JP4305137B2 - Ferritic free-cutting stainless steel with excellent surface finish roughness and outgas resistance - Google Patents
Ferritic free-cutting stainless steel with excellent surface finish roughness and outgas resistance Download PDFInfo
- Publication number
- JP4305137B2 JP4305137B2 JP2003379633A JP2003379633A JP4305137B2 JP 4305137 B2 JP4305137 B2 JP 4305137B2 JP 2003379633 A JP2003379633 A JP 2003379633A JP 2003379633 A JP2003379633 A JP 2003379633A JP 4305137 B2 JP4305137 B2 JP 4305137B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- content
- stainless steel
- steel
- surface finish
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005520 cutting process Methods 0.000 title claims description 16
- 229910001220 stainless steel Inorganic materials 0.000 title claims description 11
- 239000010935 stainless steel Substances 0.000 title claims description 9
- 229910000831 Steel Inorganic materials 0.000 claims description 26
- 239000010959 steel Substances 0.000 claims description 26
- 239000000203 mixture Substances 0.000 claims description 7
- 229910008842 WTi Inorganic materials 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 229910052797 bismuth Inorganic materials 0.000 claims description 4
- 229910052796 boron Inorganic materials 0.000 claims description 4
- 229910052748 manganese Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052799 carbon Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052710 silicon Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- 150000003568 thioethers Chemical class 0.000 claims 1
- 239000010936 titanium Substances 0.000 description 35
- 150000004763 sulfides Chemical class 0.000 description 31
- 238000005260 corrosion Methods 0.000 description 23
- 239000011572 manganese Substances 0.000 description 22
- 230000000694 effects Effects 0.000 description 12
- 239000011651 chromium Substances 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000002845 discoloration Methods 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 230000001965 increased Effects 0.000 description 4
- 239000011777 magnesium Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000002093 peripheral Effects 0.000 description 4
- 229910052761 rare earth metal Inorganic materials 0.000 description 4
- 239000011669 selenium Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000000956 alloy Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- -1 MnS Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229910001651 emery Inorganic materials 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- XUARKZBEFFVFRG-UHFFFAOYSA-N Silver sulfide Chemical compound [S-2].[Ag+].[Ag+] XUARKZBEFFVFRG-UHFFFAOYSA-N 0.000 description 1
- 229910010320 TiS Inorganic materials 0.000 description 1
- 229910052946 acanthite Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminum Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 230000001050 lubricating Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- TWXTWZIUMCFMSG-UHFFFAOYSA-N nitride(3-) Chemical compound [N-3] TWXTWZIUMCFMSG-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229940056910 silver sulfide Drugs 0.000 description 1
- 230000001502 supplementation Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium(0) Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/20—Ferrous alloys, e.g. steel alloys containing chromium with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
Description
本発明は、表面仕上粗さ及び耐アウトガス性に優れたフェライト系快削ステンレス鋼に関する。 The present invention relates to a ferritic free-cutting stainless steel excellent in surface finish roughness and outgas resistance.
近年、コンピュータやその周辺機器、あるいはその他の弱電製品のメンテナンスフリー化を図るため、比較的安価に高耐食性が得られるフェライト系ステンレス鋼が部品素材として広く用いられている。特に、寸法精度確保のため精密な仕上加工が要求される部品や加工代の大きい複雑形状の部品は被削性の向上が重視されるので、快削性付与元素の含有量は増やされる傾向にあり、また、これらの元素を単独ではなく複合添加して用いることも行われている。 In recent years, ferritic stainless steel, which provides high corrosion resistance at a relatively low cost, has been widely used as a component material in order to make maintenance free of computers, peripheral devices, and other weak electrical products. Especially for parts that require precise finishing to ensure dimensional accuracy and parts with complex shapes with large machining allowances, emphasis is placed on improving machinability, so the content of free machinability imparting elements tends to increase. In addition, these elements are also used in combination without being added alone.
被削性付与元素としては、S、Pb、Se、Bi、Te、Caなどが知られている。このうち、Pbは、環境保護に対する関心が地球規模で高まりつつある近年では次第に敬遠されるようになっており、その使用を制限する機器や部品も多くなりつつある。そこで、Sを被削性向上元素の主体として用いた材料が、代替材料として考えられている(特許文献1〜特許文献4)。これらは、主にMnS等のMn系硫化物を生成させ、硫化物に対する切屑形成時の応力集中効果や、工具と切屑間の潤滑作用により被削性や研削性を高めるようにしている。 As the machinability imparting element, S, Pb, Se, Bi, Te, Ca and the like are known. Among these, Pb is gradually shunned in recent years when the concern for environmental protection is increasing on a global scale, and the number of devices and parts that limit its use is increasing. Therefore, a material using S as a main component of the machinability improving element is considered as an alternative material (Patent Documents 1 to 4). These mainly produce Mn-based sulfides such as MnS, and enhance the machinability and grindability by the stress concentration effect during chip formation on the sulfides and the lubricating action between the tool and the chips.
しかしながら、MnS系の硫化物を生成させた場合、合金の耐食性、耐アウトガス性を劣化させる原因となる。耐アウトガス性が劣化するとは、大気中に暴露した場合に、合金材料中に含有されているS成分が硫黄含有ガスとなって放出され、部品周辺回路の腐食を引き起こしやすくなることをいう。そのような硫黄含有ガスは、密封状態で使用されることが多いコンピュータ周辺機器、例えばハードディスクドライブ(HDD)などの構成部品においては、特に問題となりやすい。 However, when MnS-based sulfides are generated, the corrosion resistance and outgas resistance of the alloy are deteriorated. Deterioration of outgas resistance means that, when exposed to the atmosphere, the S component contained in the alloy material is released as a sulfur-containing gas and is likely to cause corrosion of the peripheral circuit. Such sulfur-containing gases are particularly problematic in components such as computer peripherals that are often used in a sealed state, such as hard disk drives (HDDs).
本発明の課題は、良好な被削性を有しつつも、表面仕上粗さ、耐食性及び耐アウトガス性に優れたフェライト系快削ステンレス鋼を提供することにある。 An object of the present invention is to provide a ferritic free-cutting stainless steel having excellent surface finish roughness, corrosion resistance and outgas resistance while having good machinability.
上記課題を解決するため、本発明のフェライト系快削ステンレス鋼では、
質量%で、C:0.015%以下、Si:0.05〜1.0%、Mn:2.0%以下、P:0.050%以下、S:0.05〜0.50%、Cu:2.0%以下、Ni:2.0%以下、Cr:9.0〜25.0%、Mo:4.0%以下、Ti:0.065〜2.0%、O:0.0150%以下、N:0.020%以下、Al:0.001〜0.100%を含有し、残部がFe及び不可避不純物からなるとともに、
鋼のTi含有量を[Ti]、S含有量を[S]、Mn含有量を[Mn]としたとき、下記(1)式及び(2)式を満たし、且つ、
鋼組織中に生成した硫化物のTi含有量をWTi、Cr含有量をWCr、Mn含有量をWMnとしたとき、下記(3)式を満たすことを特徴とする。
[Ti]≧1.3×[S]・・・(1)式
[Mn]/[Ti]≦3 ・・・(2)式
(WTi+WCr)>2×WMn ・・(3)式
In order to solve the above problems, in the ferritic free-cutting stainless steel of the present invention,
In mass%, C: 0.015 % or less, Si: 0.05 to 1.0%, Mn: 2.0% or less, P: 0.050% or less, S: 0.05 to 0.50%, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 9.0-25.0%, Mo: 4.0% or less, Ti: 0.065-2.0%, O: 0.0. 0150% or less, N: 0.020% or less, Al: 0.001 to 0.100%, the balance is made of Fe and inevitable impurities,
When the Ti content of the steel is [Ti], the S content is [S], and the Mn content is [Mn], the following formulas (1) and (2) are satisfied, and
When the Ti content of the sulfide produced in the steel structure is WTi, the Cr content is WCr, and the Mn content is WMn, the following formula (3) is satisfied.
[Ti] ≧ 1.3 × [S] (1) Formula [Mn] / [Ti] ≦ 3 (2) Formula (WTi + WCr)> 2 × WMn (3) Formula
通常、Sは鋼材の成分であるMnと硫化物を形成しやすい。しかし、上述のように、Mn系硫化物は合金の耐食性や耐アウトガス性を劣化させる原因となってしまう。そこで、本発明ではTiの添加により、Mn系硫化物ではなく、TiS等のTi系硫化物を鋼組織中に生成させることで、耐食性や耐アウトガス性を向上させている。また、Ti系硫化物は球状の形態をとり、微細に分散するため、本発明のフェライト系快削ステンレス鋼は、良好な被削性を有し、さらに介在物の脱落性、特に精密切削加工における表面仕上げ粗さに優れる。また、硫化物がCrを含む場合にも同様の効果が得られる。なお、本明細書において、“A”系硫化物とは、Sと結合する成分のうち最も質量含有率の高い成分(元素)が“A”である硫化物を指す。すなわち、Ti系硫化物では、他元素(Mn等)と比べてより多くのTiがSと結合している。 Usually, S tends to form sulfide with Mn which is a component of steel. However, as described above, Mn-based sulfides cause deterioration of the corrosion resistance and outgas resistance of the alloy. Therefore, in the present invention, by adding Ti, Ti-based sulfides such as TiS, not Mn-based sulfides, are generated in the steel structure, thereby improving corrosion resistance and outgas resistance. In addition, since the Ti-based sulfide takes a spherical shape and is finely dispersed, the ferritic free-cutting stainless steel of the present invention has good machinability, and further, the inclusions fall off, particularly precision cutting. Excellent surface finish roughness. The same effect can be obtained when the sulfide contains Cr. In the present specification, the “A” -based sulfide refers to a sulfide whose component (element) having the highest mass content among the components bonded to S is “A”. That is, in Ti-based sulfide, more Ti is bonded to S than other elements (Mn and the like).
次に、本発明の請求範囲の限定理由を述べる。
C(炭素):0.015%以下
Cは、含有量が過大となると、単体の炭化物を多量に生成して被削性向上を阻害してしまうため、上限を0.015%とする。
Next, the reasons for limiting the claims of the present invention will be described.
C (carbon): 0.015% or less If the content of C is excessive, a large amount of a single carbide is generated to inhibit improvement of machinability, so the upper limit is made 0.015%.
Si(ケイ素):0.05〜1.0%
Siは、鋼の脱酸剤として添加する。その効果を得るためには0.05%以上を必要とする。しかし、含有量が過大となると、鋼の熱間加工性を劣化させるため、上限を1.0%とする。熱間加工性を重視する望ましい範囲としては0.05〜0.5%である。
Si (silicon): 0.05 to 1.0%
Si is added as a deoxidizer for steel. In order to obtain the effect, 0.05% or more is required. However, if the content is excessive , the hot workability of the steel is deteriorated, so the upper limit is made 1.0%. A desirable range in which hot workability is emphasized is 0.05 to 0.5%.
Mn(マンガン):2.0%以下
Mnは、鋼の脱酸剤として作用するほか、Mn系硫化物(MnS)を生成し、被削性を向上させる効果がある。しかし、Mn系硫化物(MnS)は耐食性を劣化させるので、上限は2.0%とする。特に耐食性を重視する場合は、1.0%以下にする。更に望ましくは0.5%以下とする。
Mn (manganese): 2.0% or less In addition to acting as a deoxidizer for steel, Mn produces Mn-based sulfides (MnS) and has an effect of improving machinability. However, since Mn-based sulfide (MnS) deteriorates corrosion resistance, the upper limit is made 2.0%. When emphasizing corrosion resistance in particular, the content is made 1.0% or less. More preferably, it is 0.5% or less.
P(リン):0.050%以下
Pは、粒界に偏析し、粒界腐食感受性を高めるほか、靭性の低下を招くため低いほうが望ましく、0.050%以下とする。望ましくは0.030%以下とするのがよい。
P (phosphorus) 0.050% or less P segregates in grain boundaries, in addition to increase the susceptibility to intergranular corrosion, rather low better is desirable for lowering the toughness, 0.050% or less. Desirably, it is good to set it as 0.030% or less.
S(硫黄):0.05〜0.50%
Sは、被削性を向上させる硫化物の構成元素であり、その効果を得るためには0.05%が必要である。しかし、含有量が過大となると熱間加工性を低下させることから、上限を0.50%とする。被削性の向上と熱間加工性の低下とのバランスにより望ましくは0.15〜0.40%とする。
S (sulfur): 0.05 to 0.50%
S is a constituent element of sulfide that improves machinability, and 0.05% is required to obtain the effect. However, if the content is excessive, the hot workability is lowered, so the upper limit is made 0.50%. It is preferably 0.15 to 0.40% due to the balance between improvement of machinability and reduction of hot workability.
Cu(銅):2.0%以下
Cuは、耐食性、とくに還元性酸環境中での耐食性を向上させるのに有効であることから必要に応じて添加してもよい。しかし、過剰な添加は、熱間加工性を劣化させることから上限を2.0%とする。望ましくは1.0%以下とする
Cu (copper): 2.0% or less Cu may be added as necessary because it is effective for improving the corrosion resistance, particularly the corrosion resistance in a reducing acid environment. However, excessive addition degrades hot workability, so the upper limit is made 2.0%. Desirably 1.0% or less
Ni(ニッケル):2.0%以下
Cr含有のみでは十分でない耐食性を補填するため必要な元素である。ただし、過剰な添加はコストが上昇してしまうため上限を2.0%とする。また、十分な耐食性と配合コストとの兼ね合いから望ましくは1.0%以下とする。
Ni (nickel): 2.0% or less An element necessary for supplementing corrosion resistance that is not sufficient only by containing Cr. However, excessive addition increases the cost, so the upper limit is made 2.0%. Further, it is preferably made 1.0% or less in view of sufficient corrosion resistance and blending cost.
Cr(クロム):9.0〜25.0%
Crは、耐食性を向上させる元素であり、その効果を得るためには9.0%以上を添加する。一方、含有量が過大となると、コストがかかるだけでなく熱間加工性が低下するので、上限を25.0%とする。また、十分な耐食性と配合コストとの兼ね合いから望ましくは13.0〜21.0%とするのがよい。
Cr (chromium): 9.0 to 25.0%
Cr is an element that improves corrosion resistance, and in order to obtain the effect, 9.0% or more is added. On the other hand, if the content is excessive, the cost is not only high, but the hot workability is lowered, so the upper limit is made 25.0%. Moreover, it is desirable to set it as 13.0-21.0% from the balance of sufficient corrosion resistance and mixing | blending cost.
Mo(モリブデン):4.0%以下
Moは、耐食性や強度をより向上することができるが、過剰な添加は熱間加工性を害するほか、コストの上昇を招くため、上限を4.0%とする。コストの上昇を考慮して望ましくは1.5%以下とする。
Mo (molybdenum): 4.0% or less Mo can further improve the corrosion resistance and strength, but excessive addition harms hot workability and increases the cost, so the upper limit is 4.0%. And Considering the increase in cost, it is desirably 1.5% or less.
Ti(チタン):0.065〜2.0%
Tiは被削性を向上させるTi系硫化物を生成するために必要な元素であり、その効果を得るには0.065%以上が必要である。一方、含有量が過大となるとコストを上昇させることから、上限を2.0%とする。また、より十分な被削性を得るために望ましくは0.075〜2.0%とするのがよい。
Ti (titanium): 0.065 to 2.0%
Ti is an element necessary for producing a Ti-based sulfide that improves machinability, and 0.065% or more is necessary to obtain the effect. On the other hand, if the content is excessive, the cost is increased, so the upper limit is made 2.0%. Moreover, in order to obtain more sufficient machinability, it is desirably 0.075 to 2.0%.
O(酸素):0.0150%以下
Oは、被削性を向上させるのに有効な化合物の構成元素であるTiと結合し、被削性の向上に寄与しない酸化物を形成することから、上限を0.0150%とする。製造コストとの兼ね合い及びTi系硫化物の形成に必要な有効Ti量を確保するため、望ましくは0.0080%以下、さらに望ましくは0.0050%とするのがよい。
O (oxygen): 0.0150% or less O is combined with Ti, which is a constituent element of a compound effective for improving machinability, and forms an oxide that does not contribute to improvement of machinability. The upper limit is made 0.0150%. In order to ensure the balance between the manufacturing cost and the effective Ti amount necessary for the formation of the Ti-based sulfide, the content is preferably 0.0080% or less, and more preferably 0.0050%.
N(窒素):0.020%以下
Nは、被削性を向上させるのに有効な化合物の構成元素であるTiと結合し、被削性の向上に寄与しない窒化物を形成することから、上限を0.020%とする。製造コストとの兼ね合い及びTi系硫化物形成の形成に必要な有効Ti量を確保するため、望ましくは0.010%以下、さらに望ましくは0.006%以下とするのがよい。
N (nitrogen): 0.020% or less N combines with Ti, which is a constituent element of a compound effective for improving machinability, and forms a nitride that does not contribute to the improvement of machinability. The upper limit is 0.020%. In order to ensure the balance between the manufacturing cost and the effective Ti amount necessary for forming the Ti-based sulfide, it is preferably 0.010% or less, and more preferably 0.006% or less.
Al(アルミニウム):0.001〜0.100%
Alは、鋼の脱酸剤として添加するが、含有量が過大となると被削性に有害な酸化物が構成されることから上限を0.100%とする。望ましくは0.050%以下である。
Al (aluminum): 0.001 to 0.100%
Al is added as a steel deoxidizer, but if the content is excessive, an oxide harmful to machinability is formed, so the upper limit is made 0.100%. Desirably, it is 0.050% or less.
[Ti]≧1.3×[S]・・・(1)式
耐食性及び耐アウトガス性を劣化させるMn系硫化物(MnS)の生成を抑制し、また鋼組織中のSを全てTiに固定するために、Ti含有量を、S含有量の1.3倍以上とする。さらに望ましくは、[Ti]≧1.5×[S]、すなわちTi含有量を、S含有量の1.5倍以上とするのがよい。なお、[ ]は、鋼中の成分含有量を指す。
[Ti] ≧ 1.3 × [S] (1) Formula Suppresses the generation of Mn-based sulfides (MnS) that degrade corrosion resistance and outgas resistance, and fixes all S in the steel structure to Ti Therefore, the Ti content is set to 1.3 times or more the S content. More desirably, [Ti] ≧ 1.5 × [S], that is, the Ti content should be 1.5 times or more the S content. In addition, [] points out component content in steel.
[Mn]/[Ti]≦3 ・・・(2)式
耐食性及び耐アウトガス性を劣化させるMn系硫化物(MnS)の生成を抑制し、Ti系硫化物を生成させるために(硫化物中のMn含有量を下げ、Ti含有量を上げるために)、Mn含有量を、Ti含有量の3倍以下とする。
[Mn] / [Ti] ≦ 3 (2) In order to suppress the generation of Mn-based sulfides (MnS) that deteriorate the corrosion resistance and outgas resistance and generate Ti-based sulfides (in the sulfides) In order to lower the Mn content and raise the Ti content), the Mn content is set to not more than three times the Ti content.
(WTi+WCr)>2×WMn・・・(3)式
鋼の耐食性及び耐アウトガス性を良好とするためには、硫化物中において、Ti含有量とCr含有量の合計が、Mn含有量の2倍を超えることが好ましい。なお、“W”は硫化物中の成分含有量を指す。
(WTi + WCr)> 2 × WMn (3) Formula In order to improve the corrosion resistance and outgas resistance of steel, the sum of Ti content and Cr content is 2 in the sulfide. It is preferable to exceed twice. “W” refers to the component content in the sulfide.
次に、本発明のフェライト系快削ステンレス鋼では、請求項1に規定した成分に加え、質量%で、Se:0.01〜0.30%、Bi:0.01〜0.30%以下のうちのいずれか1種を含有させることができる。 Next, in the ferritic free-cutting stainless steel of the present invention, in addition to the components defined in claim 1, in terms of mass%, Se: 0.01 to 0.30%, Bi: 0.01 to 0.30% or less Any one of them can be contained.
Se(セレン)、Bi(ビスマス)は被削性をさらに向上させることが可能なため、必要に応じて添加することができる。ただし、過剰な添加は、熱間加工性を低下させるため、それぞれの上限をSe:0.30%、Bi:0.30%とする。なお、被削性の向上効果を十分に得るためには、各成分はそれぞれ0.01%以上添加することが望ましい。 Since Se (selenium) and Bi (bismuth) can further improve machinability, they can be added as necessary. However, excessive addition reduces the hot workability, so the upper limits of Se are 0.30% and Bi are 0.30% . In order to sufficiently obtain the machinability improving effect, each component is desirably added in an amount of 0.01% or more.
次に、本発明のフェライト系ステンレス鋼では、請求項1または請求項2の成分に加え、質量%で、Mg:0.02%以下、B:0.02%以下、REM:0.02%以下、V:0.50%以下、Nb:0.50%以下、Ta:0.50%以下のうちのいずれか1種または2種以上を含有させることができる。 Next, in the ferritic stainless steel of the present invention, in addition to the components of claim 1 or claim 2, by mass%, Mg: 0.02% or less, B: 0.02% or less, REM: 0.02% Hereinafter, any one or more of V: 0.50% or less, Nb: 0.50% or less, Ta: 0.50% or less can be contained.
Mg(マグネシウム)、B(ホウ素)、REM(希土類元素のうちの1種または2種以上)は、鋼の熱間加工性を向上させることが可能なため、必要に応じて添加することができる。ただし、過剰な添加は効果が飽和し、逆に熱間加工性を低下させることから、それぞれの上限をMg:0.02%、B:0.02%、REM:0.02%とする。 Mg (magnesium), B (boron), and REM (one or more of rare earth elements) can improve the hot workability of steel, and can be added as necessary. . However, excessive addition will saturate the effect and conversely reduce hot workability. Therefore, the upper limits of Mg are 0.02%, B is 0.02%, and REM is 0.02% .
Nb(ニオブ)、V(バナジウム)、Ta(タンタル)は、炭窒化物を形成して鋼の結晶粒を微細化し、靭性を高める効果があるため、それぞれ0.50%以下の範囲で添加することができる。 Nb (niobium), V (vanadium), and Ta (tantalum) are added in the range of 0.50% or less because they have the effect of forming carbonitrides to refine the crystal grains of the steel and increasing the toughness. be able to.
本発明の効果を確認するために、以下の実験を行った。
まず、表1に示した成分組成の鋼種を各々50kg鋼塊を高周波誘導炉にて溶製したのち冷却してインゴットを作成した。各インゴットを1050〜1100℃に加熱し、熱間鍛造により20mmの丸棒に加工した。それら丸棒をさらに800℃で1時間加熱した後空冷(焼きなまし処理)し、各試験に供した。各試験結果を表1中に示す。
In order to confirm the effect of the present invention, the following experiment was conducted.
First, 50 kg steel ingots having the component compositions shown in Table 1 were melted in a high frequency induction furnace and then cooled to prepare ingots. Each ingot was heated to 1050 to 1100 ° C. and processed into a 20 mm round bar by hot forging. These round bars were further heated at 800 ° C. for 1 hour, then air-cooled (annealing treatment), and subjected to each test. The test results are shown in Table 1.
(1)被削性評価
被削性評価は切削加工後のワーク外径変寸量、仕上げ面粗さ、切屑形状により評価した。
切削加工は下記の条件で超硬コーティングバイトを用いて周速100mm/min、一回転あたりの切込み量0.10mm、一回転あたりの送り量0.01mm/revで不水溶性油による湿式にて切削加工を実施した。切削加工はサンプル50個に対して行い、その試験片の切削加工後の外径及び表面工具刃先摩耗を測定した。
外径変寸量は初期ワークからの変寸量である。変寸量の判定基準は、横逃げ面摩耗が50μm未満の場合を「小」、50μm以上100μm以下の場合を「中」、100μmを超える場合を「大」とした。
仕上げ面粗さはJIS−B0601に規定されている方法で測定した加工後のワーク表面の算術平均粗さ(Ra:μm)である。
さらに切屑形状を目視観察し、切屑が10mm程度以下である破砕性が良好のものを「良」、それ以外の破砕性が悪く繋がった状態のものは「劣」として表した。
(1) Machinability evaluation The machinability evaluation was evaluated based on the workpiece outer diameter change amount, the finished surface roughness, and the chip shape after cutting.
Cutting is performed by wet treatment with water-insoluble oil at a peripheral speed of 100 mm / min, a cutting amount of 0.10 mm per revolution, and a feed rate of 0.01 mm / rev per revolution using a carbide coating tool under the following conditions. Cutting was performed. Cutting was performed on 50 samples, and the outer diameter and surface tool edge wear after cutting of the test piece were measured.
The outer diameter change amount is the change amount from the initial workpiece. The criteria for determining the amount of change were “small” when the lateral flank wear was less than 50 μm, “medium” when 50 μm or more and 100 μm or less, and “large” when exceeding 100 μm.
The finished surface roughness is an arithmetic average roughness (Ra: μm) of the workpiece surface after processing measured by a method defined in JIS-B0601.
Further, the shape of the chips was visually observed, and those having good crushability where the chips were about 10 mm or less were represented as “good”, and those other than those having poor crushability were represented as “poor”.
(2)耐食性
耐食性評価試験は湿潤試験によって行った。試験片としては直径10mm、高さ50mmの円柱形状のものを用い、表面をエメリー紙により番手#400まで研磨加工し、脱脂洗浄した後、これら各試料を温度50℃、湿度98%RHの高温多湿雰囲気中に98h保存して、目視での外観判定により発錆の有無を見た。
(2) Corrosion resistance The corrosion resistance evaluation test was conducted by a wet test. As a test piece, a cylindrical shape having a diameter of 10 mm and a height of 50 mm was used. The surface was polished to count # 400 with emery paper, degreased and washed, and each sample was heated to a temperature of 50 ° C. and a humidity of 98% RH. It preserve | saved for 98 hours in a humid atmosphere, and the presence or absence of rusting was seen by visual appearance determination.
(3)耐アウトガス性、
耐アウトガス性の評価は、Sの発生量を規定することによって行った。具体的には、寸法が、縦が15mm、横が3mm、厚さが25mmの直方体形状で、かつ、全面を番手#400のエメリーペーパーによって研磨加工した試験片を用いる。そして、容積が250ccの密閉容器中に、前記試験片と銀箔(寸法:縦0.1mm、横5mm、厚さ10mm、純度:99.9%以上)と0.5ccの純水をいれ、その容器内の温度を85℃に維持しつつ20時間保持させた。銀箔は、Sを含有したガスが発生したときのゲッターとして働き、吸着したS成分が多くなると、硫化銀の生成により銀箔表面が黒変する。そこで、銀箔表面の変色を目視にて確認し、変色が無かったものを「A」、やや変色したものを「B」、明らかに変色したものを「C」として3段階で評価し、AないしBの判定結果が得られたものを耐アウトガス性において良好であるとした。
(3) Outgas resistance,
The outgas resistance was evaluated by defining the amount of S generated. Specifically, a test piece having a rectangular parallelepiped shape with dimensions of 15 mm in length, 3 mm in width, and 25 mm in thickness, and whose entire surface is polished with emery paper with count # 400 is used. Then, put the test piece, silver foil (dimensions: vertical 0.1 mm, horizontal 5 mm, thickness 10 mm, purity: 99.9% or more) and 0.5 cc pure water in a sealed container having a volume of 250 cc, The temperature in the container was maintained at 85 ° C. for 20 hours. The silver foil functions as a getter when a gas containing S is generated, and when the adsorbed S component increases, the surface of the silver foil turns black due to the formation of silver sulfide. Therefore, the discoloration on the surface of the silver foil was visually confirmed, and the evaluation was made in three stages, with “A” indicating no discoloration, “B” indicating a slight discoloration, and “C” indicating a clear discoloration. A sample having a determination result of B was considered good in outgas resistance.
表1の試験結果によると、本発明に係る発明鋼はいずれも、良好な被削性及び表面粗さを有するとともに、耐食性及び耐アウトガス性に優れていることがわかる。 According to the test results of Table 1, it can be seen that all the inventive steels according to the present invention have excellent machinability and surface roughness, and are excellent in corrosion resistance and outgas resistance.
次に、発明鋼及び比較鋼の一部に対し、電子線プローブ微小分析(EPMA)法により、鋼組織中に生成した硫化物の組成分析を行った。分析結果を表2に示す。これによると発明鋼では、硫化物の組成が(3)式を満たしており、Ti含有率の高い硫化物であることがわかる。これに対し、鋼の組成が(1),(2)式を満たさない比較鋼4、(1)式を満たさない比較鋼7では、硫化物中にTiとMnが同程度含有されており、硫化物の組成が(3)式を満たさない。このような硫化物を有する比較鋼4及び7は、表1から明らかなように、耐食性及び耐アウトガス性が劣るものとなっている。
[Ti]≧1.3×[S]・・・(1)式
[Mn]/[Ti]≦3 ・・・(2)式
(WTi+WCr)>2×WMn ・・(3)式
Next, the composition analysis of the sulfide produced | generated in the steel structure was performed with respect to a part of invention steel and comparative steel by the electron beam probe microanalysis (EPMA) method. The analysis results are shown in Table 2. According to this, in the inventive steel, the sulfide composition satisfies the formula (3), and it can be seen that the invention steel is a sulfide having a high Ti content. On the other hand, in comparative steel 4 in which the composition of the steel does not satisfy the formulas (1) and (2), and in comparative steel 7 that does not satisfy the formula (1), Ti and Mn are contained in the sulfide to the same extent. The composition of sulfide does not satisfy the formula (3). As is clear from Table 1, the comparative steels 4 and 7 having such sulfides are inferior in corrosion resistance and outgas resistance.
[Ti] ≧ 1.3 × [S] (1) Formula [Mn] / [Ti] ≦ 3 (2) Formula (WTi + WCr)> 2 × WMn (3) Formula
Claims (3)
鋼のTi含有量を[Ti]、S含有量を[S]、Mn含有量を[Mn]としたとき、下記(1)式及び(2)式を満たし、且つ、
鋼組織中に生成した硫化物のTi含有量をWTi、Cr含有量をWCr、Mn含有量をWMnとしたとき、下記(3)式を満たすことを特徴とする表面仕上粗さ及び耐アウトガス性に優れたフェライト系快削ステンレス鋼。
[Ti]≧1.3×[S]・・・(1)式
[Mn]/[Ti]≦3 ・・・(2)式
(WTi+WCr)>2×WMn ・・(3)式 In mass%, C: 0.015 % or less, Si: 0.05 to 1.0%, Mn: 2.0% or less, P: 0.050% or less, S: 0.05 to 0.50%, Cu: 2.0% or less, Ni: 2.0% or less, Cr: 9.0-25.0%, Mo: 4.0% or less, Ti: 0.065-2.0%, O: 0.0. 0150% or less, N: 0.020% or less, Al: 0.001 to 0.100%, the balance is made of Fe and inevitable impurities,
When the Ti content of the steel is [Ti], the S content is [S], and the Mn content is [Mn], the following formulas (1) and (2) are satisfied, and
Surface finish roughness and outgas resistance characterized by satisfying the following formula (3) when Ti content of the sulfide formed in the steel structure is WTi, Cr content is WCr, and Mn content is WMn. Excellent ferritic free-cutting stainless steel.
[Ti] ≧ 1.3 × [S] (1) Formula [Mn] / [Ti] ≦ 3 (2) Formula (WTi + WCr)> 2 × WMn (3) Formula
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003379633A JP4305137B2 (en) | 2003-11-10 | 2003-11-10 | Ferritic free-cutting stainless steel with excellent surface finish roughness and outgas resistance |
EP04105518A EP1541703A3 (en) | 2003-11-10 | 2004-11-04 | Ferritic free-cutting stainless steel excellent in surface roughness and outgass resistance |
CNA2004100907119A CN1616701A (en) | 2003-11-10 | 2004-11-08 | Ferritic free-cutting stainless steel excellent in surface roughness and outgass resistance |
US10/983,709 US20050098240A1 (en) | 2003-11-10 | 2004-11-09 | Ferritic free-cutting stainless steel excellent in surface roughness and outgass resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003379633A JP4305137B2 (en) | 2003-11-10 | 2003-11-10 | Ferritic free-cutting stainless steel with excellent surface finish roughness and outgas resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005139531A JP2005139531A (en) | 2005-06-02 |
JP4305137B2 true JP4305137B2 (en) | 2009-07-29 |
Family
ID=34510420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003379633A Active JP4305137B2 (en) | 2003-11-10 | 2003-11-10 | Ferritic free-cutting stainless steel with excellent surface finish roughness and outgas resistance |
Country Status (4)
Country | Link |
---|---|
US (1) | US20050098240A1 (en) |
EP (1) | EP1541703A3 (en) |
JP (1) | JP4305137B2 (en) |
CN (1) | CN1616701A (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006226523A (en) * | 2005-01-20 | 2006-08-31 | Nippon Densan Corp | Fluid dynamic pressure bearing device and spindle motor |
JP4770437B2 (en) * | 2005-10-14 | 2011-09-14 | 大同特殊鋼株式会社 | Ferritic free-cutting stainless steel |
KR20070067325A (en) * | 2005-12-23 | 2007-06-28 | 주식회사 포스코 | A method of manufacturing a ferritic stainless steel for improving ridging resistance |
US20070166183A1 (en) * | 2006-01-18 | 2007-07-19 | Crs Holdings Inc. | Corrosion-Resistant, Free-Machining, Magnetic Stainless Steel |
CN100385032C (en) * | 2006-02-17 | 2008-04-30 | 山西太钢不锈钢股份有限公司 | Middle content chromium copper, iron-containing antiseptic anticreas rustless steel sheet belt and its production method |
DE102008048050A1 (en) | 2007-09-19 | 2009-04-16 | Daido Tokushuko K.K., Nagoya | Easily cutting ferritic stainless steel has manganese that forms sulphide in zirconium-series sulphide replaced by zirconium |
JP5501795B2 (en) * | 2010-02-24 | 2014-05-28 | 新日鐵住金ステンレス株式会社 | Low-chromium stainless steel with excellent corrosion resistance in welds |
US9598750B2 (en) | 2010-10-26 | 2017-03-21 | Korea Atomic Energy Research Institute | High Cr ferritic/martensitic steels having an improved creep resistance for in-core component materials in nuclear reactor, and preparation method thereof |
JP5645696B2 (en) * | 2011-02-10 | 2014-12-24 | 日鉄住金テックスエンジ株式会社 | VACUUM DEVICE MEMBER AND VACUUM DEVICE MANUFACTURING METHOD |
JP6120303B2 (en) * | 2011-11-11 | 2017-04-26 | 山陽特殊製鋼株式会社 | Free-cutting stainless steel with double-phase inclusions |
CN104480409B (en) * | 2014-12-10 | 2017-05-03 | 无锡鑫常钢管有限责任公司 | 06Cr17Ni12Mo2Ti austenitic stainless steel pipe and production process thereof |
CN108531824A (en) * | 2016-08-16 | 2018-09-14 | 刘可 | A kind of application of minute spherical ferritic stainless steel powder |
CN106141169B (en) * | 2016-08-16 | 2018-07-20 | 盐城市科瑞达科技咨询服务有限公司 | A kind of metal powder material and preparation method thereof for 3D printing |
CN107058906B (en) * | 2017-02-21 | 2018-11-16 | 山西太钢不锈钢股份有限公司 | Stainless steel, ball pen head STAINLESS STEEL WIRE and preparation method thereof |
CN107475492B (en) * | 2017-07-20 | 2019-02-22 | 首钢集团有限公司 | A kind of heating means of control automatic steel surface high-temp vulcanization defect |
CN107747022A (en) * | 2017-11-24 | 2018-03-02 | 苏州双金实业有限公司 | A kind of stainless steel with free cutting property |
WO2021129836A1 (en) * | 2019-12-26 | 2021-07-01 | 华新丽华股份有限公司 | Corrosion-resistant free-cutting steel |
EP4092150A1 (en) * | 2020-01-15 | 2022-11-23 | NIPPON STEEL Stainless Steel Corporation | Ferritic stainless steel |
CN111270164B (en) * | 2020-01-23 | 2021-04-20 | 清华大学 | Interphase precipitation strengthened low-activation ferritic steel and preparation method thereof |
CN111850407B (en) * | 2020-07-29 | 2021-10-08 | 成都先进金属材料产业技术研究院有限公司 | 850 MPa-grade titanium-containing free-cutting stainless steel forged bar and preparation method thereof |
CN112795848B (en) * | 2021-03-22 | 2021-06-25 | 北京科技大学 | Free-cutting corrosion-resistant steel and preparation method thereof |
CN113684420B (en) * | 2021-08-17 | 2022-06-24 | 浙江青山钢铁有限公司 | Calcium-tellurium-rare earth composite treated super free-cutting stainless steel and preparation method thereof |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2123470C (en) * | 1993-05-19 | 2001-07-03 | Yoshihiro Yazawa | Ferritic stainless steel exhibiting excellent atmospheric corrosion resistance and crevice corrosion resistance |
JP3601749B2 (en) * | 1996-10-24 | 2004-12-15 | 大同特殊鋼株式会社 | High strength, free cutting ferritic stainless steel |
JPH10237603A (en) * | 1997-02-20 | 1998-09-08 | Daido Steel Co Ltd | Free cutting ferritic stainless steel excellent in corrosion resistance |
JP3777756B2 (en) * | 1997-11-12 | 2006-05-24 | 大同特殊鋼株式会社 | Electronic equipment parts made of ferritic free-cutting stainless steel |
JP2000008145A (en) * | 1998-06-25 | 2000-01-11 | Sumitomo Metal Ind Ltd | Ferritic stainless steel excellent in antifungal property and its production |
JP3736721B2 (en) * | 1998-11-11 | 2006-01-18 | 山陽特殊製鋼株式会社 | High corrosion resistance free-cutting stainless steel |
JP4306879B2 (en) * | 1999-06-29 | 2009-08-05 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel with excellent workability and corrosion resistance and method for producing the same |
US6793746B2 (en) * | 1999-07-26 | 2004-09-21 | Daido Steel Co., Ltd. | Stainless steel parts with suppressed release of sulfide gas and method of producing |
JP3425124B2 (en) * | 2000-07-21 | 2003-07-07 | 清仁 石田 | Ferritic free-cutting stainless steel |
JP3638828B2 (en) * | 1999-09-29 | 2005-04-13 | 山陽特殊製鋼株式会社 | High corrosion-resistant free-cutting stainless steel with excellent surface finish |
JP2003221654A (en) * | 2002-01-31 | 2003-08-08 | Daido Steel Co Ltd | Free-cutting stainless steel |
-
2003
- 2003-11-10 JP JP2003379633A patent/JP4305137B2/en active Active
-
2004
- 2004-11-04 EP EP04105518A patent/EP1541703A3/en not_active Withdrawn
- 2004-11-08 CN CNA2004100907119A patent/CN1616701A/en active Pending
- 2004-11-09 US US10/983,709 patent/US20050098240A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
JP2005139531A (en) | 2005-06-02 |
EP1541703A2 (en) | 2005-06-15 |
CN1616701A (en) | 2005-05-18 |
US20050098240A1 (en) | 2005-05-12 |
EP1541703A3 (en) | 2008-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4305137B2 (en) | Ferritic free-cutting stainless steel with excellent surface finish roughness and outgas resistance | |
JP4500709B2 (en) | BN free-cutting steel | |
JP4986203B2 (en) | BN free-cutting steel with excellent tool life | |
JP5461929B2 (en) | BN free-cutting steel with excellent chip disposal | |
WO2019189858A1 (en) | Ferritic stainless steel with excellent ridging resistance | |
JP4761649B2 (en) | Corrosion resistant steel | |
JP5683197B2 (en) | Ferritic free-cutting stainless steel bar wire with excellent corrosion resistance | |
JPH11140597A (en) | Electronic equipment parts made of ferritic free cutting stainless steel | |
JP2012162760A (en) | Free-cutting ferritic stainless steel and method for producing the same | |
JP5836619B2 (en) | Duplex stainless steel with good acid resistance | |
JP2006316310A (en) | Material for component in electronic equipment | |
JP5576895B2 (en) | BN free-cutting steel with excellent tool life | |
JP3703008B2 (en) | Free-cutting stainless steel | |
JP5957241B2 (en) | Ferritic free-cutting stainless steel bar wire and method for producing the same | |
JP2008106306A (en) | Ferritic free-cutting stainless steel | |
JP4106778B2 (en) | Machining method of free-cutting ferritic stainless steel and stainless steel parts with excellent outgas resistance and corrosion resistance | |
JP4023196B2 (en) | Machine structural steel with excellent machinability | |
JP4018021B2 (en) | Nonmagnetic sulfur free-cutting stainless steel wire with excellent cold-drawing workability and corrosion resistance | |
JP5082389B2 (en) | Austenitic free-cutting stainless steel | |
JP4279041B2 (en) | Non-Pb free-cutting stainless steel with excellent outgassing characteristics | |
JP2009256765A (en) | Nonmagnetic austenitic stainless steel, shaft or motor, and motor | |
JP3966190B2 (en) | Stainless steel with excellent machinability and cold workability | |
JP3425129B2 (en) | Free cutting alloy material | |
JP2000169942A (en) | Free-cutting martensitic stainless steel excellent in outgas resistance and corrosion resistance and method for working stainless steel parts | |
JP3425128B2 (en) | Free cutting alloy material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060929 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080722 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080728 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090407 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4305137 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140515 Year of fee payment: 5 |