JPS613872A - Free-cutting austenitic stainless steel having excellent drawability - Google Patents

Free-cutting austenitic stainless steel having excellent drawability

Info

Publication number
JPS613872A
JPS613872A JP12411884A JP12411884A JPS613872A JP S613872 A JPS613872 A JP S613872A JP 12411884 A JP12411884 A JP 12411884A JP 12411884 A JP12411884 A JP 12411884A JP S613872 A JPS613872 A JP S613872A
Authority
JP
Japan
Prior art keywords
austenitic stainless
free
stainless steel
steel
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12411884A
Other languages
Japanese (ja)
Other versions
JPH0425344B2 (en
Inventor
Miharu Takeuchi
竹内 美治
Yoshinobu Motokura
義信 本蔵
Keisuke Ageo
上尾 敬輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP12411884A priority Critical patent/JPS613872A/en
Publication of JPS613872A publication Critical patent/JPS613872A/en
Publication of JPH0425344B2 publication Critical patent/JPH0425344B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To prevent cracking of an S-contg. free-cutting austenitic stainless steel during drawing by decreasing the content of C and N in said steel and controlling the total content of Ni and Cu to a specific value. CONSTITUTION:The total content of C and N as the component to affect drawing crackability of the S-contg. free-cutting austenitic stainless steel contg., by weight %, <0.05% C, <1.00% Si, <2.00% Mn, 8-11% Ni, 17-19% Cr, 0.20-0.40% S, <0.04% N, 0.25-1.00% Cu or further 0.1-0.6% Mo is controlled to <=0.07% and the Cu which decreases work hardenability by the synergistic effect with Ni is incorporated therein at >=9.50% in terms of Ni+2Cu. The generation of a drawing crack in the austenitic stainless steel provided with the excellent free-cutting property by the addition of S is decreased by adjusting the content of the above-mentioned impurities and additive elements.

Description

【発明の詳細な説明】 本発明は引抜加工性の優れた快削オーステナイト系ステ
ンレス網間こ関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a free-cutting austenitic stainless steel mesh having excellent drawing workability.

オーステナイト系ステンレス鋼は耐食性、耐熱    
Austenitic stainless steel is corrosion resistant and heat resistant
.

性等に優れているため構造用部材や機械部品として広範
な分野で使用されている。
Because of its excellent properties, it is used in a wide range of fields as structural members and mechanical parts.

そして、ボルト、ナツト、ねじ、シャフト、ピン等の機
械部品は引抜加工によって所定の形状にした後、多くは
切削加工によって製品に仕上げられており、一部用途に
おいて切削工程の生産性を向上させるため、S、 Se
、 Pbなどの快削元素を含有させた快削オーステナイ
ト系ステンレス鋼が使用されている。
Machine parts such as bolts, nuts, screws, shafts, and pins are drawn into the specified shape and then finished into products by cutting, which improves the productivity of the cutting process in some applications. Because, S, Se
Free-cutting austenitic stainless steel containing free-cutting elements such as Pb is used.

しかし、代表的な快削オーステナイト系ステンレス鋼で
ある5US303のように0.20%程度ものSを含有
させた鋼においては、圧延方向に展延した硫化物が冷間
加工時に割れの起点となり易く、冷間加工41を大幅に
低下させるという問題を有している。
However, in steels containing about 0.20% S, such as 5US303, which is a typical free-cutting austenitic stainless steel, sulfides spread in the rolling direction tend to become starting points for cracks during cold working. , has the problem of significantly reducing cold working 41.

したがって、従来冷間加工割れの発生を防止するため切
削性を犠牲にし、Sけを0.05〜0.20%まで低下
させた快削オーステナイト系ステンレス鋼が使用されて
いる。
Therefore, in order to prevent the occurrence of cold working cracks, free-cutting austenitic stainless steels have been used in which the machinability is sacrificed and the S spacing is reduced to 0.05 to 0.20%.

また、一方オーステナイト系ステンレス鋼は冷間加工に
よってマルテンサイトが生成し、加工硬化し易い鋼であ
る。
On the other hand, austenitic stainless steel is a steel that generates martensite during cold working and is easily work hardened.

この傾向はオーステナイト系ステンレス鋼でもNi、、
Cr量が少なく、オーステナイト安定度の低いものほど
大きく、加工硬化によって冷間加工割れが発生している
This tendency also applies to austenitic stainless steels.
The smaller the Cr content and the lower the austenite stability, the greater the cold work cracking caused by work hardening.

特に、引抜加工のように表面層の変形量が大きい場合に
おいては表面層のみが大きく加工硬化し、内部との間で
硬さに大きな差が生じ、かつ表面層に大きな残留応力が
存在することによって、引抜加工割れが発生し易い。
In particular, when the amount of deformation of the surface layer is large, such as during drawing, only the surface layer undergoes significant work hardening, resulting in a large difference in hardness between it and the inside, and large residual stress exists in the surface layer. Therefore, cracks during drawing process are likely to occur.

このように、従来S快削オーステナイト系ステンレス鋼
はS量を減少させ被削性を犠牲にするとともにオーステ
ナイト系ステンレス鋼自体の有する加工硬化性によって
引抜加工割れが発生ずるなど快削性、引抜加工性ともに
満足し得るものでなかった。
In this way, conventional S free-cutting austenitic stainless steels reduce the amount of S, sacrificing machinability, and the work hardening properties of austenitic stainless steels themselves cause drawing cracks, resulting in poor machinability and poor machinability. I was not satisfied with either sex.

本発明は従来鋼のかかる欠点を解消した、優れた引抜加
工性を有する安価な快削オーステナイト系ステンレス鋼
を得ることを目的としたものである。
The object of the present invention is to obtain an inexpensive free-cutting austenitic stainless steel having excellent drawing workability and eliminating the drawbacks of conventional steels.

本発明者等はS含有オーステナイト系ステンレス鋼の引
抜加工割れに及ぼすC+Nと、Ni+ 2 Cuの影響
、C+Nと、Ni+ 2 Cuの相互関係、さらにCr
、、Ni、 Mn、 C,N、 Cu等のバランスにつ
いて鋭怠研究を重ねた結果、本発明鋼の開発に成功した
ものである。
The present inventors investigated the influence of C+N and Ni+ 2 Cu on the drawing cracking of S-containing austenitic stainless steel, the interaction between C+N and Ni+ 2 Cu, and the
As a result of extensive research into the balance of Ni, Mn, C, N, Cu, etc., we succeeded in developing the steel of the present invention.

すなわち、0.30 Si −1,6Mn −18Cr
 −0,25S 鋼においてC+Nを0〜0.15%、
Ni+2C:uを8.0〜12゜0%と変動させた供試
[6ごついて調査し、引抜加工割れに対して最適C+N
量とNi+ 2 Cu量を見出したものである。第1図
より明らかなようにC十N量が減少するとともにNi+
2cU量が増加するにつれて引抜加工割れ発生率が減少
している。すなわち、C+N量が0.07%以下で、か
つNi4−2Cu量が9.50%以上においては引抜加
工割れは発生していないものである。
That is, 0.30 Si -1,6Mn -18Cr
-0,25S steel with 0 to 0.15% C+N,
Ni+2C: Tests were conducted with u varying from 8.0 to 12°0%.
The amount and the amount of Ni+ 2 Cu were found. As is clear from Figure 1, as the amount of C0N decreases, Ni+
As the amount of 2cU increases, the incidence of drawing cracks decreases. That is, when the amount of C+N is 0.07% or less and the amount of Ni4-2Cu is 9.50% or more, no drawing cracks occur.

これは、C+Nlの減少による加工硬化能の低下と、N
i−1−2Cu量の増加によるオーステナイト相の安定
化によって、引抜加工によってマルテンサイトが生成す
るのを抑制し、引抜加工割れの発生を防止したものであ
る。
This is due to a decrease in work hardenability due to a decrease in C+Nl and a decrease in Nl.
By stabilizing the austenite phase by increasing the amount of i-1-2Cu, the formation of martensite during drawing was suppressed, and the occurrence of drawing cracks was prevented.

そして第1図より引抜加工割れを防止するにa・要なN
i+Cuの最小含有量を見出すことによって安価に快削
オーステナイト系ステンレス鋼を得ることができたもの
である。
From Figure 1, a and the necessary N are required to prevent cracking during drawing process.
By finding the minimum content of i+Cu, it was possible to obtain free-cutting austenitic stainless steel at low cost.

第2図は0.02C−0,30Si−1,6Mn−8,
5N+ −01Cr −0,3O3−0,OIN鋼にお
いて引抜加工割れに及ぼすCuの影響について調べたも
のであり、また、第3図は0.02G−0,30Si 
 L6Mn−8,5Ni −18Cr−0,5Cu −
0,,01N鋼において引抜加工割れに及ぼすSの影響
について調べたものである。第2.3図より明らかなよ
うに上記組成とすることによって、C4を0.25〜1
.0%にすることによって、またS量を0.40%まで
含有させた場合におい”ζも引抜加工割れが発生しない
ことを見出したものである。
Figure 2 shows 0.02C-0,30Si-1,6Mn-8,
The effect of Cu on drawing cracking in 5N+ -01Cr -0,3O3-0,OIN steel was investigated, and Fig. 3 shows the influence of Cu on drawing cracks in 0.02G-0,30Si.
L6Mn-8,5Ni-18Cr-0,5Cu-
The influence of S on drawing cracking in 0, 01N steel was investigated. As is clear from Figure 2.3, by having the above composition, C4 is 0.25 to 1
.. It has been found that drawing process cracks do not occur when the S content is 0% or when the S content is increased to 0.40%.

このように、本発明鋼はC0.05%以下、Si1.0
0%以下、Mn 2.0%以下、Ni 8.0〜L1.
0%、Cr 17.0〜19.0%、S 0.20〜0
.40%、N 0.04%以下、Cu 0.25−]、
00%を含有させ、かつC十N 0.07%以下、Ni
+ 2Cu 9.5%以上とし、さらに必要によってM
o’0.1〜0.6%含有させることによって安価で、
優れた引抜加工性と快削性を有する。
In this way, the steel of the present invention has a C of 0.05% or less and a Si of 1.0%.
0% or less, Mn 2.0% or less, Ni 8.0 to L1.
0%, Cr 17.0-19.0%, S 0.20-0
.. 40%, N 0.04% or less, Cu 0.25-],
00%, and C1N 0.07% or less, Ni
+ 2Cu 9.5% or more, and if necessary, M
By containing o'0.1 to 0.6%, it is inexpensive,
It has excellent drawing workability and free machinability.

CはNと同様に加工硬化性を高めることによって引抜加
工性を劣化させ、かつクロム炭化物を形成して耐食性を
も低下させる元素であり、本発明においてはできるだけ
低下させることが望ましく」二限を0.05%以下とし
た。
Like N, C is an element that improves work hardening properties, thereby deteriorating drawing workability, and also forms chromium carbide, reducing corrosion resistance. In the present invention, it is desirable to reduce this as much as possible. It was set to 0.05% or less.

Siは製鋼時の脱酸に必要な元素であるが、必要以上の
Siの含をは固溶強化作用によって引抜加工性を害し、
かつ熱間加工性についても低下させるので上限を1,0
0%以下とした。
Si is a necessary element for deoxidation during steel manufacturing, but the presence of more than necessary impairs drawing workability due to solid solution strengthening.
It also reduces hot workability, so the upper limit is set to 1.0.
It was set to 0% or less.

MnはSiと同様に脱酸剤として用いられるほか、オー
ステナイト相を安定化させる元素である。またSと結合
してMnSを生成して被削性を改善する元素である。し
かし多量に含有させると熱間加工性を低下させるので上
限を2.00%とした。
Like Si, Mn is used as a deoxidizing agent and is also an element that stabilizes the austenite phase. It is also an element that combines with S to produce MnS and improves machinability. However, if it is contained in a large amount, hot workability is reduced, so the upper limit was set at 2.00%.

Niは耐食性を向上させ、かつマI−リックスの硬さを
下げると同時にオーステナイト相を安定化し、に重要な
元素であり、8.0%以上含有させる必要がある。しか
しNiは高価な元素であるので、その含有量を必要最小
限にとどめるべきであり上限を11.0%とした。
Ni is an important element for improving corrosion resistance, lowering the hardness of the matrix, and at the same time stabilizing the austenite phase, and must be contained in an amount of 8.0% or more. However, since Ni is an expensive element, its content should be kept to the minimum necessary, and the upper limit was set at 11.0%.

Crは耐食性を改善するうえで最も重要な元素であり、
少なくとも17.0%以上含有させる必要がある。しか
しながら、その含有量が増加すると、高温域でのフェラ
イト−オーステナイトバランスがくずれ熱間加工が大幅
に低下し、かつ引抜加工性をも低下させるので上限を1
9.0%とした。
Cr is the most important element for improving corrosion resistance.
It is necessary to contain at least 17.0% or more. However, if the content increases, the ferrite-austenite balance in the high temperature range will be disrupted, resulting in a significant decline in hot workability and also reducing drawing workability, so the upper limit should be set at 1.
It was set at 9.0%.

Sはオーステナイト系ステンレス鋼において切削性向上
元素として極めて有効であり、含有量が多いほど切削性
は向上するもので0,20%以上含有させる必要がある
。しかし、Sは耐食性を劣化させるとともに熱間加工性
、冷間加工性をも低下させる元素であるので上限を0.
40%とした。
S is extremely effective as an element for improving machinability in austenitic stainless steel, and the machinability improves as the content increases, so it must be contained in an amount of 0.20% or more. However, since S is an element that degrades corrosion resistance and also reduces hot workability and cold workability, the upper limit is set to 0.
It was set at 40%.

NはCと同様に加工硬化性を高めることによっCuはN
iとの相乗効果によって加工硬化性を低下し、かつ第4
図より明らかなように引抜加工において表面層と中心部
との硬さの差を小さくし、引抜加工割れを防止し、さら
に被削性を向上させるとともに耐食性をも向上させる本
発明においては最も重要な元素であり、少なくとも0.
25%以上含有させる必要があり下限を0.25%とし
た。しかし多量に含有させると赤熱脆性により熱間加工
性を著しく害するので上限を1.00%とした。
Like C, N improves work hardenability, and Cu
Due to the synergistic effect with i, the work hardenability is reduced, and the fourth
As is clear from the figure, the most important aspect of the present invention is to reduce the difference in hardness between the surface layer and the center during drawing, prevent cracking during drawing, and further improve machinability and corrosion resistance. element with at least 0.
It is necessary to contain 25% or more, and the lower limit is set to 0.25%. However, if it is contained in a large amount, hot workability will be significantly impaired due to red heat brittleness, so the upper limit was set at 1.00%.

MOは耐食性を高める元素であり0.10%以上含有さ
せる必要がある。しかしMoは高価な元素であるので上
限をo、 eo%とした。
MO is an element that increases corrosion resistance and must be contained in an amount of 0.10% or more. However, since Mo is an expensive element, the upper limit was set to o and eo%.

C十Nについては、C,N、ともに前述のように加工硬
化性を高めることによって引抜加工性を劣化させる元素
であり、C+Nの和が0.07%を越えると引抜加工割
れが発生し易く極力低下させることが望ましく上限を0
.07%とした。
As for C + N, as mentioned above, both C and N are elements that deteriorate drawing workability by increasing work hardening properties, and if the sum of C + N exceeds 0.07%, drawing cracks are likely to occur. It is desirable to lower the upper limit to 0 as much as possible.
.. It was set at 0.7%.

Ni+ 2 Cuについては、NiとCuの相乗効果に
より加工硬化性を低下させ、引抜加工割れを防止する本
発明においては重要な元素であり、Ni+2Cuの和が
9.5%以下では引抜加工割れが発生し易いので下限を
9.5%とした。
Ni + 2 Cu is an important element in the present invention, which reduces work hardenability due to the synergistic effect of Ni and Cu and prevents pultrusion cracking.If the sum of Ni + 2Cu is 9.5% or less, pultrusion cracking will occur. Since this is likely to occur, the lower limit was set at 9.5%.

つぎに本発明鋼の特徴を従来鋼、比較鋼と比べて実施例
でもって明らかにする。
Next, the characteristics of the steel of the present invention will be clarified by comparing it with conventional steel and comparative steel through examples.

第1表はこれらの供試鋼の化学成分を示すものである。Table 1 shows the chemical composition of these test steels.

第1表においてA−Ellは従来鋼で5US303、F
鋼は比較鋼、G−Qilは本発明鋼である。
In Table 1, A-Ell is conventional steel 5US303, F
The steel is a comparative steel, and G-Qil is a steel of the present invention.

第2表は第1表の供試鋼を1050℃で30分間加熱し
た後、W、Qという固溶体化処理を施した後、引抜加工
割れ発生率、被削性・および耐食性について示したもの
である。
Table 2 shows the incidence of drawing cracks, machinability, and corrosion resistance after the test steels in Table 1 were heated at 1050°C for 30 minutes and subjected to solid solution treatment of W and Q. be.

引抜加工割れ発生率については、5%硫酸で酸洗後、さ
らに硝弗酸で酸洗したl Ommφの供試材を8.5m
m 6角形状(減面率20.3%)に引抜いた場合の割
れ発生率を示したものであり、潤滑剤としては引抜用潤
滑油を用いた。
Regarding the incidence of cracking during drawing process, a sample material of 1 Ommφ which was pickled with 5% sulfuric acid and further pickled with nitric-fluoric acid was tested at 8.5 m.
This figure shows the crack occurrence rate when the sample was drawn into a hexagonal shape (area reduction rate of 20.3%), and a lubricating oil for drawing was used as the lubricant.

被削性については40mmφX]Ommの素材を5個用
意し、切削工具として5φ5KH9ストレート・ドリル
を用い、回転数114Orpm 、推力30kg (重
錘自由落下法)によってドリル穿孔時間を測定し、従来
鋼であるA鋼を100とした指数で示した。
Regarding machinability, we prepared five pieces of 40mmφX]Omm materials, used a 5φ5KH9 straight drill as the cutting tool, and measured the drill drilling time at a rotation speed of 114 Orpm and a thrust of 30kg (weight free fall method). It is expressed as an index with a certain A steel set as 100.

耐食性については沸騰状態の5%硫酸液中に611r浸
漬した場合の腐食減量を示したものである。
Regarding corrosion resistance, the corrosion weight loss when immersed in boiling 5% sulfuric acid solution at 611r is shown.

第2表より知られるように、従来鋼であるA、B鋼はC
+N量が0.12.0.09%と高いことによっζ引抜
加工割れ発生率は56.17%と高いものであり、かつ
AW!はSliが0.】5%と少ないことによって被削
性についても低いものである。また、C鋼についてはC
u量が0.05%と低いことによって引抜加工割れ発生
率は35%と高いものであり、D、E、F鋼については
Ni+2Cu量が低いことによっ゛ζζ引抜加工割発生
が12〜50%と高いものであった。
As is known from Table 2, conventional steels A and B are C
Due to the high +N content of 0.12% and 0.09%, the ζ drawing crack occurrence rate is as high as 56.17%, and AW! Sli is 0. ] Due to the small amount of 5%, machinability is also low. Also, regarding C steel, C
Due to the low U content of 0.05%, the occurrence rate of drawing cracks is as high as 35%, and for D, E, and F steels, the occurrence rate of drawing cracks is 12 to 50% due to the low Ni+2Cu content. %, which was high.

これらに対して本発明鋼であるG〜Q鋼は、C4−No
、07%以下、Ni+ 2 Cu 9.5%以上とし、
加工硬化性を低下させたことによって、引抜加工にJ′
って割れの発生がないものであり、かつ本発明鋼におい
てはSiを0.20〜0.40%に高めたものであるが
、Sに起因する引抜加工割れも発生しなかった。また被
削性についてはS(Jを0.20〜0.40%と高めた
ことによって従来鋼であるA鋼に比べて1.3〜1.6
倍の切削性を有するものであり、さらに耐食性について
も0.20〜0.40%と多くのSを含有させたもので
あるがその腐食減量は320〜587g1rd・hと従
来鋼であるA鋼とほぼ同等であった。
In contrast, the steels G to Q, which are the steels of the present invention, are C4-No.
, 07% or less, Ni + 2 Cu 9.5% or more,
By reducing work hardening properties, J'
In the steel of the present invention, Si was increased to 0.20 to 0.40%, but no drawing cracks caused by S were generated. In addition, machinability is 1.3 to 1.6% compared to conventional steel A steel by increasing S (J to 0.20 to 0.40%).
It has twice the machinability and also has corrosion resistance of 0.20 to 0.40%, which contains a large amount of S, but the corrosion loss is 320 to 587 g1rd・h, which is the conventional steel A steel. It was almost equivalent.

このように、本発明鋼は従来鋼と同等の耐食性をすると
ともに優れた引抜加工性と被削性を有するオーステナイ
ト系ステンレス鋼である。
As described above, the steel of the present invention is an austenitic stainless steel that has corrosion resistance equivalent to that of conventional steel and has excellent drawing workability and machinability.

上述のように、本発明鋼は引抜加工割れの発生を防止す
るためC,Nなどの加工硬化性を高める元素の含a量を
極力低下させるとともにNi、 Cuなどの加工硬化性
を低下させる合金を必要最小量含有させ安価に引抜加工
性を向上させ、かつSに起因する割れを防止したことに
よって必要量のSを添加することができ被削性について
も優れたもので高い実用性を有するものである。
As mentioned above, in order to prevent the occurrence of drawing cracks, the steel of the present invention has the content of elements that increase work hardenability such as C and N as low as possible, and alloys that reduce work hardenability such as Ni and Cu. By containing the minimum required amount of S, it improves drawing workability at a low cost, and prevents cracking caused by S, so it is possible to add the necessary amount of S, and has excellent machinability, making it highly practical. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は引抜加工割れに及ぼすC−1−NとNi+ 2
Cuの影響を示した図で、第2図は引抜加工割れ発生率
とCuとの関係を示した線図で、第3図は引抜加工割れ
とSとの関係を示した線図であり、第4図は引抜き加工
後の硬さに及ぼすNi、 Cuの影響をC十N(’ya
) S(y、)
Figure 1 shows the effects of C-1-N and Ni+2 on drawing cracking.
Figure 2 is a diagram showing the influence of Cu, and Figure 2 is a diagram showing the relationship between the occurrence rate of pultrusion cracks and Cu, and Figure 3 is a diagram showing the relationship between pultrusion cracks and S. Figure 4 shows the influence of Ni and Cu on the hardness after drawing as C0N('ya
) S(y,)

Claims (1)

【特許請求の範囲】 1、重量比にしてC0.05%以下、Si1.00%以
下、Mn2.00%以下、Ni8.0〜11.0%、C
r17.0〜19.0%、S0.20〜0.40%、N
0.04%以下、Cu0.25〜1.00%を含有し、
かつC+N0.07%以下、Ni+2Cu9.50%以
上であり、残部Feならびに不純物元素からなることを
特徴とする引抜加工性の優れた快削オーステナイト系ス
テンレス鋼。 2、重量比にしてC0.05%以下、Si1.00%以
下、Mn2.00%以下、Ni8.0〜11.0%、C
r17.0〜19.0%、S0.20〜0.40%、N
0.04%以下、Cu0.25〜1.00%を含有し、
さらにMo0.1〜0.6%を含有させ、かつC+N0
.07%以下、Ni+2Cu9.50%以上であり、残
部Feならびに不純物元素からなることを特徴とする引
抜加工性の優れた快削オーステナイト系ステンレス鋼。
[Claims] 1. C 0.05% or less, Si 1.00% or less, Mn 2.00% or less, Ni 8.0 to 11.0%, C
r17.0-19.0%, S0.20-0.40%, N
Contains 0.04% or less, Cu 0.25 to 1.00%,
A free-cutting austenitic stainless steel with excellent drawing workability, characterized in that it contains 0.07% or less of C+N, 9.50% or more of Ni+2Cu, and the remainder consists of Fe and impurity elements. 2. Weight ratio: C 0.05% or less, Si 1.00% or less, Mn 2.00% or less, Ni 8.0 to 11.0%, C
r17.0-19.0%, S0.20-0.40%, N
Contains 0.04% or less, Cu 0.25 to 1.00%,
Furthermore, 0.1 to 0.6% of Mo is contained, and C+N0
.. A free-cutting austenitic stainless steel with excellent drawing workability, characterized by having a Ni+2Cu content of 0.07% or less, a Ni+2Cu content of 9.50% or more, and the remainder consisting of Fe and impurity elements.
JP12411884A 1984-06-15 1984-06-15 Free-cutting austenitic stainless steel having excellent drawability Granted JPS613872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12411884A JPS613872A (en) 1984-06-15 1984-06-15 Free-cutting austenitic stainless steel having excellent drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12411884A JPS613872A (en) 1984-06-15 1984-06-15 Free-cutting austenitic stainless steel having excellent drawability

Publications (2)

Publication Number Publication Date
JPS613872A true JPS613872A (en) 1986-01-09
JPH0425344B2 JPH0425344B2 (en) 1992-04-30

Family

ID=14877366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12411884A Granted JPS613872A (en) 1984-06-15 1984-06-15 Free-cutting austenitic stainless steel having excellent drawability

Country Status (1)

Country Link
JP (1) JPS613872A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353247A (en) * 1986-08-21 1988-03-07 クル−シブル マテリアルス コ−ポレイシヨン Austenite stainless steel
EP0260792A2 (en) * 1986-09-19 1988-03-23 Crucible Materials Corporation Corrosion resistant austenitic stainless steel
JPS6386849A (en) * 1986-09-19 1988-04-18 クルーシブル マテリアルス コーポレイション Freely machinable austenite stainless steel and matter
US4933142A (en) * 1986-09-19 1990-06-12 Crucible Materials Corporation Low carbon plus nitrogen free-machining austenitic stainless steels with improved machinability and corrosion resistance
US5820068A (en) * 1996-03-06 1998-10-13 Seiko Epson Corporation Printer with paper end detection
KR100406427B1 (en) * 2001-03-30 2003-11-19 재단법인 포항산업과학연구원 Free machining austenitic stainless steel having high temperature ductility
CN103526133A (en) * 2013-09-27 2014-01-22 泰州永兴合金材料科技有限公司 High nickel-chromium and free-cutting stainless steel and preparation method thereof
CN109763062A (en) * 2018-05-11 2019-05-17 宝钢特钢长材有限公司 A kind of environment-protective free-cutting stainless steel and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6353247A (en) * 1986-08-21 1988-03-07 クル−シブル マテリアルス コ−ポレイシヨン Austenite stainless steel
EP0260792A2 (en) * 1986-09-19 1988-03-23 Crucible Materials Corporation Corrosion resistant austenitic stainless steel
JPS6386849A (en) * 1986-09-19 1988-04-18 クルーシブル マテリアルス コーポレイション Freely machinable austenite stainless steel and matter
US4933142A (en) * 1986-09-19 1990-06-12 Crucible Materials Corporation Low carbon plus nitrogen free-machining austenitic stainless steels with improved machinability and corrosion resistance
US5820068A (en) * 1996-03-06 1998-10-13 Seiko Epson Corporation Printer with paper end detection
US5884861A (en) * 1996-03-06 1999-03-23 Seiko Epson Corporation Paper termination detecting apparatus
EP1093928A2 (en) 1996-03-06 2001-04-25 Seiko Epson Corporation Roll-paper holder for a printer
KR100406427B1 (en) * 2001-03-30 2003-11-19 재단법인 포항산업과학연구원 Free machining austenitic stainless steel having high temperature ductility
CN103526133A (en) * 2013-09-27 2014-01-22 泰州永兴合金材料科技有限公司 High nickel-chromium and free-cutting stainless steel and preparation method thereof
CN109763062A (en) * 2018-05-11 2019-05-17 宝钢特钢长材有限公司 A kind of environment-protective free-cutting stainless steel and preparation method thereof

Also Published As

Publication number Publication date
JPH0425344B2 (en) 1992-04-30

Similar Documents

Publication Publication Date Title
JP2007031734A (en) High strength bolt having excellent delayed fracture resistance, and method for producing the same
US5358577A (en) High strength and high toughness martensitic stainless steel and method of manufacturing the same
JP5307729B2 (en) Lead free free cutting steel
JPH0372700B2 (en)
US4798634A (en) Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability
JPS613872A (en) Free-cutting austenitic stainless steel having excellent drawability
US6146475A (en) Free-machining martensitic stainless steel
JPH0218381B2 (en)
KR100726251B1 (en) Steel material for induction quenching, induction quenched member using the same, and manufacturing methods thereof
EP0498105B1 (en) High strength and high toughness stainless steel and method of manufacturing the same
JP3743226B2 (en) Martensitic stainless steel for downhole materials
US4347080A (en) Austenitic free-cutting stainless steel
JPH01246343A (en) Stainless steel
EP0256121A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability
JPS60128242A (en) High manganese steel for nonmagnetic drill collar
JPS60215743A (en) Wear-resistant steel
JP3587271B2 (en) Semi-austenite precipitation hardened stainless steel with excellent cold workability
JPH04228536A (en) Steel excellent in wear resistance
JPS5940220B2 (en) Low alloy steel with excellent sulfide corrosion cracking resistance
JP7464832B2 (en) Bolts and bolt steel
JPH08144023A (en) Precipitation hardening type stainless steel excellent in strength, toughness, and corrosion resistance
JP2759401B2 (en) Free-cutting stainless steel for cold heading
JPS58171558A (en) Tough nitriding steel
JPH0441651A (en) Corrosion resisting austenitic stainless steel excellent in machinability
JPH06256911A (en) Austenitic stainless steel excellent in nitric acid corrosion resistance after cold working or deformation