability,
It is hard to say that it has been fully clarified, and many of the factors that have been explained so far have not fallen beyond speculation and expectations. Therefore, it can be said that there was no metal manufacturing technology for universally obtaining excellent deformability in the temperature range of the recrystallization temperature or lower, and it took many trials and errors to obtain desired properties, and many Was spending effort and time. Therefore, the advent of a technique for producing a metal having excellent deformability in a temperature range equal to or lower than the recrystallization temperature has been strongly desired.

【0005】一方、最近の産業や工業技術の進歩に伴っ
て、高温において高強度を有する金属材料もますます要
望されるようになってきた。しかし、従来から用いられ
ていた高温用材料は、Ni基、Mo基、W基の合金が主
であったので、材料価格が非常に高価になるばかりか、
Ni基合金などでは熱膨張係数が大きいといった実用上
の障害もあった。しかも、これらの合金は冷間加工や温
間加工が困難であるという問題もあった。したがって、
上述したごとき、再結晶温度以下の温度範囲における優
れた変形能を有し、さらに、高温強度が高く、かつ安価
な金属の製造技術の出現が強く望まれていた。
On the other hand, with recent advances in industry and industrial technology, there has been an increasing demand for metal materials having high strength at high temperatures. However, Ni-based, Mo-based, and W-based alloys have been mainly used as high-temperature materials that have been conventionally used, so that not only the material price becomes very expensive,
Ni-based alloys and the like also have a practical obstacle such as a large coefficient of thermal expansion. Moreover, these alloys have a problem that cold working and warm working are difficult. Therefore,
As described above, the advent of a technique for producing a metal which has an excellent deformability in a temperature range equal to or lower than the recrystallization temperature, has high strength at high temperature, and is inexpensive has been strongly desired.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明の目的
は、上記既知技術が抱えている上述した問題を惹起する
ことのないよう、再結晶温度以下の温度範囲において優
れた変形能を有する金属の製造技術を確立することにあ
る。また、本発明の他の目的は、再結晶温度以下の温度
範囲において優れた変形能を有し、しかも安価で、高温
強度にも優れる金属の製造技術を確立することにある。
Therefore, an object of the present invention is to provide a metal having an excellent deformability in a temperature range below the recrystallization temperature so as not to cause the above-mentioned problems of the known art. To establish the manufacturing technology of. Another object of the present invention is to establish a technique for producing a metal which has excellent deformability in a temperature range below the recrystallization temperature, is inexpensive, and has excellent high temperature strength.

【0007】[0007]

【課題を解決するための手段】さて、上掲の目的の実現
に向けて鋭意研究した結果、発明者らは、金属中に固溶
状態にあるガス成分の量と転位密度、さらに、これらの
間の相互の関係について鋭意研究を行った結果、これら
を適正な範囲に制御すれば、優れた変形能を得ることが
可能になることを見いだし、本発明を完成するに至っ
た。
Means for Solving the Problems Now, as a result of intensive research aimed at realizing the above-mentioned object, the inventors have found that the amount of a gas component in a solid solution state in a metal, the dislocation density, and As a result of diligent research on the mutual relationship between them, it was found that excellent deformability can be obtained by controlling these in an appropriate range, and the present invention has been completed.

【0008】本発明は、上記の知見を具体化した下記の
構成を要旨とするものである。 (1) 固溶状態にあるガス成分の合計量が重量比にして50
ppm以下、残部が Fe および不可避的不純物からなり、
位密度が1×1010(1/cm2)以下であることを特徴と
する再結晶温度以下の温度範囲において優れた塑性変形
能を有する Fe。 (2) 溶状態にあるガス成分の合計量と転位密度との間
に下記式; ln(d2×Cgi×ρ)+A≦−20 ただし、 d:格子定数(cm) Cgi:固溶状態にあるガス成分の合計量(重量比ppm) ρ:転位密度(1/cm2) A:結晶構造によって定まる定数(体心立方構造および
体心正方構造:2、面心立方構造:0、稠密六方構造:
1) の関係を有することを特徴とする上記(1) に記載の純 F
e
The gist of the present invention is the following configuration embodying the above findings. (1) The total amount of gas components in solid solution is 50% by weight.
ppm or less, the balance being Fe and unavoidable impurities, pure having plastic deformability excellent in recrystallization temperature below the temperature range, wherein the dislocation density of 1 × 10 10 (1 / cm 2) or less Fe . (2) the following equation between the total amount and the dislocation density of the gas component in the solid solution state; ln (d 2 × C gi × ρ) + A ≦ -20 However, d: lattice constant (cm) C gi: Solid Total amount of dissolved gas components (ppm by weight) ρ: Dislocation density (1 / cm 2 ) A: Constant determined by crystal structure (body-centered cubic structure and body-centered tetragonal structure: 2, face-centered cubic structure: 0 , Dense hexagonal structure:
1) The pure F described in (1) above, which has the relationship of
e .

【0009】(3) 固溶状態にあるガス成分の合計量が重
量比にして 50ppm 以下であり、 Cr 16 60wt %、または
さらに Cr 以外の置換型固溶強化元素を1〜 15wt %含有
し、残部が Fe および不可避的不純物からなり、転位密度
が1× 10 10 (1/ cm 2 )以下であることを特徴とする再
結晶温度以下の温度範囲において優れた塑性変形能を有
する Fe-Cr 系合金。 (4) 固溶状態にあるガス成分の合計量と転位密度との間
に下記式; ln(d 2 ×C gi ×ρ)+A≦− 20 ただし、 d:格子定数( cm gi :固溶状態にあるガス成分の合計量(重量比 ppm ρ:転位密度(1/ cm 2 A:結晶構造によって定まる定数(体心立方構造および
体心正方構造:2、面心立方構造:0、稠密六方構造:
1) の関係を有することを特徴とする上記 (3) に記載の Fe-Cr
系合金。
(3) The total amount of gas components in solid solution is heavy.
The amount ratio is 50 ppm or less, Cr is 16 to 60 wt %, or
Furthermore. 1 to 15 wt% containing substitutional solid solution strengthening elements other than Cr
However, the balance consists of Fe and unavoidable impurities.
Is less than 1 × 10 10 (1 / cm 2 )
It has excellent plastic deformability in the temperature range below the crystallization temperature.
Fe-Cr alloy used. (4) Between the total amount of gas components in solid solution and the dislocation density
Following formula; ln (d 2 × C gi × ρ) + A ≦ - 20 However, d: lattice constant (cm) C gi: the total amount of gas component in the solid solution state (weight ratio ppm) [rho: the dislocation density ( 1 / cm 2 ) A: constant determined by crystal structure (body-centered cubic structure and
Body-centered tetragonal structure: 2, face-centered cubic structure: 0, dense hexagonal structure:
Fe-Cr according to (3) above, which has the relationship of 1).
Series alloy.

【0010】[0010]

【0011】[0011]

【発明の実施の形態】まず、本発明を想到する契機とな
った実験について説明し、併せて本発明の構成を明らか
にする。
BEST MODE FOR CARRYING OUT THE INVENTION First, an experiment that triggered the present invention will be described, and the configuration of the present invention will be clarified.

【0012】・実験1 原料の純度および溶解条件を変化させることにより、固
溶状態にあるガス成分の合計量(以下、単に「固溶ガス
成分量」と略記する)が異なる純鉄を溶製し、板厚4mm
まで熱間圧延したのち、焼鈍(830℃)し、次いで、中間
焼鈍することなしに板厚0.2mmまで冷間圧延した。熱間
圧延したのち焼鈍した板の転位密度は1.7〜2.9×108/c
m2 の範囲にあった。得られた冷延板の表面を観察し、
割れ発生の程度により変形能を評価した。この割れ発生
程度と固溶ガス成分量との関係を図1に示す。図1か
ら、固溶ガス成分量を50重量ppm以下にすることによ
り、割れは全く見られず、良好な変形能を示すことがわ
かる。なお、ここで、固溶ガス成分量は、試料に含まれ
る全ガス成分量から介在物抽出分析により得られる炭化
物、窒化物、硫化物および酸化物などの抽出ガス成分量
を差し引いて求めた。すなわち、固溶ガス成分の合計量
=全(C+N+S+O)−介在物としての(C+N+S+
O)で求めた。また、転位密度は、透過型電子顕微鏡に
より100視野観察し、単位面積当たりの転位の数の平均
値を用いた。
Experiment 1 Pure iron having different total amounts of gas components in a solid solution state (hereinafter, simply referred to as “amount of solid solution gas components”) was melted by changing the purity of raw materials and the melting conditions. And plate thickness 4 mm
After hot-rolling to 80 ° C., it was annealed (830 ° C.) and then cold-rolled to a sheet thickness of 0.2 mm without intermediate annealing. Hot
The dislocation density of the rolled and annealed plate is 1.7 to 2.9 × 10 8 / c
It was in the m 2 range. Observe the surface of the obtained cold rolled sheet,
The deformability was evaluated by the degree of cracking. FIG. 1 shows the relationship between the degree of cracking and the amount of solid solution gas components. It can be seen from FIG. 1 that when the amount of the solute gas component is 50 ppm by weight or less, no cracks are observed and good deformability is exhibited. Here, the amount of solid solution gas component was determined by subtracting the amount of extracted gas components such as carbides, nitrides, sulfides and oxides obtained by inclusion extraction analysis from the total amount of gas components contained in the sample. That is, the total amount of solid solution gas components = total (C + N + S + O) − (C + N + S +) as inclusions.
O). The dislocation density was obtained by observing 100 fields with a transmission electron microscope and using the average value of the number of dislocations per unit area.

【0013】・実験2 固溶ガス成分量が35重量ppmであるFe−16wt%Cr合金を
溶製し、板厚5mmまで熱間圧延したのち、焼鈍(850℃)
し、次いで、圧下率を変化させて転位密度を調整して、
中間焼鈍することなしに合計圧下率95%の冷間圧延を行
った。得られた冷延板の表面を観察し、割れ発生の程度
により変形能を評価した。この割れ発生程度と転位密度
との関係を図2に示す。図2から、転位密度を1×1010
(1/cm2 )以下にすることにより、割れは全く発生せ
ず、良好な変形能を示すことがわかる。なお、固溶ガス
成分量および転位密度は、いずれも実験1の方法と同様
にして求めた。
Experiment 2 An Fe-16 wt% Cr alloy having a solid solution gas content of 35 ppm by weight was melted, hot-rolled to a plate thickness of 5 mm, and then annealed (850 ° C.).
And, then up and to adjust the dislocation density by changing the pressure under rate,
Cold rolling with a total reduction of 95% was performed without intermediate annealing. The surface of the obtained cold-rolled sheet was observed and the deformability was evaluated by the degree of cracking. The relationship between the degree of cracking and the dislocation density is shown in FIG. From Fig. 2, the dislocation density is 1 × 10 10
It can be seen that when the ratio is (1 / cm 2 ) or less, no cracks occur and good deformability is exhibited. The amount of the solid solution gas component and the dislocation density were determined in the same manner as in Experiment 1.

【0014】・実験3 固溶ガス成分量を実験1と同様な手法により種々のレベ
ルに調整(7〜43重量ppm)した、純Fe、Fe−
30wt%Cr、Fe−50wt%Cr、Fe−50wt%C
r−8wt%W、Fe−42wt%NiおよびCuについ
て、5mmφの丸棒から、実験2と同様な手法により転
位密度を調整(6.2×107 〜3.5×109 /cm
2 )して、0.4mmφまで冷間線引き加工を行った。
なお、固溶ガス成分量および転位密度は、いずれも実験
1および実験2の方法と同様にして求めた。このように
して得られた加工線材の表面観察により割れを観察し変
形能を評価した。この実験において、データの整理方法
について種々検討したところ、結晶構造により定まる定
数と格子定数とを新たに取り入れたパラメータにより整
理すれば、金属の種類の如何にかかわらず変形能の評価
と良好な対応が得られることを見出した。図3は、この
ような知見から、割れ評点とln(d2 ×Cgi×ρ)+
Aとの関係を示したものである。ここで、d、Cgi、ρ
およびAは、 d:格子定数(cm) Cgi:固溶ガス成分量(重量比ppm) ρ:転位密度(1/cm2 ) A:結晶構造によって定まる定数(体心立方構造および
体心正方構造:2、面心立方構造:0、稠密六方構造:
1) を表す。図3から、固溶ガス成分量が50重量ppm以
下、転位密度が1×1010(1/cm2 )以下で、かつ
固溶ガス成分量と転位密度との間に、 ln(d2 ×Cgi×ρ)+A≦−20 の関係がある場合には、金属の種類に係わらず、良好な
変形能を示すことがわかる。
Experiment 3 Pure Fe, Fe-, in which the amount of solid solution gas components was adjusted to various levels (7 to 43 weight ppm) by the same method as in Experiment 1
30 wt% Cr, Fe-50 wt% Cr, Fe-50 wt% C
With respect to r-8 wt% W, Fe-42 wt% Ni and Cu, the dislocation density was adjusted (6.2 × 10 7 to 3.5 × 10 9 / cm) from a 5 mmφ round bar by the same method as in Experiment 2.
2 ) and cold drawing was performed up to 0.4 mmφ.
The amounts of solid solution gas components and dislocation densities were determined in the same manner as in Experiment 1 and Experiment 2. Deformability was evaluated by observing cracks by observing the surface of the processed wire rod thus obtained. In this experiment, various investigations were made on the method of organizing the data, and by organizing the constants determined by the crystal structure and the lattice constants by the newly introduced parameters, the deformability was evaluated and good correspondence was obtained regardless of the type of metal. It was found that FIG. 3 shows cracking scores and ln (d 2 × C gi × ρ) + based on such knowledge.
It shows the relationship with A. Where d, C gi , ρ
And A are d: Lattice constant (cm) C gi : Solid solution gas content (ppm by weight) ρ: Dislocation density (1 / cm 2 ) A: Constant determined by crystal structure (body-centered cubic structure and body-centered tetragonal structure) Structure: 2, face-centered cubic structure: 0, dense hexagonal structure:
1) is represented. From FIG. 3, the amount of solid solution gas component is 50 ppm by weight or less, the dislocation density is 1 × 10 10 (1 / cm 2 ) or less, and ln (d 2 × It can be seen that when the relationship of C gi × ρ) + A ≦ −20, good deformability is exhibited regardless of the type of metal.

【0015】上記各実験の加工は全て冷間加工であった
が、温間加工の場合にも全く同じ傾向があることを確認
した。このことから、本発明は、冷間加工および温間加
工を含む、いわゆる再結晶温度域以下の温度範囲におけ
る加工における変形能の改善に有効であることがわかっ
た。
Although all the workings in the above experiments were cold working, it was confirmed that the same tendency was observed in the case of warm working. From this, it was found that the present invention is effective in improving the deformability in the working in the temperature range below the so-called recrystallization temperature range, including the cold working and the warm working.

【0016】以上の実験結果から、再結晶温度域以下の
温度範囲における変形能改善のためには、固溶ガス成分
量が50重量ppm以下、かつ、転位密度が1×1010
(1/cm2 )以下が必要であり、さらに、固溶状態に
あるガス成分の合計量と転位密度との間に、 ln(d2 ×Cgi×ρ)+A≦−20 の関係を満足させることにより、より好ましい結果を得
ることができることが示された。
From the above experimental results, in order to improve the deformability in the temperature range below the recrystallization temperature range, the amount of solid solution gas component is 50 wtppm or less and the dislocation density is 1 × 10 10.
(1 / cm 2 ) or less is required, and further, the relationship of ln (d 2 × C gi × ρ) + A ≦ −20 is satisfied between the total amount of gas components in a solid solution state and the dislocation density. It was shown that more favorable results can be obtained by performing the above.

【0017】以上得られれた実験結果により、金属の変
形能は、転位の移動のし易さに依存し、転位の移動はそ
の障害となるC,N,SおよびOなどの固溶ガス成分と
関係し、転位密度や固溶ガス成分量が多いほど、転位と
C,N,SおよびOなどの固溶元素との相互作用の発生
確率が高まり、結果として変形能の低下を招くことで説
明される。なお、このような固溶ガス成分のほかに、炭
化物や、窒化物などの析出物も、転位の移動の妨げにな
りうるので、これらの析出物量も少ないほうが好まし
い。以上の実験結果で明らかなように、変形能は、結晶
構造と格子定数を加味すれば、統一的に整理されるの
で、金属の種類に係わらず適用でき、Fe系、Cu系、
Al系、Au系、Fe−Cr系、Fe−Ni系、Fe−
Al系、Fe−Cr−Al系、Fe−Cr−Cu系、F
e−Ni−Cu系、Fe−Cr−W系、Fe−Cr−M
o系、Fe−Cr−Nb系、Al−Cu系、Au−Ag
系など工業用材料として通常使用される金属すべてに適
用可能である。
From the experimental results obtained above, the deformability of a metal depends on the ease with which dislocations move, and the dislocations move with solid solution gas components such as C, N, S and O, which are obstacles. Relatedly, the higher the dislocation density and the amount of solid solution gas components, the higher the probability of interaction between dislocations and solid solution elements such as C, N, S and O, resulting in a decrease in deformability. To be done. In addition to such solid solution gas components, precipitates such as carbides and nitrides may also hinder the movement of dislocations, so it is preferable that the amount of these precipitates is also small. As is clear from the above experimental results, the deformability can be applied irrespective of the type of metal, since it can be uniformly organized by taking the crystal structure and the lattice constant into consideration.
Al-based, Au-based, Fe-Cr-based, Fe-Ni-based, Fe-
Al-based, Fe-Cr-Al-based, Fe-Cr-Cu-based, F
e-Ni-Cu system, Fe-Cr-W system, Fe-Cr-M
o type, Fe-Cr-Nb type, Al-Cu type, Au-Ag
It is applicable to all metals that are usually used as industrial materials such as systems.

【0018】本発明が適用できる上記金属のうち、さら
に良好な高温強度をも必要とする場合には、Crを16〜60
wt%、またはさらにCr以外の置換型固溶強化元素を1〜
15wt%含有し、残部をFeおよび不可避的不純物としたも
のが特性的にも経済的にも特に好ましい。なぜなら、高
温材料としての耐酸化性を維持するためには、少なくと
16wt%のCrを添加する必要があるが、60wt%を超えて
添加してもその効果は飽和して経済的に不利となるから
である。また、高温強度を高めるためには、Mo,W,N
b,Ta,Zrなどの置換型の固溶強化元素を添加すること
が極めて有効である。この高温強度は、これらの置換型
固溶強化元素を1wt%以上添加することにより得られる
が、15wt%を超えて添加すると、これら元素とFeとの金
属間化合物を生成し、十分な高温延性が得られなくな
る。このため、置換型固溶強化元素はこれらの1種また
は2種以上を1〜15wt%の範囲で添加すればよい。
Of the above-mentioned metals to which the present invention is applicable, when further good high temperature strength is required, Cr is 16 to 60.
1% by weight of substitutional solid solution strengthening elements other than wt% or Cr
It is particularly preferable that it contains 15 wt% and the balance is Fe and inevitable impurities both in terms of characteristics and economically. This is because in order to maintain the oxidation resistance as a high temperature material, it is necessary to add at least 16 wt% Cr, but even if added in excess of 60 wt%, the effect is saturated. This is economically disadvantageous. In addition, in order to increase the high temperature strength, Mo, W, N
It is extremely effective to add substitutional solid solution strengthening elements such as b, Ta and Zr. This high-temperature strength can be obtained by adding 1 wt% or more of these substitutional solid solution strengthening elements, but if added in excess of 15 wt%, an intermetallic compound between these elements and Fe will be formed, and sufficient high temperature ductility will be obtained. Will not be obtained. Therefore, the substitutional solid solution strengthening element may be added alone or in the range of 1 to 15 wt%.

【0019】本発明に従う金属を製造するにあたり、固
溶ガス成分量を所望量以下に抑制するためには、特に、
原料の純度や溶製時のコンタミネーションの防止に留意
することが必要であり、例えば、水冷銅ルツボを用いた
スカル真空溶解などの方法を採用すればよい。また、転
位密度を所望量以下に抑制するためには、特に、焼きな
ましの温度、時間に留意することが必要であり、例え
ば、Fe系では700℃以上の高温焼きなましを行うな
どの方法を採用すればよい。
In producing the metal according to the present invention, in order to suppress the amount of the solute gas component to a desired amount or less, in particular,
It is necessary to pay attention to the purity of the raw materials and the prevention of contamination during melting, and for example, a method such as skull vacuum melting using a water-cooled copper crucible may be adopted. Further, in order to suppress the dislocation density to a desired amount or less, it is necessary to pay particular attention to the temperature and time of annealing. For example, in the case of Fe type, a method of performing high temperature annealing of 700 ° C. or higher may be adopted. Good.

【0020】なお、本発明に従う金属を加工する場合
の、加工対象物の形状については、特に定める必要はな
く、板状、球状、管状、棒状、線状、粉末状などあらゆ
る形状のものに適用できる。
When processing the metal according to the present invention, the shape of the object to be processed does not have to be specified in particular, and it can be applied to any shape such as plate, sphere, tube, rod, wire and powder. it can.

【0021】[0021]

【実施例】表1に示す化学組成の純Fe、Fe−Cr合
金、Fe−Ni合金、Fe−Cr−W合金、Fe−Cr
−Mo合金およびFe−Cr−Nb合金を溶製した。こ
れらの溶製には、原料として超高純度電解鉄(純度9
9.998wt%)、高純度クロム(純度99.95wt
%)、高純度Ni(純度99.95wt%)、高純度Mo
(純度99.95wt%)、高純度W(純度99.95wt
%)および高純度Nb(純度99.95wt%)を使用
し、水冷銅ルツボを用いスカル溶解法を採用した。ま
た、固溶ガス成分量の調整は、溶製時の雰囲気を、10
-6torr以下の高真空下、500mmtorrのAr
ガスにすること、使用原料を、N源としてCrN、C源
としてFe−C合金、S源として試薬S剤を用いること
等によって行った。このインゴットを加熱後、板厚15
mmまで熱間圧延し、次いで、この熱延板を2分割し、
冷間加工により、一方は8mm厚の板に、他方は8mm
φの棒にし、焼鈍したのち変形能試験に供した。また、
一部の供試材については、上記8mmφの丸棒から、平
行部3mmφの丸棒引張試験片を採取し、高温強度を測
定した。
EXAMPLES Pure Fe, Fe-Cr alloy, Fe-Ni alloy, Fe-Cr-W alloy, Fe-Cr having the chemical compositions shown in Table 1
-Mo alloy and Fe-Cr-Nb alloy were melted. Ultra-high purity electrolytic iron (purity 9
9.998 wt%), high-purity chromium (purity 99.95 wt%
%), High-purity Ni (purity 99.95 wt%), high-purity Mo
(Purity 99.95 wt%), high purity W (Purity 99.95 wt%)
%) And high-purity Nb (purity 99.95 wt%), and a skull melting method was adopted using a water-cooled copper crucible. In addition, the amount of the solid solution gas component is adjusted by adjusting the atmosphere during melting to 10
-Ar of 500 mmtorr under high vacuum of -6 torr or less
It was carried out by using a gas, using CrN as the N source, using a Fe—C alloy as the C source, and using a reagent S agent as the S source. After heating this ingot, plate thickness 15
hot-rolled to mm, then split the hot-rolled sheet in two,
By cold working, one plate is 8 mm thick and the other is 8 mm thick.
It was made into a φ rod, annealed, and then subjected to a deformability test. Also,
For some of the test materials, a round bar tensile test piece with a parallel portion of 3 mmφ was sampled from the 8 mmφ round bar, and the high temperature strength was measured.

【0022】供試材の固溶ガス成分量、転位密度、格子
定数およびln(d2 ×Cgi×ρ)+Aなどの値を合わ
せて表1に示す。なお、固溶ガス成分量は、試料に含ま
れる全ガス成分量から介在物抽出分析により得られる炭
化物、窒化物、硫化物および酸化物などの抽出ガス成分
量を差し引いて求めた。すなわち、固溶ガス成分の合計
量=全(C+N+S+O)−介在物としての(C+N+
S+O)により求めた。また、転位密度は、透過型電子
顕微鏡により100視野観察し、単位面積当たりの転位
の数の平均値を用いた。さらに、Fe−Cr、Fe−C
r−W、Fe−Cr−MoおよびFe−Cr−Nbの各
合金の格子定数としてα−Feの値を、またFe−Ni
合金の格子定数としてはγ−Feの値を、それぞれ便宜
的に用いた。
Table 1 shows the amount of solid solution gas component, dislocation density, lattice constant, and values such as ln (d 2 × C gi × ρ) + A of the test material. The amount of solid solution gas component was determined by subtracting the amount of extracted gas components such as carbides, nitrides, sulfides and oxides obtained by inclusion extraction analysis from the total amount of gas components contained in the sample. That is, the total amount of solid solution gas components = total (C + N + S + O) − (C + N +) as inclusions.
S + O). The dislocation density was obtained by observing 100 fields with a transmission electron microscope and using the average value of the number of dislocations per unit area. Furthermore, Fe-Cr, Fe-C
The value of α-Fe as the lattice constant of each alloy of r-W, Fe-Cr-Mo and Fe-Cr-Nb, and Fe-Ni
As the lattice constant of the alloy, the value of γ-Fe was used for convenience.

【0023】[0023]

【表1】 [Table 1]

【0024】変形能試験は下記のと、より過酷な加工
条件である、の2とおりの方法によった。 板厚8mmのものを中間焼鈍することなく0.2mm
まで冷間板圧延する。 8mmφの丸棒を、潤滑油として鉱物油を用いて0.
4mmまで冷間線引き加工する。 また、高温強度は、平行部3mmφの丸棒引張試験片を
用い、800℃および900℃における引張試験から求
めた。以上の変形能試験および高温引張試験の結果を、
表2にまとめて示す。
The deformability test was carried out by the following two methods and the more severe processing conditions. 0.2 mm without intermediate annealing of a plate with a thickness of 8 mm
Cold plate rolling until. Using a mineral oil as a lubricating oil, a round rod of 8 mmφ was used.
Cold draw up to 4 mm. Further, the high temperature strength was obtained from a tensile test at 800 ° C. and 900 ° C. using a round bar tensile test piece having a parallel portion of 3 mmφ. The results of the above deformability test and high temperature tensile test,
It shows collectively in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】表2から、発明例では、いずれの変形能試
験によっても加工後の供試材表面に割れは見られず、良
好な変形能が得られた。しかも、Fe−Cr−W、Fe
−Cr−MoおよびFe−Cr−NbなどFe−Cr系
に置換型固溶強化元素を適正量添加することにより、優
れた高温強度が得られることがわかる。これに対し、比
較例では程度の差はあるものの、いずれにも割れが発生
しており、変形能が劣っていることがわかる。
From Table 2, in the invention examples, no crack was observed on the surface of the test material after processing in any deformability test, and good deformability was obtained. Moreover, Fe-Cr-W, Fe
It can be seen that excellent high temperature strength can be obtained by adding an appropriate amount of the substitutional solid solution strengthening element to the Fe-Cr system such as -Cr-Mo and Fe-Cr-Nb. On the other hand, in the comparative examples, although there are some differences, cracks are generated in all of them and it is understood that the deformability is inferior.

【0027】[0027]

【発明の効果】上述したように、本発明によれば、金属
の変形能、とりわけ再結晶温度以下の温度範囲における
塑性変形能が著しく改善される。これにより、難加工製
品への金属の適用を広げることが可能となるほか、中間
焼鈍省略による省エネルギーが可能になるなど産業への
寄与は極めて大きいものがある。また、本発明によれ
ば、再結晶温度以下の温度範囲における塑性変形能に加
えて、高温強度も経済的に改善されるので、高温高強度
が必要な難加工製品への金属の適用が可能となる。
As described above, according to the present invention, the deformability of metals, particularly the plastic deformability in the temperature range below the recrystallization temperature, is remarkably improved. This makes it possible to broaden the application of metals to difficult-to-process products and to save energy by omitting intermediate annealing, which greatly contributes to industry. Further, according to the present invention, in addition to the plastic deformability in the temperature range equal to or lower than the recrystallization temperature, the high temperature strength is economically improved, so that the metal can be applied to difficult-to-process products requiring high temperature and high strength. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】固溶ガス成分量と塑性変形能との関係を示すグ
ラフである。
FIG. 1 is a graph showing a relationship between a solid solution gas component amount and plastic deformability.

【図2】転移密度と塑性変形能との関係を示すグラフで
ある。
FIG. 2 is a graph showing the relationship between transition density and plastic deformability.

【図3】ln(d2 ×Cgi×ρ)+Aと塑性変形能との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between ln (d 2 × C gi × ρ) + A and plastic deformability.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固溶状態にあるガス成分の合計量が重量比
にして50ppm以下、残部が Fe および不可避的不純物から
なり、転位密度が1×1010(1/cm2)以下であること
を特徴とする再結晶温度以下の温度範囲において優れた
塑性変形能を有する Fe
1. The total amount of gas components in a solid solution is 50 ppm or less in weight ratio, and the balance is Fe and inevitable impurities.
Therefore, pure Fe 3 having excellent plastic deformability in the temperature range below the recrystallization temperature, which is characterized in that the dislocation density is 1 × 10 10 (1 / cm 2 ) or less.
【請求項2】溶状態にあるガス成分の合計量と転位密
度との間に下記式; ln(d2×Cgi×ρ)+A≦−20 ただし、 d:格子定数(cm) Cgi:固溶状態にあるガス成分の合計量(重量比ppm) ρ:転位密度(1/cm2) A:結晶構造によって定まる定数(体心立方構造および
体心正方構造:2、面心立方構造:0、稠密六方構造:
1) の関係を有することを特徴とする請求項1に記載の純 F
e
Formula between the wherein the total amount of gas component in the solid solution state and the dislocation density; ln (d 2 × C gi × ρ) + A ≦ -20 However, d: lattice constant (cm) C gi : Total amount of solid solution gas components (ppm by weight) ρ: Dislocation density (1 / cm 2 ) A: Constant determined by crystal structure (body-centered cubic structure and body-centered cubic structure: 2, face-centered cubic structure) : 0, dense hexagonal structure:
The pure F according to claim 1, having the relationship of 1).
e .
【請求項3】固溶状態にあるガス成分の合計量が重量比3. The total amount of gas components in a solid solution is the weight ratio.
にしてThen 50ppm50ppm 以下であり、Is CrCr To 1616 ~ 60wt60wt %、またはさら%, Or even
To CrCr 以外の置換型固溶強化元素を1〜Substitution type solid solution strengthening elements other than 15wt15wt %含有し、残% Content, balance
部がDepartment FeFe および不可避的不純物からなり、転位密度が1×And unavoidable impurities with a dislocation density of 1 ×
10Ten 10Ten (1/(1 / cmcm 22 )以下であることを特徴とする再結晶温) Recrystallization temperature characterized by
度以下の温度範囲において優れた塑性変形能を有するHas excellent plastic deformability in the temperature range below 40 degrees FeFe
-Cr-Cr 系合金。Series alloy.
【請求項4】固溶状態にあるガス成分の合計量と転位密4. The total amount of gas components in a solid solution state and the dislocation density.
度との間に下記式;The following formula between the degree and; ln(dln (d 22 ×C× C gigi ×ρ)+A≦−× ρ) + A ≦ − 2020 ただし、However, d:格子定数(d: lattice constant ( cmcm ) C gigi :固溶状態にあるガス成分の合計量(重量比: Total amount of gas components in solid solution (weight ratio ppmppm ) ρ:転位密度(1/ρ: dislocation density (1 / cmcm 22 ) A:結晶構造によって定まる定数(体心立方構造およびA: A constant determined by the crystal structure (body-centered cubic structure and
体心正方構造:2、面心立方構造:0、稠密六方構造:Body-centered tetragonal structure: 2, face-centered cubic structure: 0, dense hexagonal structure:
1)1) の関係を有することを特徴とする請求項3に記載のThe relationship according to claim 3, characterized in that Fe-CFe-C
rr 系合金。Series alloy.
JP31887295A 1994-12-22 1995-12-07 Metals with excellent plastic deformability in the temperature range below the recrystallization temperature Expired - Lifetime JP3535290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31887295A JP3535290B2 (en) 1994-12-22 1995-12-07 Metals with excellent plastic deformability in the temperature range below the recrystallization temperature

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32075394 1994-12-22
JP6-320753 1994-12-22
JP31887295A JP3535290B2 (en) 1994-12-22 1995-12-07 Metals with excellent plastic deformability in the temperature range below the recrystallization temperature

Publications (2)

Publication Number Publication Date
JPH08225899A JPH08225899A (en) 1996-09-03
JP3535290B2 true JP3535290B2 (en) 2004-06-07

Family

ID=26569539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31887295A Expired - Lifetime JP3535290B2 (en) 1994-12-22 1995-12-07 Metals with excellent plastic deformability in the temperature range below the recrystallization temperature

Country Status (1)

Country Link
JP (1) JP3535290B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3480698B2 (en) * 1999-05-27 2003-12-22 兼次 安彦 Cr based alloy with excellent strength-ductility balance at high temperature
JP4863241B2 (en) * 2000-09-29 2012-01-25 兼次 安彦 Structural material made of ultra-high purity iron with excellent ductility
CN114959435B (en) * 2022-05-26 2023-04-11 中联先进钢铁材料技术有限责任公司 Nb-Cr-Fe ternary intermediate alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JPH08225899A (en) 1996-09-03

Similar Documents

Publication Publication Date Title
WO2014168136A1 (en) Non-oriented magnetic steel sheet and method for producing same
EP0969109A1 (en) Titanium alloy and process for production
JP4221518B2 (en) Ferritic heat resistant steel
EP0306578A1 (en) Ferritic stainless steel and process for producing
JPS62124218A (en) Manufacture of high strength stainless steel material having superior workability without softening by welding
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
JP3535290B2 (en) Metals with excellent plastic deformability in the temperature range below the recrystallization temperature
JP6738928B1 (en) Ferritic stainless steel sheet and method of manufacturing the same
KR20180133258A (en) TWIP steel sheets with an austenitic matrix
JPH1060528A (en) Production of high strength invar alloy sheet
US5085712A (en) Iron/copper/chromium alloy material for high-strength lead frame or pin grid array
JP2909089B2 (en) Maraging steel and manufacturing method thereof
JP3398050B2 (en) Method for producing hot rolled sheet of high Ni alloy
JP3510445B2 (en) Fe-Ni alloy thin plate for electronic parts with excellent softening and annealing properties
JP3503424B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in formability and method for producing the same
JP2803550B2 (en) Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same
CN112662932A (en) TWIP steel and preparation method thereof
JP2020143309A (en) Ferritic stainless steel sheet
JP4167166B2 (en) High Al content ferritic stainless steel hot rolled steel strip with excellent toughness and method for producing the same
JP4454117B2 (en) Method for producing Cr-containing thin steel sheet
KR20060125820A (en) High silicon steel and its manufacture process
CN112513303B (en) Ferritic stainless steel sheet
JP2658660B2 (en) Method for producing high silicon steel sheet with excellent workability by Si diffusion infiltration treatment method
JP2680424B2 (en) Method for producing low yield strength austenitic stainless steel sheet
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040311

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term