JP2001011580A - LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY - Google Patents

LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY

Info

Publication number
JP2001011580A
JP2001011580A JP18892099A JP18892099A JP2001011580A JP 2001011580 A JP2001011580 A JP 2001011580A JP 18892099 A JP18892099 A JP 18892099A JP 18892099 A JP18892099 A JP 18892099A JP 2001011580 A JP2001011580 A JP 2001011580A
Authority
JP
Japan
Prior art keywords
thermal expansion
low
martensitic transformation
region
temperature range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18892099A
Other languages
Japanese (ja)
Other versions
JP2001011580A5 (en
Inventor
Kazuo Kawaguchi
一男 川口
Takayuki Shindo
貴之 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinhokoku Steel Corp
Original Assignee
Shinhokoku Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinhokoku Steel Corp filed Critical Shinhokoku Steel Corp
Priority to JP18892099A priority Critical patent/JP2001011580A/en
Publication of JP2001011580A publication Critical patent/JP2001011580A/en
Publication of JP2001011580A5 publication Critical patent/JP2001011580A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an Ni-Co-Fe base alloy suitable for low temp. region corresponding type precision apparatus in which γ to martensitic transformation at low temp. is suppressed. SOLUTION: This alloy contains, by weight, 30.0 to 34.0% Ni and 4.5 to 6.5% Co, and the balance Fe with inevitable impurities, in which XT:(%Co)+2.8(%Ni) is found from the contents of Ni and Co so as to control the range free from martensitic transformation in a prescribed temp. region, the components are controlled in such a manner that the XT satisfies the inequality of 93 <= XT=(%Co)+2.8(%Ni)}<=99, and its thermal expansion coefficient is <=1.0×10-6/ deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温で使用または
低温に晒される場合の変態を防止し、精密機器等に適用
される、低温安定型Ni−Co−Fe系低熱膨張合金に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low-temperature stable Ni-Co-Fe-based low thermal expansion alloy which prevents transformation when used or exposed to a low temperature and is applied to precision equipment.

【0002】[0002]

【従来の技術】近年、半導体分野等の高精度加工技術の
進展を可能にしている超精密加工機械の開発が活発とな
っている。このような超精密加工機械に於いては、精度
向上の要求が年々厳しくなり、加工機械の精度の維持さ
らには改善が重要である。加工機械は多くの熱源を持っ
ているので熱変形により加工精度が低下する事はさけが
たく、このために熱膨張係数の小さい低熱膨張材料が光
学関連機器、精密計測機器、制御機器などの分野で多用
されている。いわゆるスーパーインバー合金と呼ばれる
公称組成32%Ni−5%Co−Fe合金が使用されて
いる。この32%Ni−5%Co−Fe合金の平均熱膨
張係数は、表1に示されるように、1×10-6/℃以下
と極めて小さい。
2. Description of the Related Art In recent years, the development of ultra-precision processing machines that enable the advancement of high-precision processing techniques in the field of semiconductors and the like has been active. In such an ultra-precision processing machine, the demand for improvement in accuracy is becoming severer year by year, and it is important to maintain and further improve the accuracy of the processing machine. Since the processing machine has many heat sources, it is unavoidable that the processing accuracy will decrease due to thermal deformation. For this reason, low thermal expansion materials with a small coefficient of thermal expansion are used in fields such as optical equipment, precision measurement equipment, and control equipment. It is frequently used in A so-called super-invar alloy having a nominal composition of 32% Ni-5% Co-Fe alloy is used. As shown in Table 1, the average thermal expansion coefficient of this 32% Ni-5% Co-Fe alloy is as extremely small as 1 × 10 −6 / ° C. or less.

【0003】[0003]

【表1】 [Table 1]

【0004】[0004]

【発明が解決しようとする課題】さらには、使用環境や
輸送経路の多様化により寒冷地での、使用や輸送中一時
的に低温に晒されることによる低温化対応といった低温
域での精度上の安定使用が強く望まれている。前述の3
2%Ni−5%Co−Fe合金(スーパーインバー合
金)は零度以下の低温域におかれると、いわゆるγ→マ
ルテンサイト変態を生じる。そのためこの無拡散変態で
あるマルテンサイト変態により著しい膨張が発生し、寸
法精度・低熱膨張特性を劣化させてしまい低温域での使
用には問題があった。
Further, diversification of the use environment and transportation routes makes it possible to improve accuracy in a low-temperature region, such as in a cold region where the device is temporarily exposed to a low temperature during use or transportation. Stable use is strongly desired. 3 above
When a 2% Ni-5% Co-Fe alloy (super Invar alloy) is placed in a low temperature range of zero degree or less, a so-called γ → martensitic transformation occurs. For this reason, martensite transformation, which is a non-diffusion transformation, causes remarkable expansion, deteriorating dimensional accuracy and low thermal expansion characteristics, and there is a problem in use in a low temperature range.

【0005】上記の状況に鑑み本発明は、制御機器用材
料に使用されるNi−Co−Fe系合金材料において、
零度以下の低温域でγ→マルテンサイト変態を生じさせ
る事なく低膨張係数のものとして、安定的に零度以上と
同等の扱いを可能とするNi−Co−Fe系合金の提供
を目的としている。
In view of the above situation, the present invention relates to a Ni--Co--Fe alloy material used for a control device material,
It is an object of the present invention to provide a Ni-Co-Fe-based alloy which has a low expansion coefficient without causing γ-> martensite transformation in a low temperature range below zero degree and which can be stably handled at a temperature equal to or higher than zero degree.

【0006】[0006]

【課題を解決するための手段】前記の課題を解決する本
発明の要旨とするところは次のとおりである。 (1)重量%で、Ni:30.0〜34.0%、Co:
4.5〜6.5%を含有し、残部がFeおよび不可避不
純物からなり、所定の温度域で、マルテンサイト変態が
生じない範囲になるようにNiおよびCo含有量からX
T :(%Co)+2.8(%Ni)を求め、このXT
下記関係式を満足するように成分調整し、その熱膨張係
数が1.0×10-6/℃以下であることを特徴とする低
温安定型Ni−Co−Fe系低熱膨張合金。
The gist of the present invention for solving the above-mentioned problems is as follows. (1) By weight%, Ni: 30.0 to 34.0%, Co:
4.5 to 6.5%, with the balance being Fe and unavoidable impurities, and from the Ni and Co contents to X in such a range that martensitic transformation does not occur within a predetermined temperature range.
T: (% Co) +2.8 sought (% Ni), that the X T is component adjustment so as to satisfy the following relationships, the thermal expansion coefficient of 1.0 × 10 -6 / ℃ or less A low-temperature stable Ni-Co-Fe-based low thermal expansion alloy characterized by the following.

【0007】93≦{XT =(%Co)+2.8(%N
i)}≦99 (2)(1)において、NiおよびCo含有量を図1に
示される関係の点A,E,F,Jで囲まれた領域I内に
なるように調整し、−20℃以上の温度域でマルテンサ
イト変態を生じないことを特徴とする低温安定型Ni−
Co−Fe系低熱膨張合金。
93 ≦ ΔX T = (% Co) +2.8 (% N
i)} ≦ 99 (2) In (1), the Ni and Co contents are adjusted so as to be within the region I surrounded by the points A, E, F, and J in the relationship shown in FIG. Low temperature stable Ni— characterized by not causing martensitic transformation in the temperature range above
Co-Fe low thermal expansion alloy.

【0008】(3)(1)において、NiおよびCo含
有量を図1に示される関係の点B,E,F,Iで囲まれ
た領域II内になるように調整し、−40℃以上の温度域
でマルテンサイト変態を生じないことを特徴とする低温
安定型Ni−Co−Fe系低熱膨張合金。 (4)(1)において、NiおよびCo含有量を図1に
示される関係の点C,E,F,Hで囲まれた領域III 内
になるように調整し、−60℃以上の低温域でマルテン
サイト変態を生じないことを特徴とする低温安定型Ni
−Co−Fe系低熱膨張合金。
(3) In (1), the contents of Ni and Co are adjusted so as to fall within a region II surrounded by points B, E, F and I in the relationship shown in FIG. A low-temperature stable Ni-Co-Fe-based low-thermal-expansion alloy characterized by not causing martensitic transformation in the above temperature range. (4) In (1), the contents of Ni and Co are adjusted so as to fall within a region III surrounded by points C, E, F, and H in the relationship shown in FIG. Low temperature stable Ni characterized by not causing martensitic transformation
-Co-Fe based low thermal expansion alloy.

【0009】(5)(1)において、NiおよびCo含
有量を図1に示される関係の点D,E,F,Gで囲まれ
た領域IV内になるように調整し、−80℃以上の温度域
でマルテンサイト変態を生じないことを特徴とする低温
安定型Ni−Co−Fe系低熱膨張合金。
(5) In (1), the contents of Ni and Co are adjusted so as to fall within a region IV surrounded by points D, E, F, and G in the relationship shown in FIG. A low-temperature stable Ni-Co-Fe-based low-thermal-expansion alloy characterized by not causing martensitic transformation in the above temperature range.

【0010】[0010]

【発明の実施の形態】前記のように、低熱膨張合金が低
温に晒される場合、その温度域としては、0℃,−20
℃,−30℃、さらにはもっと低温域の−80℃等、様
々な温度域がある。本発明者等はこのような低温域に晒
されると、いわゆるスーパーインバー合金(通常、32
Ni−5Co−Fe合金)はγ(オーステナイト)→マ
ルテンサイト変態を生じるが、その変態温度はNi,C
o成分量に依存する事を見出した。図2に示す如く、N
i−Co−Fe合金系に於いてγ→マルテンサイト変態
温度は(%Co)+2.8(%Ni)量に依存する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, when a low thermal expansion alloy is exposed to a low temperature, the temperature range is 0 ° C., -20 ° C.
C., -30.degree. C., and even a lower temperature range, such as -80.degree. When the present inventors are exposed to such a low temperature range, the present inventors have found that a so-called Super Invar alloy (usually 32
(Ni-5Co-Fe alloy) undergoes γ (austenite) → martensite transformation, whose transformation temperature is Ni, C
It was found that it depends on the amount of the o component. As shown in FIG.
In the i-Co-Fe alloy system, the γ → martensite transformation temperature depends on the amount of (% Co) +2.8 (% Ni).

【0011】この図から、−20℃の場合、(%Co)
+2.8(%Ni)≧93を満足する範囲がγ→マルテ
ンサイト変態を生じさせない安定域であることがわか
る。同様に、−40℃の場合、(%Co)+2.8(%
Ni)≧95.3の範囲がγ→マルテンサイト変態を生
じさせない安定域であって、−60℃の場合、(%C
o)+2.8(%Ni)≧95.7の範囲がγ→マルテ
ンサイト変態を生じさせない安定域である。
From this figure, it can be seen that at -20 ° C., (% Co)
It can be seen that the range satisfying +2.8 (% Ni) ≧ 93 is a stable range in which γ → martensitic transformation does not occur. Similarly, in the case of −40 ° C., (% Co) +2.8 (%
Ni) ≧ 95.3 is a stable region where γ → martensitic transformation does not occur, and in the case of −60 ° C., (% C
o) The range of +2.8 (% Ni) ≧ 95.7 is a stable range in which γ → martensitic transformation does not occur.

【0012】さらに低温の−80℃の場合、%Co+
2.8(%Ni)≧96の成分域がγ→マルテンサイト
変態を生じさせない安定域であることがわかる。このよ
うに使用される低温温度域に対応して、可変的にNi−
Co成分系を選択しうる事を見出し本発明を達成した。
なお、XT は、マルテンサイト変態に対するCoとNi
の寄与度を表わすパラメータとして扱うことが出来るも
のである。言いかえると、本32Ni−5Co−Fe合
金におけるオーステナイトの安定性のパラメータでもあ
る。
In the case of a lower temperature of -80 ° C.,% Co +
It can be seen that the component region of 2.8 (% Ni) ≧ 96 is a stable region where γ → martensitic transformation does not occur. In accordance with the low temperature range used in this manner, Ni-
The present inventors have found that a Co component system can be selected and achieved the present invention.
Note that X T is Co and Ni for martensitic transformation.
Can be treated as a parameter representing the degree of contribution. In other words, it is also a parameter of austenite stability in the present 32Ni-5Co-Fe alloy.

【0013】本発明における、化学成分の限定理由につ
いて説明する。まず、Ni−Co−Fe系低熱膨張合金
のNiおよびCoについては、上記のように使用温度域
によって、マルテンサイト変態を防止して、変態による
膨張を回避して、かつ、温度安定性を付与するものであ
る。その他の成分については、特に限定するものではな
いが、好ましい範囲は次のとおりである。Cについて
は、精密機械装置としての強度および加工性の確保か
ら、0.05%を越えると熱膨張係数が高くなるので、
これ以下が好ましい。またSiについては、0.50%
を越えると熱膨張係数が高くなるのでこれ以下が好まし
い。
The reasons for limiting the chemical components in the present invention will be described. First, as for Ni and Co of the Ni-Co-Fe low thermal expansion alloy, martensitic transformation is prevented, expansion due to transformation is avoided, and temperature stability is imparted, depending on the operating temperature range as described above. Is what you do. Other components are not particularly limited, but preferred ranges are as follows. As for C, if it exceeds 0.05%, the coefficient of thermal expansion becomes high from the viewpoint of securing the strength and workability as a precision mechanical device.
This is preferred. For Si, 0.50%
If it exceeds, the coefficient of thermal expansion becomes high, so that it is preferably less than this.

【0014】さらに、Mnについては、0.5%を越え
ると、熱膨張係数が高くなるのでこれ以下が望ましい。
以下に、本発明の請求項に対応する限定理由を具体的に
説明する。前述の如くNi−Co−Fe系合金を安定し
て低温域に於いて使用するためにはその使用温度域に対
応したNi,Co成分範囲を選択してγ→マルテンサイ
ト変態を生じさせないでγ組織を安定して維持させる事
が第一の特徴である。
Further, when Mn exceeds 0.5%, the coefficient of thermal expansion becomes high.
Hereinafter, the reasons for limitation corresponding to the claims of the present invention will be specifically described. As described above, in order to use a Ni-Co-Fe alloy stably in a low temperature range, a range of Ni and Co components corresponding to the operating temperature range is selected and γ is used without causing martensite transformation. Maintaining the organization in a stable manner is the first characteristic.

【0015】したがって、γ組織安定化と同時にこのN
i−Co−Fe系合金の特徴である低い熱膨張係数(<
1.0×10-6/℃)を安定的に得るには図1に示すよ
うにNi−Coの上限範囲(%Co)+2.8×(%N
i)≦99、4.5%≦Co≦6.5%及び30.0%
≦Ni≦34.0%の範囲に制御する事が重要である。
Therefore, this N
Low thermal expansion coefficient (<
1.0 × 10 −6 / ° C.), as shown in FIG. 1, the upper limit range of Ni—Co (% Co) + 2.8 × (% N
i) ≤ 99, 4.5% ≤ Co ≤ 6.5% and 30.0%
It is important to control the range of ≦ Ni ≦ 34.0%.

【0016】即ち、より厳しい条件として、低温域−8
0℃対応の場合、図1に示す領域IV(D(89.5,
6.5)、E(92.5,6.5)、F(94.5,
4.5)、G(91.5,4.5))が対応Ni−Co
成分範囲である。又低温域−60℃対応の場合、図1に
示す領域III (C(89.2,6.5)、E(92.
5,6.5)、F(94.5,4.5)、H(91.
2,4.5))が対応Ni−Co成分範囲である。
That is, as a more severe condition, the low temperature region -8
In the case of 0 ° C, the region IV (D (89.5,
6.5), E (92.5, 6.5), F (94.5,
4.5), G (91.5, 4.5)) corresponds to Ni-Co
Component range. In the case of a low temperature range of −60 ° C., regions III (C (89.2, 6.5) and E (92.
5,6.5), F (94.5, 4.5), H (91.
2,4.5)) is the corresponding Ni-Co component range.

【0017】又低温域−40℃対応の場合、図1の領域
II(B(89.2,6.5)、E(92.5,6.
5)、F(94.5,4.5)、I(90.8,4.
5))が対応Ni−Co成分範囲である。又低温域−2
0℃対応の場合、図1の領域I(A(86.5,6.
5)、E(92.5,6.5)、F(94.5,4.
5)、J(88.5,4.5))が対応Ni−Co成分
範囲である。尚境界線の線上を全て含めるものである。
In the case of a low temperature range corresponding to -40 ° C., the region shown in FIG.
II (B (89.2, 6.5), E (92.5, 6.
5), F (94.5, 4.5), I (90.8, 4.
5)) is the corresponding Ni-Co component range. Low temperature range-2
In the case of 0 ° C., the region I (A (86.5,6.
5), E (92.5, 6.5), F (94.5, 4.
5) and J (88.5, 4.5)) are the corresponding Ni-Co component ranges. Note that all the lines on the boundary line are included.

【0018】[0018]

【実施例】以下に、本発明の実施例を説明する。本実施
例では、上述の各低温域において、サブゼロ処理(各温
度にて、2時間保持)した後、組織観察して、本発明合
金と比較例との対比を行なった。本実施例の代表的金属
組織を図3(a)および(b)に示す。この図で、図
(a)は実施例No.1の−80℃サブゼロ処理材、図
(b)は実施例No.4の−80℃サブゼロ処理材を観察
した組織図を示したものである。図(a)では全オース
テナイトであり、図(b)ではマルテンサイトが発生し
ている。このように図(b)では、マルテンサイト変態
有りと判定されるものである。
Embodiments of the present invention will be described below. In this example, in each of the above-described low-temperature regions, after performing sub-zero treatment (holding at each temperature for 2 hours), the structure was observed, and the alloy of the present invention was compared with a comparative example. FIGS. 3A and 3B show a typical metal structure of this example. In this figure, FIG. No. 1 -80 ° C. sub-zero treated material, FIG. 4 is a micrograph showing the structure of the -80 ° C. sub-zero treated material No. 4 observed. In FIG. (A), all austenite is present, and in FIG. (B), martensite is generated. Thus, in FIG. 5B, it is determined that there is a martensite transformation.

【0019】本発明による低温安定型Ni−Co−Fe
系低熱膨張合金は、表2および3に示すように前記の各
請求項に対応させている。この表から、Ni及びCo量
をCo+2.8Niに沿って制御する事により所定の低
温域に晒されてもγ→マルテンサイト変態を生じない
で、且つ室温〜100℃の熱膨張係数も1.0×10-6
/℃以下と従来のスーパーインバー合金と同等の値が得
られている。
Low temperature stable type Ni-Co-Fe according to the present invention
The low thermal expansion alloys according to the present invention correspond to the respective claims as shown in Tables 2 and 3. From this table, it can be seen that by controlling the amounts of Ni and Co along with Co + 2.8Ni, γ → martensite transformation does not occur even when exposed to a predetermined low temperature range, and the coefficient of thermal expansion from room temperature to 100 ° C. is also 1. 0 × 10 -6
/ ° C or less, a value equivalent to that of the conventional Super Invar alloy is obtained.

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【表3】 [Table 3]

【0022】[0022]

【発明の効果】本発明によれば、Ni−Co−Fe系低
熱膨張合金が寒冷地を輸送されたり、使用されても、γ
→マルテンサイト変態を生じる事なく安定して使用する
事が可能となり、従来のスーパーインバー合金と同等の
低い熱膨張係数を得る事が出来、超精密機械に於ける加
工精度の維持が可能となる。
According to the present invention, even when a low thermal expansion Ni-Co-Fe alloy is transported in a cold region or used,
→ It can be used stably without causing martensitic transformation, it can obtain a low thermal expansion coefficient equivalent to that of conventional Super Invar alloy, and it can maintain processing accuracy in ultra-precision machines .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るNiとCoの成分調整領域を示す
図である。
FIG. 1 is a diagram showing a component adjustment region of Ni and Co according to the present invention.

【図2】本発明に係る成分によるマルテンサイト変態挙
動を示す図である。
FIG. 2 is a view showing a martensitic transformation behavior by a component according to the present invention.

【図3】本発明の実施例に係る金属組織を示し、(a)
No.1の−80℃サブゼロ処理材、(b)No.4の−8
0℃サブゼロ処理材を示す図である。
FIG. 3 shows a metal structure according to an example of the present invention, and (a)
No. No. 1 -80 ° C. sub-zero treated material, (b) No. 4-8
It is a figure which shows a 0 degreeC sub-zero processing material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Ni:30.0〜34.0
%、Co:4.5〜6.5%を含有し、残部がFeおよ
び不可避不純物からなり、所定の温度域で、マルテンサ
イト変態じ生じない範囲になるように、NiおよびCo
含有量からXT:(%Co)+2.8(%Ni)を求
め、このXT が下記関係式を満足するように成分調整
し、その熱膨張係数が1.0×10-6/℃以下であるこ
とを特徴とする低温安定型Ni−Co−Fe系低熱膨張
合金。 93≦{XT =(%Co)+2.8(%Ni)}≦99
1. Ni: 30.0 to 34.0% by weight.
%, Co: 4.5-6.5%, the balance being Fe and unavoidable impurities, and Ni and Co such that the martensitic transformation does not occur within a predetermined temperature range.
From the content X T: (% Co) +2.8 sought (% Ni), the X T is component adjustment so as to satisfy the following relationships, the thermal expansion coefficient of 1.0 × 10 -6 / ℃ A low-temperature stable Ni-Co-Fe-based low thermal expansion alloy characterized by the following. 93 ≦ {X T = (% Co) +2.8 (% Ni)} ≦ 99
【請求項2】 請求項1において、NiおよびCo含有
量を図1に示される関係の点A,E,F,Jで囲まれた
領域I内になるように調整し、−20℃以上の温度域で
マルテンサイト変態を生じないことを特徴とする低温安
定型Ni−Co−Fe系低熱膨張合金。
2. The method according to claim 1, wherein the contents of Ni and Co are adjusted so as to fall within a region I surrounded by points A, E, F, and J in the relationship shown in FIG. A low-temperature stable Ni-Co-Fe-based low thermal expansion alloy characterized by not causing martensitic transformation in a temperature range.
【請求項3】 請求項1において、NiおよびCo含有
量を図1に示される関係の点B,E,F,Iで囲まれた
領域II内になるように調整し、−40℃以上の温度域で
マルテンサイト変態を生じないことを特徴とする低温安
定型Ni−Co−Fe系低熱膨張合金。
3. The method according to claim 1, wherein the Ni and Co contents are adjusted so as to fall within a region II surrounded by points B, E, F, and I in the relationship shown in FIG. A low-temperature stable Ni-Co-Fe-based low thermal expansion alloy characterized by not causing martensitic transformation in a temperature range.
【請求項4】 請求項1において、NiおよびCo含有
量を図1に示される関係の点C,E,F,Hで囲まれた
領域III 内になるように調整し、−60℃以上の温度域
でマルテンサイト変態を生じないことを特徴とする低温
安定型Ni−Co−Fe系低熱膨張合金。
4. The method according to claim 1, wherein the Ni and Co contents are adjusted so as to fall within a region III surrounded by points C, E, F, and H in the relationship shown in FIG. A low-temperature stable Ni-Co-Fe-based low thermal expansion alloy characterized by not causing martensitic transformation in a temperature range.
【請求項5】 請求項1において、NiおよびCo含有
量を図1に示される関係の点D,E,F,Gで囲まれた
領域IV内になるように調整し、−80℃以上の温度域で
マルテンサイト変態を生じないことを特徴とする低温安
定型Ni−Co−Fe系低熱膨張合金。
5. The method according to claim 1, wherein the Ni and Co contents are adjusted so as to fall within a region IV surrounded by points D, E, F, and G in the relationship shown in FIG. A low-temperature stable Ni-Co-Fe-based low thermal expansion alloy characterized by not causing martensitic transformation in a temperature range.
JP18892099A 1999-07-02 1999-07-02 LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY Pending JP2001011580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18892099A JP2001011580A (en) 1999-07-02 1999-07-02 LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18892099A JP2001011580A (en) 1999-07-02 1999-07-02 LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY

Publications (2)

Publication Number Publication Date
JP2001011580A true JP2001011580A (en) 2001-01-16
JP2001011580A5 JP2001011580A5 (en) 2006-08-17

Family

ID=16232207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18892099A Pending JP2001011580A (en) 1999-07-02 1999-07-02 LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY

Country Status (1)

Country Link
JP (1) JP2001011580A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8490570B2 (en) 2010-02-25 2013-07-23 Japan Aviation Electronics Industry, Limited Precision apparatus using low thermal expansion component
WO2015136766A1 (en) * 2014-03-10 2015-09-17 日本鋳造株式会社 Low thermal expansion casting alloy and method for producing same
KR20160004194A (en) * 2014-07-02 2016-01-12 신호코쿠 세이테츠 가부시키가이샤 Low thermal expansion cast steel and method for producing the same
CN106103767B (en) * 2014-03-10 2018-08-31 日本铸造株式会社 Low thermal expansion foundry alloy and its manufacturing method
WO2019044093A1 (en) * 2017-08-31 2019-03-07 日本鋳造株式会社 Low thermal expansion alloy having excellent low-temperature stability, method for manufacturing same, low thermal expansion alloy powder, and lamination-molded member
WO2019044721A1 (en) * 2017-09-01 2019-03-07 新報国製鉄株式会社 Low thermal expansion alloy
CN110527892A (en) * 2019-10-10 2019-12-03 成都先进金属材料产业技术研究院有限公司 Low expansion superalloy and preparation method thereof
JP2020122180A (en) * 2019-01-30 2020-08-13 新報国製鉄株式会社 Low thermal expansion casting and method for manufacturing the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8490570B2 (en) 2010-02-25 2013-07-23 Japan Aviation Electronics Industry, Limited Precision apparatus using low thermal expansion component
KR20160131997A (en) * 2014-03-10 2016-11-16 니폰추조 가부시키가이샤 Low thermal expansion casting alloy and method for producing same
WO2015136766A1 (en) * 2014-03-10 2015-09-17 日本鋳造株式会社 Low thermal expansion casting alloy and method for producing same
JP2015168865A (en) * 2014-03-10 2015-09-28 日本鋳造株式会社 Low thermal expansion cast alloy and manufacturing method therefor
KR102077297B1 (en) 2014-03-10 2020-02-13 니폰추조 가부시키가이샤 Low thermal expansion casting alloy and method for producing same
CN106103767B (en) * 2014-03-10 2018-08-31 日本铸造株式会社 Low thermal expansion foundry alloy and its manufacturing method
CN106103767A (en) * 2014-03-10 2016-11-09 日本铸造株式会社 Low thermal expansion foundry alloy and manufacture method thereof
KR20160004194A (en) * 2014-07-02 2016-01-12 신호코쿠 세이테츠 가부시키가이샤 Low thermal expansion cast steel and method for producing the same
JP2016027188A (en) * 2014-07-02 2016-02-18 新報国製鉄株式会社 Low-thermal expansion cast steel product and method for producing the same
KR20160004195A (en) * 2014-07-02 2016-01-12 신호코쿠 세이테츠 가부시키가이샤 High stiffness low thermal expansion castings and method for producing the same
KR102360098B1 (en) * 2014-07-02 2022-02-08 신호코쿠 머티리얼 가부시키가이샤 Low thermal expansion cast steel and method for producing the same
KR102360099B1 (en) * 2014-07-02 2022-02-08 신호코쿠 머티리얼 가부시키가이샤 High stiffness low thermal expansion castings and method for producing the same
WO2019044093A1 (en) * 2017-08-31 2019-03-07 日本鋳造株式会社 Low thermal expansion alloy having excellent low-temperature stability, method for manufacturing same, low thermal expansion alloy powder, and lamination-molded member
JPWO2019044093A1 (en) * 2017-08-31 2019-11-07 日本鋳造株式会社 Low thermal expansion alloy excellent in low temperature stability, manufacturing method thereof, low thermal expansion alloy powder, and additive manufacturing member
WO2019044721A1 (en) * 2017-09-01 2019-03-07 新報国製鉄株式会社 Low thermal expansion alloy
JPWO2019044721A1 (en) * 2017-09-01 2019-11-07 新報国製鉄株式会社 Low thermal expansion alloy
US11371123B2 (en) 2017-09-01 2022-06-28 Shinhokoku Material Corp. Low thermal expansion alloy
JP2020122180A (en) * 2019-01-30 2020-08-13 新報国製鉄株式会社 Low thermal expansion casting and method for manufacturing the same
JP7251767B2 (en) 2019-01-30 2023-04-04 新報国マテリアル株式会社 Low thermal expansion casting and its manufacturing method
CN110527892A (en) * 2019-10-10 2019-12-03 成都先进金属材料产业技术研究院有限公司 Low expansion superalloy and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2001011580A (en) LOW TEMPERATURE STABLE TYPE Ni-Co-Fe BASE LOW THERMAL EXPANSION ALLOY
WO2018186417A1 (en) Low thermal expansion alloy
US9260769B2 (en) Co-based alloys for biomedical applications and stent
Lee et al. Age hardening of the Al 0.5 CoCrNiTi 0.5 high-entropy alloy
JP6656013B2 (en) Low thermal expansion cast steel product and method of manufacturing the same
JP2016044332A (en) Stainless steel for low temperature application
Gokcekaya et al. Novel single crystalline-like non-equiatomic TiZrHfNbTaMo bio-high entropy alloy (BioHEA) developed by laser powder bed fusion
Li et al. Correlation between phase stability and tensile properties of the Ni-based superalloy MAR-M247
JPWO2014157146A1 (en) Austenitic stainless steel sheet and method for producing high-strength steel using the same
TWI665314B (en) High-nitrogen low-nickel austenite stainless steel alloy and method for making the same
JP5035831B2 (en) High nitrogen austenitic stainless steel
JP2003221650A (en) Low-temperature stable alloy with low thermal expansion and high free-cutting property
Osenbach Creep and its effect on Sn whisker growth
KR20200082362A (en) Duplex stainless steel for highly corrosive environment and method of manufacturing the same
WO2021221003A1 (en) Alloy material and method for producing same
JP2007262582A (en) Superconducting magnetic component
JP2009256765A (en) Nonmagnetic austenitic stainless steel, shaft or motor, and motor
Harner et al. After 100 Years, the Uses for Invar Continue to Multiply
KR101883780B1 (en) Fe-based magnetic alloy and preparing method thereof
JP2001192777A (en) Low thermal expansion casting material
JP2020056075A (en) Low thermal expansion alloy
CN105296846A (en) Low thermal expansion cast steel product and manufacture method thereof
WO2015136766A1 (en) Low thermal expansion casting alloy and method for producing same
JP5326576B2 (en) Geomagnetic shielding materials, geomagnetic shielding components and geomagnetic shielding rooms
JP6692466B2 (en) Low thermal expansion alloy

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20060703

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060703

A977 Report on retrieval

Effective date: 20080606

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20080610

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20080807

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Effective date: 20080902

Free format text: JAPANESE INTERMEDIATE CODE: A02