JPH0425344B2 - - Google Patents

Info

Publication number
JPH0425344B2
JPH0425344B2 JP12411884A JP12411884A JPH0425344B2 JP H0425344 B2 JPH0425344 B2 JP H0425344B2 JP 12411884 A JP12411884 A JP 12411884A JP 12411884 A JP12411884 A JP 12411884A JP H0425344 B2 JPH0425344 B2 JP H0425344B2
Authority
JP
Japan
Prior art keywords
steel
less
cracks
austenitic stainless
machinability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12411884A
Other languages
Japanese (ja)
Other versions
JPS613872A (en
Inventor
Miharu Takeuchi
Yoshinobu Motokura
Keisuke Ageo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP12411884A priority Critical patent/JPS613872A/en
Publication of JPS613872A publication Critical patent/JPS613872A/en
Publication of JPH0425344B2 publication Critical patent/JPH0425344B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は引抜加工性の優れた快削オーステナイ
ト系ステンレス鋼に関する。 オーステナイト系ステンレス鋼は耐食性、耐熱
性等に優れているため構造用部材や機械部品とし
て広範な分野で使用されている。 そして、ボルト、ナツト、ねじ、シヤフト、ピ
ン等の機械部品は引抜加工によつて所定の形状に
した後、多くは切削加工によつて製品に仕上げら
れており、一部用途において切削工程の生産性を
向上させるため、S,Se,Pbなどの快削元素を
含有させた快削オーステナイト系ステンレス鋼が
使用されている。 しかし、代表的な快削オーステナイト系ステン
レス鋼であるSUS303のように0.20%程度ものS
を含有させた鋼においては、圧延方向に展延した
硫化物が冷間加工時に割れの起点となり易く、冷
間加工性を大幅に低下させるという問題を有して
いる。 したがつて、従来冷間加工割れの発生を防止す
るため切削性を犠性にし、S量を0.05〜0.20%ま
で低下させた快削オーステナイト系ステンレス鋼
が使用されている。 また、一方オーステナイト系ステンレス鋼は冷
間加工によつてマルテンサイトが生成し、加工硬
化し易い鋼である。 この傾向はオーステナイト系ステンレス鋼でも
Ni、Cr量が少なく、オーステナイト安定度の低
いものほど大きく、加工硬化によつて冷間加工割
れが発生している。 特に、引抜加工のように表面層の変形量が大き
い場合においては表面層のみが大きく加工硬化
し、内部との間で硬さに大きな差が生じ、かつ表
面層に大きな残留応力が存在することによつて、
引抜加工割れが発生し易い。 このように、従来S快削オーステナイト系ステ
ンレス鋼はS量を減少させ被削性を犠性にすると
ともにオーステナイト系ステンレス鋼自体の有す
る加工硬化性によつて引抜加工割れが発生するな
ど快削性、引抜加工性ともに満足し得るものでな
かつた。 本発明は従来鋼のかかる欠点を解消した、優れ
た引抜加工性を有する安価な快削オーステナイト
系ステンレス鋼を得ることを目的としたものであ
る。 本発明者等はS含有オーステナイト系ステンレ
ス鋼の引抜加工割れに及ぼすC+Nと、Ni+2Cu
の影響、C+Nと、Ni+2Cuの相互関係、さらに
Cr,Ni,Mn,C,N,Cu等のバランスについ
て鋭意研究を重ねた結果、本発明鋼の開発に成功
したものである。 すなわち、0.30Si−1.6Mn−18Cr−0.25S鋼に
おいてC+Nを0〜0.15%、Ni+2Cuを8.0〜12.0
%と変動させた供試鋼について調査し、引抜加工
割れに対して最適C+N量とNi+2Cu量を見出し
たものである。第1図より明らかなようにC+N
量が減少するとともにNi+2Cu量が増加するにつ
れて引抜加工割れ発生率が減少している。すなわ
ち、C+N量が0.07%以下で、かつNi+2Cu量が
9.50%以上においては引抜加工割れは発生してい
ないものである。 これは、C+N量の減少による加工硬化能の低
下と、Ni+2Cu量の増加によるオーステナイト相
の安定化によつて、引抜加工によつてマルテンサ
イトが生成するのを制御し、引抜加工割れの発生
を防止したものである。 そして第1図より引抜加工割れを防止するに必
要なNi+Cuの最小含有量を見出すことによつて
安価に快削オーステナイト系ステンレス鋼を得る
ことができたものである。 第2図は0.02C−0.30Si−1.6Mn−8.5Ni−18Cr
−0.30S−0.10N鋼において引抜加工割れに及ぼ
すCuの影響について調べたものであり、また、
第3図は0.02C−0.30Si−1.6Mn−8.5Ni−18Cr−
0.5Cu−0.01N鋼において引抜加工割れに及ぼす
Sの影響について調べたものである。第2,3図
より明らかなように上記組成とすることによつ
て、Cu量を0.25〜1.0%にすることによつて、ま
たS量を0.40%まで含有させた場合においても引
抜加工割れが発生しないことを見出したものであ
る。 このように、本発明鋼はC0.05%以下、Si1.00
%以下、Mn2.0%以下、Ni8.0〜11.0%、Cr17.0〜
19.0%、S0.20〜0.40%、N0.04%以下、Cu0.25〜
1.00%を含有させ、かつC+N0.07%以下、Ni+
2Cu9.50%以上とし、さらに必要によつてMo0.1
〜0.6%含有させることによつて安価で、優れた
引抜加工性と快削性を有するオーステナイト系ス
テンレス鋼を得ることに成功したものである。 以下に本発明鋼の成分限定理由について説明す
る。 CはNと同様に加工硬化性を高めることによつ
て引抜加工性を劣化させ、かつクロム炭化物を形
成して耐食性をも低下させる元素であり、本発明
においてはできるだけ低下させることが望ましく
上限を0.50%以下とした。 Siは製鋼時の脱酸に必要な元素であるが、必要
以上のSiの含有は固溶強化作用によつて引抜加工
性を害し、かつ熱間加工性についても低下させる
ので上限を1.00%以下とした。 MnはSiと同様に脱酸剤として用いられるほか、
オーステナイト相を安定化させる元素である。ま
たSと結合してMnSを生成して被削性を改善す
る元素である。しかし多量に含有させると熱間加
工性を低下させるので上限を2.00%とした。 Niは耐食性を向上させ、かつマトリツクスの
硬さを下げると同時にオーステナイト相を安定化
し、オーステナイト→マルテンサイト変態を抑制
して加工硬化性を低下させ、引抜加工割れを防止
するに重要な元素であり、8.0%以上含有させる
必要がある。しかしNiは高価な元素であるので、
その含有量を必要最小限にとどめるべきであり上
限を11.0%とした。 Crは耐食性を改善するうえで最も重要な元素
であり、少なくとも17.0%以上含有させる必要が
ある。しかしながら、その含有量が増加すると、
高温域でのフエライト−オーステナイトバランス
がくずれ熱間加工が大幅に低下し、かつ引抜加工
性をも低下させるので上限を19.0%とした。 Sはオーステナイト系ステンレス鋼において切
削性向上元素として極めて有効であり、含有量が
多いほど切削性は向上するもので0.20%以上含有
させる必要がある。しかし、Sは耐食性を劣化さ
せるとともに熱間加工性、冷間加工性をも低下さ
せる元素であるので上限を0.40%とした。 NはCと同様に加工硬化性を高めることによつ
て引抜加工性を低下させる元素であり、本発明に
おいてはできるだけ低下させることが望ましく上
限を0.04%とした。 CuはNiとの相乗効果によつて加工硬化性を低
下し、かつ第4図より明らかなように引抜加工に
おいて表面層と中心部との硬さの差を小さくし、
引抜加工割れを防止し、さらに被削性を向上させ
るとともに耐食性をも向上させる本発明において
は最も重要な元素であり、少なくとも0.25%以上
含有させる必要があり下限を0.25%とした。しか
し多量に含有させると赤熱脆性により熱間加工性
を著しく害するので上限を1.00%とした。 Moは耐食性を高める元素であり0.10%以上含
有させる必要がある。しかしMoは高価な元素で
あるので上限を0.60%とした。 C+Nについては、C,Nともに前述のように
加工硬化性を高めることによつて引抜加工性を劣
化させる元素であり、C+Nの和が0.07%を越え
ると引抜加工割れが発生し易く極力低下させるこ
とが望ましく上限を0.07%とした。 Ni+2Cuについては、NiとCuの相乗効果によ
り加工硬化性を低下させ、引抜加工割れを防止す
る本発明においては重要な元素であり、Ni+2Cu
の和が9.5%以下では引抜加工割れが発生し易い
ので下限を9.5%とした。 つぎに本発明鋼の特徴を従来鋼、比較鋼と比べ
て実施例でもつて明らかにする。 第1表はこれらの供試鋼の化学成分を示すもの
である。
The present invention relates to a free-cutting austenitic stainless steel with excellent drawing workability. Austenitic stainless steel has excellent corrosion resistance and heat resistance, so it is used in a wide range of fields as structural members and mechanical parts. Machine parts such as bolts, nuts, screws, shafts, pins, etc. are drawn into the specified shape and then finished into products by cutting. Free-cutting austenitic stainless steel containing free-cutting elements such as S, Se, and Pb is used to improve its properties. However, SUS303, a typical free-cutting austenitic stainless steel, has an S content of about 0.20%.
In steel containing Ni, sulfides spread in the rolling direction tend to become starting points for cracks during cold working, resulting in a problem in that cold workability is significantly reduced. Therefore, in order to prevent the occurrence of cold working cracks, free-cutting austenitic stainless steels have been used in which the machinability has been sacrificed and the S content has been reduced to 0.05 to 0.20%. On the other hand, austenitic stainless steel is a steel that produces martensite during cold working and is easily work hardened. This tendency also applies to austenitic stainless steel.
The smaller the amount of Ni and Cr and the lower the austenite stability, the larger the cracks are, and cold work cracks occur due to work hardening. In particular, when the amount of deformation of the surface layer is large, such as during drawing, only the surface layer undergoes significant work hardening, resulting in a large difference in hardness between it and the inside, and large residual stress exists in the surface layer. According to
Pulling process cracks are likely to occur. In this way, conventional S free-cutting austenitic stainless steels reduce the amount of S, sacrificing machinability, and also suffer from problems such as drawing cracks due to the work hardening properties of austenitic stainless steels themselves. Both the drawing properties and the drawing properties were unsatisfactory. The object of the present invention is to obtain an inexpensive free-cutting austenitic stainless steel having excellent drawing workability and eliminating the drawbacks of conventional steels. The present inventors have investigated the effects of C+N and Ni+2Cu on drawing cracking of S-containing austenitic stainless steel.
, the interaction between C+N and Ni+2Cu, and
As a result of intensive research into the balance of Cr, Ni, Mn, C, N, Cu, etc., we succeeded in developing the steel of the present invention. That is, in 0.30Si-1.6Mn-18Cr-0.25S steel, C+N is 0 to 0.15% and Ni+2Cu is 8.0 to 12.0%.
%, and found the optimum amount of C+N and Ni+2Cu for drawing cracking. As is clear from Figure 1, C+N
As the Ni+2Cu content decreases and the Ni+2Cu content increases, the incidence of drawing cracks decreases. In other words, the amount of C+N is 0.07% or less and the amount of Ni+2Cu is
At 9.50% or higher, no drawing cracks occur. This is due to the decrease in work hardenability due to the decrease in the amount of C+N and the stabilization of the austenite phase due to the increase in the amount of Ni+2Cu, which controls the formation of martensite during drawing and prevents the occurrence of drawing cracks. This was prevented. By finding the minimum content of Ni+Cu necessary to prevent drawing cracks from FIG. 1, it was possible to obtain a free-cutting austenitic stainless steel at a low cost. Figure 2 shows 0.02C−0.30Si−1.6Mn−8.5Ni−18Cr
This study investigated the effect of Cu on drawing cracks in −0.30S−0.10N steel, and also
Figure 3 shows 0.02C−0.30Si−1.6Mn−8.5Ni−18Cr−
This study investigated the influence of S on drawing cracking in 0.5Cu-0.01N steel. As is clear from Figures 2 and 3, by using the above composition, by setting the Cu content to 0.25 to 1.0%, and even when the S content was contained up to 0.40%, pultrusion cracking was prevented. It was discovered that this does not occur. In this way, the steel of the present invention has a C of 0.05% or less and a Si of 1.00.
% or less, Mn2.0% or less, Ni8.0~11.0%, Cr17.0~
19.0%, S0.20~0.40%, N0.04% or less, Cu0.25~
Contains 1.00%, and C+N0.07% or less, Ni+
2Cu9.50% or more, and if necessary Mo0.1
By containing ~0.6%, we succeeded in obtaining an inexpensive austenitic stainless steel with excellent drawing workability and free machinability. The reasons for limiting the composition of the steel of the present invention will be explained below. Like N, C is an element that improves work hardening properties, thereby deteriorating drawing workability, and also forms chromium carbide, reducing corrosion resistance. In the present invention, it is desirable to reduce the upper limit as much as possible. It was set to 0.50% or less. Si is an element necessary for deoxidation during steel manufacturing, but the inclusion of more than necessary impairs drawing workability due to solid solution strengthening and also reduces hot workability, so the upper limit should be 1.00% or less. And so. Mn is used as a deoxidizing agent like Si, and
It is an element that stabilizes the austenite phase. It is also an element that combines with S to form MnS and improves machinability. However, if it is contained in a large amount, hot workability is reduced, so the upper limit was set at 2.00%. Ni is an important element that improves corrosion resistance, lowers the hardness of the matrix, stabilizes the austenite phase, suppresses the austenite → martensitic transformation, reduces work hardenability, and prevents cracking during drawing. , it is necessary to contain 8.0% or more. However, since Ni is an expensive element,
Its content should be kept to the minimum necessary, and the upper limit was set at 11.0%. Cr is the most important element for improving corrosion resistance and must be contained at least 17.0%. However, when its content increases,
The upper limit was set at 19.0% because the ferrite-austenite balance in the high temperature range is disrupted, resulting in a significant decline in hot workability and also in drawing workability. S is extremely effective as an element for improving machinability in austenitic stainless steel, and the machinability improves as the content increases, so it must be contained in an amount of 0.20% or more. However, since S is an element that deteriorates corrosion resistance and also reduces hot workability and cold workability, the upper limit was set at 0.40%. Like C, N is an element that reduces drawing workability by increasing work hardenability, and in the present invention, it is desirable to reduce it as much as possible, and the upper limit is set to 0.04%. Cu reduces work hardenability due to its synergistic effect with Ni, and as is clear from Figure 4, it reduces the difference in hardness between the surface layer and the center during drawing.
It is the most important element in the present invention, which prevents drawing cracks, improves machinability, and also improves corrosion resistance. It must be contained at least 0.25%, and the lower limit was set at 0.25%. However, if it is contained in a large amount, hot workability will be significantly impaired due to red heat brittleness, so the upper limit was set at 1.00%. Mo is an element that increases corrosion resistance and must be contained at 0.10% or more. However, since Mo is an expensive element, the upper limit was set at 0.60%. Regarding C+N, as mentioned above, both C and N are elements that deteriorate drawing workability by increasing work hardening properties, and if the sum of C+N exceeds 0.07%, drawing cracks are likely to occur, so it should be reduced as much as possible. It is desirable that the upper limit be set at 0.07%. Regarding Ni + 2Cu, it is an important element in the present invention, which reduces work hardenability due to the synergistic effect of Ni and Cu and prevents drawing cracks.
If the sum of the two is less than 9.5%, drawing cracks are likely to occur, so the lower limit was set at 9.5%. Next, the characteristics of the steel of the present invention will be clarified in Examples by comparing it with conventional steel and comparative steel. Table 1 shows the chemical composition of these test steels.

【表】 第1表においてA〜E鋼は従来鋼でSUS303,
F鋼は比較鋼、G〜Q鋼は本発明鋼である。 第2表は第1表の供試鋼を1050℃で30分間加熱
した後、W,Qという固溶体化処理を施した後、
引抜加工割れ発生率、被削性および耐食性につい
て示したものである。 引抜加工割れ発生率については、5%硫酸で酸
洗後、さらに硝弗酸で酸洗した10mmφの供試材を
8.5mm6角形状(減面率20.3%)に引抜いた場合
の割れ発生率を示したものであり、潤滑剤として
は引抜用潤滑油を用いた。 被削性については40mmφ×10mmの素材を5個用
意し、切削工具として5φSKH9ストレート・ドリ
ルを用い、回転数1140rpm、推力30Kg(重錘自由
落下法)によつてドリル穿孔時間を測定し、従来
鋼であるA鋼を100とした指数で示した。 耐食性については沸騰状態の5%硫酸液中に
6Hr浸漬した場合の腐食減量を示したものであ
る。
[Table] In Table 1, steels A to E are conventional steels such as SUS303,
Steel F is a comparison steel, and steels G to Q are steels of the present invention. Table 2 shows that after heating the test steel in Table 1 at 1050°C for 30 minutes and applying solid solution treatment called W and Q,
This figure shows the incidence of drawing cracks, machinability, and corrosion resistance. Regarding the incidence of cracking during drawing, a 10mmφ sample material was pickled with 5% sulfuric acid and then pickled with nitrofluoric acid.
The figure shows the crack occurrence rate when drawn into an 8.5 mm hexagonal shape (area reduction rate 20.3%), and drawing lubricant was used as the lubricant. Regarding machinability, we prepared five 40 mmφ x 10 mm materials, used a 5φSKH9 straight drill as the cutting tool, and measured the drilling time with a rotation speed of 1140 rpm and a thrust of 30 kg (weight free fall method). It is expressed as an index with steel A as 100. For corrosion resistance, test in boiling 5% sulfuric acid solution.
The figure shows the corrosion weight loss when immersed for 6 hours.

【表】 第2表より知られるように、従来鋼であるA,
B鋼はC+N量が0.12,0.09%と高いことによつ
て引抜加工割れ発生率は56,17%と高いものであ
り、かつA鋼はS量が0.15%と少ないことによつ
て被削性についても低いものである。また、C鋼
についてはCu量が0.05%と低いことによつて引抜
加工割れ発生率は35%と高いものであり、D,
E,F鋼についてはNi+2Cu量が低いことによつ
て引抜加工割れ発生が12〜50%と高いものであつ
た。 これらに対して本発明鋼であるG〜Q鋼は、C
+N0.07%以下、Ni+2Cu9.5%以上とし、加工硬
化性を低下させたことによつて、引抜加工によつ
て割れの発生がないものであり、かつ本発明鋼に
おいてはS量を0.20〜0.40%に高めたものである
が、Sに起因する引抜加工割れも発生しなかつ
た。また被削性についてはS量を0.20〜0.40%と
高めたことによつて従来鋼であるA鋼に比べて、
1.3〜1.6倍の切削性を有するものであり、さらに
耐食性についても0.20〜0.40%と多くのSを含有
させたものであるがその腐食減量は320〜587g/
m2・hと従来鋼であるA鋼とほぼ同等であつた。 このように、本発明鋼は従来鋼と同等の耐食性
有するとともに優れた引抜加工性と被削性を有す
るオーステナイト系ステンレス鋼である。 上述のように、本発明鋼は引抜加工割れの発生
を防止するためC,Nなどの加工硬化性を高める
元素の含有量を極力低下させるとともにNi,Cu
などの加工硬化性を低下させる合金を必要最小量
含有させ安価に引抜加工性を向上させ、かつSに
起因する割れを防止したこによつて必要量のSを
添加することができ被削性についても優れたもの
で高い実用性を有するものである。
[Table] As is known from Table 2, conventional steel A,
Steel B has a high drawing crack occurrence rate of 56.17% due to its high C+N content of 0.12% and 0.09%, and steel A has a low machinability due to its low S content of 0.15%. It is also low. Furthermore, due to the low Cu content of 0.05% for C steel, the occurrence rate of drawing cracks is as high as 35%;
For steels E and F, the occurrence of drawing cracking was high at 12-50% due to the low Ni+2Cu content. In contrast, the steels G to Q, which are the steels of the present invention, have C
+N is 0.07% or less and Ni+2Cu is 9.5% or more to reduce work hardenability, so that no cracking occurs during drawing. Although the concentration was increased to 0.40%, no drawing cracks caused by S were generated. In addition, regarding machinability, by increasing the S content to 0.20 to 0.40%, compared to conventional steel A steel,
It has 1.3 to 1.6 times the machinability, and also contains a large amount of S at 0.20 to 0.40% for corrosion resistance, but the corrosion loss is 320 to 587 g/
m 2 ·h, which was almost the same as that of steel A, which is a conventional steel. As described above, the steel of the present invention is an austenitic stainless steel that has corrosion resistance equivalent to that of conventional steel and also has excellent drawing workability and machinability. As mentioned above, in order to prevent the occurrence of drawing cracks, the steel of the present invention has the content of elements that increase work hardening such as C and N as low as possible, and also contains Ni and Cu.
By containing the necessary minimum amount of alloys that reduce work hardenability, such as alloys, to improve drawing workability at low cost and preventing cracking caused by S, it is possible to add the necessary amount of S, and improve machinability. It is also excellent in terms of features and has high practicality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は引抜加工割れに及ぼすC+NとNi+
2Cuの影響を示した図で、第2図は引抜加工割れ
発生率とCuとの関係を示した線図で、第3図は
引抜加工割れとSとの関係を示した線図であり、
第4図は引抜き加工後の硬さに及ぼすNi,Cuの
影響を示した線図である。なお、第1〜4図はい
ずれも10mmφの供試材を8.5mm6角形状(減面率
20.3%)に引抜いた場合のものである。
Figure 1 shows the effects of C+N and Ni+ on drawing cracking.
Figure 2 is a diagram showing the relationship between pultrusion cracking occurrence rate and Cu, and Figure 3 is a diagram showing the relationship between pultrusion cracking and S.
Figure 4 is a diagram showing the influence of Ni and Cu on hardness after drawing. In addition, in Figures 1 to 4, the 10 mmφ test material is 8.5 mm hexagonal (area reduction rate).
20.3%).

Claims (1)

【特許請求の範囲】 1 重量比にしてC0.05%以下、Si1.00%以下、
Mn2.00%以下、Ni8.0〜11.0%、Cr17.0〜19.0%、
S0.20〜0.40%、N0.04%以下、Cu0.25〜1.00%を
含有し、かつC+N0.07%以下、Ni+2Cu9.50%
以上であり、残部Feならびに不純物元素からな
ることを特徴とする引抜加工性の優れた快削オー
ステナイト系ステンレス鋼。 2 重量比にしてC0.05%以下、Si1.00%以下、
Mn2.00%以下、Ni8.0〜11.0%、Cr17.0〜19.0%、
S0.20〜0.40%、N0.04%以下、Cu0.25〜1.00%を
含有し、さらにMo0.1〜0.6%を含有させ、かつ
C+N0.07%以下、Ni+2Cu9.50%以上であり、
残部Feならびに不純物元素からなることを特徴
とする引抜加工性の優れた快削オーステナイト系
ステンレス鋼。
[Claims] 1. C0.05% or less, Si 1.00% or less in terms of weight ratio,
Mn2.00% or less, Ni8.0~11.0%, Cr17.0~19.0%,
Contains S0.20~0.40%, N0.04% or less, Cu0.25~1.00%, and C+N0.07% or less, Ni+2Cu9.50%
A free-cutting austenitic stainless steel with excellent drawing workability characterized by the balance being Fe and impurity elements. 2 C0.05% or less, Si1.00% or less in terms of weight ratio,
Mn2.00% or less, Ni8.0~11.0%, Cr17.0~19.0%,
Contains S0.20-0.40%, N0.04% or less, Cu0.25-1.00%, further contains Mo0.1-0.6%, and C+N0.07% or less, Ni+2Cu9.50% or more,
A free-cutting austenitic stainless steel with excellent drawing workability characterized by the balance being Fe and impurity elements.
JP12411884A 1984-06-15 1984-06-15 Free-cutting austenitic stainless steel having excellent drawability Granted JPS613872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12411884A JPS613872A (en) 1984-06-15 1984-06-15 Free-cutting austenitic stainless steel having excellent drawability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12411884A JPS613872A (en) 1984-06-15 1984-06-15 Free-cutting austenitic stainless steel having excellent drawability

Publications (2)

Publication Number Publication Date
JPS613872A JPS613872A (en) 1986-01-09
JPH0425344B2 true JPH0425344B2 (en) 1992-04-30

Family

ID=14877366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12411884A Granted JPS613872A (en) 1984-06-15 1984-06-15 Free-cutting austenitic stainless steel having excellent drawability

Country Status (1)

Country Link
JP (1) JPS613872A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4784828A (en) * 1986-08-21 1988-11-15 Crucible Materials Corporation Low carbon plus nitrogen, free-machining austenitic stainless steel
US4797252A (en) * 1986-09-19 1989-01-10 Crucible Materials Corporation Corrosion-resistant, low-carbon plus nitrogen austenitic stainless steels with improved machinability
CA1330628C (en) * 1986-09-19 1994-07-12 Kenneth E. Pinnow Low carbon plus nitrogen free-machining austenitic stainless steels with improved machinability and corrosion resistance
US4933142A (en) * 1986-09-19 1990-06-12 Crucible Materials Corporation Low carbon plus nitrogen free-machining austenitic stainless steels with improved machinability and corrosion resistance
KR100335575B1 (en) 1996-03-06 2002-09-27 세이코 엡슨 가부시키가이샤 printer
KR100406427B1 (en) * 2001-03-30 2003-11-19 재단법인 포항산업과학연구원 Free machining austenitic stainless steel having high temperature ductility
CN103526133A (en) * 2013-09-27 2014-01-22 泰州永兴合金材料科技有限公司 High nickel-chromium and free-cutting stainless steel and preparation method thereof
CN109763062A (en) * 2018-05-11 2019-05-17 宝钢特钢长材有限公司 A kind of environment-protective free-cutting stainless steel and preparation method thereof

Also Published As

Publication number Publication date
JPS613872A (en) 1986-01-09

Similar Documents

Publication Publication Date Title
JP3358135B2 (en) High strength steel excellent in sulfide stress cracking resistance and method of manufacturing the same
US5358577A (en) High strength and high toughness martensitic stainless steel and method of manufacturing the same
JP3094856B2 (en) High strength, high toughness case hardening steel
JP2533481B2 (en) Non-magnetic high strength stainless steel and method for producing the same
US4798634A (en) Corrosion resistant wrought stainless steel alloys having intermediate strength and good machinability
JPH0425344B2 (en)
JPH06271975A (en) High strength steel excellent in hydrogen embrittlement resistance and its production
JPH0555585B2 (en)
JPH0726350A (en) Austenitic stainless steel excellent in pitting corrosion resistance and its production
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
EP0498105B1 (en) High strength and high toughness stainless steel and method of manufacturing the same
JP3743226B2 (en) Martensitic stainless steel for downhole materials
JP2665009B2 (en) High strength martensitic stainless steel and method for producing the same
JPS586927A (en) Production of high-strength oil well pipe of high stress corrosion cracking resistance
JPH0371506B2 (en)
JP2004124127A (en) Carburizing steel superior in torsion fatigue characteristic
JPH01246343A (en) Stainless steel
EP0256121A1 (en) Corrosion resistant stainless steel alloys having intermediate strength and good machinability
JPS5916948A (en) Soft-nitriding steel
JP3516359B2 (en) Precipitation hardened stainless steel with excellent strength, toughness and corrosion resistance
JP3201081B2 (en) Stainless steel for oil well and production method thereof
JPS60128242A (en) High manganese steel for nonmagnetic drill collar
JP3079294B2 (en) Precipitation hardened stainless steel with excellent corrosion resistance
RU2807645C2 (en) Seamless oil-grade pipe made of high-strength corrosion-resistant martensitic steel and method for its production
JPH04228536A (en) Steel excellent in wear resistance