JP2003221650A - Low-temperature stable alloy with low thermal expansion and high free-cutting property - Google Patents

Low-temperature stable alloy with low thermal expansion and high free-cutting property

Info

Publication number
JP2003221650A
JP2003221650A JP2002028433A JP2002028433A JP2003221650A JP 2003221650 A JP2003221650 A JP 2003221650A JP 2002028433 A JP2002028433 A JP 2002028433A JP 2002028433 A JP2002028433 A JP 2002028433A JP 2003221650 A JP2003221650 A JP 2003221650A
Authority
JP
Japan
Prior art keywords
thermal expansion
alloy
low
low temperature
low thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002028433A
Other languages
Japanese (ja)
Inventor
Kazuo Kawaguchi
一男 川口
Kotaro Ona
浩太郎 小奈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Steel Corp
Original Assignee
Shinhokoku Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Steel Corp filed Critical Shinhokoku Steel Corp
Priority to JP2002028433A priority Critical patent/JP2003221650A/en
Publication of JP2003221650A publication Critical patent/JP2003221650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-temperature stable alloy with a low thermal expansion and an excellent free-cutting property which prevents transformation at low-temperature ranges and deformation in precision instruments, etc. <P>SOLUTION: The alloy contains ≤0.05 wt.% C, ≤0.35 wt.% Si, ≤0.35 wt.% Mn, ≤0.01 wt.% P, 0.015-0.030 wt.% S, 30.0-35.0 wt.% Ni and 2.0-6.5 wt.% Co. Here, the contents of Ni, Co and S are adjusted so that they fall inside the region I surrounded by points shown in Fig. 1 and 2. The alloy allows no martensitic transformation at ≥-20°C. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明合金は、低温域で使用
され、または低温に晒される場合に、変態を防止して、
精密機器等での精度に影響する変形を抑止して、かつ切
削性の優れた低温安定型低熱膨張合金に関する。
TECHNICAL FIELD The alloy of the present invention prevents transformation when used in a low temperature range or exposed to a low temperature,
The present invention relates to a low temperature stable low thermal expansion alloy that suppresses deformation affecting precision in precision equipment and has excellent machinability.

【0002】[0002]

【従来の技術】近年、半導体分野等の高精度加工技術の
進展を可能にしている超精密加工機械の開発が活発とな
っている。このような超精密加工機械に於いては、精度
向上の要求が年々厳しくなり、加工機械の精度の維持さ
らには改善が重要である。加工機械は多くの熱源を持っ
ているので熱変形により加工精度が低下する事はさけが
たく、このために熱膨張係数の小さい低熱膨張材料が光
学関連機器、精密計測機器、制御機器などの分野で多用
されている。いわゆるスーパーインバー合金と呼ばれる
公称組成32%Ni−5%Co−Fe(以下%は重量表
示)合金が使用されている。この32%Ni−5%Co
−Fe合金の平均熱膨張係数は、表1に示されるよう
に、1×10-6/℃以下と極めて小さい。
2. Description of the Related Art In recent years, development of ultra-precision processing machines has become active, which enables progress of high-precision processing technology in the field of semiconductors and the like. In such an ultra-precision machining machine, demands for improvement in precision become stricter year by year, and it is important to maintain and further improve the precision of the machining machine. Since the processing machine has many heat sources, it is unavoidable that the processing accuracy will decrease due to thermal deformation.For this reason, low thermal expansion materials with a small coefficient of thermal expansion are used in optical related equipment, precision measuring equipment, control equipment, etc. Is often used in. A so-called Super Invar alloy having a nominal composition of 32% Ni-5% Co-Fe (hereinafter,% is represented by weight) is used. This 32% Ni-5% Co
As shown in Table 1, the average thermal expansion coefficient of the —Fe alloy is as small as 1 × 10 −6 / ° C. or less.

【0003】[0003]

【表1】 [Table 1]

【0004】さらには、使用環境や輸送経路の多様化に
より寒冷地での、使用や輸送中一時的に低温に晒される
ことによる低温化対応といった低温域での精度上の安定
使用が強く望まれている。前述の32%Ni−5%Co
−Fe合金(スーパーインバー合金)は零度以下の低温
域におかれると、いわゆるγ→マルテンサイト変態を生
じる。そのためこの無拡散変態であるマルテンサイト変
態により著しい膨張が発生し、寸法精度・低熱膨張特性
を劣化させてしまい低温域での使用には問題があった。
Furthermore, stable use with high accuracy in a low temperature region is strongly desired, such as in a cold region due to diversification of use environment and transportation route, to cope with low temperature due to temporary exposure to low temperature during use and transportation. ing. The above 32% Ni-5% Co
The -Fe alloy (Super Invar alloy) undergoes so-called γ → martensite transformation when placed in a low temperature range of zero degrees or lower. Therefore, the non-diffusion transformation, martensite transformation, causes remarkable expansion, which deteriorates dimensional accuracy and low thermal expansion characteristics, and there is a problem in use at low temperatures.

【0005】又インバー合金・スーパーインバー合金は
切削性が悪く、機械加工能率が低いという問題があっ
た。
Further, the Invar alloy and the Super Invar alloy have a problem that they have poor machinability and low machining efficiency.

【0006】一般には、快削鋼については、例えば、
「鉄鋼と合金元素」日本学術振興会製鋼編(1966年
版)に記載されているとおり、低炭素、中炭素鋼、特殊
鋼におけるS,Se,Pb,Pなどの元素の添加が知ら
れている。しかし、本発明におけるような、低熱膨張合
金における場合は、その特性の厳しさから、同時に添加
することによる影響は系統的には知られていない。
Generally, for free-cutting steel, for example,
As described in "Steels and alloying elements", Japan Society for the Promotion of Science, Steelmaking (1966 edition), addition of elements such as S, Se, Pb, and P in low carbon, medium carbon steel, and special steel is known. . However, in the case of the low thermal expansion alloy as in the present invention, due to the strictness of its characteristics, the effect of simultaneous addition is not systematically known.

【0007】そこで、低熱膨張特性、低温安定性と、快
削性を同時に望ましい値に調整した材料の開発が望まれ
ている。
Therefore, it is desired to develop a material in which low thermal expansion characteristics, low temperature stability and free-cutting property are adjusted to desired values at the same time.

【0008】[0008]

【発明が解決しようとする課題】上記の状況に鑑み本発
明は、制御機器用材料に使用されるNi−Co−Fe系
合金材料において、零度以下の低温域でγ→マルテンサ
イト変態を生じさせる事なく低熱膨張係数のものとし
て、安定的に零度以上と同等の扱いを可能とすると同時
に切削性の優れたNi−Co−Fe系合金の提供を目的
としている。
In view of the above situation, the present invention causes the γ → martensite transformation in a Ni—Co—Fe alloy material used as a material for control equipment in a low temperature range of zero degrees or less. The purpose of the present invention is to provide a Ni-Co-Fe-based alloy that has a low coefficient of thermal expansion and can be stably treated at a temperature equal to or higher than zero, and that has excellent machinability at the same time.

【0009】その際、NiとCoの含有量と熱膨張係数
で整理することによって、その最適領域を把握し、さら
には快削性元素として、Sに注目し、その添加と熱膨張
係数の関係から、最適化領域を検討する。これら合金元
素と、熱膨張係数および快削性の全てを最適化した合金
を提供するものである。
At this time, the optimum region is grasped by arranging the contents of Ni and Co and the coefficient of thermal expansion, and further attention is paid to S as a free-cutting element, and the relation between the addition and the coefficient of thermal expansion. Therefore, the optimization area is examined. It is intended to provide an alloy in which all of these alloy elements, thermal expansion coefficient and free-cutting property are optimized.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め本発明の要旨とするところは次のとおりである。
Means for Solving the Problems The gist of the present invention for solving the above problems is as follows.

【0011】(1)重量%で、C:0.05%以下、S
i:0.35%以下、Mn:0.35%以下、P:0.
01%以下、S:0.015〜0.030%、Ni:3
0.0〜35.0%、Co:2.0〜6.5%を含有
し、残部がFe及び不可避不純物からなり、Ni,Co
及びS含有量を図1および2に示される関係の点A1
2 ,E1 ,E2 ,F1 ,F2 ,J1 ,J2 で囲まれた
領域I内になるように調整し、−20℃以上の温度域で
マルテンサイト変態を生じないことを特徴とする切削性
の優れた低温安定型低熱膨張合金である。尚全ての境界
線分上を範囲として含めるものである。
(1) C: 0.05% or less by weight%, S
i: 0.35% or less, Mn: 0.35% or less, P: 0.
01% or less, S: 0.015 to 0.030%, Ni: 3
0.0 to 35.0%, Co: 2.0 to 6.5%, the balance consisting of Fe and unavoidable impurities, Ni, Co
And S content by the point A 1 of the relationship shown in FIGS.
A 2, E 1, E 2 , F 1, F 2, J 1, adjusted to within a region surrounded by I in J 2, that no martensitic transformation at a temperature range of not lower than -20 ° C. It is a low temperature stable low thermal expansion alloy with excellent machinability. It should be noted that all boundary line segments are included as a range.

【0012】(2)(1)の化学成分の合金において、
Ni,Co及びS含有量を図1および2に示される関係
の点B1 ,B2 ,E1 ,E2 ,F1 ,F2 ,I1 ,I2
で囲まれた領域II内になるように調整し、−40℃以上
の温度域でマルテンサイト変態を生じないことを特徴と
する切削性の優れた低温安定型低熱膨張合金。
(2) In the alloy having the chemical composition of (1),
The Ni, Co and S contents are represented by points B 1 , B 2 , E 1 , E 2 , F 1 , F 2 , I 1 , I 2 of the relationships shown in FIGS.
A low temperature stable low thermal expansion alloy with excellent machinability, characterized in that it is adjusted to fall within a region II surrounded by, and does not cause martensitic transformation in a temperature range of -40 ° C or higher.

【0013】(3)(1)の化学成分の合金において、
Ni,Co及びS含有量を図1および2に示される関係
の点C1 ,C2 ,E1 ,E2 ,F1 ,F2 ,H1 ,H2
で囲まれた領域III 内になるように調整し、−60℃以
上の温度域でマルテンサイト変態を生じないことを特徴
とする切削性の優れた低温安定型低熱膨張合金。
(3) In the alloy having the chemical composition of (1),
The Ni, Co and S contents are represented by points C 1 , C 2 , E 1 , E 2 , F 1 , F 2 , H 1 and H 2 of the relationships shown in FIGS.
A low temperature stable low thermal expansion alloy having excellent machinability, which is characterized in that it is adjusted to fall within a region III surrounded by and does not cause martensitic transformation in a temperature range of -60 ° C or higher.

【0014】(4)(1)の化学成分の合金において、
Ni,Co及びS含有量を図1および2に示される関係
の点D1 ,D2 ,E1 ,E2 ,F1 ,F2 ,G1 ,G2
で囲まれた領域IV内になるように調整し、−80℃以上
の温度域でマルテンサイト変態を生じないことを特徴と
する切削性の優れた低温安定型低熱膨張合金。
(4) In the alloy having the chemical composition of (1),
The Ni, Co and S contents are represented by points D 1 , D 2 , E 1 , E 2 , F 1 , F 2 , G 1 , G 2 in the relationship shown in FIGS.
A low temperature stable low thermal expansion alloy with excellent machinability, which is adjusted so as to be in a region IV surrounded by and does not cause martensitic transformation in a temperature range of -80 ° C or higher.

【0015】[0015]

【発明の実施の形態】本発明合金の特徴は、熱膨張係数
を低温域まで低位に安定させるもので、これは、半導体
機器等への使用時の精度劣化を防止するものである。ま
た、これら機器においては高精度加工が通常なされる
が、この時の機械切削性をも向上させ、快削性を有する
ことである。
BEST MODE FOR CARRYING OUT THE INVENTION The alloy of the present invention is characterized in that the coefficient of thermal expansion is stabilized at a low level even in a low temperature range, which prevents deterioration of accuracy when used in semiconductor devices and the like. In addition, high precision machining is usually performed in these machines, but it is also necessary to improve the machine cutting property at this time and to have free cutting property.

【0016】前記のように、低熱膨張合金が低温に晒さ
れる場合、その温度域としては、0℃、−20℃、−4
0℃、さらにはもっと低温域の−80℃等、様々な温度
域がある。
As described above, when the low thermal expansion alloy is exposed to a low temperature, its temperature range is 0 ° C, -20 ° C, -4
There are various temperature ranges, such as 0 ° C and -80 ° C, which is a lower temperature range.

【0017】このような低温域に晒されると、いわゆる
スーパーインバー合金(通常、32Ni−5Co−Fe
合金)はγ(オーステナイト)→マルテンサイト変態を
生じるという問題がある。
When exposed to such a low temperature range, a so-called super Invar alloy (usually 32Ni-5Co-Fe) is used.
Alloy) has a problem that γ (austenite) → martensite transformation occurs.

【0018】一方、切削性を向上させるためにS,P
b,P,Se等の元素を単独又は複合添加する事が従来
行われている。
On the other hand, in order to improve the machinability, S, P
Conventionally, elements such as b, P and Se are added individually or in combination.

【0019】本発明者等は切削性を向上させるために所
定のSを添加したNi−Co−S−Fe系合金に於い
て、上記のγ→マルテンサイト変態温度がNi−Co成
分量に依存する事、且つその熱膨張係数が<1.0×1
-6/℃と低く安定した値の得られる事を見出した。図
3に示す如く、所定のSを添加したNi−Co−S−F
e系合金に於いてγ→マルテンサイト変態点は(%C
o)+2.8(%Ni)量に依存する。
The inventors of the present invention have found that in a Ni-Co-S-Fe system alloy in which a predetermined amount of S is added in order to improve the machinability, the above γ → martensite transformation temperature depends on the amount of Ni-Co component. And the coefficient of thermal expansion is <1.0 × 1
It was found that a stable value as low as 0 -6 / ° C can be obtained. As shown in FIG. 3, Ni-Co-S-F added with a predetermined amount of S
In the e-based alloy, the γ → martensite transformation point is (% C
o) +2.8 (% Ni) amount.

【0020】図3では、横軸に{(%Co)+2.8
(%Ni)}、縦軸に使用温度をプロットし、後述の実
施例のための一連の試験サンプルについてのテスト結果
を示す。試験温度を−20℃〜−80℃として、サンプ
ル毎のS含有量とともにマルテンサイト相の有無を組織
安定性として示している。
In FIG. 3, {(% Co) +2.8 is plotted on the horizontal axis.
(% Ni)}, the operating temperature is plotted on the vertical axis, and the test results for a series of test samples for the examples described below are shown. With the test temperature set to -20 ° C to -80 ° C, the presence or absence of the martensite phase is shown as the structural stability together with the S content of each sample.

【0021】この図から、−20℃の場合、(%Co)
+2.8(%Ni)≧93を満足する範囲がγ→マルテ
ンサイト変態を生じさせない安定域であることがわか
る。
From this figure, in the case of -20 ° C, (% Co)
It can be seen that the range satisfying +2.8 (% Ni) ≧ 93 is the stable range in which the γ → martensite transformation does not occur.

【0022】同様に、−40℃の場合、(%Co)+
2.8(%Ni)≧95.5の範囲がγ→マルテンサイ
ト変態を生じさせない安定域であって、−60℃の場
合、(%Co)+2.8(%Ni)≧96.0の範囲が
γ→マルテンサイト変態を生じさせない安定域である。
Similarly, at −40 ° C., (% Co) +
The range of 2.8 (% Ni) ≧ 95.5 is a stable region where γ → martensite transformation does not occur, and in the case of −60 ° C., (% Co) +2.8 (% Ni) ≧ 96.0. The range is a stable range where the γ → martensitic transformation does not occur.

【0023】さらに低温の−80℃の場合、%Co+
2.8(%Ni)≧96.5の成分域がγ→マルテンサ
イト変態を生じさせない安定域であることがわかる。
At a lower temperature of -80 ° C.,% Co +
It can be seen that the component region of 2.8 (% Ni) ≧ 96.5 is the stable region where the γ → martensite transformation does not occur.

【0024】又切削性を向上させるためにSを添加した
場合、図5に示される如く、(図5は“Phisics
and application of Invor
alloys”(丸善発行、1978))C等の添加
によってFe−Ni系の熱膨張係数の増分 (Δα)は
増加していくことが報告されており、S自体も図5に示
される元素と類似の元素であることから、熱膨張係数の
増加が危惧される。本発明においても、最重要特性であ
る熱膨張係数の増加が予測されるが、同一試験群の図4
に示す如く(図4は後述の実施例の表2および表3の結
果から、S値と熱膨張係数データをヒストグラムで示し
たものである。)、本発明範囲のSを添加すれば熱膨張
係数は1.0×10-6/℃以下の良好なレベル値が得ら
れる事がわかる。
When S is added to improve the machinability, as shown in FIG. 5, (FIG. 5 shows "Physics").
and application of Invor
alloys ”(published by Maruzen, 1978)) It has been reported that the increase in the thermal expansion coefficient (Δα) of the Fe—Ni system increases with the addition of C and the like, and S itself is similar to the element shown in FIG. In the present invention, an increase in the coefficient of thermal expansion, which is the most important characteristic, is expected, but there is a risk that the coefficient of thermal expansion may increase.
As shown in FIG. 4 (FIG. 4 is a histogram showing the S value and the thermal expansion coefficient data based on the results of Tables 2 and 3 of the examples described later), the thermal expansion can be achieved by adding S in the range of the present invention. It can be seen that the coefficient has a good level value of 1.0 × 10 −6 / ° C. or less.

【0025】このように切削性を向上させるために所定
のSを添加したNi−Co−S−Fe系合金に於いて、
使用される低温温度域に対応して、加工時の機械加工に
よる被削性を確保しながら、かつ低温でのマルテンサイ
ト変態を防止可能となる範囲内で、Ni−Coを選択し
うる事且つ安定した低い熱膨張係数が得られる事を見出
し本発明を達成した。
As described above, in the Ni-Co-S-Fe system alloy to which the predetermined S is added to improve the machinability,
Corresponding to the low temperature range to be used, Ni-Co can be selected within a range in which machinability during machining during machining is secured and martensitic transformation at low temperatures can be prevented. The present invention has been achieved by finding that a stable low thermal expansion coefficient can be obtained.

【0026】本発明における化学成分の限定理由につい
て説明する。 C:0.05重量%以下 C量が多くなると、熱膨張係数が高くなるので、上限を
0.05重量%とする。この領域では、炭化物の形成も
同時に抑えられる。 Si:0.35重量%以下 Siは脱酸元素として有効であるが、熱膨張係数が高く
なるので上限を0.035重量%とする。この領域では
鋳造性も確保される。 Mn:0.35重量%以下 MnはSiとともに脱酸元素として存在するが、多くな
ると、熱膨張係数が高くなるので上限を0.035重量
%とする。 P:0.01重量%以下 Pは不可避的に含まれる不純物であり、偏析し易く脆性
を促進するので、上限を0.01重量%とする。 S及びNi,Co: 本発明の主要元素であって、Sは切削性を向上させる元
素であり0.015重量%以上添加する。しかし、Ni
−Co−S−Fe系合金に於いて0.05重量%以下で
は脆性は表われないが、多量に添加すると、熱膨張係数
が高くなるのでより好ましくなく、上限を0.030重
量%とする。
The reasons for limiting the chemical components in the present invention will be described. C: 0.05% by weight or less If the amount of C increases, the coefficient of thermal expansion increases, so the upper limit is made 0.05% by weight. In this region, formation of carbide is also suppressed at the same time. Si: 0.35 wt% or less Si is effective as a deoxidizing element, but the thermal expansion coefficient becomes high, so the upper limit is made 0.035 wt%. Castability is also secured in this region. Mn: 0.35 wt% or less Mn is present as a deoxidizing element together with Si, but if the amount of Mn increases, the coefficient of thermal expansion increases, so the upper limit is made 0.035 wt%. P: 0.01 wt% or less P is an unavoidable impurity and easily segregates to promote brittleness, so the upper limit is made 0.01 wt%. S and Ni, Co: A main element of the present invention, S is an element that improves machinability and is added in an amount of 0.015% by weight or more. However, Ni
In the -Co-S-Fe based alloy, if it is less than 0.05% by weight, brittleness does not appear, but if added in a large amount, it is not preferable because the coefficient of thermal expansion becomes high, so the upper limit is made 0.030% by weight. .

【0027】このように切削性を向上させるためにSを
添加したNi−Co−S−Fe系合金を安定して低温域
に於いて使用するためには、その使用温度域に対応し、
図1の様にNi,Co成分範囲を選択してγ→マルテン
サイト変態を生じさせないで且つその熱膨張係数を低く
安定させる事が重要である。
As described above, in order to stably use the Ni-Co-S-Fe alloy containing S to improve the machinability in a low temperature range, the Ni-Co-S-Fe alloy should be used in a corresponding temperature range.
It is important to select the Ni and Co component ranges as shown in FIG. 1 so as not to cause the γ → martensite transformation and to stabilize the coefficient of thermal expansion at a low level.

【0028】従って、現状で考えられる厳しい条件とし
て低温域−80℃対応の場合、図1および2に示す領域
IV(D1 (90.0,6.5,0.015),D2 (9
0.0,6.5,0.030),E1 (93.0,6.
5,0.015),E2 (93.0,6.5,0.03
0),F1 (97.5,2.0,0.015),F
2(97.5,2.0,0.030),G1 (94.
5,2.0,0.015),G2 (94.5,2.0,
0.030))が対応最適範囲である。
Therefore, in the case where the low temperature range of -80.degree.
IV (D 1 (90.0, 6.5, 0.015), D 2 (9
0.0, 6.5, 0.030), E 1 (93.0, 6.
5, 0.015), E 2 (93.0, 6.5, 0.03)
0), F 1 (97.5, 2.0, 0.015), F
2 (97.5, 2.0, 0.030), G 1 (94.
5, 2.0, 0.015), G 2 (94.5, 2.0,
0.030)) is the corresponding optimum range.

【0029】又それよりは緩慢な範囲として、低温域−
60℃対応の場合、図1および2に示す領域III(C1
(89.5,6.5,0.015),C2 (89.5,
6.5,0.030),E1 (93.0,6.5,0.
015),E2 (93.0,6.5,0.030),F
1 (97.5,2.0,0.015),F2 (97.
5,2.0,0.030),H1 (94.0,2.0,
0.015),H2 (94.0,2.0,0.03
0))が対応最適範囲である。
Further, as a slower range, a low temperature range-
In the case of 60 ° C, the region III (C 1
(89.5, 6.5, 0.015), C 2 (89.5,
6.5, 0.030), E 1 (93.0, 6.5, 0.
015), E 2 (93.0, 6.5, 0.030), F
1 (97.5, 2.0, 0.015), F 2 (97.
5, 2.0, 0.030), H 1 (94.0, 2.0,
0.015), H 2 (94.0, 2.0, 0.03)
0)) is the corresponding optimum range.

【0030】又低温域−40℃対応の場合、図1および
2に示す領域II(B1 (89.0,6.5,0.01
5),B2 (89.0,6.5,0.030),E1
(93.0,6.5,0.015),E2 (93.0,
6.5,0.030),F1 (97.5,2.0,0.
015),F2 (97.5,2.0,0.030),I
1(93.5,2.0,0.015),I2 (93.
5,2.0,0.030))が対応最適範囲である。
In the case of the low temperature region of -40 ° C., the region II (B 1 (89.0, 6.5, 0.01) shown in FIGS.
5), B 2 (89.0, 6.5, 0.030), E 1
(93.0, 6.5, 0.015), E 2 (93.0,
6.5, 0.030), F 1 (97.5, 2.0, 0.
015), F 2 (97.5, 2.0, 0.030), I
1 (93.5, 2.0, 0.015), I 2 (93.
5, 2.0, 0.030)) is the corresponding optimum range.

【0031】又低温域−20℃対応の場合、図1および
2に示す領域I(A1 (86.5,6.5,0.01
5),A2 (86.5,6.5,0.030),E1
(93.0,6.5,0.015),E2 (93.0,
6.5,0.030),F1 (97.5,2.0,0.
015),F2 (97.5,2.0,0.030),J
1(91.0,2.0,0.015),J2 (91.
0,2.0,0.030))が対応最適範囲である。
In the case of the low temperature range of -20 ° C., the region I (A 1 (86.5, 6.5, 0.01) shown in FIGS. 1 and 2 is used.
5), A 2 (86.5, 6.5, 0.030), E 1
(93.0, 6.5, 0.015), E 2 (93.0,
6.5, 0.030), F 1 (97.5, 2.0, 0.
015), F 2 (97.5, 2.0, 0.030), J
1 (91.0, 2.0, 0.015), J 2 (91.
0, 2.0, 0.030)) is the corresponding optimum range.

【0032】[0032]

【実施例】以下に、本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0033】本実施例に使用したサンプルは、表2およ
び表3に示されるように、本発明材として、サンプルN
o.1〜19、比較材としてNo.20〜24を使用し
た。各サンプルを上述の各温度域において、サブゼロ処
理(各温度にて、2時間保持)した後、熱膨張係数の測
定並びに組織観察により、マルテンサイト発生状況のチ
ェックを行った。尚、熱膨張係数の測定は、(株)マッ
クサイエンス社製の水平差動検出式熱膨張計を使用し
た。また、表2および表3の組織観察結果で、“無し”
と評価されるものでは、全オーステナイト相であり、
“有り”と判断されたものでは、マルテンサイト相の存
在が認められたものである。
As shown in Tables 2 and 3, the samples used in this example are sample N as the material of the present invention.
o. 1 to 19, No. 1 as a comparative material. 20-24 were used. Each sample was subjected to sub-zero treatment (holding at each temperature for 2 hours) in each temperature range described above, and then the martensite generation state was checked by measuring the thermal expansion coefficient and observing the structure. The thermal expansion coefficient was measured using a horizontal differential detection type thermal expansion meter manufactured by Mac Science Co., Ltd. In addition, in the results of the structure observations in Tables 2 and 3, "none"
In what is evaluated as, it is all austenite phase,
The presence of the martensite phase was recognized in the case of being judged as “present”.

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【表3】 [Table 3]

【0036】本発明による快削性に富む低温安定型低熱
膨張合金は表2および表3の備考欄に示すように、図1
の各領域に含まれることを確認できた。この表から本発
明のSを添加したNi−Co−S−Fe系合金に於いて
所定の低温域に晒されてもγ→マルテンサイト変態を生
じないで、且つ室温〜100℃の熱膨張係数も1.0×
10-6/℃以下で従来のスーパーインバー合金と同等の
値が得られている。
As shown in the remarks column of Tables 2 and 3, the low temperature stable low thermal expansion alloys having excellent free-cutting property according to the present invention are shown in FIG.
Was confirmed to be included in each area. From this table, the S-added Ni-Co-S-Fe alloy according to the present invention does not undergo γ → martensite transformation even when exposed to a predetermined low temperature range, and has a thermal expansion coefficient from room temperature to 100 ° C. Also 1.0 ×
A value equivalent to that of the conventional Super Invar alloy is obtained at 10 −6 / ° C. or less.

【0037】又本発明による快削低温安定型低熱膨張合
金の切削性を次のように評価した。2.6mmφ高速度
鋼ドリルを用い表4に示す加工条件で穿孔加工試験を行
い、切削抵抗を測定する事によりZ方向およびX方向に
ついての切削性指数として評価した。その結果を表5に
示す。例えば、本発明材試料No.2はZ方向切削性指
数88.9、X方向切削性指数81.3であり、比較材
No.20の100に対して、19.7%軽減されてお
り、本発明材は比較材にくらべて切削性が向上している
事がわかる。
The machinability of the free-cutting low temperature stable low thermal expansion alloy according to the present invention was evaluated as follows. A 2.6 mmφ high speed steel drill was used to perform a drilling test under the processing conditions shown in Table 4, and the cutting resistance was measured to evaluate the machinability index in the Z direction and the X direction. The results are shown in Table 5. For example, the present invention sample No. No. 2 has a Z-direction machinability index of 88.9 and an X-direction machinability index of 81.3. It was reduced by 19.7% with respect to 100 of 20, indicating that the material of the present invention has improved machinability as compared with the comparative material.

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【発明の効果】本発明によればNi−Co−Fe系低熱
膨張合金の切削性を向上させる事が出来、能率をそこな
う事なく機械加工する事が可能となる。且つ本合金が寒
冷地を輸送されたり、低温域で使用されても、γ→マル
テンサイト変態を生じる事なく安定して使用する事が可
能となり、従来のスーパーインバー合金と同等の低い熱
膨張係数を得る事が出来る。
According to the present invention, it is possible to improve the machinability of the Ni-Co-Fe-based low thermal expansion alloy and to machine it without impairing the efficiency. Moreover, even if this alloy is transported in cold regions or used in low temperature regions, it can be used stably without causing γ → martensitic transformation, and has a low coefficient of thermal expansion equivalent to that of conventional Super Invar alloys. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るNi,Co,Sの成分調整領域を
示す図である。
FIG. 1 is a diagram showing Ni, Co, and S component adjustment regions according to the present invention.

【図2】図1における、各点の成分値を示す図である。FIG. 2 is a diagram showing component values at respective points in FIG.

【図3】本発明に係る成分によるマルテンサイト変態挙
動を示す図である。
FIG. 3 is a diagram showing martensitic transformation behavior due to the components according to the present invention.

【図4】本発明材と比較材のSと熱膨張係数を示す図で
ある。
FIG. 4 is a diagram showing S and a coefficient of thermal expansion of a material of the present invention and a comparative material.

【図5】公知資料による各化学成分と熱膨張係数の増加
状況を示す図である。
FIG. 5 is a diagram showing an increase state of each chemical component and a thermal expansion coefficient according to a known material.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.05%以下、Si:
0.35%以下、Mn:0.35%以下、P:0.01
%以下、S:0.015〜0.030%、Ni:30.
0〜35.0%、Co:2.0〜6.5%を含有し、残
部がFe及び不可避不純物からなり、Ni,Co及びS
含有量を図1および2に示される関係の点A1 ,A2
1 ,E2 ,F1 ,F2 ,J1 ,J2 で囲まれた領域I
内になるように調整し、−20℃以上の温度域でマルテ
ンサイト変態を生じないことを特徴とする切削性の優れ
た低温安定型低熱膨張合金。
1. By weight%, C: 0.05% or less, Si:
0.35% or less, Mn: 0.35% or less, P: 0.01
% Or less, S: 0.015 to 0.030%, Ni: 30.
0 to 35.0%, Co: 2.0 to 6.5%, the balance consisting of Fe and unavoidable impurities, Ni, Co and S
The contents are represented by points A 1 , A 2 ,
Region I surrounded by E 1 , E 2 , F 1 , F 2 , J 1 , J 2.
A low temperature stable low thermal expansion alloy with excellent machinability, characterized in that it is adjusted so that it does not cause martensitic transformation in the temperature range of -20 ° C or higher.
【請求項2】 請求項1の化学成分の合金において、N
i,Co及びS含有量を図1および2に示される関係の
点B1 ,B2 ,E1 ,E2 ,F1 ,F2 ,I 1 ,I2
囲まれた領域II内になるように調整し、−40℃以上の
温度域でマルテンサイト変態を生じないことを特徴とす
る切削性の優れた低温安定型低熱膨張合金。
2. The alloy of chemical composition according to claim 1, wherein N
The i, Co and S contents of the relationship shown in FIGS.
Point B1 , B2 , E1 , E2 , F1 , F2 , I 1 , I2 so
Adjust so that it is within the enclosed area II,
Characterized by no occurrence of martensitic transformation in the temperature range
Low temperature stable low thermal expansion alloy with excellent machinability.
【請求項3】 請求項1の化学成分の合金において、N
i,Co及びS含有量を図1および2に示される関係の
点C1 ,C2 ,E1 ,E2 ,F1 ,F2 ,H 1 ,H2
囲まれた領域III 内になるように調整し、−60℃以上
の温度域でマルテンサイト変態を生じないことを特徴と
する切削性の優れた低温安定型低熱膨張合金。
3. The alloy of chemical composition according to claim 1, wherein N
The i, Co and S contents of the relationship shown in FIGS.
Point C1 , C2 , E1 , E2 , F1 , F2 , H 1 , H2 so
Adjust so that it is within the enclosed area III, -60 ℃ or more
Is characterized in that martensitic transformation does not occur in the temperature range of
Low temperature stable low thermal expansion alloy with excellent machinability.
【請求項4】 請求項1の化学成分の合金において、N
i,Co及びS含有量を図1および2に示される関係の
点D1 ,D2 ,E1 ,E2 ,F1 ,F2 ,G 1 ,G2
囲まれた領域IV内になるように調整し、−80℃以上の
温度域でマルテンサイト変態を生じないことを特徴とす
る切削性の優れた低温安定型低熱膨張合金。
4. The alloy of chemical composition according to claim 1, wherein N
The i, Co and S contents of the relationship shown in FIGS.
Point D1 , D2 , E1 , E2 , F1 , F2 , G 1 , G2 so
Adjust so that it is within the enclosed area IV, and -80 ℃ or higher
Characterized by no occurrence of martensitic transformation in the temperature range
Low temperature stable low thermal expansion alloy with excellent machinability.
JP2002028433A 2001-11-22 2002-02-05 Low-temperature stable alloy with low thermal expansion and high free-cutting property Pending JP2003221650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002028433A JP2003221650A (en) 2001-11-22 2002-02-05 Low-temperature stable alloy with low thermal expansion and high free-cutting property

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001-358016 2001-11-22
JP2001358016 2001-11-22
JP2002028433A JP2003221650A (en) 2001-11-22 2002-02-05 Low-temperature stable alloy with low thermal expansion and high free-cutting property

Publications (1)

Publication Number Publication Date
JP2003221650A true JP2003221650A (en) 2003-08-08

Family

ID=27759227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002028433A Pending JP2003221650A (en) 2001-11-22 2002-02-05 Low-temperature stable alloy with low thermal expansion and high free-cutting property

Country Status (1)

Country Link
JP (1) JP2003221650A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287117A (en) * 2008-04-28 2009-12-10 Canon Inc Alloy and method for producing alloy
JP2011174854A (en) * 2010-02-25 2011-09-08 Japan Aviation Electronics Industry Ltd Precision apparatus
CN105296846A (en) * 2014-07-02 2016-02-03 新报国制铁株式会社 Low thermal expansion cast steel product and manufacture method thereof
WO2019044721A1 (en) * 2017-09-01 2019-03-07 新報国製鉄株式会社 Low thermal expansion alloy
TWI655300B (en) * 2014-07-02 2019-04-01 日商新報國製鐵股份有限公司 High rigidity low thermal expansion casting and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287117A (en) * 2008-04-28 2009-12-10 Canon Inc Alloy and method for producing alloy
JP2011174854A (en) * 2010-02-25 2011-09-08 Japan Aviation Electronics Industry Ltd Precision apparatus
CN105296846A (en) * 2014-07-02 2016-02-03 新报国制铁株式会社 Low thermal expansion cast steel product and manufacture method thereof
TWI655300B (en) * 2014-07-02 2019-04-01 日商新報國製鐵股份有限公司 High rigidity low thermal expansion casting and manufacturing method thereof
TWI655301B (en) * 2014-07-02 2019-04-01 日商新報國製鐵股份有限公司 Low thermal expansion cast steel and manufacturing method thereof
WO2019044721A1 (en) * 2017-09-01 2019-03-07 新報国製鉄株式会社 Low thermal expansion alloy
JPWO2019044721A1 (en) * 2017-09-01 2019-11-07 新報国製鉄株式会社 Low thermal expansion alloy
US11371123B2 (en) 2017-09-01 2022-06-28 Shinhokoku Material Corp. Low thermal expansion alloy

Similar Documents

Publication Publication Date Title
JP5526809B2 (en) High corrosion resistance, high strength, non-magnetic stainless steel and high corrosion resistance, high strength, non magnetic stainless steel products and methods for producing the same
JPS6152351A (en) Structural austenitic stainless steel having superior yield strength and toughness at very low temperature
JP5162954B2 (en) High-strength nonmagnetic stainless steel, high-strength nonmagnetic stainless steel parts, and method for manufacturing the same
US6913655B2 (en) Niobium-silicide based composities resistant to high temperature oxidation
JP4305137B2 (en) Ferritic free-cutting stainless steel with excellent surface finish roughness and outgas resistance
US6419765B1 (en) Niobium-silicide based composites resistant to low temperature pesting
JP2005023353A (en) Austenitic stainless steel for high temperature water environment
JP2003221650A (en) Low-temperature stable alloy with low thermal expansion and high free-cutting property
JP2006249457A (en) Bn free-cutting steel
JPH11140597A (en) Electronic equipment parts made of ferritic free cutting stainless steel
US20010023717A1 (en) Stainless spheroidal carbide cast iron
JP3304001B2 (en) Austenitic stainless steel excellent in pitting corrosion resistance and method for producing the same
EP3305463A1 (en) Welded metal and welded structure
JP2658210B2 (en) Heat treatment method of martensitic stainless steel
JP2001011580A (en) LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY
Lee A new electrochemical potentiokinetic reactivation test for determining degree of sensitization in ferritic stainless steels
EP0037446B1 (en) Austenitic iron base alloy
JP2008174789A (en) High nitrogen austenitic stainless steel
JP3388998B2 (en) High strength austenitic heat-resistant steel with excellent weldability
JP4106778B2 (en) Machining method of free-cutting ferritic stainless steel and stainless steel parts with excellent outgas resistance and corrosion resistance
JP2009256765A (en) Nonmagnetic austenitic stainless steel, shaft or motor, and motor
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
Abe et al. Growth kinetics and morphology of grain boundary ferrite allotriomorphs in an Fe-CV alloy
JPH10310845A (en) High strength low thermal expansion alloy
JPS613872A (en) Free-cutting austenitic stainless steel having excellent drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20041202

Free format text: JAPANESE INTERMEDIATE CODE: A621

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041210

A977 Report on retrieval

Effective date: 20050829

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050906

A02 Decision of refusal

Effective date: 20060110

Free format text: JAPANESE INTERMEDIATE CODE: A02