JP2016024257A - Exposure method and apparatus, and method of producing device - Google Patents

Exposure method and apparatus, and method of producing device Download PDF

Info

Publication number
JP2016024257A
JP2016024257A JP2014146538A JP2014146538A JP2016024257A JP 2016024257 A JP2016024257 A JP 2016024257A JP 2014146538 A JP2014146538 A JP 2014146538A JP 2014146538 A JP2014146538 A JP 2014146538A JP 2016024257 A JP2016024257 A JP 2016024257A
Authority
JP
Japan
Prior art keywords
exposure
substrate
mask
control member
scanning direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014146538A
Other languages
Japanese (ja)
Other versions
JP6519109B2 (en
Inventor
浩志 藤原
Hiroshi Fujiwara
浩志 藤原
一樹 和田
Kazuki Wada
一樹 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014146538A priority Critical patent/JP6519109B2/en
Publication of JP2016024257A publication Critical patent/JP2016024257A/en
Application granted granted Critical
Publication of JP6519109B2 publication Critical patent/JP6519109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an exposure apparatus which decreases exposure amount unevenness of joint parts when scanning to expose a substrate using a plurality of exposure regions.SOLUTION: An exposure apparatus scans a mask M and a plate P in synchronization with a projection system while exposing the plate P with an emitted light from a lighting system through a pattern of the mask M and the lighting system. The projection system exposes a plurality of respectively different exposure regions PRA, PRD which are arranged so as to form joint parts on the plate P by doubly exposing end parts in a non-scanning direction of two adjacent exposure regions when scanning the plate P in a scanning direction, and is provided with a control member 17A and the like, which are disposed between a pattern surface Ma of the mask M and pupil surfaces PPA, PPD and the like, to adjust a light intensity distribution of the end parts of the exposure regions.SELECTED DRAWING: Figure 3

Description

本発明は、投影光学系を介して基板を露光する露光技術、及びこの露光技術を用いるデバイス製造技術に関する。   The present invention relates to an exposure technique for exposing a substrate through a projection optical system, and a device manufacturing technique using this exposure technique.

液晶ディスプレイ、有機EL(Electro-Luminescence)ディスプレイ、及びプラズマディスプレイ等のディスプレイ装置の製造工程中で、ガラスプレート等のパネル状の感光性の基板にマスクパターンの像を露光するために、マスクと基板とを投影光学系に対して同期移動して基板を走査露光する露光装置(以下、パネル露光装置という。)が使用されている。従来のパネル露光装置は、投影光学系の大型化を抑制して大面積のパターンを効率的に露光するために、複数の部分投影光学系から構成されるマルチレンズ型の投影光学系を備え、その複数の部分投影光学系の露光領域で露光されるパターンを基板上で高精度に繋ぐために、走査方向に対して傾斜した形状の2つの露光領域の端部で二重露光が行われる継ぎ部が設けられている(例えば、特許文献1参照)。   During the manufacturing process of display devices such as liquid crystal displays, organic EL (Electro-Luminescence) displays, and plasma displays, a mask and a substrate for exposing a mask pattern image to a panel-like photosensitive substrate such as a glass plate And an exposure apparatus (hereinafter, referred to as a panel exposure apparatus) that scans and exposes a substrate by moving them in synchronization with the projection optical system. A conventional panel exposure apparatus includes a multi-lens type projection optical system composed of a plurality of partial projection optical systems in order to efficiently expose a pattern of a large area while suppressing an increase in the size of the projection optical system, In order to connect the patterns exposed in the exposure areas of the plurality of partial projection optical systems with high accuracy on the substrate, double exposure is performed at the ends of the two exposure areas inclined with respect to the scanning direction. Are provided (see, for example, Patent Document 1).

特開2001−330964号公報JP 2001-330964 A

パネル露光装置において、基板の表面の継ぎ部には、わずかな露光量むらが生じる恐れがあるが、このような露光量むらは、現在のディスプレイ装置で必要とされるレイヤの数では問題にならない程度のものである。しかしながら、今後、基板上で必要とされるレイヤの数が増加したときに、その複数のレイヤに対して同じ露光装置で露光を行うと、その継ぎ部のわずかな露光量むらの影響(例えば継ぎ部における透明な回路パターンの線幅が他の領域のパターンの線幅と微妙に異なること等)が次第に積算されて、最終的に製造されるディスプレイ装置の画面に微妙な輝度むら等が現れる恐れがある。   In a panel exposure apparatus, there may be slight exposure unevenness at the joint portion of the surface of the substrate, but such exposure unevenness is not a problem with the number of layers required in current display devices. It is about. However, when the number of layers required on the substrate increases in the future, if the same exposure apparatus is used to expose the plurality of layers, the effect of slight exposure unevenness at the joints (for example, joints) The line width of the transparent circuit pattern in the area is slightly different from the line width of the pattern in the other areas), and there is a risk that subtle luminance unevenness will appear on the screen of the display device to be finally manufactured. There is.

本発明の態様は、このような事情に鑑み、複数の露光領域を用いて基板を走査露光する場合に、継ぎ部の露光量のむらを低減することを目的とする。   In view of such circumstances, an aspect of the present invention aims to reduce unevenness in the exposure amount of a joint portion when a substrate is scanned and exposed using a plurality of exposure regions.

本発明の第1の態様によれば、照明光学系からの露光光でマスクのパターン及び投影光学系を介して基板を露光しつつ、そのマスク及びその基板をその投影光学系に対して同期して走査する露光装置において、その投影光学系は、その基板上の互いに異なる複数の露光領域を露光するとともに、その複数の露光領域は、その基板を走査方向に走査したときに、隣接する2つのその露光領域のその走査方向に交差する非走査方向の端部の二重露光によって、その基板上に継ぎ部が形成されるように配置され、その継ぎ部の露光量を制御するために、そのマスクのパターン面とその照明光学系の瞳面との間に設置されて、少なくとも一つのその露光領域の端部の光強度分布を調整する調整部材を備える露光装置が提供される。   According to the first aspect of the present invention, the mask and the substrate are synchronized with the projection optical system while exposing the substrate with the exposure light from the illumination optical system through the mask pattern and the projection optical system. In the exposure apparatus that scans, the projection optical system exposes a plurality of different exposure areas on the substrate, and the plurality of exposure areas correspond to two adjacent areas when the substrate is scanned in the scanning direction. A double exposure at the end of the exposure area in the non-scanning direction that intersects the scanning direction is arranged to form a joint on the substrate, and in order to control the exposure amount of the joint, An exposure apparatus is provided that includes an adjusting member that is installed between the pattern surface of the mask and the pupil plane of the illumination optical system and adjusts the light intensity distribution at the end of the exposure region.

第2の態様によれば、照明光学系からの露光光でマスクのパターン及び投影光学系を介して基板を露光しつつ、そのマスク及びその基板をその投影光学系に対して同期して走査する露光方法において、その基板上の互いに異なる複数の露光領域を露光しつつ、その基板を走査方向に走査して、隣接する2つのその露光領域のその走査方向に交差する非走査方向の端部の二重露光によって、その基板上に継ぎ部を形成することと、その継ぎ部の露光量を制御するために、そのマスクのパターン面とその照明光学系の瞳面との間に設置された調整部材を用いて、少なくとも一つのその露光領域の端部の光強度分布を調整する露光方法が提供される。   According to the second aspect, the mask and the substrate are scanned synchronously with respect to the projection optical system while exposing the substrate with the exposure light from the illumination optical system through the mask pattern and the projection optical system. In the exposure method, while exposing a plurality of different exposure regions on the substrate, the substrate is scanned in the scanning direction, and the end portions of the adjacent two exposure regions in the non-scanning direction intersecting the scanning direction are scanned. An adjustment placed between the pattern surface of the mask and the pupil plane of the illumination optics to form a joint on the substrate by double exposure and to control the exposure of the joint An exposure method is provided that uses a member to adjust the light intensity distribution at the end of at least one of the exposure regions.

第3の態様によれば、本発明の態様の露光装置又は露光方法を用いて基板上に感光層のパターンを形成することと、そのパターンが形成されたその基板を処理することと、を含むデバイス製造方法が提供される。   According to a third aspect, the method includes forming a pattern of a photosensitive layer on a substrate using the exposure apparatus or the exposure method according to the aspect of the present invention, and processing the substrate on which the pattern is formed. A device manufacturing method is provided.

本発明の態様によれば、複数の露光領域を用いて基板の走査露光を行う場合に、継ぎ部の露光量むらを低減できる。   According to the aspect of the present invention, when performing scanning exposure of a substrate using a plurality of exposure regions, it is possible to reduce the uneven exposure amount of the joint portion.

実施形態の一例に係る露光装置の概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of an exposure apparatus according to an example of an embodiment. 図1の露光装置の制御系を示すブロック図である。It is a block diagram which shows the control system of the exposure apparatus of FIG. 図1中の2つの部分照明系及び2つの部分投影光学系を示す一部を断面で表した側面図である。FIG. 2 is a side view showing a part of two partial illumination systems and two partial projection optical systems in FIG. 1 in cross section. (A)、(B)、及び(C)はそれぞれ第1、第2、及び第3の透過率分布の調整部を示す平面図である。(A), (B), and (C) are the top views which show the adjustment part of the 1st, 2nd, and 3rd transmittance | permeability distribution, respectively. (A)は複数の照明領域の配置の一例を示す平面図、(B)は複数の露光領域の配置の一例を示す平面図である。(A) is a top view which shows an example of arrangement | positioning of several illumination area | region, (B) is a top view which shows an example of arrangement | positioning of several exposure area | region. (A)及び(B)はそれぞれ部分照明系の要部及び照度分布の一例及び他の例を示す図である。(A) And (B) is a figure which shows the example of the principal part of a partial illumination system, an example of illuminance distribution, and another example, respectively. 露光方法の一例を示すフローチャートである。It is a flowchart which shows an example of the exposure method. (A)は補正前の積算露光量分布の一例を示す図、(B)は透過率分布の調整部の配置の一例を示す図、(C)は積算露光量分布の補正量の一例を示す図、(D)は補正後の積算露光量分布を示す図、(E)は積算露光量分布の補正前の偏差及び補正量を示す図である。(A) is a figure which shows an example of the integrated exposure amount distribution before correction | amendment, (B) is a figure which shows an example of arrangement | positioning of the adjustment part of the transmittance | permeability distribution, (C) shows an example of the correction amount of integrated exposure amount distribution. (D) is a figure which shows the integrated exposure amount distribution after correction | amendment, (E) is a figure which shows the deviation and correction amount before correction | amendment of integrated exposure amount distribution. (A)は補正前の積算露光量分布の他の例を示す図、(B)は透過率分布の調整部の配置の他の例を示す図、(C)は積算露光量分布の補正量の他の例を示す図、(D)は補正後の積算露光量分布を示す図、(E)は積算露光量分布の補正前の偏差及び補正量を示す図である。(A) is a figure which shows the other example of the integrated exposure amount distribution before correction | amendment, (B) is a figure which shows the other example of arrangement | positioning of the adjustment part of the transmittance | permeability distribution, (C) is the correction amount of integrated exposure amount distribution. FIG. 6D is a diagram showing the integrated exposure amount distribution after correction, and FIG. 8E is a diagram showing the deviation and correction amount before correction of the integrated exposure amount distribution. 変形例の透過率分布の調整部を示す平面図である。It is a top view which shows the adjustment part of the transmittance | permeability distribution of a modification. (A)は変形例の補正前の積算露光量分布を示す図、(B)は透過率分布の調整部の配置を示す図、(C)は積算露光量分布の補正量を示す図、(D)は補正後の積算露光量分布を示す図、(E)は積算露光量分布の補正前の偏差及び補正量を示す図である。(A) is a diagram showing the integrated exposure dose distribution before correction of the modification, (B) is a diagram showing the arrangement of the adjustment unit of the transmittance distribution, (C) is a diagram showing the correction amount of the integrated exposure dose distribution, (D) is a diagram showing the corrected integrated exposure distribution, and (E) is a diagram showing the deviation and correction amount of the integrated exposure distribution before correction. (A)、(B)、(C)、(D)、(E)、及び(F)はそれぞれ制御部材の変形例を示す図である。(A), (B), (C), (D), (E), and (F) are the figures which show the modification of a control member, respectively. 電子デバイスの製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of an electronic device.

本発明の実施形態の一例につき図1〜図9を参照して説明する。図1は、本実施形態に係る露光装置EXの概略構成を示す。露光装置EXは、フォトレジスト(感光材料)が塗布された矩形の平板ガラスよりなるプレートP(感光性基板)にマスクMのパターンの像を露光する走査露光方式のパネル露光装置である。露光装置EXで露光されたプレートPは、一例として、液晶ディスプレイ又は有機ELディスプレイ等の表示装置の表示部であるパネルを製造するために使用される。露光装置EXは、それぞれマスクMのパターンの像をプレートPの表面に投影する複数(本実施形態では一例として7つ)の部分投影光学系PLA,PLB,PLC,PLD,PLE,PLF,PLG(図5(A)参照)を有するマルチレンズ型の投影システムPS(投影光学系)を備えている。以下、投影システムPSに対して合焦されているときのプレートPの表面に垂直にZ軸を取り、その表面に平行な平面(本実施形態ではほぼ水平面)内で走査露光時のマスクM及びプレートPの走査方向に沿ってX軸を、X軸に直交する方向(非走査方向)に沿ってY軸を取って説明する。   An example of an embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a schematic configuration of an exposure apparatus EX according to the present embodiment. The exposure apparatus EX is a scanning exposure type panel exposure apparatus that exposes an image of a pattern of a mask M onto a plate P (photosensitive substrate) made of rectangular flat glass coated with a photoresist (photosensitive material). As an example, the plate P exposed by the exposure apparatus EX is used to manufacture a panel which is a display unit of a display device such as a liquid crystal display or an organic EL display. The exposure apparatus EX includes a plurality of (seven as an example in the present embodiment) partial projection optical systems PLA, PLB, PLC, PLD, PLE, PLF, and PLG (in this embodiment) that project the image of the pattern of the mask M onto the surface of the plate P. A multi-lens type projection system PS (projection optical system) having (see FIG. 5A) is provided. Hereinafter, the mask M at the time of scanning exposure in a plane (substantially a horizontal plane in the present embodiment) which takes the Z axis perpendicular to the surface of the plate P when focused on the projection system PS, and is parallel to the surface (in the present embodiment). The description will be made by taking the X axis along the scanning direction of the plate P and the Y axis along the direction orthogonal to the X axis (non-scanning direction).

図1において、露光装置EXは、露光用の照明光(露光光)ELを発生する例えば超高圧水銀ランプからなる光源10と、照明光ELでマスクMのパターン面の部分投影光学系PLA〜PLGと同じ個数の照明領域IRA,IRB,IRC,IRD,IRE,IRF,IRG(図5(A)参照)を均一な照度分布で照明する照明系ISと、マスクMをマスクホルダ(不図示)を介してXY平面に平行に保持して移動するマスクステージ21と、プレートPを保持して移動するプレートステージ22とを備えている。一例として、第1列の照明領域IRA〜IRCはY方向に一定間隔で配置され、第2列の照明領域IRD〜IRGは、第1列の照明領域IRA〜IRCに対して−X方向に所定間隔離れて、かつX方向に見たときに、第1列の照明領域IRA〜IRCを間に挟むように配置されている(図5(A)参照)。   In FIG. 1, an exposure apparatus EX includes a light source 10 including, for example, an ultra-high pressure mercury lamp that generates illumination light (exposure light) EL for exposure, and partial projection optical systems PLA to PLG on a pattern surface of a mask M using the illumination light EL. Illumination system IS for illuminating the same number of illumination areas IRA, IRB, IRC, IRD, IRE, IRF, IRG (see FIG. 5A) with a uniform illuminance distribution, and mask M as a mask holder (not shown) And a plate stage 22 that moves while being held parallel to the XY plane, and a plate stage 22 that holds and moves the plate P. As an example, the illumination areas IRA to IRC in the first row are arranged at regular intervals in the Y direction, and the illumination areas IRD to IRG in the second row are predetermined in the −X direction with respect to the illumination areas IRA to IRC in the first row. When viewed in the X direction at a distance, the first row illumination areas IRA to IRC are arranged so as to be sandwiched therebetween (see FIG. 5A).

さらに、露光装置EXは、マスクステージ21の端部に設けられたX軸の移動鏡23MX及びY軸の移動鏡23MYに計測用のレーザ光を照射して、マスクステージ21の位置情報を計測する複数軸のレーザ干渉計23Aと、プレートステージ22の端部に設けられたX軸の移動鏡23PX及びY軸の移動鏡23PYに計測用のレーザ光を照射して、プレートステージ22の位置情報を計測する複数軸のレーザ干渉計23Bとを備えている。また、露光装置EXは、レーザ干渉計23A,23Bの計測結果に基づいてマスクステージ21及びプレートステージ22を駆動するそれぞれリニアモータ等を含むマスクステージ駆動系25及びプレートステージ駆動系26(図2参照)と、装置全体の動作を統括的に制御するコンピュータを含む主制御装置20(図2参照)とを備えている。   Further, the exposure apparatus EX measures the position information of the mask stage 21 by irradiating the measuring laser beam to the X-axis moving mirror 23MX and the Y-axis moving mirror 23MY provided at the end of the mask stage 21. The laser beam for measurement is irradiated to the multi-axis laser interferometer 23A and the X-axis movable mirror 23PX and the Y-axis movable mirror 23PY provided at the end of the plate stage 22, and the position information of the plate stage 22 is obtained. A multi-axis laser interferometer 23B for measurement is provided. Further, the exposure apparatus EX includes a mask stage drive system 25 and a plate stage drive system 26 (see FIG. 2) each including a linear motor or the like for driving the mask stage 21 and the plate stage 22 based on the measurement results of the laser interferometers 23A and 23B. And a main controller 20 (see FIG. 2) including a computer that controls the overall operation of the apparatus.

マスクステージ駆動系25は、走査露光時にマスクステージ21の走査方向(X方向)の位置及び速度を制御するとともに、必要に応じてマスクステージ21のZ軸に平行な軸の回り(以下、θz方向という)の回転角を所定範囲内で調整可能である。また、プレートステージ駆動系26は、走査露光時にマスクステージ21に同期してプレートステージ22のX方向の位置及び速度を制御するとともに、走査露光の間(ステップ移動時)に、プレートステージ22のX方向及び/又はY方向の位置を制御する。なお、一例として、マスクMは、X方向の幅が1〜2m程度、Y方向の幅が1〜1.5m程度の矩形の平板状であり、プレートPは、X方向の幅が2〜2.5m程度、Y方向の幅が2〜3m程度の矩形の平板状であり、マスクステージ21及びプレートステージ22はそれぞれマスクM及びプレートPを保持できる大きさに設定されている。また、プレートPの複数のパターン形成領域(不図示)にそれぞれマスクMのパターンの像が露光される。   The mask stage drive system 25 controls the position and speed in the scanning direction (X direction) of the mask stage 21 during scanning exposure, and rotates around an axis parallel to the Z axis of the mask stage 21 as necessary (hereinafter referred to as θz direction). The rotation angle can be adjusted within a predetermined range. The plate stage drive system 26 controls the position and speed of the plate stage 22 in the X direction in synchronization with the mask stage 21 during scanning exposure, and during the scanning exposure (step movement), the X of the plate stage 22 is controlled. Control the position in the direction and / or Y direction. As an example, the mask M is a rectangular flat plate having a width in the X direction of about 1 to 2 m and a width in the Y direction of about 1 to 1.5 m, and the plate P has a width of 2 to 2 in the X direction. The mask stage 21 and the plate stage 22 are set to sizes that can hold the mask M and the plate P, respectively, in a rectangular flat plate shape having a width of about 5 m and a width in the Y direction of about 2 to 3 m. Further, a pattern image of the mask M is exposed to a plurality of pattern formation regions (not shown) of the plate P, respectively.

次に、照明系IS及び投影システムPSにつき説明する。まず、光源10から射出された照明光ELは、楕円鏡、ミラー、シャッタ(不図示)、及び波長選択フィルター(不図示)を介して集光光学系11に入射する。集光光学系11を通過した照明光ELは、分岐光学系13の入射端12に入射し、部分投影光学系PLA〜PLGと同じ個数の分岐光学系13の射出端14A〜14Gから射出された照明光ELは、それぞれ対応する部分照明系ILA〜ILGを介して台形状の照明領域IRA〜IRGを照明する。なお、本実施形態では、部分投影光学系PLA〜PLGの物体面側の視野は、部分投影光学系PLA〜PLG中の視野絞り35(図3参照)によって規定される。このため、照明領域IRA〜IRGとは、視野絞り35の開口35aと光学的に共役な領域を意味しており、部分照明系ILA〜ILGは、それぞれ照明領域IRA〜IRGを含み照明領域IRA〜IRGよりもわずかに広い範囲を照明する。互いに実質的に同じ構成の部分照明系ILA〜ILGは、それぞれコリメートレンズ、フライアイインテグレータ(オプティカルインテグレータ)、及びコンデンサーレンズ系等を有する。集光光学系11から部分照明系ILA〜ILGまでの光学部材を含んで照明系ISが構成されている。   Next, the illumination system IS and the projection system PS will be described. First, the illumination light EL emitted from the light source 10 enters the condensing optical system 11 via an elliptical mirror, a mirror, a shutter (not shown), and a wavelength selection filter (not shown). The illumination light EL that has passed through the condensing optical system 11 is incident on the incident end 12 of the branch optical system 13 and is emitted from the exit ends 14A to 14G of the branch optical system 13 that is the same number as the partial projection optical systems PLA to PLG. The illumination light EL illuminates the trapezoidal illumination areas IRA to IRG via the corresponding partial illumination systems ILA to ILG. In the present embodiment, the field planes on the object plane side of the partial projection optical systems PLA to PLG are defined by the field stop 35 (see FIG. 3) in the partial projection optical systems PLA to PLG. Therefore, the illumination areas IRA to IRG mean areas that are optically conjugate with the opening 35a of the field stop 35, and the partial illumination systems ILA to ILG include the illumination areas IRA to IRG, respectively. Illuminates a slightly wider area than the IRG. Partial illumination systems ILA to ILG having substantially the same configuration have collimating lenses, fly-eye integrators (optical integrators), condenser lens systems, and the like. An illumination system IS is configured including optical members from the condensing optical system 11 to the partial illumination systems ILA to ILG.

図3は、2つの部分照明系ILA,ILDのフライアイインテグレータ15からマスクMのパターン面Ma(被照射面)までの構成、及び部分照明系ILA,ILDに対応する部分投影光学系PLA,PLDの構成を示す。図3において、部分照明系ILAのフライアイインテグレータ15から射出された照明光ELは、第1コンデンサーレンズ16a、透過率分布を制御又は調整するための円板状の制御部材17A、及び第2コンデンサーレンズ16bを介してパターン面Maの照明領域IRA(実際にはこれよりも広い領域)を照明する。コンデンサーレンズ16a及び16bからコンデンサーレンズ系16が構成されている。   FIG. 3 shows the configuration from the fly eye integrator 15 of the two partial illumination systems ILA and ILD to the pattern surface Ma (irradiated surface) of the mask M, and the partial projection optical systems PLA and PLD corresponding to the partial illumination systems ILA and ILD. The structure of is shown. In FIG. 3, the illumination light EL emitted from the fly eye integrator 15 of the partial illumination system ILA includes a first condenser lens 16a, a disc-shaped control member 17A for controlling or adjusting the transmittance distribution, and a second condenser. The illumination area IRA (actually wider area) of the pattern surface Ma is illuminated via the lens 16b. A condenser lens system 16 is composed of the condenser lenses 16a and 16b.

また、フライアイインテグレータ15の射出面(又はフライアイインテグレータ15を構成する各レンズエレメントの後側焦点面)が、この部分照明系ILAの瞳面PPA(パターン面Maに対する光学的なフーリエ変換面)である。
また、部分照明系ILAの一部に開口絞りを設けて、この開口絞りの設置面を瞳面PPAとすることもできる。また、瞳面PPAは一箇所とは限らず、互いに共役関係にして複数個所設けることもできる。
The exit surface of the fly eye integrator 15 (or the rear focal plane of each lens element constituting the fly eye integrator 15) is the pupil plane PPA of the partial illumination system ILA (an optical Fourier transform plane with respect to the pattern surface Ma). It is.
Further, an aperture stop may be provided in a part of the partial illumination system ILA, and the installation surface of the aperture stop may be used as the pupil plane PPA. Further, the pupil plane PPA is not limited to one location, and a plurality of pupil planes can be provided in a conjugate relationship with each other.

制御部材17Aは、第1コンデンサーレンズ16aと第2コンデンサーレンズ16bとの間(本実施形態では瞳面PPAとパターン面Maとの間のほぼ中央)にある設置面SPAに、保持機構18によって保持されている。なお、制御部材17Aは、瞳面PPA(又は瞳面PPAと光学的に共役な面)とパターン面Maとの間の任意の位置に設置可能である。
また、部分照明系ILA内に瞳面PPAを複数個所設けた場合には、それぞれの瞳面PPAとパターン面Maとの間の任意の位置に少なくとも1つの制御部材17Aを設置することもできる。
The control member 17A is held by the holding mechanism 18 on the installation surface SPA that is between the first condenser lens 16a and the second condenser lens 16b (in the present embodiment, substantially in the middle between the pupil plane PPA and the pattern plane Ma). Has been. The control member 17A can be installed at an arbitrary position between the pupil plane PPA (or a plane optically conjugate with the pupil plane PPA) and the pattern plane Ma.
When a plurality of pupil planes PPA are provided in the partial illumination system ILA, at least one control member 17A can be installed at an arbitrary position between each pupil plane PPA and the pattern plane Ma.

保持機構18は、制御部材17Aの周縁部(図4(A)の枠部17Ac)が載置されるリング状の回転部44と、回転部44に対して制御部材17Aの周縁部を押さえ付けて固定するリング状の固定部43と、回転部44が部分照明系ILAの光軸AXAに平行な軸の回りに回転可能に載置されるとともに照明光ELを通過させる開口が形成されたスライド部45と、スライド部45が載置されるとともに照明光ELを通過させる開口が形成された支持部46とを有する。固定部43は回転部44に対してボルト47によって固定され、スライド部45に設けられたX方向に平行なスリット45aを通して、スライド部45が支持部46にボルト47によって固定されている。回転部44の側面には、この回転部44を回転するためのピン状のレバー(不図示)が設けられている。保持機構18によって制御部材17Aの回転角を任意の角度に調整できるとともに、制御部材17AのX方向の位置を調整できる。なお、保持機構18の構成は任意である。例えば、保持機構18から制御部材17AをX方向に移動する機構を省略することもできる。   The holding mechanism 18 presses the peripheral portion of the control member 17A against the rotary portion 44 and the ring-shaped rotary portion 44 on which the peripheral portion of the control member 17A (the frame portion 17Ac in FIG. 4A) is placed. A ring-shaped fixing portion 43 and a rotating portion 44 are mounted so as to be rotatable about an axis parallel to the optical axis AXA of the partial illumination system ILA, and an opening through which the illumination light EL passes is formed. And a support portion 46 on which the slide portion 45 is placed and an opening through which the illumination light EL passes is formed. The fixed portion 43 is fixed to the rotating portion 44 by a bolt 47, and the slide portion 45 is fixed to the support portion 46 by the bolt 47 through a slit 45 a provided in the slide portion 45 parallel to the X direction. A pin-shaped lever (not shown) for rotating the rotating unit 44 is provided on a side surface of the rotating unit 44. The holding mechanism 18 can adjust the rotation angle of the control member 17A to an arbitrary angle, and can adjust the position of the control member 17A in the X direction. Note that the configuration of the holding mechanism 18 is arbitrary. For example, a mechanism for moving the control member 17A from the holding mechanism 18 in the X direction can be omitted.

図4(A)に示すように、制御部材17Aは、リング形の枠部17Acの中に、ランダムな形状の多数の網目をほぼ半円状の領域に配置して形成されたメッシュ型のフィルタ部17Aaを保持したものであり、それ以外の領域は開口部17Ab(透過率100%)である。メッシュ型のフィルタ部17Aaは、ランダムウォーク型のフィルタ部と呼ぶこともできる。制御部材17Aの枠部17Acが保持機構18によって保持され、通常は、枠部17Acの中心が光軸AXAにほぼ一致するように制御部材17Aが位置決めされ、枠部17Acの内側で、かつフィルタ部17Aaの一部及び開口部17Abの一部を含む領域を照明光ELが通過する。フィルタ部17Aaの直線状のエッジ部はY軸に平行であるとともに、枠部17Acの中心を通りY軸に平行な直線に対して+X方向に所定のオフセットδx1だけずれている。一例として、フィルタ部17Aaの平均的な透過率は90%であり、オフセットδx1は部材17Acの内側の直径の5%程度である。ただし、保持機構18が制御部材17AのX方向の位置を調整する機構を備えているときには、保持機構18によって制御部材17AのX方向の位置を調整することも可能である。   As shown in FIG. 4A, the control member 17A includes a mesh-type filter formed by arranging a large number of randomly shaped meshes in a substantially semicircular region in a ring-shaped frame portion 17Ac. The portion 17Aa is held, and the other region is the opening 17Ab (transmittance 100%). The mesh type filter unit 17Aa can also be called a random walk type filter unit. The frame portion 17Ac of the control member 17A is held by the holding mechanism 18. Usually, the control member 17A is positioned so that the center of the frame portion 17Ac substantially coincides with the optical axis AXA, and inside the frame portion 17Ac and the filter portion. The illumination light EL passes through a region including a part of 17Aa and a part of the opening 17Ab. The linear edge portion of the filter portion 17Aa is parallel to the Y axis and is shifted by a predetermined offset δx1 in the + X direction with respect to a straight line passing through the center of the frame portion 17Ac and parallel to the Y axis. As an example, the average transmittance of the filter portion 17Aa is 90%, and the offset δx1 is about 5% of the inner diameter of the member 17Ac. However, when the holding mechanism 18 includes a mechanism for adjusting the position of the control member 17A in the X direction, the holding mechanism 18 can also adjust the position of the control member 17A in the X direction.

この制御部材17Aは、例えば、ほぼ円状の領域に配置されたランダムな形状の多数の網目から、ほぼ半円状に網目を除去することにより比較的容易に作成できる。このため、一例として、調整部材17Aを保持機構18を介して部分照明系ILAに取り付けて、2つの露光領域の継ぎ部及びそれ以外の領域で露光された後の2つの積算露光量(又は平均的な照度)ができるだけ等しくなるように調整しても、その2つの積算露光量の差が許容範囲内に収まらなかったような場合を想定する。このような場合でも、調整部材17Aのメッシュ型のフィルタ部17Aaの一部を、ハサミ等の切断工具を用いて削除することによって、簡単に、短時間に、露光装置が設置されているその場で、継ぎ部及びそれ以外の領域で露光された後の積算露光量(又は平均的な照度)ができるだけ等しくなるように再調整を行うことができる。   The control member 17A can be formed relatively easily by removing the mesh in a substantially semicircular shape from a large number of randomly shaped meshes arranged in a substantially circular region, for example. For this reason, as an example, the adjustment member 17A is attached to the partial illumination system ILA via the holding mechanism 18, and the two integrated exposure amounts (or averages) after being exposed at the joint portion of the two exposure regions and the other regions are exposed. The case is assumed where the difference between the two integrated exposure amounts does not fall within the allowable range even if adjustment is made so that the illuminance is as equal as possible. Even in such a case, by removing a part of the mesh type filter portion 17Aa of the adjustment member 17A using a cutting tool such as scissors, the exposure apparatus can be easily installed in a short time. Thus, the readjustment can be performed so that the integrated exposure amount (or average illuminance) after the exposure at the joint and other regions becomes as equal as possible.

なお、制御部材17Aの他に、オフセットδx1が0、又は図4(A)の場合の数倍等に設定された複数の制御部材(不図示)が用意されており、制御部材17Aはそれらの制御部材と交換可能である。また、図3では、制御部材17Aのフィルタ部17Aaが+X方向側に配置されているが、このときの制御部材17Aの回転角を0度とする。保持機構18によって制御部材17Aを180度回転してフィルタ部17Aaを−X方向側(又は光軸AXAに関して任意の方向)に配置することも可能である。さらに、制御部材17Aの代わりに、図4(B)の制御部材17B、図4(C)の制御部材17C、又は他の任意の構成の制御部材を使用することも可能である。制御部材17Bは、枠部17Bc中に、透過率が95%程度の半円状のメッシュ型のフィルタ部17Baを保持したものであり、それ以外の領域は開口部17Bbである。制御部材17Cは、枠部17Cc中に、透過率が97.5%程度でオフセットδx2(ほぼδx1と同じ程度)の半円状のメッシュ型のフィルタ部17Caを保持したものであり、それ以外の領域は開口部17Cbである。なお、メッシュ型のフィルタ部17Aa,17Ba,17Ca等の代わりに、透過率が同様(又は一様)のNDフィルタ(neutral density filter)などを使用することもできる。   In addition to the control member 17A, there are prepared a plurality of control members (not shown) in which the offset δx1 is set to 0, or several times the case of FIG. 4A, etc. Exchangeable with control member. In FIG. 3, the filter portion 17Aa of the control member 17A is disposed on the + X direction side, and the rotation angle of the control member 17A at this time is 0 degree. It is also possible to rotate the control member 17A 180 degrees by the holding mechanism 18 and arrange the filter portion 17Aa on the −X direction side (or in any direction with respect to the optical axis AXA). Furthermore, instead of the control member 17A, the control member 17B in FIG. 4B, the control member 17C in FIG. 4C, or a control member having any other configuration can be used. The control member 17B holds a semicircular mesh type filter portion 17Ba having a transmittance of about 95% in the frame portion 17Bc, and the other region is the opening portion 17Bb. The control member 17C holds a semicircular mesh type filter portion 17Ca having a transmittance of about 97.5% and an offset δx2 (approximately the same as δx1) in the frame portion 17Cc. The region is the opening 17Cb. Instead of the mesh-type filter units 17Aa, 17Ba, 17Ca, etc., an ND filter (neutral density filter) having the same (or uniform) transmittance can be used.

図3において、部分照明系ILDのフライアイインテグレータ15の射出面(瞳面PPD)とパターン面Maとの間の設置面SPDにも、保持機構18(不図示)によって制御部材17A(又は他の制御部材17B等)が保持されている。なお、図3では、一例として、部分照明系ILD中の制御部材17Aの光軸AXDに平行な軸の回りの回転角は、部分照明系ILA中の制御部材17Aに対して180度異なっている。同様に、他の照明領域IRB,IRC,IRE〜IRG(図5(A)参照)を照明する部分照明系にも制御部材17A,17B等が設置されている。ただし、部分照明系ILAに制御部材17Aを設置したときに、他の部分照明系ILD等には別の制御部材17B等を設置するというように、部分照明系ILA〜ILG毎に異なる制御部材17A,17B等を設置してもよい。さらに、一つの部分照明系(例えば部分照明系ILA)に制御部材17A(又は17B等)を設置したときに、他の部分照明系には制御部材17A,17B等を設置しないようにしてもよい。   In FIG. 3, the control member 17 </ b> A (or other member) is also provided on the installation surface SPD between the exit surface (pupil surface PPD) of the fly eye integrator 15 of the partial illumination system ILD and the pattern surface Ma by the holding mechanism 18 (not shown). Control member 17B etc.) are held. In FIG. 3, as an example, the rotation angle around the axis parallel to the optical axis AXD of the control member 17A in the partial illumination system ILD is 180 degrees different from that of the control member 17A in the partial illumination system ILA. . Similarly, control members 17A, 17B and the like are also installed in partial illumination systems that illuminate other illumination areas IRB, IRC, IRE to IRG (see FIG. 5A). However, when the control member 17A is installed in the partial illumination system ILA, a different control member 17A is provided for each of the partial illumination systems ILA to ILG such that another control member 17B is installed in the other partial illumination system ILD. , 17B, etc. may be installed. Further, when the control member 17A (or 17B, etc.) is installed in one partial illumination system (for example, the partial illumination system ILA), the control members 17A, 17B, etc. may not be installed in the other partial illumination system. .

次に、制御部材17A等の作用につき、部分照明系ILAの説明図である図6(A)及び(B)を参照して説明する。まず、図6(A)において、制御部材17Aが設置されていない場合のパターン面Maにおける照明光ELのX方向の照度分布は、点線の直線で示すように一定(値a2とする)であるとする。これに対して、部分照明系ILA内に、フィルタ部17Aaが−X方向側にあり、かつ制御部材17Aaのエッジ部が光軸AXAを通りY軸に平行な直線に合致するように透過率分布の制御部材17Aを設置したものとする。このとき、図3のフライアイインテグレータ15から射出されてコンデンサーレンズ16aを通過した照明光ELのうち、点線で示す−X方向側に最大に傾斜した光束EL1の大部分は、フィルタ部17Aaを透過して照度が低下した状態で、コンデンサーレンズ16bを介してパターン面Maの光軸AXAに対して−X方向に最も離れた位置に入射する。また、実線で示す光軸AXAに平行な光束EL2は、ほぼ半分がフィルタ部17Aaを透過するため、光束EL1に比べて照度の低下量がほぼ半分の状態でパターン面Maの光軸AXA上に入射し、破線で示す+X方向側に最大に傾斜した光束EL3の大部分は、光束EL2に比べて照度が低下しない状態で、パターン面Maの光軸AXAから+X方向に最も離れた位置に入射する。   Next, the operation of the control member 17A and the like will be described with reference to FIGS. 6A and 6B, which are explanatory diagrams of the partial illumination system ILA. First, in FIG. 6A, the illuminance distribution in the X direction of the illumination light EL on the pattern surface Ma when the control member 17A is not installed is constant (value a2) as shown by the dotted line. And On the other hand, in the partial illumination system ILA, the transmittance distribution is such that the filter portion 17Aa is on the −X direction side and the edge portion of the control member 17Aa matches a straight line passing through the optical axis AXA and parallel to the Y axis. It is assumed that the control member 17A is installed. At this time, of the illumination light EL emitted from the fly-eye integrator 15 of FIG. 3 and passing through the condenser lens 16a, most of the luminous flux EL1 that is tilted to the maximum in the −X direction indicated by the dotted line is transmitted through the filter portion 17Aa. Then, in a state where the illuminance is lowered, the light enters the position farthest in the −X direction with respect to the optical axis AXA of the pattern surface Ma via the condenser lens 16b. In addition, almost half of the light beam EL2 parallel to the optical axis AXA indicated by the solid line is transmitted through the filter portion 17Aa, so that the amount of decrease in illuminance is substantially half that of the light beam EL1 on the optical axis AXA of the pattern surface Ma. Most of the light beam EL3 that is incident and tilted to the maximum in the + X direction indicated by the broken line is incident at a position farthest from the optical axis AXA of the pattern surface Ma in the + X direction in a state in which the illuminance does not decrease compared to the light beam EL2. To do.

この結果、パターン面Maにおける光束EL1の照度は最小値a1(照明光ELの光路の全面にフィルタ部17Aaと同じ透過率のフィルタ部があるときの照度)、光束EL3の照度は最大値a2となり、光束EL2の照度は、最小値a1及び最大値a2の中間値となる。また、コンデンサーレンズ16aを通過する光束の傾斜角が、光束EL1の傾斜角から光束EL2の傾斜角まで次第に変化すると、この光束のうちフィルタ部17Aaを透過する部分の割合が次第に減少するため、この光束のパターン面Maにおける照度は、図6(A)の照度ICEを示す直線A1のように、最小値a1から最大値a2まで次第に増加する。本実施形態の照明領域IRAは、パターン面Maで照明光ELが入射する領域の中央部であるため、照明領域IRAのX方向の照度分布は、最小値(値a1より大きい値)から最大値a3(値a2より小さい値)まで次第に大きくなるように傾斜している。言い換えると、部分照明系ILA内の瞳面とパターン面との間に制御部材17Aを設置することで、照明領域IRAの照度分布をX方向(走査方向)に傾斜させることができる。   As a result, the illuminance of the light beam EL1 on the pattern surface Ma is the minimum value a1 (illuminance when the filter portion having the same transmittance as the filter portion 17Aa is on the entire surface of the optical path of the illumination light EL), and the illuminance of the light beam EL3 is the maximum value a2. The illuminance of the luminous flux EL2 is an intermediate value between the minimum value a1 and the maximum value a2. Further, when the tilt angle of the light beam passing through the condenser lens 16a gradually changes from the tilt angle of the light beam EL1 to the tilt angle of the light beam EL2, the ratio of the portion of the light beam that passes through the filter portion 17Aa gradually decreases. The illuminance on the pattern surface Ma of the light flux gradually increases from the minimum value a1 to the maximum value a2, as indicated by a straight line A1 indicating the illuminance ICE in FIG. Since the illumination area IRA of this embodiment is the central part of the area where the illumination light EL is incident on the pattern surface Ma, the illuminance distribution in the X direction of the illumination area IRA is from the minimum value (value greater than the value a1) to the maximum value. The inclination is gradually increased to a3 (a value smaller than the value a2). In other words, by installing the control member 17A between the pupil plane and the pattern plane in the partial illumination system ILA, the illuminance distribution of the illumination area IRA can be tilted in the X direction (scanning direction).

さらに、フィルタ部17Aaが光軸AXAに対して+X方向側になるように制御部材17Aを回転することで、照明領域IRAの照度分布の傾斜角の符号を反転させることができる。また、制御部材17Aの代わりに、平均的な透過率が異なるフィルタ部17Ba,17Caを持つ制御部材17B,17Cを設置することで、照度分布の最小値a1の値が変化するため、照度分布の傾斜角を制御できる。   Furthermore, by rotating the control member 17A so that the filter unit 17Aa is on the + X direction side with respect to the optical axis AXA, the sign of the inclination angle of the illuminance distribution in the illumination area IRA can be reversed. Moreover, since the value of the minimum value a1 of the illuminance distribution changes by installing the control members 17B and 17C having the filter portions 17Ba and 17Ca having different average transmittances instead of the control member 17A, the illuminance distribution The tilt angle can be controlled.

また、図6(B)に示すように、制御部材17Aのフィルタ部17Aaのエッジ部の位置に−X方向に対するオフセットδxaを与えると、光軸AXAに平行な光束EL2は、フィルタ部17Aaを透過する割合が低下して、パターン面Maにおける照度が上昇する。同様に、他の光束でも、フィルタ部17Aaを透過する割合が低下して、パターン面Maにおける照度が上昇するため、パターン面Maにおける照度分布は、図6(B)の折れ線A2で示すように全体として上昇するが、最大値a2に達したときに飽和する。このため、照明領域IRAにおける照度分布の最大値a4は最大値a2に近い値になり、照明領域IRAにおける照度の平均値を高くして、照明光ELを有効に利用できる。   Further, as shown in FIG. 6B, when an offset δxa with respect to the −X direction is given to the position of the edge portion of the filter portion 17Aa of the control member 17A, the light beam EL2 parallel to the optical axis AXA is transmitted through the filter portion 17Aa. The ratio to do decreases, and the illuminance on the pattern surface Ma increases. Similarly, even with other light fluxes, the rate of transmission through the filter portion 17Aa decreases, and the illuminance on the pattern surface Ma increases, so that the illuminance distribution on the pattern surface Ma is as shown by the broken line A2 in FIG. 6B. It rises as a whole, but saturates when the maximum value a2 is reached. For this reason, the maximum value a4 of the illuminance distribution in the illumination area IRA becomes a value close to the maximum value a2, and the average value of the illuminance in the illumination area IRA can be increased to effectively use the illumination light EL.

図3の部分照明系ILAにおいて、制御部材17Aの設置面SPAが仮に瞳面PPAの近傍(または瞳面PPAと共役な面の近傍)にある場合、制御部材17Aのフィルタ部17Aaを通過した光束は、パターン面MaのX方向の領域にほぼ均等に入射するため、パターン面MaにおけるX方向の照度分布は均一に低下するのみで、傾斜することはない。一方、制御部材17Aの設置面SPAが仮にパターン面Maの近傍(またはパターン面Maと共役な面の近傍)にある場合、パターン面Maにおいてフィルタ部17Aaに対向する部分のみの照度が低下するため、パターン面MaにおけるX方向の照度分布は階段状に変化する。これに対して、本実施形態の制御部材17Aの設置面SPAは、瞳面PPAとパターン面Maとの間のほぼ中間の位置にあるため、制御部材17Aのフィルタ部17Aaによって、パターン面Maの照明領域IRAのX方向の照度分布を所望の傾斜角及びオフセットで傾斜させることができる。このように照度分布を傾斜させることによって、プレートP上の積算露光量の分布を高精度に制御できる(詳細後述)。また、制御部材17Aの設置精度は低くともよく、制御部材17Aを他の制御部材17B等と交換したときの位置決め精度も低い状態でよいため、制御部材17A,17B等の設置及び交換が容易である。   In the partial illumination system ILA of FIG. 3, when the installation surface SPA of the control member 17A is in the vicinity of the pupil plane PPA (or in the vicinity of a plane conjugate with the pupil plane PPA), the light flux that has passed through the filter portion 17Aa of the control member 17A. Are incident almost uniformly on the region of the pattern surface Ma in the X direction, so that the illuminance distribution in the X direction on the pattern surface Ma only decreases uniformly and does not tilt. On the other hand, if the installation surface SPA of the control member 17A is in the vicinity of the pattern surface Ma (or in the vicinity of a surface conjugate with the pattern surface Ma), the illuminance of only the portion of the pattern surface Ma that faces the filter portion 17Aa decreases. The illuminance distribution in the X direction on the pattern surface Ma changes stepwise. On the other hand, since the installation surface SPA of the control member 17A of the present embodiment is at a substantially intermediate position between the pupil plane PPA and the pattern surface Ma, the filter portion 17Aa of the control member 17A causes the pattern surface Ma to The illuminance distribution in the X direction of the illumination area IRA can be tilted at a desired tilt angle and offset. By tilting the illuminance distribution in this way, the distribution of the integrated exposure amount on the plate P can be controlled with high accuracy (details will be described later). Further, since the installation accuracy of the control member 17A may be low and the positioning accuracy when the control member 17A is replaced with another control member 17B may be low, the installation and replacement of the control members 17A, 17B, etc. are easy. is there.

次に、図1において、マスクMの照明領域IRA〜IRGからの照明光は、各照明領域に対応するようにY方向に沿って2列に配列された複数の部分投影光学系PLA〜PLGからなる投影システムPSに入射する。部分投影光学系PLA〜PLGは照明領域IRA〜IRG中のパターンの像を対応する台形状の露光領域PRA,PRB,PRC,PRD,PRE,PRF,PRG(図3(C)参照)に形成する。部分投影光学系PLA〜PLGは、互いに同一構成で一例としてZ方向に配列された2段の反射屈折系を有するほぼ両側にテレセントリックで高解像度の結像光学系である。また、部分投影光学系PLA〜PLGは、それぞれ一例として中間結像を行うとともに、マスクパターンの等倍の正立正像をプレートP上に形成する。   Next, in FIG. 1, illumination light from illumination areas IRA to IRG of mask M is emitted from a plurality of partial projection optical systems PLA to PLG arranged in two rows along the Y direction so as to correspond to each illumination area. Is incident on the projection system PS. The partial projection optical systems PLA to PLG form pattern images in the illumination areas IRA to IRG in the corresponding trapezoidal exposure areas PRA, PRB, PRC, PRD, PRE, PRF, and PRG (see FIG. 3C). . The partial projection optical systems PLA to PLG are telecentric and high-resolution imaging optical systems having substantially the same configuration and two-stage catadioptric systems arranged in the Z direction as an example. In addition, the partial projection optical systems PLA to PLG perform intermediate imaging as an example, and form an erect image at the same magnification as the mask pattern on the plate P.

一例として、部分投影光学系PLAは、マスクMからの光をシフトする像シフタ31Aと、マスクMのパターンの一次像を形成する第1反射屈折系を構成する第1屈折系33A及び凹面鏡34Aと、マスクMからの光をその第1反射屈折系に向け、その第1反射屈折系からの光を−Z方向に向ける第1直角プリズム32Aと、その一次像の近傍に配置された視野絞り35と、その一次像の二次像をプレートP上に形成する第2反射屈折系を構成する第2屈折系33B及び凹面鏡34Bと、一次像からの光をその第2反射屈折系に向け、その第2反射屈折系からの光をプレートP側に向ける第2直角プリズム32Bと、プレートPに入射する光をシフトする像シフタ31Bとを備えている(図3参照)。像シフタ31A,31Bは例えば複数の平行平面板よりなる。また、部分投影光学系PLDは、部分投影光学系PLAとX方向に関して対称に構成されている。なお、マルチレンズ型の投影システムの詳細な構成の一例は、例えば特開2001−330964号公報に開示されている。   As an example, the partial projection optical system PLA includes an image shifter 31A that shifts light from the mask M, a first refractive system 33A and a concave mirror 34A that form a first catadioptric system that forms a primary image of the pattern of the mask M, , A first right-angle prism 32A for directing light from the mask M toward the first catadioptric system and directing light from the first catadioptric system in the -Z direction, and a field stop 35 disposed in the vicinity of the primary image. A second refraction system 33B and a concave mirror 34B constituting a second catadioptric system for forming a secondary image of the primary image on the plate P, and directing light from the primary image to the second catadioptric system, A second rectangular prism 32B for directing light from the second catadioptric system toward the plate P and an image shifter 31B for shifting light incident on the plate P are provided (see FIG. 3). The image shifters 31A and 31B are made of, for example, a plurality of parallel flat plates. The partial projection optical system PLD is configured symmetrically with respect to the partial projection optical system PLA in the X direction. An example of a detailed configuration of the multi-lens type projection system is disclosed in, for example, Japanese Patent Application Laid-Open No. 2001-330964.

また、投影システムPSを構成する部分投影光学系PLA〜PLGの個数は、露光されるマスクMが大きくなるほど多くなり、投影システムPSは例えば11個の部分投影光学系(1列目が5個及び2列目が6個)を備えてもよい。このように、部分投影光学系PLA等の個数は任意であり、部分投影光学系PLA等の構成は任意である。
図5(A)に示すように、部分投影光学系PLA〜PLGは、Y方向に配置された第1列の3個の部分投影光学系PLA,PLB,PLCと、それらに対向するように−X方向に配置されるとともに、Y方向に半周期ずれて配置された第2列の4個の部分投影光学系PLD,PLE,PLF,PLGとに分かれて、光学系フレーム(不図示)に支持されている。また、部分投影光学系PLA〜PLGの中間結像面の近傍に配置された視野絞り35に設けられたY方向に平行なエッジ部を上辺及び底辺とする台形状の開口35aによって、露光領域PRA〜PRGの基本的な形状が規定される。
Further, the number of partial projection optical systems PLA to PLG constituting the projection system PS increases as the mask M to be exposed increases, and the projection system PS includes, for example, 11 partial projection optical systems (5 in the first column and 5 6 in the second row). As described above, the number of the partial projection optical systems PLA and the like is arbitrary, and the configuration of the partial projection optical systems PLA and the like is arbitrary.
As shown in FIG. 5A, the partial projection optical systems PLA to PLG are arranged so as to face the three partial projection optical systems PLA, PLB, and PLC in the first row arranged in the Y direction. Divided into four partial projection optical systems PLD, PLE, PLF, PLG arranged in the X direction and shifted by a half cycle in the Y direction, and supported by an optical system frame (not shown) Has been. Further, an exposure area PRA is formed by a trapezoidal opening 35a having an edge portion parallel to the Y direction provided on a field stop 35 disposed in the vicinity of an intermediate image plane of the partial projection optical systems PLA to PLG and having an upper side and a bottom side. ~ Basic shape of PRG is defined.

図5(B)に示すように、第2列の部分投影光学系PLD〜PLGの露光領域PRD〜PRGは、−X方向側を底辺とする台形状であり、第1列の部分投影光学系PLA〜PLCの露光領域PRA〜PRCは、Y方向に関して露光領域PRD〜PRGの間に位置しているとともに、露光領域PRA〜PRCは、+X方向側を底辺とする台形状である。また、例えば+X方向に向かって全部の露光領域PRA〜PRGを見ると、第1列の露光領域PRA〜PRCの走査方向(X方向)に対して傾斜した2つのエッジ部(以下、傾斜部という)は、それぞれ第2列の露光領域PRD〜PRGの対応する傾斜部と重なっている。なお、図5(B)において、第2列の外側の2つの露光領域PRD,PRGの外側のエッジ部は、例えばマスクMのパターン領域PA(図5(A)参照)を囲む遮光帯(不図示)によって遮光されているため、露光領域PRD,PRGの外側のエッジ部はX軸に平行になっている。   As shown in FIG. 5B, the exposure regions PRD to PRG of the second column of the partial projection optical systems PLD to PLG have a trapezoidal shape with the −X direction side as the base, and the first column of the partial projection optical system. The exposure areas PRA to PRC of PLA to PLC are located between the exposure areas PRD to PRG with respect to the Y direction, and the exposure areas PRA to PRC have a trapezoidal shape with the + X direction side as the base. Further, for example, when all exposure areas PRA to PRG are viewed in the + X direction, two edge portions (hereinafter referred to as inclined portions) that are inclined with respect to the scanning direction (X direction) of the exposure regions PRA to PRC in the first row. ) Respectively overlap the corresponding inclined portions of the exposure regions PRD to PRG in the second row. In FIG. 5B, the outer edge portions of the two exposure regions PRD, PRG outside the second row are, for example, light shielding bands (not shown) surrounding the pattern region PA of the mask M (see FIG. 5A). The outer edge portions of the exposure regions PRD and PRG are parallel to the X axis.

また、部分投影光学系PLA〜PLGは、一例としてそれぞれマスクパターンの等倍の正立正像をプレートP上に形成するため、照明領域IRA〜IRGの形状及び配列は、露光領域PRA〜PRGの形状及び配列と同じである。このため、例えば+X方向に見ると、露光領域PRA〜PRG(照明領域IRA〜IRG)はY方向に隙間なく配置されている。そこで、照明領域IRA〜IRGのパターンの投影システムPSによる像でプレートPを露光しつつ、マスクステージ21によって照明領域IRA〜IRGに対してマスクMを+X方向(又は−X方向)に移動(走査)することと、プレートステージ22によって露光領域PRA〜PRGに対してプレートPを+X方向(又は−X方向)に移動(走査)することとを同期して行うことで、マスクMの全面のパターンを1回の走査露光でプレートPの一つのパターン形成領域53Aに隙間なく露光できる。   In addition, since the partial projection optical systems PLA to PLG form, as an example, erect images that are the same size as the mask pattern on the plate P, the shapes and arrangements of the illumination areas IRA to IRG are the shapes of the exposure areas PRA to PRG. And the same as the sequence. For this reason, for example, when viewed in the + X direction, the exposure areas PRA to PRG (illumination areas IRA to IRG) are arranged without gaps in the Y direction. Accordingly, the mask M is moved in the + X direction (or -X direction) with respect to the illumination areas IRA to IRG by the mask stage 21 (scanning) while exposing the plate P with the image of the projection system PS of the patterns of the illumination areas IRA to IRG. ) And the movement (scanning) of the plate P in the + X direction (or -X direction) with respect to the exposure areas PRA to PRG by the plate stage 22 are performed in synchronization with each other. Can be exposed to one pattern formation region 53A of the plate P without a gap by one scanning exposure.

また、パターン形成領域53Aにおいて、露光領域PRA〜PRCの一方の傾斜部、及び対応する露光領域PRD〜PRGの傾斜部(露光領域PRA〜PRCの傾斜部とY方向に対称な形状の傾斜部)によって二重露光される継ぎ部54A,54B,54C,54D,54E,54Fでは、二重露光後の設計上の露光量が他の領域の設計上の露光量と実質的に同じになるため、露光領域PRA〜PRGで露光されるパターンがY方向に高精度に繋がれる。露光領域PRA〜PRGの傾斜部のY方向の幅をdとすると、継ぎ部54A〜54FのY方向の幅もdとなる。   Further, in the pattern formation region 53A, one inclined portion of the exposure regions PRA to PRC and a corresponding inclined portion of the exposure regions PRD to PRG (an inclined portion having a shape symmetrical to the inclined portion of the exposure regions PRA to PRC in the Y direction). In the joint portions 54A, 54B, 54C, 54D, 54E, and 54F that are double-exposed, the design exposure amount after the double exposure becomes substantially the same as the design exposure amount in other regions. Patterns exposed in the exposure areas PRA to PRG are connected with high accuracy in the Y direction. When the width in the Y direction of the inclined portions of the exposure areas PRA to PRG is d, the width in the Y direction of the joint portions 54A to 54F is also d.

まず、図1において、マスクMの照明領域IRA〜IRGの上方に近接して、それぞれY方向に細長い平板状の遮光部材よりなる4個のマスク側のブラインド41A,41B,41C,41Dが、互いに重ならないようにかつ互いに独立にX方向に移動可能に配置されている。そして、ブラインド41A〜41Dの−Y方向の端部は、例えばリニアモータ方式でブラインド41A〜41DのX方向の位置及び速度を個別に制御する駆動部42Aに連結され、ブラインド41A〜41Dの+Y方向の端部はガイド部42Bに連結されている。一例として、駆動部42A及びガイド部42Bは、照明系ISを保持するフレーム(不図示)に支持されている。各走査露光の開始時及び終了時にブラインド41A〜41Dによって照明領域IRA〜IRGを開閉することによって、プレートP上に不要なパターンが露光されることが防止される。   First, in FIG. 1, four mask-side blinds 41A, 41B, 41C, and 41D made of flat light-shielding members that are elongated in the Y direction are provided above the illumination areas IRA to IRG of the mask M. They are arranged so that they do not overlap and can move in the X direction independently of each other. The ends of the blinds 41A to 41D in the -Y direction are connected to a drive unit 42A that individually controls the positions and speeds of the blinds 41A to 41D in the X direction by, for example, a linear motor method, and the blinds 41A to 41D have + Y directions. Is connected to the guide portion 42B. As an example, the drive part 42A and the guide part 42B are supported by a frame (not shown) that holds the illumination system IS. By opening and closing the illumination areas IRA to IRG with the blinds 41A to 41D at the start and end of each scanning exposure, it is possible to prevent unnecessary patterns from being exposed on the plate P.

また、露光装置EXは、プレートステージ22に設けられて露光領域PRA〜PRGのY方向の照度分布を計測する光量計測部24と、プレートステージ22に設けられて例えばマスクMのアライメントマーク(不図示)の像の位置情報を計測する空間像計測部28(図2参照)と、プレートPのアライメントマーク(不図示)の位置情報を計測するアライメント系AL(図2参照)と、各種データ等を記憶する記憶部29と、を備えている。さらに、露光装置EXは、主制御装置20と不図示のホストコンピュータとの間で各種情報の授受を行うインタフェース部(不図示)と、オペレータが主制御装置20に各種制御情報等を入力する入力装置(不図示)と、主制御装置20が計測結果等を表示する表示装置(不図示)とを備えている。光量計測部24は、一例として複数の微小な受光素子をY方向に配置したものであり、プレートPをX方向に走査したときに光量計測部24で検出される照度(単位面積当たり、単位時間当たりのエネルギー)を積算することによって、プレートPに対する積算露光量のY方向の分布を計測できる。また、空間像計測部及びアライメント系ALの計測結果に基づいてそれぞれマスクM及びプレートPのアライメントを行うことができる。   In addition, the exposure apparatus EX is provided on the plate stage 22 to measure the illuminance distribution in the Y direction of the exposure areas PRA to PRG, and provided on the plate stage 22, for example, an alignment mark (not shown) of the mask M. The aerial image measuring unit 28 (see FIG. 2) for measuring the position information of the image of), the alignment system AL (see FIG. 2) for measuring the position information of the alignment marks (not shown) of the plate P, various data, etc. And a storage unit 29 for storing. Further, the exposure apparatus EX has an interface unit (not shown) for exchanging various types of information between the main controller 20 and a host computer (not shown), and an input for the operator to input various control information and the like to the main controller 20. A device (not shown) and a display device (not shown) on which the main control device 20 displays measurement results and the like are provided. The light quantity measuring unit 24 has a plurality of minute light receiving elements arranged in the Y direction as an example, and the illuminance (unit time per unit area) detected by the light quantity measuring unit 24 when the plate P is scanned in the X direction. The distribution of the accumulated exposure amount with respect to the plate P in the Y direction can be measured by integrating the (energy per hit). Further, the mask M and the plate P can be aligned based on the measurement results of the aerial image measurement unit and the alignment system AL, respectively.

次に、本実施形態の露光装置EXによる露光方法の一例につき図7のフローチャートを参照して説明する。この露光方法は主制御装置20によって制御される。まず、露光装置EXのマスクステージ21及びプレートステージ22にそれぞれマスクM及びプレートPがロードされていないとともに、部分照明系ILA〜ILG中には制御部材17A等が設置されていないものとする。そして、図7のステップ102において、オペレータが主制御装置20に積算露光量分布を計測するように制御情報を入力する。これに応じて、光源10からの照明光ELの照射を行わせ、照明光ELで照明領域IRA〜IRGを介して露光領域PRA〜PRGを照明した状態で、プレートステージ22をY方向にステップ移動してからX方向に所定距離だけ移動するという動作を繰り返して、光量計測部24で露光領域PRA〜PRGをX方向に順次走査する。そして、主制御装置20において、光量計測部24で検出される複数の照度をX方向に積算して、露光領域PRA〜PRGで露光したときのプレートP上のY方向の積算露光量分布を求める。   Next, an example of an exposure method by the exposure apparatus EX of the present embodiment will be described with reference to the flowchart of FIG. This exposure method is controlled by the main controller 20. First, it is assumed that the mask M and the plate P are not loaded on the mask stage 21 and the plate stage 22 of the exposure apparatus EX, respectively, and the control member 17A and the like are not installed in the partial illumination systems ILA to ILG. In step 102 in FIG. 7, the operator inputs control information to the main controller 20 so as to measure the integrated exposure amount distribution. In response to this, the illumination light EL from the light source 10 is irradiated, and the plate stage 22 is stepped in the Y direction in a state where the exposure areas PRA to PRG are illuminated via the illumination areas IRA to IRG with the illumination light EL. After that, the operation of moving a predetermined distance in the X direction is repeated, and the light amount measuring unit 24 sequentially scans the exposure areas PRA to PRG in the X direction. Then, in main controller 20, a plurality of illuminances detected by light quantity measuring unit 24 are integrated in the X direction to obtain an integrated exposure amount distribution in Y direction on plate P when exposed in exposure areas PRA to PRG. .

その後、ステップ104において、主制御装置20は、求められた積算露光量分布のうち、図5(B)の継ぎ部54A〜54Fで計測された露光量の平均値が目標値(ここでは継ぎ部以外の領域の露光量の平均値とする)に対して許容範囲内かどうかを判定する。積算露光量分布の計測結果及び継ぎ部54A〜54Fの露光量の目標値からの偏差の情報は表示装置(不図示)に表示される。なお、以下では説明の便宜上、露光領域PRD,PRA,PREによる2つの継ぎ部54A,54Bをそれぞれ図8(B)及び図9(B)に示し、この2つの継ぎ部54A,54Bの露光量を調整する場合につき説明する。なお、図8(B)等では、説明の便宜上、−Y方向の端部の露光領域PRDの−Y方向のエッジ部も傾斜部として表されている。他の継ぎ部54C〜54Fの露光量も同様に調整される。   Thereafter, in step 104, the main controller 20 determines that the average value of the exposure values measured by the joint portions 54A to 54F in FIG. It is determined whether the exposure value is within an allowable range. The measurement result of the integrated exposure amount distribution and information on deviations from the target values of the exposure amounts of the joint portions 54A to 54F are displayed on a display device (not shown). In the following, for convenience of explanation, two joint portions 54A and 54B formed by exposure areas PRD, PRA, and PRE are shown in FIGS. 8B and 9B, respectively, and the exposure amounts of the two joint portions 54A and 54B are shown. An explanation will be given for the case of adjusting. In FIG. 8B and the like, for convenience of explanation, the edge portion in the −Y direction of the exposure region PRD at the end portion in the −Y direction is also represented as an inclined portion. The exposure amounts of the other joint portions 54C to 54F are similarly adjusted.

また、一例として、ステップ102で最初に計測されたY方向の積算露光量ΣEの分布において、図8(A)に示すように、継ぎ部54A,54Bの露光量の平均値が、他の領域の露光量の平均値(目標値)に対する許容範囲よりも小さい場合を想定する。この場合、動作はステップ104からステップ106に移行して、継ぎ部54A,54Bに対応する部分照明系ILA,ILD,ILEの上述の設置面SPA,SPD等に透過率分布の制御部材17A等が設置されているかどうかを確認する。そして、制御部材17A等が設置されていない場合には、ステップ108に移行して、主制御装置20は、ステップ102で計測した積算露光量分布の計測値から、継ぎ部54A,54Bの露光量を目標値にできるだけ近づけるために設置する制御部材17A等(ここでは制御部材17Aとする)、及びこの制御部材17Aの回転角及びX方向(走査方向)の位置の目標値を求め(これらの目標値の算出方法については後述する)、求めた結果の情報を記憶部29中のファイルに記録するとともに、表示装置を介してオペレータに提供する。これに応じて、オペレータは、設置面SPA,SPD等に保持機構18を介して制御部材17Aを設置するとともに、主制御装置20に、制御部材17A等の交換を行った回数(初期値は0)を示すパラメータに1を加算するように制御情報を入力する。   Further, as an example, in the distribution of the cumulative exposure amount ΣE in the Y direction first measured in step 102, as shown in FIG. 8A, the average value of the exposure amounts of the joint portions 54A and 54B is the other region. Assume that the exposure amount is smaller than the allowable range for the average value (target value). In this case, the operation shifts from step 104 to step 106, and the transmittance distribution control member 17A and the like are provided on the above-described installation surfaces SPA and SPD of the partial illumination systems ILA, ILD, and ILE corresponding to the joint portions 54A and 54B. Check if it is installed. If the control member 17A or the like is not installed, the process proceeds to step 108, and the main controller 20 determines the exposure amount of the joint portions 54A and 54B from the measured value of the integrated exposure amount distribution measured in step 102. The control member 17A and the like (herein referred to as the control member 17A) installed in order to be as close as possible to the target value, and the target value of the rotation angle and the X direction (scanning direction) of the control member 17A are obtained (these target values). The value calculation method will be described later), and the obtained result information is recorded in a file in the storage unit 29 and provided to the operator via the display device. In response to this, the operator installs the control member 17A on the installation surface SPA, SPD, etc. via the holding mechanism 18, and also exchanges the control member 17A etc. with the main controller 20 (the initial value is 0). The control information is input so that 1 is added to the parameter indicating).

そして、ステップ110において、主制御装置20は、制御部材17A等の設置又は交換を所定回数(複数回で例えば3回等)行ったかどうかを判定する。その所定回数は、設置可能な制御部材17A等の種類以下の回数である。ここではその設置又は交換は1回であるため、動作はステップ112に移行し、制御部材17A等の交換を行うかどうかを判定する。制御部材17A等の交換を行うのは、現在、設置面SPA,SPD等に設置されている制御部材17Aの回転角等の調整が済んでいる場合である。ここでは、制御部材17Aの回転角等の調整が済んでいないため、動作はステップ114に移行して、主制御装置20は表示装置を介してオペレータに、設置面SPA,SPD等に設置されている制御部材17Aの回転角等を目標値に設定するように指示を行う。ここでは、露光領域PRAに対応する部分照明系ILA中の制御部材17Aの回転角の目標値は180度、位置のオフセットの目標値は0、露光領域PRD,PREに対応する部分照明系IRD,IRE中の制御部材17Aの回転角の目標値は0度、位置のオフセットの目標値は0であるとする。これに応じて、オペレータが対応する保持機構18を介して、図8(B)に示すように、露光領域PRA用の制御部材17Aのフィルタ部17Aaを−X方向に設定し、露光領域PRD,PRE用の制御部材17Aのフィルタ部17Aaを+X方向に設定する。   In step 110, the main controller 20 determines whether or not the control member 17A or the like has been installed or replaced a predetermined number of times (for example, three times or more). The predetermined number of times is equal to or less than the type of control member 17A or the like that can be installed. Here, since the installation or replacement is performed once, the operation proceeds to step 112, and it is determined whether or not the control member 17A or the like is to be replaced. The replacement of the control member 17A or the like is performed when the adjustment of the rotation angle or the like of the control member 17A currently installed on the installation surface SPA, SPD or the like has been completed. Here, since the adjustment of the rotation angle or the like of the control member 17A has not been completed, the operation shifts to step 114, and the main controller 20 is installed on the installation surface SPA, SPD, etc. by the operator via the display device. The control member 17A is instructed to set the rotation angle of the control member 17A to the target value. Here, the target value of the rotation angle of the control member 17A in the partial illumination system ILA corresponding to the exposure area PRA is 180 degrees, the target value of the position offset is 0, and the partial illumination systems IRD, IRD, corresponding to the exposure areas PRD, PRE It is assumed that the target value of the rotation angle of the control member 17A during IRE is 0 degree, and the target value of the position offset is 0. In response to this, as shown in FIG. 8B, the filter unit 17Aa of the control member 17A for the exposure area PRA is set in the −X direction via the holding mechanism 18 corresponding to the operator, and the exposure areas PRD, The filter portion 17Aa of the control member 17A for PRE is set in the + X direction.

本実施形態では、部分投影光学系PLA〜PLGはそれぞれ等倍の正立正像を形成するため、台形状の露光領域PRA〜PRGと制御部材17Aとの位置関係は、照明領域IRA〜IRGと制御部材17Aとの位置関係と同じである。この結果、図6(A)を参照して説明したように、露光領域PRAにおける照明光ELのX方向の照度分布は、+X方向の照度が高くなるように傾斜し、露光領域PRD,PREにおける照明光ELのX方向の照度分布は、+X方向の照度が低くなるように傾斜する。また、露光領域PRAは+X方向の辺が長い台形状であり、露光領域PRD,PREは−X方向の辺が長い台形状であるため、露光領域PRA,PRD,PREの照度の平均値は、継ぎ部54A,54Bを形成する部分(台形状の領域の傾斜部)での低下量に比べて、継ぎ部54A,54B以外の部分(台形状の領域の平行な2つの辺で挟まれた部分)の低下量が大きくなる。   In the present embodiment, since the partial projection optical systems PLA to PLG each form an equal-size erect image, the positional relationship between the trapezoidal exposure areas PRA to PRG and the control member 17A is controlled by the illumination areas IRA to IRG. The positional relationship with the member 17A is the same. As a result, as described with reference to FIG. 6A, the illuminance distribution in the X direction of the illumination light EL in the exposure area PRA is inclined so that the illuminance in the + X direction becomes high, and in the exposure areas PRD and PRE. The illuminance distribution in the X direction of the illumination light EL is inclined so that the illuminance in the + X direction becomes low. Further, since the exposure area PRA has a trapezoidal shape with a long side in the + X direction, and the exposure areas PRD and PRE have a trapezoidal shape with a long side in the −X direction, the average value of the illuminance of the exposure areas PRA, PRD, and PRE is Compared to the amount of decrease in the portion forming the joint portions 54A and 54B (the inclined portion of the trapezoidal region), the portion other than the joint portions 54A and 54B (the portion sandwiched between two parallel sides of the trapezoidal region) ) Decreases.

このため、制御部材17Aを設置したことによる露光領域PRA,PRD,PREの照度の変化量(補正量)En(n=1〜7)は、図8(C)に示すように、継ぎ部54A,54Bに対応する部分で小さくなる。この補正量Enを加算した全体の照度の補正量(積算露光量に対応する量)のY方向の分布は、図8(E)の点線の曲線56Bのようになる。また、制御部材17Aを設置する前の積算露光量は、図8(E)の点線の曲線56Aであるため、制御部材17Aを設置した後の積算露光量ΣEのY方向の分布は、図8(D)に示すように平坦になり、継ぎ部54A,54Bの露光量は目標値と同じになる。このため、図8(A)に示すように、制御部材17Aを設置する前の継ぎ部54A,54Bの露光量が目標値よりも低い場合には、露光領域PRA用の制御部材17Aの回転角を180度、露光領域PRD,PRE用の制御部材17Aの回転角を0度にすればよいことが分かる。   Therefore, the illuminance change amount (correction amount) En (n = 1 to 7) of the exposure areas PRA, PRD, PRE due to the installation of the control member 17A is, as shown in FIG. , 54B becomes smaller. The distribution in the Y direction of the total illuminance correction amount (amount corresponding to the integrated exposure amount) obtained by adding the correction amount En is as shown by a dotted curve 56B in FIG. Further, since the integrated exposure amount before installing the control member 17A is the dotted curve 56A in FIG. 8E, the distribution in the Y direction of the integrated exposure amount ΣE after installing the control member 17A is shown in FIG. As shown in (D), it becomes flat and the exposure amount of the joint portions 54A and 54B becomes the same as the target value. Therefore, as shown in FIG. 8A, when the exposure amount of the joint portions 54A and 54B before the control member 17A is installed is lower than the target value, the rotation angle of the control member 17A for the exposure area PRA It can be seen that the rotation angle of the control member 17A for the exposure regions PRD and PRE may be set to 0 degree at 0 degree.

また、制御部材17Aを設置する前の継ぎ部54A,54Bの露光量と目標値との偏差がより小さい場合には、露光領域PRA〜PRGの照度の傾斜角は小さくともよいため、制御部材17Aの代わりに、より平均的な透過率の高い制御部材17B又は17Cを使用すればよい。このように予め、継ぎ部54A,54Bの露光量と目標値との偏差に応じてどの制御部材17A〜17Cを使用すればよいかが、記憶部29のファイルに記録されており、主制御装置20は、その偏差に応じて使用する制御部材17A等を選択する。また、より照明光ELの利用効率を高めたい場合には、図6(B)を参照して説明したように、照度を高精度に制御できる範囲内で、制御部材17A等(制御部材17Aa等)のX方向の位置のオフセットを設定してもよい。   Further, when the deviation between the exposure amount of the joint portions 54A and 54B before the control member 17A is installed and the target value is smaller, the inclination angle of the illuminance in the exposure regions PRA to PRG may be small, so the control member 17A. Instead, the control member 17B or 17C having a higher average transmittance may be used. As described above, which control member 17A to 17C should be used in accordance with the deviation between the exposure amount of the joint portions 54A and 54B and the target value is recorded in the file of the storage unit 29, and the main controller 20 Selects the control member 17A or the like to be used according to the deviation. Further, when it is desired to increase the use efficiency of the illumination light EL, as described with reference to FIG. 6B, the control member 17A or the like (control member 17Aa or the like) within the range in which the illuminance can be controlled with high accuracy. ) In the X direction may be set.

逆に、図9(A)に示すように、制御部材17A等を設置する前の積算露光量ΣEのY方向の分布に関して、継ぎ部54A,54Bの露光量が目標値よりも高い場合には、図9(B)に示すように、露光領域PRA用の制御部材17Aのフィルタ部17Aaを+X方向に設定し、露光領域PRD,PRE用の制御部材17Aのフィルタ部17Aaを−X方向に設定すればよい。この結果、図6(A)を参照して説明したように、露光領域PRAにおける照明光ELのX方向の照度分布は、−X方向の照度が高くなるように傾斜し、露光領域PRD,PREにおける照明光ELのX方向の照度分布は、−X方向の照度が低くなるように傾斜する。このため、露光領域PRA,PRD,PREの照度の平均値は、継ぎ部54A,54Bを形成する部分(台形状の領域の傾斜部)での低下量が、継ぎ部54A,54B以外の部分(台形状の領域の平行な2つの辺で挟まれた部分)の低下量よりも大きくなる。   On the contrary, as shown in FIG. 9A, when the exposure amount of the joint portions 54A and 54B is higher than the target value with respect to the distribution in the Y direction of the integrated exposure amount ΣE before installing the control member 17A and the like. 9B, the filter part 17Aa of the control member 17A for the exposure area PRA is set in the + X direction, and the filter part 17Aa of the control member 17A for the exposure areas PRD and PRE is set in the −X direction. do it. As a result, as described with reference to FIG. 6A, the illuminance distribution in the X direction of the illumination light EL in the exposure area PRA is inclined so that the illuminance in the −X direction becomes high, and the exposure areas PRD, PRE. The illuminance distribution in the X direction of the illumination light EL is inclined so that the illuminance in the -X direction is low. For this reason, the average value of the illuminance in the exposure areas PRA, PRD, and PRE is such that the amount of decrease in the portion forming the joint portions 54A and 54B (the inclined portion of the trapezoidal region) is the portion other than the joint portions 54A and 54B ( This is larger than the amount of decrease in the portion between the two parallel sides of the trapezoidal region.

このため、制御部材17Aを設置したことによる露光領域PRA,PRD,PREの照度の変化量(補正量)Enは、図9(C)に示すように、継ぎ部54A,54Bに対応する部分で大きくなる。この補正量Enを加算した全体の照度の補正量(積算露光量に対応する量)のY方向の分布は、図9(E)の点線の曲線57Bのようになる。また、制御部材17Aを設置する前の積算露光量は、図9(E)の点線の曲線57Aであるため、制御部材17Aを設置した後の積算露光量ΣEのY方向の分布は、図9(D)に示すように平坦になり、継ぎ部54A,54Bの露光量は目標値と同じになる。このため、制御部材17Aを設置する前の継ぎ部54A,54Bの露光量が目標値よりも低い場合には、露光領域PRA用の制御部材17Aの回転角を0度、露光領域PRD,PRE用の制御部材17Aの回転角を180度にすればよいことが分かる。   For this reason, the illuminance change amount (correction amount) En in the exposure areas PRA, PRD, PRE due to the installation of the control member 17A is a portion corresponding to the joint portions 54A, 54B, as shown in FIG. 9C. growing. The distribution in the Y direction of the total illuminance correction amount (amount corresponding to the integrated exposure amount) obtained by adding the correction amount En is as shown by a dotted curve 57B in FIG. Further, since the integrated exposure amount before installing the control member 17A is the dotted curve 57A in FIG. 9E, the distribution in the Y direction of the integrated exposure amount ΣE after installing the control member 17A is shown in FIG. As shown in (D), it becomes flat and the exposure amount of the joint portions 54A and 54B becomes the same as the target value. Therefore, when the exposure amount of the joint portions 54A and 54B before the control member 17A is installed is lower than the target value, the rotation angle of the control member 17A for the exposure area PRA is set to 0 degree, and the exposure areas PRD and PRE are used. It can be seen that the rotation angle of the control member 17A may be 180 degrees.

その後、オペレータが主制御装置20に制御部材17Aの回転角等の調整が済んだことを示す制御情報を入力すると、動作はステップ102に戻り、再び光量計測部24を用いて露光領域PRA〜PRGによる露光後の積算露光量分布を計測し、ステップ104において、継ぎ部の露光量が目標値に対して許容範囲内かどうかを判定する。継ぎ部の露光量が目標値に対して許容範囲内である場合には、主制御装置20はオペレータに照明系ISの調整が終了したことを示す情報を提供し、照明系ISの調整が終了する。その後、動作はステップ120に移行してマスクステージ21に対するマスクMのロードが行われ、さらにプレートステージ22に対するプレートPのロードが行われ(ステップ122)、プレートPに対するマスクMのパターンの走査露光が行われる。   Thereafter, when the operator inputs control information indicating that the rotation angle of the control member 17A has been adjusted to the main controller 20, the operation returns to step 102, and the exposure areas PRA to PRG are again used using the light quantity measuring unit 24. In step 104, it is determined whether or not the exposure amount at the joint portion is within an allowable range with respect to the target value. When the exposure amount of the joint portion is within the allowable range with respect to the target value, the main controller 20 provides information indicating that the adjustment of the illumination system IS is completed to the operator, and the adjustment of the illumination system IS is completed. To do. Thereafter, the operation shifts to step 120, the mask M is loaded onto the mask stage 21, the plate P is loaded onto the plate stage 22 (step 122), and the scanning exposure of the pattern of the mask M onto the plate P is performed. Done.

一方、ステップ104において、継ぎ部の露光量が目標値に対して許容範囲内でない場合には、ステップ106において、部分照明系ILA,ILD,ILEの設置面SPA,SPD等に透過率分布の制御部材17A等が設置されているかどうかを確認する。今回は制御部材17Aが設置されているため、動作はステップ110に移行して、主制御装置20は、制御部材17A等の設置又は交換を所定回数行ったかどうかを判定する。その設置又は交換の回数がその所定回数に達した場合には、動作はステップ118に移行して、主制御装置20はオペレータに、照明系ISの調整を行って照明領域IRA〜IRGの光量分布の調整等を行うように指令を発する。   On the other hand, if the exposure amount of the joint portion is not within the allowable range with respect to the target value in step 104, the transmittance distribution is controlled on the installation surfaces SPA, SPD, etc. of the partial illumination systems ILA, ILD, ILE in step 106. It is confirmed whether the member 17A etc. are installed. Since the control member 17A is installed this time, the operation proceeds to step 110, and the main controller 20 determines whether or not the control member 17A or the like has been installed or replaced a predetermined number of times. When the number of installations or replacements reaches the predetermined number, the operation proceeds to step 118, and the main controller 20 adjusts the illumination system IS to the operator to adjust the light amount distribution in the illumination areas IRA to IRG. A command is issued to make adjustments.

また、ステップ110において、その設置又は交換の回数がその所定回数に達していない場合には、ステップ112に移行して、制御部材17A等の交換を行うかどうかを判定する。ここでは、設置面SPA,SPD等に制御部材17Aが設置されているため、動作はステップ116に移行して、主制御装置20は、表示装置を介してオペレータに交換用の制御部材(制御部材17Bとする)、及びこの制御部材17Bの回転角等の目標値の情報を供給する。これに応じてオペレータは設置面SPA,SPD等の制御部材17Aを制御部材17Bに交換し、主制御装置20に、制御部材17A等の交換を行った回数を示すパラメータに1を加算するように制御情報を入力する。   In step 110, if the number of installations or replacements has not reached the predetermined number, the process proceeds to step 112 to determine whether or not to replace the control member 17A and the like. Here, since the control member 17A is installed on the installation surfaces SPA, SPD, etc., the operation shifts to step 116, and the main controller 20 sends an exchange control member (control member) to the operator via the display device. 17B) and target value information such as the rotation angle of the control member 17B is supplied. In response to this, the operator replaces the control member 17A such as the installation surface SPA or SPD with the control member 17B, and adds 1 to the parameter indicating the number of times the control member 17A or the like has been exchanged. Enter control information.

その後、動作はステップ114に移行して、主制御装置20は表示装置を介してオペレータに、設置面SPA,SPD等に設置されている制御部材17Bの回転角等を目標値に設定するように指示を行う。このようにして、照明領域IRA〜IRGの設置面には、それぞれ積算露光量分布のうち、継ぎ部54A等に対応する露光量が目標値に近づくように、制御部材17A等が設置される。   Thereafter, the operation proceeds to step 114, and the main controller 20 sets the rotation angle of the control member 17B installed on the installation surface SPA, SPD, etc. to the target value via the display device to the operator. Give instructions. In this way, on the installation surfaces of the illumination areas IRA to IRG, the control member 17A and the like are installed so that the exposure amount corresponding to the joint portion 54A and the like in the integrated exposure amount distribution approaches the target value.

この露光方法によれば、継ぎ部54A〜54Fの露光量が目標値に近づき、走査露光後の積算露光量のY方向の分布が均一になっているため、プレートPに対する露光量むらが低減されて高精度に露光を行うことができる。
また、ステップ102〜114の動作は、露光装置EXのメンテナンス時等に実行してもよい。これによって、経時変化等によって、照明領域IRA〜IRGの照度分布が次第に変化して、積算露光量分布が変化したような場合でも、制御部材17A等の交換等を行うのみで容易に露光量むらを低減させることができる。
According to this exposure method, the exposure amount of the joints 54A to 54F approaches the target value, and the distribution in the Y direction of the integrated exposure amount after the scanning exposure is uniform. Therefore, the uneven exposure amount on the plate P is reduced. Exposure with high accuracy.
Further, the operations in steps 102 to 114 may be executed during maintenance of the exposure apparatus EX. As a result, even when the illuminance distribution in the illumination areas IRA to IRG is gradually changed due to a change with time or the like, and the integrated exposure amount distribution is changed, the uneven exposure amount can be easily obtained only by replacing the control member 17A or the like. Can be reduced.

上述のように、本実施形態の露光方法及び露光装置EXは、照明系IS(照明光学系)からの露光用の照明光EL(露光光)でマスクMのパターン及び投影システムPS(投影光学系)を介してプレートP(基板)を露光しつつ、マスクM及びプレートPを投影システムPSに対して同期して走査する露光方法及び装置である。そして、露光装置EXにおいて、投影システムPSは、プレートP上の互いに異なる複数の露光領域PRA〜PRGを露光するとともに、露光領域PRA〜PRGは、プレートPをX方向(走査方向)に走査したときに、隣接する2つの露光領域のX方向に直交するY方向(非走査方向)の端部の二重露光によって、プレートP上に継ぎ部54A〜54Fが形成されるように配置されている。また、露光装置EXは、継ぎ部54A〜54Fの露光量を制御するために、マスクMのパターン面Maと照明系ISの瞳面PPA,PPD等との間に設置されて、少なくとも一つの露光領域PRA〜PRGの端部の光強度分布を調整する制御部材17A等(調整部材)を備えている。   As described above, the exposure method and the exposure apparatus EX of the present embodiment use the illumination light EL (exposure light) for exposure from the illumination system IS (illumination optical system) and the pattern of the mask M and the projection system PS (projection optical system). The exposure method and apparatus for scanning the mask M and the plate P synchronously with respect to the projection system PS while exposing the plate P (substrate) through the projection system PS. In the exposure apparatus EX, the projection system PS exposes a plurality of different exposure areas PRA to PRG on the plate P, and the exposure areas PRA to PRG scan the plate P in the X direction (scanning direction). In addition, the joint portions 54A to 54F are formed on the plate P by double exposure at the end portions in the Y direction (non-scanning direction) orthogonal to the X direction of the two adjacent exposure regions. The exposure apparatus EX is installed between the pattern surface Ma of the mask M and the pupil planes PPA, PPD, etc. of the illumination system IS in order to control the exposure amounts of the joint portions 54A to 54F, and at least one exposure is performed. Control members 17A and the like (adjustment members) for adjusting the light intensity distribution at the ends of the regions PRA to PRG are provided.

また、露光装置EXを用いる露光方法は、プレートP上の複数の露光領域PRA〜PRGを露光しつつ、プレートPをX方向に走査して、隣接する2つの露光領域の非走査方向の端部の二重露光によって、プレートP上に継ぎ部54A〜54Fを形成するステップ124と、継ぎ部54A〜54Fの露光量を制御するために、パターン面Maと照明系ISの瞳面との間に設置された制御部材17A等を設置するステップ108と、を有する。   Further, in the exposure method using the exposure apparatus EX, the plate P is scanned in the X direction while exposing the plurality of exposure areas PRA to PRG on the plate P, and end portions in the non-scanning direction of two adjacent exposure areas are exposed. In order to control the exposure amount of the joint portions 54A to 54F in the step 124 for forming the joint portions 54A to 54F on the plate P by the double exposure, the space between the pattern surface Ma and the pupil plane of the illumination system IS is controlled. And a step 108 of installing the installed control member 17A and the like.

本実施形態の露光装置EX又は露光方法によれば、制御部材17A等の設置によって、継ぎ部54A〜54Fの露光量を目標値に対して高精度に設定できるため、複数の露光領域PRA〜PRGを用いてプレートPを走査露光する場合に、継ぎ部54A〜54Fの露光量むらを低減して高精度に露光を行うことができる。
また、制御部材17A等は、マスクMのパターン面Maと照明系ISの瞳面PPA,PPD等との間に設置されているため、制御部材17A等の設置精度を低く設定しても、継ぎ部54A〜54Fの露光量を高精度に制御でき、制御部材17A等の設置及び交換を容易に行うことができる。
According to the exposure apparatus EX or the exposure method of the present embodiment, the exposure amount of the joint portions 54A to 54F can be set with high accuracy with respect to the target value by installing the control member 17A and the like, and thus a plurality of exposure regions PRA to PRG. When the plate P is subjected to scanning exposure using the, the exposure amount unevenness of the joint portions 54A to 54F can be reduced and exposure can be performed with high accuracy.
Further, since the control member 17A and the like are installed between the pattern surface Ma of the mask M and the pupil planes PPA and PPD of the illumination system IS, even if the installation accuracy of the control member 17A or the like is set low, The exposure amounts of the portions 54A to 54F can be controlled with high accuracy, and the control member 17A and the like can be easily installed and replaced.

なお、上述の実施形態では、図4(A)〜(C)に示すように、半円状のフィルタ部17Aa等を有する制御部材17A等が使用されているが、図10に示すように、開口部17Dbを囲むように配置された輪帯状のメッシュ型のフィルタ部17Daを有する透過率分布の制御部材17Dを使用してもよい。フィルタ部17Daの平均的な透過率は例えば70%〜90%程度であり、フィルタ部17Daの内径は、台形状の露光領域PRA〜PRGの傾斜部の中央付近の直径程度である。制御部材17Dは、制御部材17A等の代わりに、部分照明系ILA,ILDの設置面SPA,SPD等に保持機構18を介して設置可能である。   In the above-described embodiment, as shown in FIGS. 4A to 4C, the control member 17A having a semicircular filter portion 17Aa or the like is used, but as shown in FIG. A transmittance distribution control member 17D having an annular mesh-type filter portion 17Da disposed so as to surround the opening portion 17Db may be used. The average transmittance of the filter portion 17Da is, for example, about 70% to 90%, and the inner diameter of the filter portion 17Da is about the diameter near the center of the inclined portion of the trapezoidal exposure areas PRA to PRG. The control member 17D can be installed on the installation surfaces SPA and SPD of the partial illumination systems ILA and ILD via the holding mechanism 18 instead of the control member 17A and the like.

例えば、図11(A)に示すように、制御部材17A等を設置する前の積算露光量ΣEのY方向の分布に関して、継ぎ部54A,54Bの露光量が目標値よりも高い場合には、図10(B)に示すように、露光領域PRA,PRD,PRE用の部分照明系ILA,ILD,ILEにそれぞれ制御部材17Dを設置する。この場合、制御部材17Dの輪帯状のフィルタ部17Daによって、露光領域PRA,PRD,PREのY方向の端部(傾斜部の先端部)における照明光ELの照度が低下する。   For example, as shown in FIG. 11A, when the exposure amount of the joint portions 54A and 54B is higher than the target value with respect to the distribution in the Y direction of the integrated exposure amount ΣE before installing the control member 17A or the like, As shown in FIG. 10B, control members 17D are installed in the partial illumination systems ILA, ILD, and ILE for the exposure areas PRA, PRD, and PRE, respectively. In this case, the illuminance of the illumination light EL at the Y-direction ends (tip portions of the inclined portions) of the exposure areas PRA, PRD, PRE is reduced by the ring-shaped filter portion 17Da of the control member 17D.

このため、制御部材17Dを設置したことによる露光領域PRA,PRD,PREの照度の変化量(補正量)Enは、図10(C)に示すように、継ぎ部54A,54Bに対応する部分で大きくなる。この補正量Enを加算した全体の照度の補正量(積算露光量に対応する量)のY方向の分布は、図10(E)の点線の曲線58Bのようになる。また、制御部材17Dを設置する前の積算露光量は、図10(E)の点線の曲線58Aであるため、制御部材17Dを設置した後の積算露光量ΣEのY方向の分布は、図10(D)に示すように平坦になり、継ぎ部54A,54Bの露光量は目標値と同じになる。   For this reason, the illuminance change amount (correction amount) En of the exposure areas PRA, PRD, PRE due to the installation of the control member 17D is a portion corresponding to the joint portions 54A, 54B as shown in FIG. growing. The distribution in the Y direction of the overall illuminance correction amount (amount corresponding to the integrated exposure amount) obtained by adding the correction amount En is as shown by a dotted curve 58B in FIG. Further, since the integrated exposure amount before installing the control member 17D is the dotted curve 58A in FIG. 10E, the distribution in the Y direction of the integrated exposure amount ΣE after installing the control member 17D is shown in FIG. As shown in (D), it becomes flat and the exposure amount of the joint portions 54A and 54B becomes the same as the target value.

このように輪帯状のフィルタ部17Daを有する制御部材17DをマスクMのパターン面Maと照明系ISの瞳面PPA,PPD等との間に設置しても、継ぎ部54A〜54Fにおける露光量むらを低減させることができる。
また、メッシュ型(又はNDフィルタ型)のフィルタ部を有する制御部材17A等の代替として、図12(A)、(B)、(C)、(D)、(E)、及び(F)に示すように、それぞれ線状部材が所定形状に配置されたフィルタ部を有する制御部材17F,17G,17H,17I,17J,17Kを使用することもできる。制御部材17Fのリング状の枠部17Faには、例えばボルトで固定できるように複数の開口17Fhが形成されている。これは他の制御部材17G〜17Kも同様である。
Thus, even when the control member 17D having the ring-shaped filter portion 17Da is disposed between the pattern surface Ma of the mask M and the pupil planes PPA, PPD, etc. of the illumination system IS, the exposure amount unevenness in the joint portions 54A to 54F is uneven. Can be reduced.
Further, as an alternative to the control member 17A or the like having a mesh type (or ND filter type) filter unit, FIGS. 12 (A), (B), (C), (D), (E), and (F) are used. As shown, control members 17F, 17G, 17H, 17I, 17J, and 17K each having a filter portion in which linear members are arranged in a predetermined shape may be used. A plurality of openings 17Fh are formed in the ring-shaped frame portion 17Fa of the control member 17F so as to be fixed with bolts, for example. The same applies to the other control members 17G to 17K.

また、制御部材17F,17G,17Hのフィルタ部17Fa,17Ga,17Haは、走査方向(X方向)の半面側の領域に、それぞれ線状部材で、X方向及びY方向に平行な格子状パターン、X方向にほぼ45度で交差するように傾斜した格子状パターン、及び多数の正六角形状のパターンを形成したものである。
また、図12(D)、(E)、(F)の制御部材17I,17J,17Kのフィルタ部17Ia,17Ja,及び17Kaは、それぞれ台形状の視野絞りの長手方向と平行な2本の直線状部材、台形状の視野絞りの長手方向と平行な1本の直線状部材、及び台形状の視野絞りの長手方向に対して傾斜した1本の直線状部材から形成されている。制御部材17I,17J,17Kを用いた場合には、Y方向に平行な線状部材が使用されていないため、走査露光後のY方向(非走査方向)の積算露光量のむら(又はY方向の照度むら)を減少させることができる。
Further, the filter portions 17Fa, 17Ga, and 17Ha of the control members 17F, 17G, and 17H are grid-like patterns parallel to the X direction and the Y direction, respectively, in linear regions in the region on the half surface side in the scanning direction (X direction). A lattice-like pattern inclined so as to intersect with the X direction at about 45 degrees and a number of regular hexagonal patterns are formed.
Also, the filter parts 17Ia, 17Ja, and 17Ka of the control members 17I, 17J, and 17K in FIGS. 12D, 12E, and 12F are each two straight lines parallel to the longitudinal direction of the trapezoidal field stop. And a linear member parallel to the longitudinal direction of the trapezoidal field stop, and a linear member inclined with respect to the longitudinal direction of the trapezoidal field stop. When the control members 17I, 17J, and 17K are used, a linear member that is parallel to the Y direction is not used. Therefore, the unevenness in the accumulated exposure amount in the Y direction (non-scanning direction) after scanning exposure (or in the Y direction) (Illuminance unevenness) can be reduced.

また、上述の制御部材17A〜17D及び制御部材17F〜17Kにおいて、フィルタ部を構成する線状部材の太さを全体的に調整するか、又は部分的に調整することによって、透過率分布を調整することもできる。
また、上述の実施形態では、マルチレンズ型で等倍の投影システムPSが使用されているが、投影システムPSとして単一の投影光学系を使用して、例えばスティッチング方式で基板を露光する場合にも本発明が適用できる。さらに、投影光学系の投影倍率が拡大又は縮小の場合にも本発明が適用できる。
Further, in the above-described control members 17A to 17D and control members 17F to 17K, the transmittance distribution is adjusted by adjusting the thickness of the linear member constituting the filter portion as a whole or partially. You can also
Further, in the above-described embodiment, the multi-lens-type projection system PS is used. However, when a single projection optical system is used as the projection system PS, for example, the substrate is exposed by the stitching method. The present invention can also be applied to. Furthermore, the present invention can also be applied when the projection magnification of the projection optical system is enlarged or reduced.

また、上記の各実施形態の露光装置EX又は露光方法を用いて、基板上に所定のパターン(TFTパターン等)を形成することによって、電子デバイス(マイクロデバイス)としての液晶ディスプレイ用のパネル(液晶表示パネル)を得ることもできる。以下、図13のフローチャートを参照して、この製造方法の一例につき説明する。
図13のステップS401(パターン形成工程)では、先ず、露光対象の基板上にフォトレジストを塗布して感光基板(プレートP)を準備する塗布工程、上記の露光装置を用いてパネル用のマスク(例えばマスクMを含む)のパターンをその感光基板上の複数のパターン形成領域に露光する露光工程、及びその感光基板を現像する現像工程が実行される。この塗布工程、露光工程、及び現像工程を含むリソグラフィ工程によって、その基板上に所定のレジストパターンが形成される。このリソグラフィ工程に続いて、そのレジストパターンをマスクとしたエッチング工程、及びレジスト剥離工程等を経て、その基板上に所定パターンが形成される。そのリソグラフィ工程等は、その基板上のレイヤ数に応じて複数回実行される。
In addition, by using the exposure apparatus EX or the exposure method of each of the above embodiments to form a predetermined pattern (TFT pattern or the like) on the substrate, a liquid crystal display panel (liquid crystal) as an electronic device (micro device) is formed. Display panel). Hereinafter, an example of this manufacturing method will be described with reference to the flowchart of FIG.
In step S401 (pattern formation process) in FIG. 13, first, a coating process for preparing a photosensitive substrate (plate P) by applying a photoresist on a substrate to be exposed, and a panel mask (using the above exposure apparatus) For example, an exposure process for exposing a pattern (including a mask M) to a plurality of pattern formation regions on the photosensitive substrate and a developing process for developing the photosensitive substrate are performed. A predetermined resist pattern is formed on the substrate by a lithography process including the coating process, the exposure process, and the development process. Following this lithography process, a predetermined pattern is formed on the substrate through an etching process using the resist pattern as a mask, a resist stripping process, and the like. The lithography process or the like is executed a plurality of times according to the number of layers on the substrate.

その次のステップS402(カラーフィルタ形成工程)では、赤R、緑G、青Bに対応した3つの微細なフィルタの組をマトリックス状に多数配列するか、又は赤R、緑G、青Bの3本のストライプ状の複数のフィルタの組を水平走査線方向に配列することによってカラーフィルタを形成する。その次のステップS403(セル組立工程)では、例えばステップS401にて得られた所定パターンを有する基板とステップS402にて得られたカラーフィルタとの間に液晶を注入して、液晶セルを製造する。   In the next step S402 (color filter forming step), a large number of three fine filter sets corresponding to red R, green G, and blue B are arranged in a matrix, or red R, green G, and blue B are arranged. A color filter is formed by arranging a set of three stripe-shaped filters in the horizontal scanning line direction. In the next step S403 (cell assembly process), for example, a liquid crystal cell is manufactured by injecting liquid crystal between the substrate having the predetermined pattern obtained in step S401 and the color filter obtained in step S402. .

その後のステップS404(モジュール組立工程)では、そのようにして組み立てられた液晶セルに表示動作を行わせるための電気回路、及びバックライト等の部品を取り付けて、液晶表示パネルとして完成させる。
上述の電子デバイスの製造方法によれば、上記の実施形態の露光装置又は露光方法を用いてマスクのパターンを基板に転写する工程(ステップS401の一部)と、この工程によりそのパターンが転写された基板をそのパターンに基づいて加工(現像、エッチング等)する工程(ステップS401の他の部分)とを含んでいる。
In subsequent step S404 (module assembling step), an electric circuit for causing the liquid crystal cell thus assembled to perform a display operation and components such as a backlight are attached to complete a liquid crystal display panel.
According to the above-described electronic device manufacturing method, the mask pattern is transferred to the substrate using the exposure apparatus or exposure method of the above-described embodiment (part of step S401), and the pattern is transferred by this step. And a step of processing (developing, etching, etc.) the substrate based on the pattern (the other part of step S401).

この製造方法によれば、マスクのパターンを効率的に、及び露光量むらの影響を小さくして高精度に基板に露光できるため、液晶表示パネルを効率的に、及び高精度に製造できる。
なお、上述の電子デバイスの製造方法は、有機EL(Electro-Luminescence)ディスプレイ、又はプラズマディスプレイ等の他のディスプレイ用のパネル等を製造する場合にも適用できる。
According to this manufacturing method, the mask pattern can be efficiently exposed to the substrate with high accuracy while reducing the influence of uneven exposure, and thus the liquid crystal display panel can be manufactured efficiently and with high accuracy.
The above-described method for manufacturing an electronic device can also be applied to the case of manufacturing an organic EL (Electro-Luminescence) display, or another display panel such as a plasma display.

なお、本発明は上述の実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々の構成を取り得る。   In addition, this invention is not limited to the above-mentioned embodiment, A various structure can be taken in the range which does not deviate from the summary of this invention.

EX…露光装置、PS…投影システム、PLA〜PLG…部分投影光学系、M…マスク、P…プレート、PRA〜PRG…露光領域、17A〜17D…制御部材、18…保持機構、21…マスクステージ、22…プレートステージ、35…視野絞り、53A…パターン形成領域、54A〜54F…継ぎ部   EX ... exposure apparatus, PS ... projection system, PLA-PLG ... partial projection optical system, M ... mask, P ... plate, PRA-PRG ... exposure area, 17A-17D ... control member, 18 ... holding mechanism, 21 ... mask stage , 22 ... Plate stage, 35 ... Field stop, 53A ... Pattern formation region, 54A-54F ... Joint

Claims (17)

照明光学系からの露光光でマスクのパターン及び投影光学系を介して基板を露光しつつ、前記マスク及び前記基板を前記投影光学系に対して同期して走査する露光装置において、
前記投影光学系は、前記基板上の互いに異なる複数の露光領域を露光するとともに、前記複数の露光領域は、前記基板を走査方向に走査したときに、隣接する2つの前記露光領域の前記走査方向に交差する非走査方向の端部の二重露光によって、前記基板上に継ぎ部が形成されるように配置され、
前記継ぎ部の露光量を制御するために、前記マスクのパターン面と前記照明光学系の瞳面との間に設置されて、少なくとも一つの前記露光領域の前記端部の光強度分布を調整する調整部材を備えることを特徴とする露光装置。
In an exposure apparatus that scans the mask and the substrate synchronously with respect to the projection optical system while exposing the substrate with the exposure light from the illumination optical system via the mask pattern and the projection optical system,
The projection optical system exposes a plurality of different exposure regions on the substrate, and the plurality of exposure regions are scanned in the scanning direction of two adjacent exposure regions when the substrate is scanned in the scanning direction. Is arranged so that a joint is formed on the substrate by double exposure at the end in the non-scanning direction intersecting with
In order to control the exposure amount of the joint, the light intensity distribution is adjusted between the pattern surface of the mask and the pupil surface of the illumination optical system and adjusts the light intensity distribution at the end of at least one of the exposure regions. An exposure apparatus comprising an adjustment member.
前記複数の露光領域のそれぞれの前記非走査方向の少なくとも一方の端部を前記走査方向の幅が次第に狭くなる形状を有する傾斜部に設定する視野絞り部を備えることを特徴とする請求項1に記載の露光装置。   2. The field stop unit that sets at least one end portion of each of the plurality of exposure regions in the non-scanning direction to an inclined portion having a shape in which the width in the scanning direction is gradually narrowed. The exposure apparatus described. 前記調整部材は、前記露光領域の光強度分布を前記走査方向に対して非均一になるように調整することを特徴とする請求項1又は2に記載の露光装置。   The exposure apparatus according to claim 1, wherein the adjustment member adjusts the light intensity distribution in the exposure region so as to be non-uniform with respect to the scanning direction. 前記調整部材は、前記非走査方向に対応する方向に平行なエッジ部を有する半円状のメッシュ型のフィルタ部を有し、
前記フィルタ部が前記露光光の一部を遮光するように配置されることを特徴とする請求項3に記載の露光装置。
The adjustment member has a semicircular mesh type filter portion having an edge portion parallel to a direction corresponding to the non-scanning direction,
The exposure apparatus according to claim 3, wherein the filter unit is disposed so as to block a part of the exposure light.
前記調整部材は、前記露光領域の光強度分布を該露光領域の中心に対して半径方向に非均一になるように調整することを特徴とする請求項1又は2に記載の露光装置。   The exposure apparatus according to claim 1, wherein the adjustment member adjusts the light intensity distribution of the exposure region so as to be non-uniform in a radial direction with respect to a center of the exposure region. 前記調整部材は、前記露光領域の中心に対応する点を中心とする輪帯状のメッシュ型のフィルタ部を有し、
前記フィルタ部が前記露光光の一部を遮光するように配置されることを特徴とする請求項5に記載の露光装置。
The adjustment member has a ring-shaped mesh-type filter portion centered on a point corresponding to the center of the exposure region,
6. The exposure apparatus according to claim 5, wherein the filter unit is disposed so as to block a part of the exposure light.
前記調整部材は、前記メッシュ型のフィルタ部を保持するリング状の枠部材を有することを特徴とする請求項4又は6に記載の露光装置。   The exposure apparatus according to claim 4, wherein the adjustment member includes a ring-shaped frame member that holds the mesh-type filter unit. 前記照明光学系は、前記複数の露光領域に対応して前記マスクのパターン面の複数の照明領域を照明する複数の部分照明系を有し、
前記調整部材は、前記複数の部分照明系にそれぞれ設けられることを特徴とする請求項1〜7のいずれか一項に記載の露光装置。
The illumination optical system has a plurality of partial illumination systems that illuminate a plurality of illumination areas on the pattern surface of the mask corresponding to the plurality of exposure areas,
The exposure apparatus according to claim 1, wherein the adjustment member is provided in each of the plurality of partial illumination systems.
照明光学系からの露光光でマスクのパターン及び投影光学系を介して基板を露光しつつ、前記マスク及び前記基板を前記投影光学系に対して同期して走査する露光方法において、
前記基板上の互いに異なる複数の露光領域を露光しつつ、前記基板を走査方向に走査して、隣接する2つの前記露光領域の前記走査方向に交差する非走査方向の端部の二重露光によって、前記基板上に継ぎ部を形成することと、
前記継ぎ部の露光量を制御するために、前記マスクのパターン面と前記照明光学系の瞳面との間に設置された調整部材を用いて、少なくとも一つの前記露光領域の前記端部の光強度分布を調整することを特徴とする露光方法。
In an exposure method of scanning the mask and the substrate synchronously with respect to the projection optical system while exposing the substrate through a mask pattern and the projection optical system with exposure light from an illumination optical system,
While exposing a plurality of different exposure areas on the substrate, the substrate is scanned in the scanning direction, and double exposure at the end in the non-scanning direction intersecting the scanning direction of the two adjacent exposure areas Forming a joint on the substrate;
In order to control the exposure amount of the joint, an adjustment member installed between the pattern surface of the mask and the pupil surface of the illumination optical system is used, and the light at the end of at least one of the exposure regions An exposure method comprising adjusting an intensity distribution.
前記複数の露光領域のそれぞれの前記非走査方向の少なくとも一方の端部は、前記走査方向の幅が次第に狭くなる形状を有する傾斜部に設定されることを特徴とする請求項9に記載の露光方法。   10. The exposure according to claim 9, wherein at least one end in the non-scanning direction of each of the plurality of exposure regions is set to an inclined portion having a shape in which a width in the scanning direction is gradually narrowed. Method. 前記露光領域の前記端部の光強度分布を調整するために、前記露光領域の光強度分布を前記走査方向に対して非均一になるように調整することを特徴とする請求項9又は10に記載の露光方法。   11. The light intensity distribution in the exposure area is adjusted to be non-uniform with respect to the scanning direction in order to adjust the light intensity distribution at the end of the exposure area. The exposure method as described. 前記調整部材は、前記非走査方向に対応する方向に平行なエッジ部を有する半円状のメッシュ型のフィルタ部を有し、
前記フィルタ部が前記露光光の一部を遮光するように配置されることを特徴とする請求項11に記載の露光方法。
The adjustment member has a semicircular mesh type filter portion having an edge portion parallel to a direction corresponding to the non-scanning direction,
The exposure method according to claim 11, wherein the filter unit is disposed so as to block a part of the exposure light.
前記露光領域の前記端部の光強度分布を調整するために、前記露光領域の光強度分布を該露光領域の中心に対して半径方向に非均一になるように調整することを特徴とする請求項9又は10に記載の露光方法。   The light intensity distribution of the exposure region is adjusted so as to be non-uniform in the radial direction with respect to the center of the exposure region in order to adjust the light intensity distribution at the end of the exposure region. Item 11. The exposure method according to Item 9 or 10. 前記調整部材は、前記露光領域の中心に対応する点を中心とする輪帯状のメッシュ型のフィルタ部を有し、
前記フィルタ部が前記露光光の一部を遮光するように配置されることを特徴とする請求項13に記載の露光方法。
The adjustment member has a ring-shaped mesh-type filter portion centered on a point corresponding to the center of the exposure region,
The exposure method according to claim 13, wherein the filter unit is disposed so as to block a part of the exposure light.
前記照明光学系は、前記複数の露光領域に対応して前記マスクのパターン面の複数の照明領域を照明する複数の部分照明系を有し、
前記調整部材は、前記複数の部分照明系にそれぞれ設けられることを特徴とする請求項9〜14のいずれか一項に記載の露光方法。
The illumination optical system has a plurality of partial illumination systems that illuminate a plurality of illumination areas on the pattern surface of the mask corresponding to the plurality of exposure areas,
The exposure method according to claim 9, wherein the adjustment member is provided in each of the plurality of partial illumination systems.
請求項1〜8のいずれか一項に記載の露光装置を用いて基板上に感光層のパターンを形成することと、
前記パターンが形成された前記基板を処理することと、
を含むデバイス製造方法。
Forming a pattern of a photosensitive layer on a substrate using the exposure apparatus according to claim 1;
Processing the substrate on which the pattern is formed;
A device manufacturing method including:
請求項9〜15のいずれか一項に記載の露光方法を用いて基板上に感光層のパターンを形成することと、
前記パターンが形成された前記基板を処理することと、
を含むデバイス製造方法。
Forming a pattern of a photosensitive layer on a substrate using the exposure method according to any one of claims 9 to 15,
Processing the substrate on which the pattern is formed;
A device manufacturing method including:
JP2014146538A 2014-07-17 2014-07-17 Exposure method and apparatus, and device manufacturing method Active JP6519109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014146538A JP6519109B2 (en) 2014-07-17 2014-07-17 Exposure method and apparatus, and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014146538A JP6519109B2 (en) 2014-07-17 2014-07-17 Exposure method and apparatus, and device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019083432A Division JP7060848B2 (en) 2019-04-24 2019-04-24 Exposure device

Publications (2)

Publication Number Publication Date
JP2016024257A true JP2016024257A (en) 2016-02-08
JP6519109B2 JP6519109B2 (en) 2019-05-29

Family

ID=55271062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014146538A Active JP6519109B2 (en) 2014-07-17 2014-07-17 Exposure method and apparatus, and device manufacturing method

Country Status (1)

Country Link
JP (1) JP6519109B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107966881A (en) * 2017-03-15 2018-04-27 上海微电子装备(集团)股份有限公司 Lithographic equipment and method
KR20190031234A (en) * 2016-07-21 2019-03-25 도판 인사츠 가부시키가이샤 Photomask, photomask manufacturing method, and manufacturing method of color filter using photomask
WO2020145044A1 (en) * 2019-01-09 2020-07-16 株式会社ニコン Exposure device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113094013B (en) * 2021-04-08 2021-12-31 深圳市极客智能科技有限公司 Remote transmission system, method, device, equipment and storage medium for spliced display screen

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554848A (en) * 1978-06-26 1980-01-14 Mitsubishi Electric Corp Dimming filter
JP2001201867A (en) * 2000-01-21 2001-07-27 Nikon Corp Exposure method, aligner and device manufacturing method
JP2002258489A (en) * 2000-04-20 2002-09-11 Nikon Corp Device and method for aligner
JP2003151880A (en) * 2001-11-12 2003-05-23 Nikon Corp Projection aligner, exposure method, and device- manufacturing method
JP2004311897A (en) * 2003-04-10 2004-11-04 Nikon Corp Method and equipment for exposure, process for fabricating device, and mask
JP2006210856A (en) * 2005-01-31 2006-08-10 Toshiba Corp Exposure method and manufacturing method of semiconductor device
JPWO2010123063A1 (en) * 2009-04-22 2012-10-25 株式会社イクス Optical filter and display evaluation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554848A (en) * 1978-06-26 1980-01-14 Mitsubishi Electric Corp Dimming filter
JP2001201867A (en) * 2000-01-21 2001-07-27 Nikon Corp Exposure method, aligner and device manufacturing method
JP2002258489A (en) * 2000-04-20 2002-09-11 Nikon Corp Device and method for aligner
JP2003151880A (en) * 2001-11-12 2003-05-23 Nikon Corp Projection aligner, exposure method, and device- manufacturing method
JP2004311897A (en) * 2003-04-10 2004-11-04 Nikon Corp Method and equipment for exposure, process for fabricating device, and mask
JP2006210856A (en) * 2005-01-31 2006-08-10 Toshiba Corp Exposure method and manufacturing method of semiconductor device
JPWO2010123063A1 (en) * 2009-04-22 2012-10-25 株式会社イクス Optical filter and display evaluation system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190031234A (en) * 2016-07-21 2019-03-25 도판 인사츠 가부시키가이샤 Photomask, photomask manufacturing method, and manufacturing method of color filter using photomask
JPWO2018016485A1 (en) * 2016-07-21 2019-05-09 凸版印刷株式会社 Photomask, method of manufacturing photomask, and method of manufacturing color filter using photomask
KR102471802B1 (en) * 2016-07-21 2022-11-28 도판 인사츠 가부시키가이샤 Photomask, photomask manufacturing method, and color filter manufacturing method using photomask
CN107966881A (en) * 2017-03-15 2018-04-27 上海微电子装备(集团)股份有限公司 Lithographic equipment and method
US11042099B2 (en) 2017-03-15 2021-06-22 Shanghai Micro Electronics Equipment (Group) Co., Ltd. Photoetching apparatus and method
WO2020145044A1 (en) * 2019-01-09 2020-07-16 株式会社ニコン Exposure device

Also Published As

Publication number Publication date
JP6519109B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
TWI471679B (en) Alterable slit device, lighting device, exposure device, exposure method and device manufacturing method
JP2004327660A (en) Scanning projection aligner, exposure method, and device manufacturing method
JP2010004008A (en) Optical unit, illumination optical device, exposure apparatus, exposure method and production process of device
JP2007052214A (en) Scanning exposure apparatus and method for manufacturing microdevice
JP6519109B2 (en) Exposure method and apparatus, and device manufacturing method
TWI489219B (en) Illumination optical system, exposure apparatus and device manufacturing method
JP4366948B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
JP2007101592A (en) Scanning exposure apparatus and method for manufacturing microdevice
TW201719300A (en) Projection exposure device by transferring the mask pattern to a substrate with an allowable error
TW201344378A (en) Optical system, exposure apparatus, and device manufacturing method
KR20100106949A (en) Exposure method and exposure device
TWI459155B (en) Exposure method and device thereof
JP4888819B2 (en) Exposure apparatus, exposure method, exposure apparatus manufacturing method, and microdevice manufacturing method
JP5383126B2 (en) Exposure apparatus and device manufacturing method
JP7060848B2 (en) Exposure device
JP2007279113A (en) Scanning exposure apparatus and method for manufacturing device
JP2019028084A (en) Exposure device
JP2004266259A (en) Illumination optical device, exposure apparatus, and exposure method
KR20140117280A (en) Exposure apparatus, and method of manufacturing article
JP2008185908A (en) Method for manufacturing mask, exposure method, exposure device, and method for manufacturing electronic device
KR102547257B1 (en) Exposure device and exposure method
JP2006134932A (en) Variable slit device, illumination optical device, aligner, and method of exposure
JP2019028086A (en) Exposure device and exposure method
JP2009032749A (en) Exposure apparatus and device manufacturing method
JP2010147433A (en) Illumination optical system, aligner, and method of manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180314

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190408

R150 Certificate of patent or registration of utility model

Ref document number: 6519109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250