JP2016044332A - Stainless steel for low temperature application - Google Patents

Stainless steel for low temperature application Download PDF

Info

Publication number
JP2016044332A
JP2016044332A JP2014169770A JP2014169770A JP2016044332A JP 2016044332 A JP2016044332 A JP 2016044332A JP 2014169770 A JP2014169770 A JP 2014169770A JP 2014169770 A JP2014169770 A JP 2014169770A JP 2016044332 A JP2016044332 A JP 2016044332A
Authority
JP
Japan
Prior art keywords
less
stainless steel
phase
steel
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014169770A
Other languages
Japanese (ja)
Other versions
JP6433196B2 (en
Inventor
安達 和彦
Kazuhiko Adachi
和彦 安達
高木 節雄
Setsuo Takagi
節雄 高木
土山 聡宏
Satohiro Tsuchiyama
聡宏 土山
伸生 中田
Nobuo Nakada
伸生 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Nippon Steel Corp
Original Assignee
Kyushu University NUC
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Nippon Steel and Sumitomo Metal Corp filed Critical Kyushu University NUC
Priority to JP2014169770A priority Critical patent/JP6433196B2/en
Publication of JP2016044332A publication Critical patent/JP2016044332A/en
Application granted granted Critical
Publication of JP6433196B2 publication Critical patent/JP6433196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To industrially stably supply an inexpensive and stable austenite (A)-based stainless steel applied to products such a steel sheet, a steel strip and a steel tube used at low temperature of room temperature or lower.SOLUTION: There is provided a stainless steel for low temperature application containing, by mass%, C:0.01% to 0.20%, Si:1.0% or less, Mn:3.0% or less, Cr:10.0% to 20.0%, Ni:5.0% to 10.0%, N:0.01% to 0.30% and the balance Fe with impurities and having the contents of above described components satisfying following formula, structure of an austenite single phase, average crystal particle diameter of 10 μm or less and generating no martensite phase when cooling to room temperature or lower. -273>1032-42Cr-61Ni-33Mn-28Si-1000C-2860N.SELECTED DRAWING: None

Description

本発明は、室温以下の低温で使用される安価かつ安定なオーステナイト(A)系ステンレス鋼に関するものであり、該鋼は、鋼板、鋼帯、鋼管等の製品を対象とし、特に、超電導磁石用構造材に最適である。   The present invention relates to an inexpensive and stable austenitic (A) stainless steel used at a low temperature below room temperature, and the steel is intended for products such as steel plates, steel strips, steel pipes, and more particularly for superconducting magnets. Ideal for structural materials.

室温以下の低温、特に極低温で使用されるステンレス鋼の適用先には、従来、液体ヘリウム及び液体窒素温度にて使用される超電導磁石用構造材、液化天然ガス(LNG)の配管、タンク、液体水素を燃料とするロケットの容器等が挙げられる。   Conventional applications of stainless steel used at low temperatures below room temperature, especially at cryogenic temperatures, include structural materials for superconducting magnets used at liquid helium and liquid nitrogen temperatures, liquefied natural gas (LNG) piping, tanks, Examples include rocket containers that use liquid hydrogen as fuel.

最近では、環境問題も伴い、定置型燃料電池、燃料電池車の製品に代表される、いわゆる“水素社会”の検討が進められており、液化水素基地やパイプライン等のインフラへの適用拡大が期待されている。   Recently, due to environmental problems, the so-called “hydrogen society” represented by the products of stationary fuel cells and fuel cell vehicles has been studied, and its application to infrastructure such as liquefied hydrogen bases and pipelines has been expanded. Expected.

極低温にて使用される構造材料に一般に必要とされる特性としては、安全面等から脆性破壊をおこさないこと、高強度、更に、超電導磁石用構造材として使用する場合、非磁性であることが挙げられる。   The properties generally required for structural materials used at cryogenic temperatures are that they do not cause brittle fracture for safety reasons, high strength, and are non-magnetic when used as structural materials for superconducting magnets. Is mentioned.

A系ステンレス鋼は、一般に極低温に至るまで延性を保つため、前述のような極低温用途に適用されている。他方、構造材料に必要とされる高強度という点からは、一般に有効な手段として、Nの添加が知られており、JIS(JIS−G−4315)規格で、SUS304LN、SUS316LNが規定されている(特許文献1〜4、参照)。   A-series stainless steel is generally applied to cryogenic applications as described above in order to maintain ductility up to extremely low temperatures. On the other hand, from the point of high strength required for structural materials, addition of N is known as a generally effective means, and SUS304LN and SUS316LN are defined in the JIS (JIS-G-4315) standard. (See Patent Documents 1 to 4).

他方、A系ステンレス鋼は、A安定化元素として希少金属に分類され、高価な合金元素であるNiを多量に含有するため、素材も貴重かつ高価となる問題がある。しかし、Niの単純な減少はA安定度を低下させ、加工誘起マルテンサイト(M)変態等を含めて、第二相を発生するとともに、特に極低温への冷却に際しては、M相又はフェライト(F)相を生成する。   On the other hand, A-based stainless steel is classified as a rare metal as an A-stabilizing element and contains a large amount of Ni, which is an expensive alloy element, so that there is a problem that the material is valuable and expensive. However, a simple decrease in Ni lowers the stability of A, generates a second phase including a processing-induced martensite (M) transformation, etc., and particularly during cooling to a very low temperature, M phase or ferrite ( F) A phase is generated.

これらの相は磁性を帯びるため、超電導磁石用構造材に使用できない問題がある。また、材料の低温脆化が懸念されるようになる問題がある。なお、本発明でのM相は、F相に近い体心正方格子構造を有するα´相をさす。   Since these phases are magnetized, there is a problem that they cannot be used for superconducting magnet structural materials. In addition, there is a problem that low-temperature embrittlement of materials becomes a concern. In the present invention, the M phase refers to an α ′ phase having a body-centered tetragonal lattice structure close to the F phase.

このため、安価で入手が容易、かつ、最も強力なA安定元素であるC、Nの添加が一般に検討されている。特に、Nは、大気中に多量に含有され、環境負荷も小さく、有望な元素である(特許文献5〜8、参照)。ただし、N添加の検討は、室温での加工誘起M変態について殆どであり、極低温への冷却での熱的安定性については、充分に検討されていない。   For this reason, the addition of C and N, which are inexpensive and easily available, and are the most powerful A stable elements, is generally studied. In particular, N is a promising element that is contained in a large amount in the atmosphere and has a small environmental load (see Patent Documents 5 to 8). However, most of the studies on the addition of N are for the processing-induced M transformation at room temperature, and the thermal stability in cooling to an extremely low temperature has not been sufficiently studied.

例えば、冷却での熱的なA安定度の指標であるMs、加工誘起変態に対するA安定度の指標であるMd30は、非特許文献1で、下記式(a)又は(b)で表示されている。いずれの式においても、NとCの係数が同じである。これは、NとCのMsへの寄与がほぼ同じであろうということで、同じ値とされているものであるが、実際のMsへの寄与の詳細は、必ずしも明らかにされていない。
Ms(℃)=1032−42Cr−61Ni−33Mn−28Si
−1667(C+N) ・・・(a)
Md30(℃)=413−462(C+N)−9.2Si−8.1Mn
−13.7Cr−9.5Ni−18.5Mo ・・・(b)
For example, Ms, which is an index of thermal A stability in cooling, and Md30, which is an index of A stability against processing-induced transformation, is represented by Non-Patent Document 1 by the following formula (a) or (b). Yes. In both equations, the coefficients of N and C are the same. This is the same value because N and C contributions to Ms will be almost the same, but details of the actual contribution to Ms are not necessarily clarified.
Ms (° C.) = 1032-42Cr-61Ni-33Mn-28Si
-1667 (C + N) (a)
Md30 (° C) = 413-462 (C + N) -9.2Si-8.1Mn
-13.7Cr-9.5Ni-18.5Mo (b)

なお、上記式(a)及び(b)は、A安定度を成分により算出した経験式であり、Msは、冷却に際してM変態が開始する温度(℃)で、Md30は、0.3の引張り真ひずみを与えた時、50%のM変態量を生じる温度(℃)である。各元素量は質量%である。   The above formulas (a) and (b) are empirical formulas in which the A stability is calculated from the components. Ms is the temperature (° C.) at which the M transformation starts upon cooling, and Md30 is a tensile strength of 0.3. This is the temperature (° C.) at which 50% M transformation occurs when true strain is applied. The amount of each element is mass%.

更に、高強度化が期待される因子として、結晶粒の微細化(細粒化)が挙げられる。これについても、様々な室温特性の改善を目的とした検討が進められている。例えば、特許文献9と10には、結晶粒微細化により加工性を他の強化因子のように大きく低下することなく、高強度化したガスケット用ステンレス鋼が開示され、特許文献11と12には、化学的腐食部が平滑になるエッチング用ステンレス鋼が開示されている。   Furthermore, as a factor for which high strength is expected, refinement of crystal grains (fine graining) can be mentioned. With regard to this as well, studies are being conducted for the purpose of improving various room temperature characteristics. For example, Patent Documents 9 and 10 disclose stainless steel for gaskets that has been improved in strength without significantly reducing the workability by refining crystal grains like other strengthening factors. Stainless steel for etching in which a chemically corroded portion becomes smooth is disclosed.

これらに記載されるJIS(G−4315)規格のSUS301、SUS301L、SUS304、SUS304L、SUS304LN相当のステンレス鋼は、準安定A系ステンレスに分類され、加工誘起M変態を起こし、一般に、強度と伸びの関係に優れている。   JIS (G-4315) standard SUS301, SUS301L, SUS304, SUS304L, and SUS304LN equivalent stainless steels described in these are classified as metastable A-based stainless steels and cause processing-induced M transformation. Excellent relationship.

更に、加工誘起変態したM相に比較的低温の熱処理を施すことにより、A母相へ逆変態し、それらを経ることにより、結晶粒径が数μm以下の細粒組織を得られることが知られている。ただし、この細粒化についても、検討対象は室温での加工誘起M変態が殆どであり、極低温への冷却での熱的安定性については充分に検討されていない。   Furthermore, it is known that by subjecting the M phase that has undergone processing-induced transformation to a heat treatment at a relatively low temperature, it undergoes reverse transformation to the A parent phase, and a fine grain structure with a crystal grain size of several μm or less can be obtained through these transformations. It has been. However, with regard to this fine graining, the object of study is mostly the processing-induced M transformation at room temperature, and the thermal stability during cooling to cryogenic temperatures has not been sufficiently studied.

非特許文献2の記載では、加工誘起変態に対するA安定度の指標であるMd30に及ぼす結晶粒径の影響が加味されているにとどまっている。即ち、室温以下の極低温用途分野において、特性にも大いに関連する熱的なA安定度に及ぼすC、Nの影響、及び、結晶粒径の影響についての検討は十分になされていないのが現状である。   In the description of Non-Patent Document 2, the influence of the crystal grain size on Md30, which is an index of A stability against the processing-induced transformation, is only taken into account. In other words, in the field of cryogenic applications below room temperature, the effects of C and N on the thermal A stability, which is also greatly related to the characteristics, and the influence of the crystal grain size have not been sufficiently studied. It is.

特開昭60−009862号公報JP 60-009862 A 特開昭60−013063号公報JP 60-013063 A 特開昭61−270356号公報JP-A-61-270356 特開平02−097649号公報Japanese Patent Laid-Open No. 02-097649 特許第5091732号公報Japanese Patent No. 5091732 特許第5091733号公報Japanese Patent No. 5091733 特開2014−019925号公報JP 2014-019925 A 特許第4327030号公報Japanese Patent No. 4327030 特許第3068861号公報Japanese Patent No. 3068861 特許第4019630号公報Japanese Patent No. 4019630 特許第3562492号公報Japanese Patent No. 3562492 国際公開第2014/030607号International Publication No. 2014/030607

ステンレス鋼便覧(第3版、ステンレス協会編)、p.114Stainless Steel Handbook (3rd Edition, Stainless Steel Association), p. 114 ステンレス鋼便覧(第3版、ステンレス協会編)、p.115Stainless Steel Handbook (3rd Edition, Stainless Steel Association), p. 115

室温以下の極低温用途分野の上記現状に鑑み、本発明は、室温以下の低温で使用される鋼板、鋼帯、鋼管等の製品を対象とし、該製品に適用される安価かつ安定なオーステナイト(A)系ステンレス鋼を、工業的に安定して供給することを課題とし、該課題を解決する低温用途向ステンレス鋼を提供することを目的とする。   In view of the current situation in the field of cryogenic use below room temperature, the present invention targets products such as steel sheets, steel strips, steel pipes, etc., used at low temperatures below room temperature, and is inexpensive and stable austenite ( A) An object of the present invention is to supply industrially stable stainless steel, and to provide stainless steel for low-temperature applications that solves the problem.

本発明者らは、A系ステンレス鋼の熱的なA安定性に及ぼすC、Nの影響、結晶粒の微細化(細粒化)の影響を詳細に検討し、それらの効果を明らかにした。そして、その検討結果として、極低温へ冷却する際、更に、弾性変形域内の応力を付与した場合にも、加工誘起M変態が抑制され、A相が安定化することを知見した。   The present inventors have studied in detail the effects of C and N on the thermal A stability of A-based stainless steel and the influence of crystal grain refinement (fine graining), and clarified their effects. . As a result of the study, it was found that when cooling to an extremely low temperature, even when stress in the elastic deformation region was applied, the processing-induced M transformation was suppressed and the A phase was stabilized.

本発明は、上記知見に基づき研究開発を鋭意継続し、成分調整した小型鋳塊による試作試験、実機試作試験を経て、室温以下の低温、特に極低温で使用される安価かつ安定なA系ステンレス鋼の実用化に目処を得てなされたものである。   Based on the above knowledge, the present invention has been continually researched and developed, and after undergoing trial production with small ingots with components adjusted and trial production of actual equipment, it is an inexpensive and stable A-based stainless steel used at low temperatures below room temperature, especially at extremely low temperatures. It was made with the aim of putting steel into practical use.

即ち、C、Nの熱的なA安定度に及ぼす影響は、他の合金元素に比べて著しく大きいことが確認された上で、更に、Nの影響がCの約3倍を示すことを明らかにした。そして、特にNの有効な活用によるA安定化度を示す式として、下記式(後述する)を得た。
−273>1032−42Cr−61Ni−33Mn−28Si
−1000C−2860N
That is, it has been confirmed that the influence of C and N on the thermal A stability is significantly larger than that of other alloy elements, and further, it is clear that the influence of N shows about three times that of C. I made it. In particular, the following formula (described later) was obtained as a formula indicating the degree of A stabilization by the effective utilization of N.
-273> 1032-42Cr-61Ni-33Mn-28Si
-1000C-2860N

他方、細粒化もA安定度を向上し、C、Nの添加の効果に加算される。その効果は、粒径が10μm以下で明瞭となる。   On the other hand, atomization also improves A stability and is added to the effect of addition of C and N. The effect becomes clear when the particle diameter is 10 μm or less.

これらの結果、本発明者らは、上記成分と結晶粒径を満足する材料に対して、極低温へ冷却する際、更に、弾性変形域内の応力が付与された場合にもM変態が抑制され、該材料のA安定性が向上し、安全性も向上することを確認した。   As a result, when the present inventors have cooled the material satisfying the above components and the crystal grain size to an extremely low temperature, the M transformation is suppressed even when stress in the elastic deformation region is applied. It was confirmed that the A stability of the material was improved and the safety was also improved.

本発明は、これらの知見に基づいてなされたもので、その要旨は以下の通りである。   The present invention has been made based on these findings, and the gist thereof is as follows.

(1)質量%で、
C :0.01%以上、0.20%以下、
Si:1.0%以下、
Mn:3.0%以下、
Cr:10.0%以上、20.0%以下、
Ni:5.0%以上、10.0%以下、
N :0.01%以上、0.30%以下
を含有し、残部がFe及び不可避的不純物であり、かつ、上記元素の含有量が下記式(1)を満足し、
組織がオーステナイト単相組織で、平均結晶粒径が10μm以下であり、室温以下への冷却に際してマルテンサイト相が生じない
ことを特徴する低温用途向ステンレス鋼。
−273>1032−42Cr−61Ni−33Mn−28Si
−1000C−2860N ・・・(1)
(1) In mass%,
C: 0.01% or more, 0.20% or less,
Si: 1.0% or less,
Mn: 3.0% or less,
Cr: 10.0% or more, 20.0% or less,
Ni: 5.0% or more and 10.0% or less,
N: 0.01% or more and 0.30% or less, the balance being Fe and inevitable impurities, and the content of the above element satisfies the following formula (1),
A stainless steel for low-temperature applications, characterized in that the structure is an austenite single-phase structure, the average crystal grain size is 10 μm or less, and no martensite phase is formed upon cooling to room temperature or lower.
-273> 1032-42Cr-61Ni-33Mn-28Si
-1000C-2860N (1)

(2)更に、質量%で、Nb:0.5%以下、Ti:0.5%以下、V:0.5%以下の少なくとも1種を含有することを特徴とする前記(1)に記載の低温用途向ステンレス鋼。   (2) The composition according to (1), further comprising at least one of Nb: 0.5% or less, Ti: 0.5% or less, and V: 0.5% or less in mass%. Stainless steel for low temperature applications.

(3)前記室温以下への冷却に際して、更に弾性変形域内の応力を付与したとき、マルテンサイト相が生じないことを特徴とする前記(1)又は(2)に記載の低温用途向ステンレス鋼。   (3) The stainless steel for low-temperature applications according to (1) or (2), wherein a martensite phase is not generated when a stress in an elastic deformation region is further applied upon cooling to the room temperature or lower.

本発明によれば、室温以下の低温で使用される鋼板、鋼帯、鋼管等の製品に適用される安価かつ安定なオーステナイト(A)系ステンレス鋼を工業的に安定して供給することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cheap and stable austenite (A) type stainless steel applied to products, such as a steel plate, a steel strip, and a steel pipe used at low temperature below room temperature, can be supplied industrially stably. .

本発明の低温用途向ステンレス鋼(以下「本発明鋼」ということがある。)は、
質量%で、
C :0.01%以上、0.20%以下、
Si:1.0%以下、
Mn:3.0%以下、
Cr:10.0%以上、20.0%以下、
Ni:5.0%以上、10.0%以下、
N :0.01%以上、0.30%以下
を含有し、残部がFe及び不可避的不純物であり、かつ、上記元素の含有量が下記式(1)を満足し、
組織がオーステナイト単相組織で、平均結晶粒径が10μm以下であり、室温以下への冷却に際してマルテンサイト相が生じない
ことを特徴する。
−273>1032−42Cr−61Ni−33Mn−28Si
−1000C−2860N ・・・(1)
The stainless steel for low-temperature applications of the present invention (hereinafter sometimes referred to as “the present invention steel”)
% By mass
C: 0.01% or more, 0.20% or less,
Si: 1.0% or less,
Mn: 3.0% or less,
Cr: 10.0% or more, 20.0% or less,
Ni: 5.0% or more and 10.0% or less,
N: 0.01% or more and 0.30% or less, the balance being Fe and inevitable impurities, and the content of the above element satisfies the following formula (1),
The structure is an austenite single phase structure, the average crystal grain size is 10 μm or less, and the martensite phase is not generated upon cooling to room temperature or lower.
-273> 1032-42Cr-61Ni-33Mn-28Si
-1000C-2860N (1)

まず、本発明鋼の成分組成の限定理由について説明する。なお、以下、%は、質量%を意味する。   First, the reasons for limiting the component composition of the steel of the present invention will be described. Hereinafter, “%” means mass%.

C:0.01%以上、0.20%以下、
Cは、N(後述)とともに、強力なγ安定化元素でかつ固溶強化元素である。添加効果を得るため、0.01%以上を添加する。好ましくは0.02%以上である。ただし、過度の添加は、多量の炭化物の析出を招き、必要な強度、A安定度がともに得られないので、上限を0.20%とする。好ましくは0.18%以下である。
C: 0.01% or more, 0.20% or less,
C, together with N (described later), is a strong γ-stabilizing element and a solid solution strengthening element. In order to obtain the effect of addition, 0.01% or more is added. Preferably it is 0.02% or more. However, excessive addition leads to precipitation of a large amount of carbides, and neither the required strength nor A stability can be obtained, so the upper limit is made 0.20%. Preferably it is 0.18% or less.

Si:1.0%以下
Siは、溶製時の脱酸剤として機能する元素で、また、F安定化元素である。ただし、過度に添加すると、粗大な介在物が生成して、加工性が劣化するし、また、A相が不安定となるので、上限を1.0%とする。好ましくは0.9%以下である。下限は特に定めないが、脱酸効果を確実に得るためには、0.05%以上が好ましい。
Si: 1.0% or less Si is an element that functions as a deoxidizer during melting and is an F stabilizing element. However, if added excessively, coarse inclusions are generated, workability deteriorates, and phase A becomes unstable, so the upper limit is made 1.0%. Preferably it is 0.9% or less. The lower limit is not particularly defined, but 0.05% or more is preferable in order to reliably obtain the deoxidation effect.

Mn:3.0%以下
Mnは、比較的安価でかつ有効なA安定化合金元素である。ただし、過度に添加すると、粗大介在物が生成して、加工性が劣化するので、上限を3.0%とする。好ましくは2.6%以下である。下限は特に定めないが、A相の確実な安定化の点で、0.1%以上が好ましい。
Mn: 3.0% or less Mn is a relatively inexpensive and effective A-stabilized alloy element. However, if added excessively, coarse inclusions are generated and workability deteriorates, so the upper limit is made 3.0%. Preferably it is 2.6% or less. The lower limit is not particularly defined, but is preferably 0.1% or more from the viewpoint of reliable stabilization of the A phase.

Cr:10.0%以上、20.0%以下
Crは、ステンレス鋼の基本元素であり、有効な耐食性を得るための元素である。添加効果を得るため、10.0%以上添加する。好ましくは10.5%以上である。ただし、CrはF安定化元素であり、過度の添加で、A相が不安定になり、また、C、Nと化合物を形成する可能性が高くなるので、上限は20.0%とする。好ましくは19.4%以下である。
Cr: 10.0% or more, 20.0% or less Cr is a basic element of stainless steel, and is an element for obtaining effective corrosion resistance. To obtain the effect of addition, 10.0% or more is added. Preferably it is 10.5% or more. However, Cr is an F stabilizing element, and if added excessively, the A phase becomes unstable, and the possibility of forming a compound with C and N increases, so the upper limit is made 20.0%. Preferably it is 19.4% or less.

Ni:5.0%以上、10.0%以下
Niは、最も強力なA安定化合金元素である。C、Nの添加を含めて、A相を室温まで安定化して存在させるために、5.0%以上添加する。好ましくは5.4%以上である。ただし、前述のように、高価でかつ希少な合金元素であり、極力減少することが望ましいので、上限を10.0%とする。好ましくは9.8%以下である。
Ni: 5.0% to 10.0% Ni is the most powerful A-stabilized alloy element. Including the addition of C and N, 5.0% or more is added to stabilize the A phase to room temperature. Preferably it is 5.4% or more. However, as described above, since it is an expensive and rare alloy element and it is desirable to reduce it as much as possible, the upper limit is made 10.0%. Preferably it is 9.8% or less.

N:0.01%以上、0.30%以下
Nは、最も強力なγ安定化元素であり、かつ、有効な侵入型固溶強化元素である。添加効果を得るため、0.01%以上とする。好ましくは0.02%以上である。ただし、過度の添加は、窒化物の析出を招き、必要な強度、A安定度がともに得られないので、上限を0.30%とする。好ましくは0.28%以下である。
N: 0.01% to 0.30% N is the most powerful γ-stabilizing element and an effective interstitial solid solution strengthening element. To obtain the effect of addition, the content is made 0.01% or more. Preferably it is 0.02% or more. However, excessive addition causes precipitation of nitrides, and neither the required strength nor A stability can be obtained, so the upper limit is made 0.30%. Preferably it is 0.28% or less.

本発明鋼においては、更に、上記元素の含有量が下記式(1)を満足することが必要である。下記式(1)は、室温以下への冷却時のA安定度に対する各元素の影響を検討して得た関係式である。   In the steel of the present invention, it is further necessary that the content of the above element satisfies the following formula (1). The following formula (1) is a relational expression obtained by examining the influence of each element on the A stability during cooling to room temperature or lower.

C、Si、Mn、Cr、Ni、Nの含有量が、各元素の組成範囲と下記式(1)を満足すると、A相が、0K(約−273℃)まで安定して存在することが判明した。更に、A相の安定化に特に効果の大きいCとNについて、A相安定化効果の違いを検討した結果、Nが、Cの約3倍の効果を有する(下記式(1)において、Nの係数が2860、Cの係数が1000)ことが判明した。   When the contents of C, Si, Mn, Cr, Ni, and N satisfy the composition range of each element and the following formula (1), the A phase may exist stably up to 0 K (about −273 ° C.). found. Furthermore, as a result of examining the difference in the A phase stabilization effect for C and N, which are particularly effective for stabilizing the A phase, N has an effect about three times that of C (in the following formula (1), N Was found to be 2860 and C was 1000).

これらの知見に基づいて、−273>Msを満足し、かつ、従来の式(a)が−273超((a)>−273>(1))となる成分組成が存在することを知見した。   Based on these findings, it has been found that there is a component composition that satisfies -273> Ms and the conventional formula (a) exceeds -273 ((a)>-273> (1)). .

この成分組成によれば、例えば、高価かつ希少な合金元素であるNiの添加量を極力抑制し、安価かつ安定なA系ステンレス鋼を工業的に安定供給することができる。
−273>1032−42Cr−61Ni−33Mn−28Si
−1000C−2860N ・・・(1)
According to this component composition, for example, the addition amount of Ni, which is an expensive and rare alloy element, can be suppressed as much as possible, and inexpensive and stable A-based stainless steel can be industrially stably supplied.
-273> 1032-42Cr-61Ni-33Mn-28Si
-1000C-2860N (1)

なお、通常、室温以下の低温での使用とは、実機にて適用される液体ヘリウム温度(約−269℃、約4K)、液体水素温度(約−253℃、約20K)、液化天然ガス(約−162℃、約111K)、液体窒素温度(約−196℃、約−77K)での使用をいう。本発明鋼において、室温以下の低温とは、液体窒素温度以下の低温をいう。   In general, use at a low temperature of room temperature or lower means liquid helium temperature (about −269 ° C., about 4K), liquid hydrogen temperature (about −253 ° C., about 20K), liquefied natural gas ( It refers to use at about -162 ° C, about 111K) and liquid nitrogen temperature (about -196 ° C, about -77K). In the steel of the present invention, the low temperature below room temperature refers to a low temperature below the liquid nitrogen temperature.

本発明鋼は、上記成分の他、Nb:0.5%以下、Ti:0.5%以下、V:0.5%以下の少なくとも1種を含有してもよい。   In addition to the above components, the steel of the present invention may contain at least one of Nb: 0.5% or less, Ti: 0.5% or less, and V: 0.5% or less.

Nb:0.5%以下、Ti:0.5%以下、V:0.5%以下
Nb、Ti、Vは、C、Nと結合し、ピン止効果で結晶粒の成長を抑制する化合物を形成する元素である。ただし、いずれの元素も0.5%を超えると、粗大な化合物が生成し、かつ、A相形成が不安定となる可能性が高くなり、加工性が劣化するとともに、粗大化合物が破壊の起点となるので、それぞれの上限を0.5%とする。好ましくは、いずれも0.4%以下である。
Nb: 0.5% or less, Ti: 0.5% or less, V: 0.5% or less Nb, Ti, and V are compounds that bind to C and N and suppress the growth of crystal grains by a pinning effect. It is an element to be formed. However, if any element exceeds 0.5%, a coarse compound is formed, and there is a high possibility that the formation of the A phase becomes unstable, the workability is deteriorated, and the coarse compound is a starting point of destruction. Therefore, the upper limit of each is 0.5%. Preferably, both are 0.4% or less.

下限は特に限定しないが、添加効果を確実に確保する点で、Nb、Ti、Vのいずれも0.01%以上が好ましい。   Although a minimum is not specifically limited, 0.01% or more of Nb, Ti, and V is preferable at the point which ensures an addition effect reliably.

更に、本発明鋼においては、オーステナイト単相組織とし、該組織の平均結晶粒径を10μm以下とする。これは、組織の細粒化が、鋼の強度向上と同時に、熱的なA相安定度の向上に寄与し、上記式(1)の効果に加算されるためである。これらの結果、A相安定度が著しく向上し、更に弾性変形域内での応力の付与に対しても、A相が安定化する。   Furthermore, in the steel of the present invention, an austenite single phase structure is used, and the average crystal grain size of the structure is set to 10 μm or less. This is because the refinement of the structure contributes to the improvement of the stability of the thermal A phase simultaneously with the improvement of the strength of the steel, and is added to the effect of the above formula (1). As a result, the stability of the A phase is remarkably improved, and the A phase is stabilized against the application of stress within the elastic deformation region.

平均結晶粒径が10μmを超えると、鋼の強度向上及びA相安定度の向上が十分に発現しないので、平均結晶粒径は10μm以下とする。好ましくは8μm以下である。   If the average crystal grain size exceeds 10 μm, the strength of the steel and the A phase stability are not sufficiently improved, so the average crystal grain size is set to 10 μm or less. Preferably it is 8 micrometers or less.

平均結晶粒径は、小さいほど好ましいが、圧延条件及び/又は熱処理条件によるところが大きいので、下限は明確に限定できない。   The average crystal grain size is preferably as small as possible, but the lower limit cannot be clearly defined because it largely depends on rolling conditions and / or heat treatment conditions.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is based on this one example of conditions. It is not limited. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
表1に成分組成を示す供試鋼(小型鋳塊又は実機鋳塊)を熱間圧延して、板厚4mm前後の熱延板とし、熱処理後、加工率90%の冷間圧延で、板厚0.4mmの冷延板(試作材)とした。この冷延板に、結晶粒径の調整を目的として、800〜1100℃×1分保持の最終熱処理を施した。
Example 1
Table 1 shows the composition of the test steel (small ingot or actual ingot) hot rolled into a hot rolled sheet with a thickness of around 4 mm. After heat treatment, the sheet was cold rolled with a processing rate of 90%. A cold-rolled sheet (prototype material) having a thickness of 0.4 mm was used. This cold-rolled sheet was subjected to a final heat treatment held at 800 to 1100 ° C. for 1 minute for the purpose of adjusting the crystal grain size.

Figure 2016044332
Figure 2016044332

次いで、試作材について特性を調査した。特性の調査に関して、冷却は、液体ヘリウム温度まで実施した。発明例No.A3の室温での0.2%耐力が312N/mm2であり、冷却中の付与張力は、その約30%の100N/mm2(一定)を負荷した。 Next, the characteristics of the prototype material were investigated. For property studies, cooling was performed to liquid helium temperature. 0.2% proof stress at room temperature of the inventive example No.A3 is 312N / mm 2, imparting tension during cooling, was loaded the approximately 30% of 100 N / mm 2 (constant).

張力付与は、冷却時のM変態を促進すると考えられる。実際の使用の際、それ自体を含めた治具による重量等、超電導磁石の場合、その固定での磁力の影響を考慮したものである。   The application of tension is considered to promote the M transformation during cooling. In the actual use, in the case of a superconducting magnet, such as the weight of a jig including itself, the influence of the magnetic force in fixing is taken into consideration.

調査方法について、組織は、圧延方向垂直断面を埋込、研磨、腐食後、光学顕微鏡を用いて観察し、平均的部位で写真を撮影した。次いで、同写真に含まれる結晶粒の数を測定し、1個当りの平均結晶粒径を測定した。なお、粒径(半径)は円相当径で算出した。A相量は振動試料型磁力計(VSM)を用いて、透磁率の変化により生成したM相又はF相の量の割合を測定し、その割合の差により算出した。   Regarding the investigation method, the structure was observed by using an optical microscope after embedding, polishing, and corroding a vertical section in the rolling direction, and a photograph was taken at an average site. Next, the number of crystal grains contained in the photograph was measured, and the average crystal grain size per one was measured. The particle size (radius) was calculated as the equivalent circle diameter. The amount of A phase was calculated by measuring the proportion of the amount of M phase or F phase generated by the change in magnetic permeability using a vibrating sample magnetometer (VSM) and calculating the difference in the proportion.

表2に、供試材の組織と極低温への冷却前後のA相量を示す。   Table 2 shows the structure of the specimen and the amount of A phase before and after cooling to a cryogenic temperature.

Figure 2016044332
Figure 2016044332

発明例No.A1〜H2は、冷却前後ともA単相組織を維持し、高いA安定度を示すことを確認できる。発明例No.B1と比較例No.B2、発明例No.F1と比較例No.F4を比較すると、細粒化でのA安定度の向上を確認できる。   Invention Example No. It can be confirmed that A1 to H2 maintain the A single phase structure before and after cooling and exhibit high A stability. Invention Example No. B1 and Comparative Example No. B2, Invention Example No. F1 and Comparative Example No. When F4 is compared, it can be confirmed that the stability of A is improved by the fine graining.

発明例No.C1、D1の実績より、結晶粒径10μm以下にて、冷却後にA単相組織が維持されることを確認できる。なお、発明例では、冷却時に張力を付与した場合もA単相組織を維持することを確認できる。   Invention Example No. From the results of C1 and D1, it can be confirmed that the A single-phase structure is maintained after cooling at a crystal grain size of 10 μm or less. In the invention examples, it can be confirmed that the A single-phase structure is maintained even when a tension is applied during cooling.

更に、M(a)>−273>M(1)を満足する発明例No.A1、A2、及び、A3においては、Niを5.45%と低めにすることができ、また、同発明例No.F1、F2、及び、F3においては、Niを5.52%と低めにすることができた。   Furthermore, Invention Example No. 1 satisfying M (a)>-273> M (1). In A1, A2 and A3, Ni can be lowered to 5.45%. In F1, F2 and F3, Ni could be lowered to 5.52%.

これらに対し、本発明の成分組成の範囲外の比較例No.I1〜N2においては、いずれも、冷却後にA単相組織を維持できていない。特に、(1)式に対応するM値の値が最も高く、A安定度が最も低い比較例No.I1は、冷却前の段階にもA単相組織を維持できていない。比較例No.J1とJ2、及び、比較例No.M2とM3の結果より、冷却後A相量は張力付与により減少し、M変態を促進すると考えられる。   On the other hand, Comparative Example No. outside the range of the component composition of the present invention. In I1 to N2, none of the A single-phase structures can be maintained after cooling. In particular, Comparative Example No. 1 having the highest M value corresponding to the equation (1) and the lowest A stability. I1 cannot maintain the A single phase structure even in the stage before cooling. Comparative Examples No. J1 and J2, and Comparative Example No. From the results of M2 and M3, it is considered that the amount of phase A after cooling is decreased by applying tension and promotes the M transformation.

前述したように、本発明によれば、室温以下の低温で使用される鋼板、鋼帯、鋼管等の製品に適用される安価かつ安定なオーステナイト(A)系ステンレス鋼を工業的に安定して供給することができる。よって、本発明は、ステンレス鋼製造・利用産業において利用可能性が高いものである。   As described above, according to the present invention, an inexpensive and stable austenite (A) stainless steel applied to products such as steel sheets, steel strips, and steel pipes used at a low temperature below room temperature is industrially stable. Can be supplied. Therefore, the present invention has high applicability in the stainless steel manufacturing / utilizing industry.

Claims (3)

質量%で、
C :0.01%以上、0.20%以下、
Si:1.0%以下、
Mn:3.0%以下、
Cr:10.0%以上、20.0%以下、
Ni:5.0%以上、10.0%以下、
N :0.01%以上、0.30%以下
を含有し、残部がFe及び不可避的不純物であり、かつ、上記元素の含有量が下記式(1)を満足し、
組織がオーステナイト単相組織で、平均結晶粒径が10μm以下であり、室温以下への冷却に際してマルテンサイト相が生じない
ことを特徴する低温用途向ステンレス鋼。
−273>1032−42Cr−61Ni−33Mn−28Si
−1000C−2860N ・・・(1)
% By mass
C: 0.01% or more, 0.20% or less,
Si: 1.0% or less,
Mn: 3.0% or less,
Cr: 10.0% or more, 20.0% or less,
Ni: 5.0% or more and 10.0% or less,
N: 0.01% or more and 0.30% or less, the balance being Fe and inevitable impurities, and the content of the above element satisfies the following formula (1),
A stainless steel for low-temperature applications, characterized in that the structure is an austenite single-phase structure, the average crystal grain size is 10 μm or less, and no martensite phase is formed upon cooling to room temperature or lower.
-273> 1032-42Cr-61Ni-33Mn-28Si
-1000C-2860N (1)
更に、質量%で、Nb:0.5%以下、Ti:0.5%以下、V:0.5%以下の少なくとも1種を含有することを特徴とする請求項1に記載の低温用途向ステンレス鋼。   Furthermore, it contains at least 1 sort (s) of Nb: 0.5% or less, Ti: 0.5% or less, and V: 0.5% or less by the mass%, The low temperature use object of Claim 1 characterized by the above-mentioned. Stainless steel. 前記室温以下への冷却に際して、更に弾性変形域内の応力を付与したとき、マルテンサイト相が生じないことを特徴とする請求項1又は2に記載の低温用途向ステンレス鋼。   The stainless steel for low-temperature applications according to claim 1 or 2, wherein a martensite phase is not generated when a stress in an elastic deformation region is further applied upon cooling to the room temperature or lower.
JP2014169770A 2014-08-22 2014-08-22 Stainless steel for low temperature applications Active JP6433196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014169770A JP6433196B2 (en) 2014-08-22 2014-08-22 Stainless steel for low temperature applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014169770A JP6433196B2 (en) 2014-08-22 2014-08-22 Stainless steel for low temperature applications

Publications (2)

Publication Number Publication Date
JP2016044332A true JP2016044332A (en) 2016-04-04
JP6433196B2 JP6433196B2 (en) 2018-12-05

Family

ID=55635179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014169770A Active JP6433196B2 (en) 2014-08-22 2014-08-22 Stainless steel for low temperature applications

Country Status (1)

Country Link
JP (1) JP6433196B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181570A1 (en) * 2017-03-31 2018-10-04 新日鐵住金ステンレス株式会社 Austenite-based thick stainless-steel plate and production method therefor
WO2019054390A1 (en) 2017-09-13 2019-03-21 コベルコ鋼管株式会社 Austenitic stainless steel and method for producing same
WO2019082326A1 (en) * 2017-10-26 2019-05-02 新日鐵住金株式会社 Nickel-containing steel for low-temperature use
WO2019082322A1 (en) * 2017-10-26 2019-05-02 新日鐵住金株式会社 Nickel-containing steel for low-temperature use
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11384416B2 (en) 2017-10-26 2022-07-12 Nippon Steel Corporation Nickel-containing steel for low temperature
WO2024009897A1 (en) * 2022-07-04 2024-01-11 日鉄ステンレス株式会社 Hot-rolled steel material for tanks and method for producing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297649A (en) * 1988-09-30 1990-04-10 Aichi Steel Works Ltd Austenitic stainless steel excellent in strength and toughness at very low temperature and its production
JPH07258801A (en) * 1994-03-24 1995-10-09 Kawasaki Steel Corp Fe-cr-ni alloy excellent in corrosion resistance and workability
JP2010209449A (en) * 2009-03-12 2010-09-24 Nippon Kinzoku Co Ltd Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297649A (en) * 1988-09-30 1990-04-10 Aichi Steel Works Ltd Austenitic stainless steel excellent in strength and toughness at very low temperature and its production
JPH07258801A (en) * 1994-03-24 1995-10-09 Kawasaki Steel Corp Fe-cr-ni alloy excellent in corrosion resistance and workability
JP2010209449A (en) * 2009-03-12 2010-09-24 Nippon Kinzoku Co Ltd Stainless steel sheet having excellent shape fixability and workability, method for producing the same and article

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018181570A1 (en) * 2017-03-31 2020-03-26 日鉄ステンレス株式会社 Austenitic stainless steel plate and its manufacturing method
WO2018181570A1 (en) * 2017-03-31 2018-10-04 新日鐵住金ステンレス株式会社 Austenite-based thick stainless-steel plate and production method therefor
WO2019054390A1 (en) 2017-09-13 2019-03-21 コベルコ鋼管株式会社 Austenitic stainless steel and method for producing same
KR20200033903A (en) 2017-09-13 2020-03-30 코베루코 고칸 가부시키가이샤 Austenitic stainless steel and its manufacturing method
JPWO2019082322A1 (en) * 2017-10-26 2020-11-05 日本製鉄株式会社 Nickel-containing steel for low temperature
CN111247263B (en) * 2017-10-26 2021-12-28 日本制铁株式会社 Nickel-containing steel for low temperature use
CN111247263A (en) * 2017-10-26 2020-06-05 日本制铁株式会社 Nickel-containing steel for low temperature use
JPWO2019082326A1 (en) * 2017-10-26 2020-11-05 日本製鉄株式会社 Nickel-containing steel for low temperature
WO2019082326A1 (en) * 2017-10-26 2019-05-02 新日鐵住金株式会社 Nickel-containing steel for low-temperature use
EP3702484A4 (en) * 2017-10-26 2021-03-03 Nippon Steel Corporation Nickel-containing steel for low-temperature use
EP3702485A4 (en) * 2017-10-26 2021-03-03 Nippon Steel Corporation Nickel-containing steel for low-temperature use
WO2019082322A1 (en) * 2017-10-26 2019-05-02 新日鐵住金株式会社 Nickel-containing steel for low-temperature use
US11371127B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371126B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11371121B2 (en) 2017-10-26 2022-06-28 Nippon Steel Corporation Nickel-containing steel for low temperature
US11384416B2 (en) 2017-10-26 2022-07-12 Nippon Steel Corporation Nickel-containing steel for low temperature
US11578391B2 (en) 2017-10-26 2023-02-14 Nippon Steel Corporation Nickel-containing steel for low temperature
US11578394B2 (en) 2017-10-26 2023-02-14 Nippon Steel Corporation Nickel-containing steel for low temperature
WO2024009897A1 (en) * 2022-07-04 2024-01-11 日鉄ステンレス株式会社 Hot-rolled steel material for tanks and method for producing same

Also Published As

Publication number Publication date
JP6433196B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP6433196B2 (en) Stainless steel for low temperature applications
Sun et al. Enhanced strength and ductility of bulk CoCrFeMnNi high entropy alloy having fully recrystallized ultrafine-grained structure
Lyu et al. Fundamental understanding of mechanical behavior of high-entropy alloys at low temperatures: A review
JP6039774B2 (en) Manufacturing method of high nitrogen stainless steel pipe for manufacturing high pressure hydrogen gas storage container with high strength, high ductility and excellent corrosion resistance and heat resistance
JP6451545B2 (en) High Mn steel for high-pressure hydrogen gas, method for producing the same, and piping, container, valve and joint made of the steel
JP5709881B2 (en) Austenitic high Mn stainless steel, method for producing the same, and member using the steel
JP6728779B2 (en) Low temperature thick steel plate and method of manufacturing the same
Quitzke et al. Evaluation of strain-induced martensite formation and mechanical properties in N-alloyed austenitic stainless steels by in situ tensile tests
CN105121688A (en) Austenitic twip stainless steel, its production and use
JP2015507090A (en) Non-magnetic high-strength high-manganese steel sheet and method for producing the same
Ha et al. Effect of C content on the microstructure and physical properties of Fe-36Ni invar alloy
Tian et al. Temperature-dependent tensile properties of ultrafine-grained C-doped CoCrFeMnNi high-entropy alloy
Chandan et al. Evolution of substructure of a non-equiatomic FeMnCrCo high entropy alloy deformed at ambient temperature
Ichii et al. Localized plasticity and associated cracking in stable and metastable high-entropy alloys pre-charged with hydrogen
JP2017206735A (en) Multi phase-based stainless steel excellent in steam oxidation resistance
WO2014157146A1 (en) Austenitic stainless steel sheet and method for manufacturing high-strength steel material using same
JP6089657B2 (en) Austenitic stainless steel for high pressure hydrogen having excellent sensitivity to hydrogen embrittlement at low temperature and method for producing the same
Wei et al. Microstructures and mechanical behavior of non-equiatomic Co29Cr29Fe29Ni13-xVx high-entropy alloys at room and cryogenic temperatures
Kwon et al. Work hardening behavior of hot-rolled metastable Fe50Co25Ni10Al5Ti5Mo5 medium-entropy alloy: in situ neutron diffraction analysis
Chen et al. Effects of Rolling Temperature on the Microstructure and Mechanical Properties of a High‐Mn Austenitic Steel for Cryogenic Applications
Ondicho et al. Revealing a transformation-induced plasticity (TRIP) phenomenon in a medium-entropy alloy
CN110191972A (en) The austenite stainless steel that resistance to hydrogen embrittlement is improved and the high pressure hydrogen container comprising it
Zhou et al. Effects of plastic deformation on austenite transformation in Fe-1.93 Mn-0.07 Ni-1.96 Cr-0.35 Mo ultra-high strength steel during continuous cooling
JP2017008371A (en) HIGH Mn STEEL MATERIAL FOR HIGH PRESSURE HYDROGEN GAS AND PIPING, CONTAINER, VALVE AND JOINT COMPOSED OF THE STEEL MATERIAL
JP2017014547A (en) HIGH Mn COPPER MATERIAL FOR HIGH PRESSURE HYDROGEN GAS AND PIPING, CONTAINER, VALVE AND JOIN CONSISTING OF THE STEEL MATERIAL

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181106

R150 Certificate of patent or registration of utility model

Ref document number: 6433196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250